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Abstract

Knowledge of PV system characteristics is needed in different regional PV modelling approaches. It is the

aim of this paper to provide that knowledge by a twofold method that focuses on (1) metadata (tilt and

azimuth of modules, installed capacity and specific annual yield) as well as (2) the impact of shading.

Metadata from 2,802,797 PV systems located in Europe, USA, Japan and Australia, representing a total

capacity of 59 GWp (14.8% of installed capacity worldwide), is analysed. Visually striking interdependencies

of the installed capacity and the geographic location to the other parameters tilt, azimuth and specific annual

yield motivated a clustering on a country level and between systems sizes. For an eased future utilisation of

the analysed metadata, each parameter in a cluster was approximated by a distribution function. Results

show strong characteristics unique to each cluster, however, there are some commonalities across all clusters.

Mean tilt values were reported in a range between 16.1◦ (Australia) and 35.6◦ (Belgium), average specific

annual yield values occur between 786 kWh/kWp (Denmark) and 1,426 kWh/kWp (USA South). The

region with smallest median capacity was the UK (2.94 kWp) and the largest was Germany (8.96 kWp).

Almost all countries had a mean azimuth angle facing the equator.

PV system shading was considered by deriving viewsheds for ≈ 48,000 buildings in Uppsala, Sweden (all

ranges of solar angles were explored). From these viewsheds, two empirical equations were derived related

to irradiance losses on roofs due to shading. The first expresses the loss of beam irradiance as a function of

the solar elevation angle. The second determines the view factor as a function of the roof tilt including the

impact from shading and can be used to estimate the losses of diffuse and reflected irradiance.

Keywords: PV system characteristics, Metadata, Shading, Data analysis
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1. Introduction1

With 402.5 GW of installed photovoltaic (PV)2

capacity globally (IEA, 2018), the integration of the3

large amounts of energy generated by the numerous4

distributed solar power systems into the electricity5

supply system is an issue ever gaining in impor-6

tance. Modelling of the power generated by those7

decentralised solar systems is of utmost importance8

for several issues ranging from energy trading to9

network flow control. The estimation and forecast10

of PV power is made difficult by the fact that only a11

minority of systems continuously report their gen-12

eration and are publicly accessible.13

Different strategies have been proposed to over-14

come the lack of reporting (e.g. upscaling ap-15

proaches or power simulations based on satellite de-16

rived irradiance); an extensive literature overview is17

provided in Bright et al. (2017b). Within this pa-18

per, the estimation of the aggregated power gen-19

erated in a given region by a fleet of unknown20

PV systems is referred to as regional PV power21

modelling. Knowledge of PV system characteris-22

tics is required in the different regional PV mod-23

elling approaches to reconstruct the missing power24

measurements (Lorenz et al., 2011; Saint-Drenan25

et al., 2016). Some studies assign simplified as-26

sumptions of the PV system characteristics. This27

can result in over-exaggerated grid impacts (Bright28

et al., 2017a). Unfortunately in most cases, charac-29

teristics from PV systems are either unknown or30

∗Corresponding author
∗∗Co-corresponding author

Email addresses: nicholas.engerer@anu.edu.au

(Nicholas A. Engerer), jamie.bright@anu.edu.au (Jamie

M. Bright), jamiebright1@gmail.com (Jamie M. Bright)

only accessible for a small number of stakehold-31

ers (inverter manufacturers, monitoring solutions32

providers, etc.). As a result, progress in the area33

of regional PV power estimation or forecasting can34

be considered sub-optimal as potential contributors35

like universities or small companies are partially ex-36

cluded from access to larger datasets of measure-37

ments or metadata. This is still the case despite38

grid integration of solar energy being considered a39

strategic societal issue. Therefore, it is the aim of40

this paper to offer any stakeholders the possibility41

to develop activities on this research field by col-42

lecting, analysing and disseminating metadata on43

millions of PV systems installed worldwide. To be-44

gin, we must establish which metadata are the most45

important.46

Saint-Drenan (2015) carried out a sensitivity47

analysis and found that the four most influen-48

tial characteristics impacting PV output genera-49

tion are: (1) tilt angle and (2) azimuth angle of50

PV modules, (3) installed capacity and (4) total ef-51

ficiency (represented herein as the specific annual52

yield). Furthermore, (5) shading is of crucial in-53

fluence on the PV power generation but is not ac-54

cessible from PV system metadata. The impact55

of shading can only be accessed with considerable56

effort, e.g. simulations that consider digital eleva-57

tion models (DEM) including buildings, trees and58

other obstacles, by analysing PV power profiles or59

even weekly performance ratios (see Paulescu et al.60

(2012); Freitas et al. (2015); Lingfors et al. (2018);61

Tsafarakis et al. (2017) for further reading). Due62

to its significant influence, a shading analysis com-63

plements the focus of this study.64

These five identified characteristics are the cen-65

2



tral focus of this paper because of their general66

importance for regional PV modelling approaches.67

The overall aim of this paper is to achieve a full re-68

producibility of the five characteristics so that they69

can be used in regional PV power modelling appli-70

cations such as nowcasting or forecasting, but also71

in power simulations that are used for energy sys-72

tem analysis, studying the grid impact, defining the73

PV power potential etc.74

1.1. Related work75

The relevant literature for this research has three76

prominent categories: (1) metadata analysis with77

intention to improve regional PV power simula-78

tions, (2) PV performance due to specific yield, and79

(3) models that consider shading analysis.80

Category 1: Examples of literature using meta-81

data to improve regional PV power simulations.82

Schubert (2012) provides a useful guidebook for83

the simulation of PV power that sketches impor-84

tant parts of the simulation chain and delivering85

assumptions for characteristics. An overview of dif-86

ferent characteristics of tilt, azimuth, the module87

and installation type are given together with sug-88

gested weights. However, these weights seem to be89

assumptions with no datasets being cited as an em-90

pirical basis and so using these weights in PV sim-91

ulations raise questions of trust.92

Datasets are used by Lorenz et al. (2011), who93

evaluated the representativeness of a set of ref-94

erence PV systems to predict regional PV power95

by analysing the orientation and module types of96

≈ 8, 000 systems in Germany. The authors note97

that their dataset seem to have a disproportionate98

share of large PV systems and so do not fully rep-99

resent a larger portfolio.100

The problem of poor representativeness was by-101

passed in Saint-Drenan (2015); Saint-Drenan et al.102

(2017) by feeding a PV model with metadata statis-103

tics from a larger sample of PV systems as opposed104

to a smaller and unrepresentative subset. They de-105

rived joint probabilities of azimuth and tilt from106

35,000 systems and clustered them by their sys-107

tem size and geographic location. These empiric108

distributions where then used to estimate the char-109

acteristics of all 1,500,000 PV systems installed in110

Germany at that time. Saint-Drenan et al. (2018)111

complemented their earlier research by reproduc-112

ing it for more European countries using statistical113

distributions from 35,000 PV systems in Germany114

and 20,000 in France. This demonstrates the sig-115

nificant potential of generating representative sta-116

tistical distributions with intended use in regional117

PV power simulations.118

Kühnert (2016, pp. 80-85) followed a similar ap-119

proach and derived statistical distributions for tilt120

and azimuth from ≈ 1,300 PV systems in Germany.121

Based on this portfolio, the author evaluated the122

representativeness should PV systems be clustered123

into different geographic regions and system sizes.124

The authors quantitatively derived recommenda-125

tions between the two extremes of (1) a portfolio126

covering all PV systems and (2) a high number of127

subclasses with a very small number of PV systems.128

From this, we observe that there must be a well129

considered clustering approach in order to derive130

representative subclasses.131

Killinger et al. (2017c) detailed a regional PV132

power upscaling approach which estimated the133
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power of ≈ 2,000 target PV systems based on 45134

continuously measured PV systems in Freiburg,135

Germany. Whereas the azimuth and tilt of the 45136

measured systems were known in their case, both137

parameters were derived through a geographic in-138

formation system (GIS) based approach for the tar-139

get PV systems.140

Furthermore, Pfenninger and Staffell (2016) use141

PV power measurements and incorporate metadata142

from 1,029 systems in 25 European countries to de-143

rive empirical correction factors for PV power sim-144

ulations. A comparison between the analysed tilt145

and latitude showed an trend towards steeper an-146

gles at higher latitudes, indicating that metadata147

might vary with the geographic location.148

PV system metadata is thus used to successfully149

improve regional PV power upscaling across Europe150

in Pfenninger and Staffell (2016); Killinger et al.151

(2017c); Saint-Drenan (2015); Saint-Drenan et al.152

(2017, 2018); Kühnert (2016). These works applied153

information of azimuth, tilt, installed capacity and154

the geographic location from PV systems to esti-155

mate the power output of a larger PV fleet for sim-156

ilar geographies and different countries. They stand157

as an powerful and excellent example for how rep-158

resentative metadata distribution statistics can be159

employed. It is these examples that guide the first160

usage of our vast dataset towards deriving repre-161

sentative metadata distributions.162

Category 2: Excerpts of literature that analyse163

the performance of PV systems. Performance is164

more complex than just tilt and azimuth as it is165

inherently influenced by other components, such as166

soiling and meteorology.167

Nordmann et al. (2014) found a positive correla-168

tion between specific annual yield and incoming ir-169

radiance, as well as an observed negative correlation170

between system performance and ambient temper-171

ature. Their data was obtained via web-scraping of172

Solar-Log (2,914 systems in the Netherlands, Ger-173

many, Belgium, France and Italy) and collected by174

participants of the IEA task (>60,000 systems in175

the USA).176

Moraitis et al. (2015) observed an increasing yield177

with decreasing latitude from ≈ 20,000 systems in178

Netherlands, Germany, Belgium, France and Italy,179

also achieved using web-scraping techniques. We180

therefore expect to observe geographical differences181

due to latitude and climate.182

Taylor (2015) explored the generation of 4,369183

distributed systems in the UK to derive the per-184

formance ratio and degradation rate. To allow re-185

producibility, the analysis of the performance ratio186

was enriched by approximating it with distribution187

functions. We intend to extend this style of analysis188

to PV system metadata.189

Leloux et al. (2012a) examined data from residen-190

tial PV systems in Belgium; Leloux et al. (2012b)191

focused on France. In Belgium, specific annual192

yield was analysed for 158 systems in 2009 and193

normalised by a factor which compared the incom-194

ing irradiance in this year to a 10 year average.195

The mean value was 836 kWh/kWp. The same ap-196

proach led to a mean value of 1,163 kWh/kWp for197

1,635 systems in 2010 in France. Weibull distribu-198

tions were used throughout both papers to approxi-199

mate the specific yield and performance indicators;200

Weibull distributions were selected for visual simi-201

larity and not for robustness of fit — we aim to use a202

more statistically rigorous approach to distribution203
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type selection. Furthermore, a relative distribution204

was provided for combinations of tilt and azimuth.205

Additionally, the installed capacity was analysed in206

France, showing a high number of systems with 3207

kWp or slightly less. The reason for this is due to208

tax credits being denied for system sizes > 3kWp209

and a strongly increased VAT for such system sizes210

(Leloux et al., 2012b). The legal framework can211

thus have a strong influence on characteristics of212

PV systems. Further studies exist which analyse213

the specific energy of PV systems. However, most214

of these studies are limited to a particular region215

and less of them propose a parametric approxima-216

tion of the data studied.217

Category 3 — the impact of shading in many ar-218

ticles is only considered in a highly simplified man-219

ner, e.g. by setting irradiance values zero above220

a certain solar zenith angle (Lingfors and Widén,221

2016), restricting simulations and analyses to time222

steps with certain solar zenith angles (Elsinga and223

van Sark, 2015; Elsinga et al., 2017; Jamaly et al.,224

2013; Killinger et al., 2016; Saint-Drenan et al.,225

2017; Yang et al., 2014; Bright et al., 2015), ap-226

plying constant losses (Mainzer et al., 2017) or as-227

suming a linear decrease in the PV power values228

(Schubert, 2012). Several authors expect improve-229

ments in their results, when the influence of shading230

is better represented (Bright et al., 2017a,b; Pareek231

et al., 2017)232

1.2. Contribution233

Considering the lessons and outcomes of the dif-234

ferent studies described in our literature review, we235

see a clear need for the production of a represen-236

tative set of distributions to appropriately repre-237

sent PV system metadata. Currently, further ad-238

vancements in regional PV power models in the ab-239

sence of significant knowledge of metadata is hin-240

dered due to several reasons Firstly, implementa-241

tion is hindered due to lack of access to PV sys-242

tem datasets. Empirically derived distributions243

of these PV system parameters could replace this244

need, though currently are only provided for per-245

formance indicators (Taylor, 2015) and the specific246

annual yield (Leloux et al., 2012a). Secondly, with247

exception of a few studies (e.g., Saint-Drenan et al.248

(2015)), the issue of sample representativeness is249

often omitted. This is a major omission, for exam-250

ple, a studied dataset including a majority of roof-251

mounted PV system has to be generalised in order252

to represent a fleet of systems encompassing a lot253

of rack-mounted PV systems. Thirdly, most of the254

identified studies focused on particular PV system255

characteristics; an integrated analysis encompass-256

ing all five key characteristics is required. Further-257

more, the influence of shading is in most articles258

excessively simplified or more commonly excluded.259

Lastly, studies are mostly limited to a specific coun-260

try and it is currently difficult to make comparisons261

between countries to assess applicability. A holistic262

overview of important parameters of metadata for263

multiple countries is clearly missing.264

The objective of this paper is to address the afore-265

mentioned limitations by following the goals below:266

1. To collect and process as many data sources267

as feasible of four identified key metadata pa-268

rameters (tilt, azimuth, installed capacity and269

specific annual yield) for PV systems installed270

worldwide (section 2),271
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2. To explore the characteristics of these key pa-272

rameters and their associated interdependen-273

cies (section 3.1),274

3. To propose a a clustering approach to allow275

representative generalisation of our datasets276

(section 3.2),277

4. To provide an eased access to the character-278

istics of each key parameter by fitting distri-279

bution functions to the observed probabilities280

(section 4),281

5. To propose a method that evaluates the im-282

pact of shading (section 5.1) and which derives283

generalised findings for improved consideration284

and implementation (section 5.2).285

The influence of meteorological conditions, panel286

degradation and soiling are not considered within287

this research, beyond those losses that are inher-288

ently and statically contained within the specific289

annual yield. Whilst they are highly interesting290

topics and research avenues that could be explored,291

we are more keenly interested in comparisons and292

parametrisations of PV system metadata and re-293

serve such topics for future research, more ideas of294

which are presented in section 6. A summary of the295

paper is then given in section 7. In the Appendix296

A, the forms of the distributions used in this paper297

are defined and their fitted variables provided.298

2. Collection and processing of PV system299

metadata300

An intensive effort has been conducted to iden-301

tify, collect and prepare good sources of PV sys-302

tem metadata. Some of the major monitoring303

companies and inverter manufacturers have been304

contacted. In parallel, free information on sev-305

eral solar portals have also been used to gather306

our dataset either by downloading or web-scraping307

techniques. Ultimately, we obtained a dataset con-308

taining 2,802,797 PV systems located in Europe,309

USA, Japan and Australia, which represents a to-310

tal capacity of 59 GWp (14.8% of installed capacity311

worldwide). Every system in our records reported312

an installed capacity. However, the other param-313

eters were not always reported. The systems in314

our database that reported a valid tilt/azimuth only315

have a relative share from the worldwide installed316

capacity of 1.7%. Geographic position was almost317

as often reported as installed capacity and the rel-318

ative share is 14.5%. The specific annual yield has319

a relative share of 11%. Further detail of the pa-320

rameter shares and subsequent quality filtering are321

found in Table A.5.322

An overview of the regions covered by our study,323

the characteristics of the datasets and their sources324

are provided in Table 1. For some countries, data is325

derived from multiple sources. It shouldn’t be ruled326

out that systems could be listed multiple times,327

leading to duplicates in the analysis. Due to the328

nature of reporting, a single PV system may not329

have the same metadata in different datasets and330

so it is accepted that this is an inherent error. The331

inhomogeneous nature of the datasets motivated us332

to apply some preprocessing operations to ensure333

that only valid system measurements are considered334

in our analysis and all datasets are in a consistent335

format. Some of these operations act as quality fil-336

ters. They were developed based on our empiric337

experiences with the datasets and are shortly justi-338

fied where presented.339
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Table 1: Regions, parameters and data sources. “Rest of Europe” contains different European countries not already listed with

less than 1,000 systems each. The cumulated capacity is given in MWp and, where available, as a relative share of the total

installed capacity in a region (own calculations based on IEA (2018) with data from 2016 and National Grid UK (2018) in case

of UK with data from 2018).

Region
No.

systems
Tilt & azi. Capacity Spec. ann. yield Cumulated Capacity Source

– – ( ◦ ) (kW/kWp) (kWh/kWp) (MWp) / % of total –

Australia 4,055 X X 5 30 / 0.42 pvoutput.org

Austria 385 X X 2012-2016 4 / 0.33 solar-log.com

280 X X 5 2 / 0.14 suntrol-portal.com

268 X X 2015-2017 2 / 0.17 sonnenertrag.eu

112 X X 2015-2017 1 / 0.04 pvoutput.org

Belgium 4,535 X X 2012-2016 149 / 3.93 solar-log.com

3,365 X X 2015-2017 17 / 0.45 bdpv.fr

541 X X 2015-2017 12 / 0.32 sonnenertrag.eu

Denmark 933 X X 2012-2016 7 / 0.80 solar-log.com

630 X X 5 4 / 0.42 suntrol-portal.com

542 X X 2015-2017 2 / 0.27 pvoutput.org

France 20,935 X X 2015-2017 93 / 1.17 bdpv.fr

558 X X 2012-2016 8 / 0.10 solar-log.com

Germany 1,664,967 5 X 2012-2016 41,478 / 98.76 bundesnetzagentur.de

23,536 X X 2012-2016 547 / 1.30 solar-log.com

6,561 X X 5 124 / 0.29 suntrol-portal.com

6,447 X X 2015-2017 112 / 0.27 sonnenertrag.eu

Italy 2,506 X X 2012-2016 30 / 0.15 solar-log.com

1,068 X X 2015-2017 9 / 0.04 pvoutput.org

358 X X 2015-2017 11 / 0.06 sonnenertrag.eu

Japan 5,233 X X 2012-2017 42 / 0.09 jyuri.co.jp

Netherlands 7,180 X X 2015-2017 31 / 1.08 pvoutput.org

1,115 X X 2012-2016 14 / 0.49 solar-log.com

917 X X 2015-2017 9 / 0.31 sonnenertrag.eu

290 X X 5 2 / 0.07 suntrol-portal.com

Rest of 1,191 X X 2012-2016 23 / – solar-log.com

Europe 566 X X 2015-2017 5 / – pvoutput.org

133 X X 2015-2017 2 / – sonnenertrag.eu

UK 18,543 X X 2015-2016 58 / 0.45 microgen-

database.sheffield.ac.uk

2,286 X X 2015-2017 9.5 / 0.07 pvoutput.org

USA 1,020,585 X X 2017 16,521 / 32.39 openpv.nrel.gov

2,176 X X 2015-2017 17 / 0.03 pvoutput.org
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Longitude and latitude: In cases where this340

information was not provided, the geographical co-341

ordinates were derived from OpenStreetMap using342

other given information such as the zip-code, city343

name, state name, etc. Erroneous locations outside344

the specific region are set NA. For confidentiality345

reasons geographic information was provided sep-346

arately from the other parameters in case of the347

18,543 systems from Sheffield Solar. The derived348

longitude and latitude are not required to be highly349

accurate to suit the needs of this paper as they are350

purely used for trend analysis when studying rough351

relationships to other parameters and for visualiza-352

tion purposes. The ability to allocate a PV system353

to a specific country is certain in all cases.354

Tilt and azimuth: Unfortunately, this impor-355

tant metadata is not available from all sources. In356

case of Australia the provided data was imprecise357

(45◦ steps in the azimuth) and thus estimated by358

the approach described in Killinger et al. (2017b)359

and improved in Killinger et al. (2017a) as the PV360

power data was available. As Australia is on the361

southern hemisphere, azimuth angles were trans-362

formed to normalise the angles expressed for both363

hemispheres. Within this paper, we consider −90◦364

to be east, 90◦ to be west, with 0◦ representing365

south in the Northern hemisphere and north in the366

Southern hemisphere. Multi-array systems are not367

considered in this paper. In a few of the listed368

datasets, an excessive amount of tilt values with369

0◦ or 1◦ and azimuth values of −180◦ are reported.370

E.g. the Australian dataset reported 36% of all sys-371

tems having a tilt angle ≤ 1◦. Visual inspections372

based on aerial images and results from the afore-373

mentioned parametrisation, however, showed that374

such small tilt angles were very rare and regularly375

incorrectly reported. From previous work with var-376

ious datasets, we know that such boundary values377

are sometimes used as a default when data is miss-378

ing. As we have no quality control measures on the379

data, the validity of the data at these boundary val-380

ues is in question and so are removed from consid-381

eration. Tilt ≤ 1◦ or > 89◦ and azimuth < −179◦382

or > 179◦ are thus set NA.383

Specific annual yield: There are many in-384

stances of systems reporting a specific annual yield385

of 0 kWh/kWp. Without further information386

from the datasets, it is not possible to distinguish387

whether this is a default value for missing data or a388

valid measurement. We expect that both cases reg-389

ularly occur and so we must remove any input of390

0 kWh/kWp from our analysis. Furthermore, the391

specific yield of a system is set NA if it was installed392

within the year of consideration to ensure that a full393

year of generation is the basis for the annual yield.394

In order to compensate annual meteorological fluc-395

tuations within a dataset of a country, all values396

within a year are divided by the ratio between the397

mean value from all systems in this year and the av-398

erage of the mean values from all reported years. A399

similar approach is applied in Leloux et al. (2012a).400

In datasets reporting a continuous time series, the401

specific annual yield was derived by the summation402

of the normalised PV power values. Only systems403

which have less than 10 days / ≈ 2.7% of miss-404

ing time steps in their generation data are consid-405

ered. The vast minority of systems in the datasets406

reported specific annual yield values that signifi-407

cantly exceed any meteorological potential. We be-408

lieve that such values are either erroneous reports409
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of either yield or the installed capacity, as the lat-410

ter is used in some datasets to derive the former411

through division. Whereas Taylor (2015) applied412

a statistical based upper limit for outliers, a fixed413

limit of 2,000 kWh/kWp was used in this paper.414

The fixed value was chosen to ensure a reliable fil-415

tering even though the quality and range of values416

may differ for the various datasets. A threshold417

value of 2,000 kWh/kWp acknowledges the increas-418

ing risk of erroneous data beyond this value and is419

a very cautious limit with the aim of avoiding any420

erroneous filtering. In fact, this limit was only ex-421

ceeded in 2.65% of all systems that reported a yield422

value from openpv.nrel.gov where we observed the423

largest values within the study and only for 0.084%424

of all systems in this study.425

Please note that, regarding the installed capac-426

ity, no pattern was recognised that led us to be-427

lieve that there were any systematic quality issues.428

The same applies for the other parameters that were429

only available for some datasets, such as informa-430

tion about the network connection for Germany as431

visualised in Figure 2. Hence, the data was taken432

on an as-is basis in these cases.433

A summary of the impact of our proposed qual-434

ity control criteria is provided in the appendix in435

Table A.5 where percentages of removed data are436

presented. Data from pvoutput.org were strongly437

affected by the filtering of the low tilt values and438

justify the need of such a quality control. There439

is a significantly higher share of systems filtered440

by < −179◦ when compared to the filter for az-441

imuths > 179◦. This is because south is defined442

as 180◦ in some datasets and are therefore trans-443

formed by subtracting 180◦. Invalid entries in the444

same datasets were defined as 0◦ and subsequently445

filtered post-transformation by the lower threshold446

value for azimuth values. Insufficient information447

was given to derive the exact location for PV sys-448

tems, mostly from pvoutput.org. All valid parame-449

ter entries that have passed the quality control are450

used for the analysis in the next two sections.451

3. Analysis of PV system metadata452

3.1. Analysis of parameters and dependencies453

The datasets presented in section 2 are very in-454

homogeneous with large differences in the number455

of systems in each region and the availability of456

parameters. Before starting to explore individual457

clusters, typical ranges of these parameters and po-458

tential dependencies between them shall be studied459

on a global dataset. The general principle of the460

global dataset is that every region has the same461

weight. Consider Table 1, should all data be used462

to make global statistics, the results would be bi-463

ased towards the countries with more data (USA464

and Germany). Therefore, a normalisation method465

must be employed to weight countries equally. Its466

derivation follows the following procedure:467

(1) Specific annual yield is the only parameter468

that exists multiple times for each PV system. To469

evenly weight all systems, only one normalised spe-470

cific yield value per system is considered by ran-471

domly selecting a year. This procedure was pre-472

ferred to others such as e.g. taking the mean value473

for all values of a system in order to conserve sys-474

tem specific variability between years. (2) For each475

combination of two parameters (e.g. tilt and spe-476

cific annual yield) the algorithm counts the number477
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Figure 1: Hybrid graphic with plots of the different parameter pairs from the global dataset. The plots below the diagonal are

scatter plots with the 25%, 50% and 75% quantiles as coloured lines. Plots on the diagonal are 1D-histograms of that parameter.

Plots above the diagonal are 2D-histograms of the parameter pairs; the change in colour from white to red is an indication of

probability and its distribution. The 2D-histograms and scatter plots have the parameter of their column on the x-axis and

the parameter of their row on the y-axis. Note that each scatter and 2D-histogram pair have opposite axes but are identical

data. 1D-histograms are the only exception with having displayed the density on the y-axis. For reasons of simplification the

absolute value of the latitude is taken in these plots to make results from the northern and southern hemisphere comparable.

The bold number in each plot shows the number of countries (n) which are considered in the plot as well as the sampling size

(si).

of couples per region that have valid reports in both478

parameters that have passed the quality control in479

section 2. Only regions with a sample size of at480

least 500 complete couples are considered to ensure481

statistical relevance. (3) The smallest number of482

complete couples from all regions is taken to de-483

fine the sample size for the global dataset. This484

way, the same number of complete couples is taken485
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from each region. Therefore, all of the data is con-486

sidered for the region with the smallest number of487

complete couples. In all other regions, the same488

number of couples is randomly selected. To avoid489

under-representation of larger systems, the selec-490

tion probability is linearly weighted with installed491

capacity, not frequency.492

The significant advantage of this procedure is493

that regional characteristics are evenly weighted494

and the availability for each pair of parameters is495

individually considered. The disadvantage is that496

many systems are randomly banned due to the re-497

gion with least availability. We applied different498

methods of sub-sampling the data, however, the re-499

sulting global data was quite insensitive to differ-500

ent sampling procedures indicating the robustness501

of our approach.502

Results from the global dataset are displayed503

in Figure 1 and the following observations can be504

made:505

Latitude: To have a robust quantity of data,506

PV systems in latitudes between 30◦ and 55◦ are507

studied. Latitude does not show any obvious in-508

fluence to the installed capacity or azimuth angle.509

The tilt angle shows a tendency to increase with510

an increasing latitude, corroborating the same ob-511

servation by Pfenninger and Staffell (2016) between512

the latitude ranges in the study. This finding agrees513

with studies showing that systems should have a514

smaller tilt closer to the equator in order to opti-515

mise their annual yield (Šúri et al., 2007). It is still516

surprising since many systems in our analysis are517

installed on roofs and strongly depend on the roofs’518

inclination. It can be suggested that the roof pitch519

has a tendency to be steeper at higher latitudes in520

our datasets and agrees with similar observations in521

Europe (McNeil, 1990, p. 883). Furthermore, a lin-522

ear decline in the specific annual yield is observed523

with an increasing latitude. This occurs in accor-524

dance to the tendency of a higher solar potential in525

regions closer to the equator (Šúri et al., 2007).526

Installed capacity: Within the plot, only sys-527

tems < 100 kWp are displayed for ease of visuali-528

sation. Even though the sampling weights in pref-529

erence of larger systems, there is a clear concentra-530

tion of smaller system sizes. There is a visual trend531

towards smaller tilts with an increasing installed532

capacity. Furthermore, there is a clear observation533

that larger capacity systems are consistently ori-534

ented towards the equator whereas smaller systems535

have a much broader range of orientation. A depen-536

dency between the installed capacity and the spe-537

cific annual yield cannot be observed in the global538

dataset. Despite that, we would expect that the539

efficiency of larger systems is usually higher and540

systems better maintained. Most likely, this trend541

is invisible here since data from many geographic542

regions were sampled. This hypothesis is checked543

in section 4. The finding that PV system size has544

interdependencies on the other parameters can be545

reaffirmed with everyday observations; smaller sys-546

tems are in most cases mounted on the roof of res-547

idential buildings, medium systems are typically548

found on farming houses or industrial buildings,549

and large systems are mounted on a rack on the550

ground.551

Tilt: Tilt in the dataset mainly occurs in a range552

up to 50◦ and is often reported in steps of 5◦,553

though reporting steps of 10◦ are also common. No554

discernible trend between tilt and azimuth is ob-555
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Figure 2: The installed capacity and its relationship to the relative share of systems for different countries (left). The line

width and colours vary to simplify the differentiation. The cumulative installed capacity in case of Germany is shown in the

right plot represented by the coloured line (colouration indicating the network connection) whereas the black line represents

the cumulative number of systems. The dashed line indicates 25 kWp, which is used to sub-categorise the data in section 3.2.

served, however the 2D-histogram shows a signifi-556

cant density peak around the most frequent combi-557

nation of azimuth and tilt with a radially decreasing558

probability, this was also observed by Saint-Drenan559

(2015); Killinger et al. (2017c). A decrease in the560

specific annual yield can be seen with an increas-561

ing tilt. This might be caused by the finding that562

tilt is usually smaller for decreasing latitudes which563

occur in combination with an increased specific an-564

nual yield.565

Azimuth: There is a significant peak of azimuth566

angles pointing south (north in Australia). It is567

probable that this distinct peak is due to the tar-568

geted approach of solar installers who favour equa-569

torial orientated rooftops due to performance ben-570

efits. Indeed, azimuth angles tend towards reach-571

ing a higher specific annual yield with systems ori-572

ented towards 0◦. In general, outliers reach a range573

of +/- 100◦ with discrete reporting intervals being574

visible in the 1D-histogram and scatter plot, e.g.575

databases only requiring azimuth reported to near-576

est 15◦.577

Specific annual yield: The 1D-histogram of578

yield shows the most distinct shape of all param-579

eters with a peak around 1,000 kWh/kWp. Fur-580

thermore, there is a small peak at 1,650 kWh/kWp581

which is caused by PV systems in southern re-582

gions of the USA. It is not possible with the lim-583

ited latitude study area to infer that the regression584

of specific yield with latitude will extend towards585

the equator; climatic regions are expected to be586

far more influential on the specific yield whereby587

around the equator there is a significant presence588

of clouds, and around the tropics there tends to be589

desert. It is probable that the secondary peak above590

1,650 kWh/kWp is for systems installed in particu-591

larly arid regions found in southern USA, however,592

climatic influence is outside the scope of this paper593

and is reserved for future study. The specific an-594

nual yield has the most visually recognisable trends595

to all other parameters, demonstrating the strong596

inter-relationship. There is a need for a more de-597
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tailed multi-variable analysis between specific an-598

nual yield and the other parameters. However, due599

to its extra complexity it falls outside the scope of600

this paper.601

3.2. Representativeness of clusters602

In the previous section, important characteris-603

tics of PV systems and their dependencies were de-604

rived. With exception of the annual specific yield605

and installed capacity in Germany, metadata of all606

the installed systems within the different regions607

is not known (e.g. we have access to 4,055 systems608

from Australia when there are an estimated 1.8 mil-609

lion installed). This restriction questions the rep-610

resentativeness and re-usability of our observations611

when using the statistics of a subset of systems to612

infer the statistics of the remainder because some613

characteristics could be over- or underrated in our614

datasets. To achieve representation, a solution is to615

sub-categorise metadata from the PV systems into616

smaller and more homogeneous clusters. By doing617

so, an end-user can use the statistics of the clusters618

and weight them individually by the probability of619

occurrence. Prior to an approximation of metadata620

in section 4, it is the objective within this section to621

define groupings or clusters of PV system that allow622

the derivation of representative characteristics.623

The interdependency analysis reveals two domi-624

nating parameters which show multiple dependen-625

cies to others: (1) The installed capacity and (2)626

a geographical influence (c.f. absolute latitudes627

are used to account for hemispheres). These two628

findings are in accordance with Kühnert (2016);629

Saint-Drenan (2015); Saint-Drenan et al. (2017)630

who analysed azimuth and tilt for different classes631

of installed capacity and multiple regions. Such632

a separation has the benefit to acknowledge the633

impact from these two dominating parameters on634

others, while still allowing us to derive meaning-635

ful statistics within a chosen cluster. As Kühnert636

(2016) evaluates, a balance must be found between637

the number and size of the clusters, in order to guar-638

antee that each class includes a sufficient number of639

data to be representative.640

The left plot in Figure 2 provides further insights641

into the system size and its relative share for differ-642

ent countries in this paper. Differences can be ob-643

served between countries but all show a heightened644

concentration towards small scale systems with a645

relative share between 60% (Germany) and 99%646

(UK) of systems < 10 kWp. Whereas most datasets647

only cover a selection of systems within a country,648

the dataset in case of Germany (bundesnetzagen-649

tur.de) covers the vast majority of systems and is650

detailed on the right plot. Almost one million out651

of the 1.6 millions German systems are smaller than652

10 kWp but in total, with an aggregated capacity653

of ≈ 5 GWp, they only represent ≈ 12% of the654

installed capacity. Another 650,000 systems occur655

in a range between 10 and 100 kWp and cover ad-656

ditional ≈17.5 GWp. Only 35,000 systems are >657

100 kWp yet are responsible for half of the total658

installed capacity.659

On the search of a threshold value to split the660

datasets into representative clusters, a system size661

of 25 kWp was chosen by considering: (1) An in-662

stalled capacity of 25 kWp is an adequate size663

between typical roof mounted systems and larger664

plants, particularly as larger capacities are linked665

to larger physical space requirements. (2) So even666
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Figure 3: Maps for Australia (top) and Europe (bottom). The left column shows systems ≤ 25 kWp and the right column

systems > 25 kWp. Systems which do not report tilt are in grey colour.

though the number of larger systems is rather low in667

most countries, their strong contribution to the to-668

tal power generation and the knowledge that char-669

acteristics change with the system size justify a con-670

sideration in a separate cluster. The threshold value671

of 25 kWp is displayed as a dashed vertical line in672

Figure 2. If the threshold value were higher, only a673

small number of systems would be left in the upper674

cluster and the derivation of representative statis-675

tics impeded. (3) Several threshold values were tri-676

alled in our analysis. A value of 25 kWp was finally677

decided upon as it satisfied the aforementioned cri-678

teria and passed visual inspection by producing dis-679

tinct distribution curves.680

Both the impact of system size and the geograph-681

ical influence can be studied in respect to the tilt682

angle of systems in Figure 3 and Figure 4. All re-683

gions show a tendency towards smaller tilt angles684

for system sizes > 25 kWp. Especially for systems685

≤ 25 kWp in Europe, the dependency between lat-686

itude and tilt can be observed by an increasing tilt687

angle from Italy to Denmark. However, it should688

be noted that the spatial influence is not only lim-689

ited to a pure geographical relationship; the spatial690

impact depends on regulations and incentives which691

often occur on a national level. The policy situation692
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Figure 4: Maps for Japan (top) and the USA (bottom). The left column shows systems ≤ 25 kWp and the right column

systems > 25 kWp. Systems which do not report tilt are in grey colour.

in France leads to a high number of 3 kWp systems693

(see Leloux et al. (2012b) in section 1.1). In Ger-694

many, there are changing regulations and feed-in695

tariffs for systems > 30 kWp resulting in an in-696

crease in the black line of the right plot in Figure 2.697

Furthermore, the UK had a higher feed-in tariff for698

systems ≤ 4 kWp up until January 2016 and has699

since moved to ≤ 10 kWp (ofgem, 2018). These are700

such examples of significant policy-specific regional701

influence that can impact upon the characteristics702

of PV systems.703

There are many opportunities as to how we sub-704

categorise the data into clusters. Many of which705

could be explored in order to derive meaningful706

information depending on the approach. Options707

include separating by climatic region or grouping708

by policy similarities. However with respect to the709

aforementioned aspects, a clustering at a country710

level seems advisable for the following reasons: (1)711

National regulations and incentives have a visually712

evident impact on the occurrence of different sys-713

tem sizes which may itself influence other metadata.714

(2) A geographical influence was observed on mul-715

tiple parameters. Countries limit this influence by716

their size. The only exception of this strategy is the717

USA. The enormous geographic area of this country718
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results in a inhomogeneous pattern of the specific719

annual yield. This is a direct consequence of the720

heterogeneity of the solar resource within a country.721

The USA was thus split at 37.5◦ N into a northern722

and a southern component. The same approach723

could be applied to Australia, however, the sample724

size of available data is too low. Further subdivi-725

sions e.g. by the latitude for systems ≤ 25 kWp in726

France (see tilt in Figure 4), could be considered727

but exceed the scope of this paper and is a focus728

of future work. (3) There is a certain convenience729

to clustering by countries. Many of the studies pre-730

vious focused mainly on a single country, this is731

indicative of a researchers interests and data avail-732

ability. We feel that, whilst there are many options733

of clustering that can be explored, a preliminary734

study at a country level is of most interest.735

The region ``Rest of Europe” is not be consid-736

ered further due to its inhomogeneous portfolio of737

systems across different countries in Europe. The738

clusters, defined by their belonging to a region and739

system size, are used in the next section to derive740

representative distributions for the metadata.741
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4. Approximation of parameters in clusters742

The intentions of parametrisation are twofold.743

Firstly, we want to discover whether or not the pa-744

rameters (tilt, azimuth, capacity and yield) can be745

represented with simple parametric distributions.746

Secondly, we want to explore the relative differ-747

ences between clusters through comparison between748

probability distributions. We concede that simple749

distribution fitting has weaknesses such as not ap-750

propriately capturing a more complex relationship751

offered by non-parametric fitting, however, repro-752

ducibility of the statistics is encumbered with added753

complexity. For our first presentation of the sub-754

stantial volume of PV system data collected, we755

focus on simple distribution fitting as interesting756

comparisons and individual cluster insights can be757

drawn, and we are able to comment on the ability758

for these complex parameters to be represented as759

such.760

4.1. Methodology of fitting the distributions761

In order to enable the utilisation of the aggre-762

gated statistics of each cluster (defined in sec-763

tion 3.2) and for each parameter (defined in sec-764

tion 3.1), individual distributions are fitted to the765

real-world probability density histograms. The re-766

sults are presented in Figure 5 (≤ 25 kWp) and Fig-767

ure A.10 (> 25 kWp). The total number of avail-768

able data varies between clusters and parameters;769

there is no further processing beyond the criteria770

described in section 2; all possible data available771

is used. Differences in data within a cluster are772

due to some PV sites not reporting one or more773

parameters. There are up to 6 years of reported774

specific annual yield (2012-2017). The normalised775

value within each year is taken as an individual776

sample and so there are up to 6n more samples for777

this parameter.778

For each cluster and for each parameter, many779

different distribution types were fitted to the780

probability density. Distributions were fit us-781

ing the inbuilt fitdist function of the software782

Matlab R©(Matlab, 2018). There are 23 parametric783

distribution types available, of which all are fitted784

to the data. Where distribution types require only785

positive values (for parameters with negative bins)786

or values between 0 and 1, the data is scaled to sat-787

isfy the distribution requirements and allowed to re-788

scale so that as many distributions could be tested;789

note that no distribution requiring this treatment790

was found to be best fitting, and so no further791

discussion is made regarding this normalising pro-792

cess. Probability density functions are then scaled793

to only exist between the x-axes limits as indicated794

in the figure, for example, the tilt distributions are795

only relevant between 0◦ and 90◦. This means that796

the sum of all probabilities between the prescribed797

x-axis range must be equal to 1. This is important798

as some distributions facilitate values way outside799

of the bin limits resulting in the sum of probabili-800

ties between the bins of interest 6= 1, and so would801

not fit the histogram. The disclaimer is, therefore,802

that these distributions must be scaled before use803

and not be extrapolated beyond the specified bin804

ranges else risk persisting an under/overestimation805

about the scaling factor, defined as806

s =
1∑b
a pa:b

, (1)
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where s is the scaling factor, p is the probability807

at each bin between the lower and upper bin limit,808

a and b, respectively. The resultant fitted distribu-809

tion is then plotted against the real probability den-810

sity and tested for linear fit; the root mean squared811

error (RMSE, percentage) and Pearson correlation812

coefficient (ρ, dimensionless) are derived. A per-813

fectly fitted distribution would result in y = x with814

ρ = 1 and an RMSE= 0%. The distribution type815

with the lowest RMSE was selected for the plot.816

Should there be more than one distribution type817

that has the same RMSE, then the type with low-818

est ρ is selected. Should there still be more than819

one distribution type after this, one of the remain-820

ing types is selected at random.821

The exact parameterisation for each distribution822

presented in Figure 5 and Figure A.10 are detailed823

in Table A.4. Each distribution has up to 4 co-824

efficients and are employed using different equa-825

tions, not all 23 parametric distributions are de-826

tailed, only those that featured within the study.827

Whilst Table A.4 details the parameterisation of828

the coefficients, it is Table A.3 that explains how829

to use those values to form the distribution. Fur-830

thermore, the mean or median values of the whole831

dataset, exclusive of the 25 kWp separation, are832

presented in Table 2.833

4.2. Discussion of the distributions834

The following discussion about clusters and dis-835

tributions mainly refers to Figure 5 with systems836

≤ 25 kWp unless explicitly noted otherwise. The837

reason for this is that the vast majority of systems838

are within the ≤ 25 kWp category, and so are of839

most interest. However, important differences to840

Table 2: Mean or median value extracted from entire data

set (without separation by capacity size) for each of the pa-

rameters of tilt angle, azimuth angle, system capacity and

specific annual yield.

Tilt Azi. Cap. Yield

Country ( ◦ ) ( ◦ ) (kWp) (kWh/kWp)

mean mean median mean

Australia 16.1 8.58 5.00 -

Austria 31.1 -0.34 5.15 1,040

Belgium 35.6 -1.69 5.20 921.5

Denmark 30.0 0.48 6.00 786.0

France 28.7 -0.28 2.96 1,101

Germany 31.6 -2.46 8.96 870.2

Italy 19.8 -15.9 5.88 1,142

Japan 23.8 -1.20 4.92 1,222

Netherlands 32.5 0.77 3.30 855.2

UK 31.8 -1.07 2.94 896.7

USA North 25.2 0.42 5.81 1,005

USA South 19.9 9.33 5.26 1,426

system sizes > 25 kWp are mentioned and can be841

observed in Figure A.10.842

It is important to note that only rough dependen-843

cies between parameters, regions and system sized844

can be considered with this clustering approach.845

The more intricate and established interdependen-846

cies have not been explored within this paper as it847

is beyond the scope of the initial objective. The848

authors reserve this for future work.849

4.2.1. Azimuth angle850

The most noticeable feature of the azimuth ob-851

servations is the significant probability of an equa-852

torial facing PV system. This is unsurprising as853

it offers the best annual specific yield by receiving854

maximum system efficiency at peak solar position.855

The topic of extreme probability of an equatorial856

orientated system was discussed in section 3.1; the857

prevalence of 0◦ is true of all sites for both < 25 and858

> 25 kWp. The Japan and Netherlands clusters859
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have exaggerated angles of -45◦ or +45◦, assumed860

to be a result of overly simplified reporting.861

The distributions could not capture the probabil-862

ity of 0◦ with exception of the Netherlands where863

a Stable distribution fitted best. Even with large864

sample sizes for the USA North and south clusters,865

a distribution could not be fitted that satisfied the866

observed probability for an azimuth angle of 0◦.867

Perhaps a more complex or bespoke distribution868

type is needed to suitably express the probability869

distribution of azimuth angle with reproducible ac-870

curacy. This large proportionality of 0◦ was also871

observed by Saint-Drenan et al. (2018), who fitted872

a normal distribution in similar magnitudes to the873

logistical distribution fitted in this article. That874

said, there is an argument that the significant 0◦ az-875

imuth feature is exaggerated when considering the876

UK cluster. The majority of the data within the UK877

cluster is from Sheffield Solar. Their users report878

the system metadata, however, there is a feedback879

to the user reporting system performance analysis880

on a monthly basis, inclusive of a nearest-neighbour881

performance analysis of a system of similar meta-882

data. Users are encouraged to verify their reported883

metadata and is often double checked with satellite884

imagery; the result is much more accurate report-885

ing of metadata for the UK cluster leading to the886

smoothness of distribution fit. With improved PV887

system metadata reporting, we see a wider spread888

of azimuth about 0◦.889

4.2.2. Tilt angle890

The tilt angle across all clusters is rather unique891

per cluster with 7 different distribution types be-892

ing found as the best fitting among 10 clusters. We893

previously discussed the gentle increase of tilt an-894

gle with latitude. Solar installers can mount the PV895

panels with a steeper tilt angle to that of the roof at896

higher latitudes through arrangement of the mount-897

ing brackets; this is not expected to be overly com-898

mon practise. The predominant factor for smaller899

roof integrated systems is expected to be the phys-900

ical roof angle, which is influenced by local archi-901

tectural styles. We suspect this is the case, partic-902

ularly when considering France in Figure 3 where903

there exists a distinct change in the tilt for the ≤ 25904

kWp systems at roughly 47.5◦ latitude. Note that905

France and Denmark have similar distributions de-906

spite France having a significant number of systems907

south of that 47.5◦ roof tilt feature. Furthermore,908

Belgium and the Netherlands share similar climate909

and latitude yet feature distinctive distributions.910

Interestingly, the Australian cluster consisting of911

the second lowest number of observations has the912

second most accurate fit after USA South. This913

is in part due to the smoothness of the distribu-914

tions and accuracy of method in which the tilt is915

obtained (see section 2). The USA cluster has excel-916

lently fitted distributions suggesting accurate mea-917

surement, particularly for the USA South cluster918

where the tilt distribution is fitted with ρ = 1 and919

RMSE=0.7%. The Japan cluster evidently suffers920

from reporting to the nearest 10◦, and so we suggest921

to avoid using a best-guess approach to collecting922

metadata as it leads to biased distributions. The923

tendency for larger system sizes having smaller tilt924

angles, introduced in section 3.1, can be confirmed925

when comparing Figure 5 and Figure A.10. The926

only exception is Denmark, which reports only a927

small number of systems > 25 kWp.928
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Within the distributions, the smallest mean tilt929

angles were reported in Australia (16.07◦), Italy930

(19.81◦) and USA South (19.89◦). The largest931

mean tilt values were reported in Belgium (35.58◦)932

and closely followed by the UK, Germany and Aus-933

tria (31◦).934

4.2.3. Installed capacity935

The most obvious observation from the installed936

capacity is the extreme peak within the French clus-937

ter. Of all 20.6k systems (≤ 25 kWp and > 25938

kWp), 73.74% of them report an installed capacity939

of 3 kWp when rounded to nearest integer, though940

note that the French dataset reported to a high dec-941

imal precision. The best fitting distribution cannot942

appropriately represent this extreme despite a very943

high ρ = 0.99; the RMSE value of 5% is indicative944

of the Stable distribution assigning 100% probabil-945

ity to 3 kWp. This distribution is, therefore, very946

limited even if it does most accurately capture the947

data for France. As discussed when defining the948

clusters, this peak in capacity is a direct response949

to regulations within that country. This is further950

observed in the UK database, with the vast major-951

ity of systems being ≤ 5 kWp due to the nature of952

the feed-in tariff rate. The north and south USA953

clusters demonstrate the power of a larger and con-954

sistent sample size reporting RMSE 0.5% and 0.3%,955

respectively, with both reporting ρ = 1. Interest-956

ingly, the distribution type between USA clusters957

are distinct from each other, with a slightly in-958

creased probability of smaller systems in the south.959

This is expected to be a result of more rooftop solar960

in the sunnier States, though this is speculation.961

The shape of the distribution functions for sys-962

tem sizes > 25 kWp (Figure A.10) differ to systems963

≤ 25 kWp and show an heightened concentration of964

systems < 50 kWp. Australia is an exception and965

reports many systems with an installed capacity of966

≈ 100 kWp.967

The mean values of capacity are too heavily in-968

fluenced by the presence of large systems (cf. 2b),969

and so the median value is reported to reduce bias.970

From the distributions, the country with smallest971

capacity median is the UK (2.94 kWp) and the972

largest is Germany (8.96 kWp). The fact that973

the German data reveals such a high median is re-974

flective of the thorough nature of data collection975

whereby nearly all systems are reported; we have976

very few large systems reported from the UK as977

the database is primarily used for rooftop solar and978

so this statistic is not overly representative.979

4.2.4. Specific annual yield980

The most noticeable detail of the specific annual981

yield distribution fits is the smoothness of the his-982

tograms of raw data. This is perceived to be of983

two reasons. Firstly, the sample size is typically984

much larger (n = 5.885m for the German clus-985

ter). Secondly, the data is digitally recorded and986

not reliant on human reporting. The mean µ is987

presented in place of the correlation coefficient so988

as not to over busy the plot, though for complete-989

ness, all sites reported ρ ≥ 0.98 except USA South990

with ρ = 0.93. Recall that the specific annual yield991

is normalised for inter-annual differences and so we992

can directly compare clusters. Each cluster exhibits993

reasonably unique subtle traits, it is expected that994

the larger the share of equatorial orientated systems995

with more optimal tilts, the larger the specific yield,996
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however, it is also a function of local meteorology997

and climate local to the systems and not just lat-998

itude, orientation and tilt. More questions can be999

derived from these distributions than are really an-1000

swered. For example, consider the German cluster.1001

There is a substantial tail towards lower specific1002

annual yields that is not observed in other clusters.1003

Germany is known to be a mature market when it1004

comes to PV, and so is this tail indicative of age-1005

ing systems, or perhaps all clusters would present1006

this pattern given as large a sample size? The USA1007

South cluster has an unexplainable peak at exactly1008

1650 kWp/kWh. The only other country within our1009

study that is comparable to southern USA in terms1010

of climate and land availability is Australia, alas,1011

we have no data for this cluster to gain insight to1012

this peak. We would expect to observe much higher1013

yields in Australia akin to southern USA.1014

Leloux et al. (2012a) found that of 158 sys-1015

tems in Belgium,the mean specific annual yield was1016

836 kWh/kWp. Our analysis of 15k specific an-1017

nual yields finds the mean to be 921.5 kWh/kWp.1018

Leloux et al. (2012b) applied the same approach1019

for 1,635 systems in France resulting in a mean of1020

1,163 kWh/kWp. Our analysis of 23.3k systems1021

places the mean value at 1,101 kWh/kWp. When1022

comparing Figure 5 and Figure A.10, the expected1023

trend towards higher specific annual yield values for1024

larger systems (see section 3.1) can be confirmed for1025

Denmark, France, Germany, Japan, Netherlands,1026

UK and USA North. The other four countries in-1027

stead show a decrease in the mean specific annual1028

yield for systems > 25 kWp.1029

From the distributions, we find the smallest1030

mean specific annual yield is in Denmark (786.01031

kWh/kWp) and largest in USA south (1,4261032

kWh/kWp).1033

4.3. Using the distributions1034

As we have observed that each cluster and pa-1035

rameter can be generally represented by a proba-1036

bility distribution, our discussion can shift towards1037

the usage of these statistics in regional PV power1038

modelling approaches. Generally, the cited publica-1039

tions in section 1.1 (category 1) not only emphasize1040

the practical relevance of statistical distributions in1041

regional PV power modelling approaches, but also1042

sketch the procedure of how these statistics can be1043

used and therefore serve as good examples. One1044

of these publication is Saint-Drenan et al. (2018),1045

which provides detailed information about how fit-1046

ted distributions can be applied in a regional power1047

simulation and therefore serves as a good example.1048

We foresee that the fitted distributions from the1049

previous section can be used to randomly sample1050

the desired metadata of a portfolio of systems in a1051

specific cluster. As pointed out in section 3.2, this1052

cluster can then be weighted individually by the1053

probability of occurrence (as can be derived e.g.1054

from Figure 2. To reproduce the distributions, one1055

must extract the appropriate distribution variables1056

from Table A.4, apply them in the expression from1057

Table A.3, and scale the result according to Eq. (1).1058

We state that the data we have is not representative1059

enough to derive global distributions as there are1060

too many features that can influence the PV system1061

characteristics from regions we do not have access1062

to. The derived distribution functions should only1063

be used for their specific clusters, or for clusters1064

with particularly similar climates and policies.1065
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The usage of the fitted distributions is sketched1066

in a practical example, assuming that the PV power1067

generation in Germany is of interest.1068

1) In Germany, the installed capacity, geographic1069

location and specific annual yield of all PV systems1070

is known (see section 2) and should not been sam-1071

pled if one wishes realistic outputs, though may be1072

sampled for theoretical purposes.1073

2) For each PV system, tilt and azimuth is as-1074

signed by sampling the fitted distribution from the1075

relevant cluster. E.g. a system with 10 kWp will1076

use the distributions from the cluster for systems ≤1077

25 kWp. In this example we can extract the data1078

from Table A.4 such that the German cluster has a1079

Logistic distribution for azimuth with location co-1080

efficient of -0.1366 and scale parameter of 20.6455.1081

The distribution can be recreated using the logis-1082

tic function defined in Table A.3. Please note that1083

there is a high risk that the sampled characteristics1084

won’t accurately predict the metadata for a specific1085

PV system. It is the objective to use these distribu-1086

tions to simulate larger PV portfolios and we expect1087

to derive representative characteristics for that ap-1088

plication.1089

3) The direct usage of yield is more complicated1090

for two reasons. Firstly, in contrary to azimuth, tilt1091

and installed capacity, it is not an input param-1092

eter in the simulation chain but instead indicates1093

the power generation, which is the typical output1094

of a simulation. Secondly per definition, the spe-1095

cific annual yield sums the PV power generation1096

over a whole year. In many application however,1097

simulations may cover a different time span. How1098

can yield be used in simulating the regional PV1099

power generation then? When making the simplify-1100

ing assumption that the meteorological conditions1101

are relatively similar within a cluster, the observed1102

specific annual yield can be interpreted as a mea-1103

sure that expresses relative performance differences1104

between PV systems. For instance, a PV system1105

with a yield of 600 kWh/kWp can be said to be1106

less efficient than a PV system with a yield of 8001107

kWh/kWp. For usage in a simulation, a conver-1108

sion from yield into an performance factor is there-1109

fore necessary. A potential method of conversion is1110

to take the range of yields (0 to 2000 kWh/kWp)1111

and align it to typical ranges of the performance1112

ratio, though taking care to centre the mean yield1113

against the mean performance ratio (said to have1114

a wide distribution centred about 0.74 as derived1115

from 5,000 systems in the Netherlands (Tsafarakis1116

et al., 2017; Reich et al., 2012)). A direct linear1117

conversion could then be applied. For example, a1118

system in Germany with yield 870.2 kWh/kWp (the1119

mean for this cluster) could be assigned a perfor-1120

mance ratio of 0.74. This performance ratio can1121

then be applied as a correction factor to either the1122

output power or the system capacity, and therefore1123

facilitating representative differences between sys-1124

tems.1125

4) The individual PV power generation for each1126

system can be simulated by considering the sampled1127

system characteristics as well as the known installed1128

capacity, efficiency of the specific system and its ge-1129

ographic location. Within such a simulation, other1130

inputs will be needed such as the local irradiance1131

or ambient temperature. Please note, if consider-1132

ing such a large number of systems is too compu-1133

tational intense, instead a smaller number could be1134

randomly chosen and then used within an upscaling1135
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approach.1136

5) Finally, the total power in Germany can then1137

be derived by aggregating the simulated power from1138

all systems.1139

5. Shading on roofs1140

5.1. Methodology of the shading analysis1141

An objective in this paper is to derive gener-1142

alised findings of how to consider the impact of1143

shading. We aim to achieve that in a more so-1144

phisticated manner than the overly simplified man-1145

ner presented in category 3 from section 1.1. It is,1146

however, not the aim to study differences of shad-1147

ing in rural or urban areas all over the world in1148

this paper. This shading analysis is performed on1149

≈ 48,000 buildings in the city of Uppsala, Swe-1150

den (N59.9◦,E17.6◦). Uppsala provides a variety1151

of different buildings (44% residential, 2.2% indus-1152

tries, 5.7% commercial and services, 49% other) and1153

therefore allows studying differences in the impact1154

of shading. The average height of the buildings1155

studied here are 6.4 ± 4.1 m, which may be com-1156

pared to a study on 12 US cities of various size1157

(29,498 to 1,066,354 buildings) with average build-1158

ing height ranging from 4.1 to 9.7 m (Schläpfer1159

et al., 2015). The analysis is not limited to any1160

country specific influences because all combination1161

of solar angles are considered; climate does not in-1162

fluence this shading study. The above reasons em-1163

phasise the general representativeness of Uppsala1164

and were reason for its selection.1165

The shading analysis is realised by using the1166

method in Lingfors et al. (2017), which was cross-1167

validated in Lingfors et al. (2018). Inputs to1168

the model are low-resolution LiDAR data (0.5-11169

pts/m2) and building footprints, provided by the1170

Swedish Land Survey (2015, 2016). The model does1171

the following:1172

1. Finds a simple roof shape from a template of1173

roof types using linear regression on LiDAR1174

data;1175

(a) within the footprint of the examined1176

building and,1177

(b) within building footprints of similar shape1178

in its proximity,1179

2. Each roof now consists of 1-4 facets depending1180

on the roof type (1 for flat or shed, 2 for gabled1181

and 4 for hipped or pyramidal). If LiDAR data1182

are insufficient, the roof type cannot be deter-1183

mined and the building is excluded from fur-1184

ther analysis. The number of roof facets are1185

>90,000 (cf. number of buildings). However,1186

around 1,000 facets which are > 20 m above1187

ground are excluded, as there is an increased1188

risk of these roofs being misrepresented due to1189

noise in the LiDAR data.1190

3. After some filtering of the LiDAR data sur-1191

rounding the building, a triangulated irregu-1192

lar network (TIN) is produced representing ob-1193

jects, predominantly trees and other buildings1194

that may shade the roof.1195

4. Using the TIN as input, a viewshed (a map1196

showing what parts of the sky are visible from1197

the perspective of a point on the roof) at every1198

0.5 m × 0.5 m section of the roof is calculated1199

to determine whether there are objects block-1200

ing the direct solar path. The resolution of the1201

viewshed is limited to solar elevation angles,1202
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αs, of 2.5, 7.5,..., 87.5◦, and solar azimuth an-1203

gles, γs, of -180, -170,..., 170◦ where 0◦ is due1204

south. Since the sky sectors are angular-equal,1205

they are not equal in size (see dotted lines in1206

Figure 6). Hence, the contribution of diffuse1207

irradiance from each sky sector depends on its1208

size and the angle-of-incidence of the irradiance1209

from the sky sector onto the plane.1210

5. For each combination of αs and γs the mean1211

shading of the whole roof facet is calculated,1212

noting that roofs can be partially shaded. This1213

is illustrated in the viewsheds of Figure 6. For1214

a discrete point of the roof, each element of the1215

sky would be either shaded or not shaded cor-1216

responding to black or white (0 or 1), respec-1217

tively, in the left panel of Figure 6. However,1218

if the mean of all points of the roof are con-1219

sidered, the viewshed would be blurred (grey)1220

as illustrated in the right panel of Figure 6.1221

The mean viewshed displayed on the right of1222

Figure 6 is only for illustrative purposes and1223

can be considered to gain understanding as to1224

how the beam, diffuse and reflected irradiance1225

subcomponents are affected by shading for the1226

general region of all facets within this study.1227

Results of the shading analysis are presented1228

in section 5.2.1229

5.2. Deriving a simplified shading model1230

The main results from the shading analysis on1231

≈ 48,000 buildings in Uppsala, Sweden, are pre-1232

sented in Figure 7. The colour of each bin in the1233

left panel of Figure 7 represents the average ratio of1234

all roof facets being visible to a sky sector, defined1235

0 1

ksB

Figure 6: Polar diagrams of viewsheds, where the displayed

angles represent the azimuth angle, and the radius the ele-

vation angle. Left) illustrates the viewshed of a single point

on the roof. Right) the mean viewshed of all the points on

the roof is illustrated. The dotted lines mark the sky sectors

for which the viewshed analysis was conducted from their

respective centre points. Note that the right plot is purely

illustrative and not used within any of the modelling stages.

by the corresponding solar elevation angle and so-1236

lar azimuth intervals. This visibility is here referred1237

to as the beam shade index, ksB ∈ [0, 1] (see Fig-1238

ure 6), where 0 means the roof facet is fully shaded.1239

The dashed lines illustrate the solar path for Up-1240

psala, Sweden. However, the corresponding solar1241

path could be over-layered for an arbitrary site to1242

visualise the implication of shading for that site.1243

From the left panel of Figure 7 it is also clear that1244

the solar azimuth has very little importance, which1245

is logical as shading should be as likely from any1246

direction when a large portfolio of buildings is con-1247

sidered.1248

In the right panel of Figure 7, the average (×-1249

marked) and percentiles (dashed) of ksB for all roofs1250

are presented as a function of only the solar eleva-1251

tion angle, hence it differs from the left panel by not1252

considering the azimuth angle. The thin red lines1253
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Figure 7: To the left, the mean shade index of all studied roof facets are presented at bins of a viewshed defined by the solar

elevation angle and solar azimuth. To the right, the shade index is plotted against the solar elevation angle. Every shade index

profile from each studied facet are indicated with a red solid line. The mean shade index of all facets is indicated with crosses,

with fitted curve represented by a dotted line as presented in Eq. (2). The RMSE between the means and fitted curve is 0.021.

The dashed lines represent the different percentiles.

represent 10,000 individual roofs. Many of these1254

lines jumps from 0 to 1 when going from one ele-1255

vation angle to the next, meaning that from being1256

entirely obscured, the roof becomes entirely visible1257

when the elevation angle is increased by 5◦. The1258

mean beam shade index, k̄sB , of all the roof facets1259

can be represented by a fitted curve (dotted), de-1260

rived as a function of the solar elevation angle, αs:1261

k̄sB = 1− e−αs/17.5. (2)

The average beam irradiance that will fall on a1262

tilted roof, if shading is considered, could then be1263

calculated as:1264

BT = k̄sB
cos θ

cos θZ
BH , (3)

where BH is the unshaded beam irradiance on the1265

horizontal plane, θ is the angle between the incident1266

irradiance and the normal of the roof plane and θZ1267

is the solar zenith angle.1268

Assuming similar shading properties, i.e., vegeta-1269

tion and urban density, as in Uppsala, this function1270

may be used in any area to determine the impact of1271

shading on roofs as a function of the solar elevation1272

angle. It gives a better estimation than solely as-1273

suming a cut-off solar elevation angle for the beam1274

irradiance, which is a method commonly used for1275

PV potential studies.1276

On the other hand, the red lines of figure in the1277

right panel, representing individual buildings, re-1278

veals the variation in shading among the buildings.1279

Thus, studies of higher detail where, for instance,1280

the implications in a low-voltage grid due to shad-1281

ing on PV modules are studied require a method1282

that reproduces these variations.1283

If the global irradiance on a shaded roof is of in-1284

terest, one also needs to consider the diffuse (DT )1285

and reflected (RT ) irradiance subcomponents on1286

the tilted plane, which both depend on the view1287

factor (visible fraction of the sky, fsky ∈ [0, 1]) from1288
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Figure 8: The mean fsky as a function of the roof tilt

(marked with x) and a fitted curve (dotted) presented in

Eq. (4). The solid line represents the first term of Eq. (4)

the perspective of the roof. I.e., the viewshed of the1289

roof should be considered (see Figure 6). The view1290

factor fsky represents the ratio of the isotropic dif-1291

fuse irradiance from the sky hemisphere and reaches1292

a value of 1 for a horizontal surface if there are no1293

shading objects.1294

The values of fsky for > 90, 000 studied roof1295

facets are presented in Figure 8. A fitted curve1296

(with an RMSE of 0.043 with respect to the means,1297

indicated by black crosses) was derived with the1298

function:1299

f̄sky =
1 + cos(β)

2
− C, (4)

where the first term is the view factor for a free sky1300

and C is a constant representing the contribution1301

from shading objects, here found to be 0.162. This1302

equation may be used to calculate the diffuse and1303

reflected irradiance following equations (6) and (10)1304

in Lingfors et al. (2017), respectively.1305

In Figure 9 the losses due to shading are pre-1306

sented for the three irradiance subcomponents (cal-1307

culated individually for each roof facet), sorted with1308

respect to decreasing diffuse irradiance losses. In1309

this analysis, hourly instantaneous Global Hori-1310

zontal Irradiance (GHI) and Direct Normal Irradi-1311

ance (DNI) data from 2014 for Uppsala were used1312

(SMHI, 2015). BT was calculated through Eq. (3),1313

if we let k̄sB here represent the mean value of ksB1314

for all points on the individual roof facet. DT ,1315

as well as RT , were calculated through equations1316

(6) and (10) in Lingfors et al. (2017), respectively,1317

using the fsky derived for each roof facet. These1318

equations, adapted for the conventions used in the1319

present paper, can be expressed as:1320

DT = DH

[
(1−Ai)fsky +

cos θ

cos θZ
Ai

]
, (5)

and1321

RT = (BH +DH)ρ(1− fsky), (6)

where Ai is the anisotropy index and ρ is the surface1322

albedo, here assumed to be 0.2 for all surfaces (i.e.,1323

ground, trees, buildings etc.).1324

Hence, Eqs. (2) and (4) in the present paper1325

were not used here, but could be valuable in future1326

studies where, for instance, the level of detail of the1327

building topography in a city is unknown or the1328

time for making detailed simulations is limited, yet1329

the impact of shading on solar power generation is1330

of interest.” The in-fold figure illustrates the nega-1331

tive correlation between diffuse (DT ) and reflected1332

(RT ) irradiance. The diffuse irradiance decreases1333

(i.e., the losses increase) with a decreasing fsky,1334

while instead the reflected irradiance increases (i.e.,1335

negative losses in Figure 9). From Figure 8, it is1336

clear that fsky decreases with an increasing roof tilt,1337
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leading to a higher contribution of reflected irradi-1338

ance for a highly tilted roof. The mean losses due1339

to shading (expressed in relation to the unshaded1340

global irradiance) for the whole building portfolio1341

are 7.3%, 3.6%, 6.3% and −2.7% for the global,1342

beam, diffuse and reflected irradiance, respectively,1343

where the minus sign is indicative of an added con-1344

tribution to the total irradiance, since trees, build-1345

ings etc. adds to the total reflective area seen by1346

the roof when shading is considered. Hence, dif-1347

fuse losses contribute the most for Uppsala, which1348

has an annual clear-sky index of 0.63 (calculated as1349

the global horizontal irradiation for 2014 divided by1350

the clear-sky irradiation for the same period (Ine-1351

ichen and Perez, 2002)). One should also remem-1352

ber that all roofs in Uppsala were considered. If1353

only roofs with installed PV systems on them were1354

considered, the losses would most likely be lower.1355

It is likely that the present method over-estimates1356

the reflected irradiance at clear conditions as all1357

trees and buildings seen by a roof could also be1358

themselves shaded, therefore, offering reduced re-1359

flected irradiance. To consider this is a complex1360

matter and needs extensive research. For instance1361

ray-tracing could be incorporated in the model but1362

at a computational cost.1363

6. Future advancements beyond the scope of1364

this work1365

The main objective of the paper was to fit dis-1366

tributions to selected metadata and approximate1367

functions that describe the impact of shading. This1368

enables replication of these characteristics and al-1369

lows a usage in regional PV power modelling ap-1370
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Figure 9: Beam and diffuse irradiance losses and the added

contribution from reflected irradiance to the global irradi-

ance considering shading on the> 90, 000 studied roof facets.

The in-folded figure illustrates the negative correlation be-

tween the losses of diffuse and reflected irradiance when

shading is considered.

proaches with suitable representativeness. The un-1371

derlying basis for the approximations are numerous1372

datasets with metadata and simulated results from1373

a model in the case of shading. Background infor-1374

mation and references for further reading are pro-1375

vided in the related sections. Furthermore, the level1376

of accordance of the fitted distributions and func-1377

tions with the original data is expressed by error1378

metrics and limitations of the procedure are criti-1379

cally discussed. Naturally, with such a considerable1380

and detailed database of information, we cannot1381

cover all aspects in a single paper. We have opted1382

to present an overview in a manner that enables1383

the user to engage with the findings. That said,1384

we have identified several interesting topics during1385

our work that we would like to study in more de-1386

tail, however are beyond the scope of this paper’s1387

objectives.1388

• Focus on specific parameters: The whole1389
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dataset offers so much information that it is im-1390

possible to evaluate all specific parameters in1391

detail within one paper. This data could po-1392

tentially be used to study various performance1393

indicators, e.g. by including irradiance infor-1394

mation in specific regions and the age of the1395

systems (provided for most systems).1396

• Dependencies between parameters: In1397

this paper we have qualitatively discussed pair-1398

wise dependencies between parameters. Fur-1399

thermore, we have applied a quantitative ap-1400

proach to individual parameters by fitting dis-1401

tribution functions. The next step will be1402

to quantitatively incorporate dependencies be-1403

tween multiple (two and more) parameters, e.g.1404

by joint distributions, multivariate models, etc.1405

By that, the complex relations should be better1406

represented.1407

• Complex distributions: The azimuth an-1408

gle presented irregularities with a wide base1409

and tall 0◦ peak and on occasion presented1410

a trimodality that is certainly not-able to be1411

captured by standard parametric distribution1412

types with satisfaction. Whilst we dispute the1413

validity of much of the measured data due1414

to reporting simplifications, there is scope to1415

analyse the distributions in a more statistically1416

rigorous manner. There is scope to combine1417

distributions and to enable multi-modal, non-1418

parametric definition of the non-conformal pa-1419

rameters, notably the tilt and azimuth. We1420

intend to make available the actual probability1421

distribution for the reader to draw their own1422

conclusions, see our invitation for collaboration1423

below.1424

• Cluster refinement: Influence of climatic re-1425

gion may influence certain parameters, partic-1426

ularly the specific annual yield. It is probable1427

that the specific annual yield is not only a func-1428

tion of latitude (as we have demonstrated with1429

a general regression between 30◦ and 50◦ of lat-1430

itude), however, it is a function of the climatic1431

region where those sites are situated. There1432

is a lack of data within the 0◦ to 30◦ latitude1433

band with which to successfully analyse this1434

hypothesis. Further steps could be to replace1435

the clusters by country with clusters by climate1436

region using maps such as the Köppen-Geiger1437

classifications, or perhaps by mean irradiance1438

using a dataset such as NASA SSE.1439

• Shading: As mentioned in section 5.2 the re-1440

sults on shading from the present study can1441

be used on a large portfolio of buildings, while1442

for smaller areas one may want to produce re-1443

alistic viewsheds for a few buildings to study1444

the impact from shading. One simple approach1445

would be to provide a database of viewsheds1446

such as the one produced in this study, from1447

which samples could be randomly drawn. To1448

avoid the need of a database, another approach1449

could be to design a model that can reproduce1450

the distribution of shading profiles, perhaps1451

stochastically using Markov chains to create1452

statistically appropriate skylines. While the1453

solar elevation angle is probably the most in-1454

fluential parameter, other factors such as the1455

type of roof or height of the building would1456

most likely also have an impact. Hence, a set1457
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of building specific parameters would satisfy as1458

inputs to such a model.1459

• Invitation for collaboration and data1460

access: This work would not have been1461

possible without support from many sides1462

mentioned in the acknowledgements. Gath-1463

ering this data has proven difficult at times,1464

and finding the correct person to approach1465

was not straight forward. Therefore, we would1466

like to extend an invitation to the reader.1467

Should you have good ideas of how to use this1468

data, or have large data itself, particularly in1469

countries that we have not detailed, we en-1470

courage you to get in contact with either Sven1471

Killinger (sven.killinger@ise.fraunhofer.de,1472

svnkllngr@gmail.com), Jamie1473

Bright (jamie.bright@anu.edu.au,1474

jamiebright1@gmail.com) or Nicholas En-1475

gerer (nicholas.engerer@anu.edu.au). Much1476

of the data is confidential and so we cannot1477

share it, however, the aggregated statistics are1478

available. Should you wish to have access to1479

the real distributions presented in the work,1480

they are available on request, should they1481

be publicly released, all communications will1482

be made through our ResearchGate project.1483

You are encouraged to follow that project for1484

updates and communications (Bright et al.,1485

2018).1486

7. Summary1487

Knowledge of PV system characteristics is needed1488

in the different regional PV modelling approaches1489

but are either unknown or only accessible for a small1490

number of stakeholders. The aim of this paper was1491

to provide knowledge of PV system characteristics1492

through data collection, analysis and distribution1493

fitting of PV system characteristics. The structure1494

presented was twofold and focused on (1) metadata1495

(tilt and azimuth of modules, installed capacity and1496

specific annual yield) as well as (2) the impact of1497

shading.1498

We considered 2,802,797 PV systems located in1499

Europe, USA, Japan and Australia, which repre-1500

sented a total capacity of 59 GWp (14.8% of in-1501

stalled capacity worldwide). Interdependencies of1502

the installed capacity and the geographic location1503

to the other parameters tilt, azimuth and specific1504

annual yield were observed. To acknowledge the1505

impact from these two dominating parameters (in-1506

stalled capacity and geographic location) on others1507

and to allow a derivation of meaningful statistics,1508

a clustering of systems on a country-basis with ad-1509

ditional separation by systems sizes ≤ 25 kWp and1510

> 25 kWp was introduced. For eased future utili-1511

sation of the analysed metadata, each parameter in1512

a cluster was approximated by a distribution func-1513

tion. Results show strong characteristics unique to1514

each cluster, however, there are some commonali-1515

ties across all clusters. The smallest mean tilt val-1516

ues were reported in Australia (16.1◦), USA South1517

and Italy (19.8 and 19.9◦, respectively). The largest1518

mean tilt values were reported in Belgium (35.6◦),1519

the UK (31.8◦) and Germany (31.6◦) . We find1520

the smallest mean specific annual yield is in Den-1521

mark (786.0 kWh/kWp) and largest in south USA1522

(1,426 kWh/kWp), this corresponds well to the1523

climatic differences between 30 and 50◦ latitude1524

within the study. The region with smallest me-1525
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dian capacity was UK (2.94 kWp) and the largest1526

was Germany (8.96 kWp). Almost all countries1527

had a mean azimuth angle normal to the equa-1528

tor. The number of equatorially-orientated sys-1529

tems was significantly higher than any other ori-1530

entation, such that no distribution type could ap-1531

propriately capture this characteristic. That said,1532

it is expected that the number of systems with az-1533

imuth of 0◦ are exaggerated due to lacking preci-1534

sion of PV system metadata reporting, and per-1535

haps the statistical distributions are more realistic1536

than the data suggests, particularly when consid-1537

ering the reduced peak from higher accuracy meta-1538

data, such as that from the UK. Capacity demon-1539

strated the most cluster-unique characteristics. As1540

each cluster represented a country, it also captures1541

national policy incentives that clearly influence the1542

overall capacity distributions. The feed-in tariffs of1543

France, Germany and the UK have clear impact on1544

the PV system size. The shape of the distributions1545

of specific annual yield offered the most similarity1546

between clusters, with the location/mean being pri-1547

marily a function of climate through latitude. Dis-1548

semination of clusters by climate may reveal more1549

insightful differences. All of the distributions that1550

are presented in the paper can be obtained from the1551

tables in the appendix.1552

Shading was considered by computing the view-1553

shed of individual roof facets of ≈ 48,000 buildings1554

in Uppsala, Sweden, which meant that > 90, 0001555

facets were analysed. Two empirical equations1556

were derived and presented. The first represents1557

the beam irradiance subcomponent, describing the1558

mean ratio of a roof that is shaded as a function1559

of the solar elevation angle. The second determines1560

the view factor as a function of the roof tilt includ-1561

ing the impact from shading and can be used to es-1562

timate the losses of diffuse and reflected irradiance.1563

These equations are believed to better take shading1564

into consideration than the coarse estimates used1565

today. For the specific meteorological conditions of1566

Uppsala, we also showed in this study that losses1567

of diffuse irradiance due to shading are higher than1568

that of beam on an annual basis and should not be1569

neglected for sites of similar cloudiness as in Upp-1570

sala (annual clear-sky index of 0.63).1571

Several interesting research topics beyond the1572

scope of this paper were sketched and the offer for1573

future collaborations expressed.1574
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tions of azimuth, tilt, specific annual yield and in-1837

stalled capacity for system sizes > 25 kWp in Fig-1838

ure A.10. Table A.4 presents the coefficients of the1839

fitted distributions, while distinguishing between1840

systems ≤ 25 kWp and > 25 kWp. All distri-1841

bution functions are defined in Table A.3 and can1842

be replicated with help of the parametrised coeffi-1843

cients. It is important that the user reads carefully1844

section 4 in order to appropriately use the distribu-1845

tions. A summary of the impact of our proposed1846

quality control criteria from section 2 is provided1847

in the appendix in Table A.5 where percentages of1848

removed data are presented.1849
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Table A.3: Definition of the probability density distributions used in the research. The coefficients correspond to those presented

in Table A.4. The distribution name corresponds to the same Matlab R©distribution names and readers are encourage to read

the detailed descriptions at www.mathworks.com/help/stats/continuous-distributions.html. Each coefficient is defined.

The equation is provided from the Matlab R©documentation. Note that the Stable distribution is not explicitly a probability

density function, but a characteristic function.

Distribution

Name
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