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Abstract

This paper proposes a new constructive method for synthesizing a hybrid limit cycle for the stabilizing
control of a class of switched dynamical systems in IR2, switching between two discrete modes and without
state discontinuity. For each mode, the system is continuous, linear or nonlinear. This method is based on
a geometric approach. The first part of this paper demonstrates a necessary and sufficient condition of the
existence and stability of a hybrid limit cycle consisting of a sequence of two operating modes in IR2 which
respects the technological constraints (minimum duration between two successive switchings, boundedness
of the real valued state variables). It outlines the established method for reaching this hybrid limit cycle
from an initial state, and then stablizing it, taking into account the constraints on the continuous variables.
This is then illustrated on a Buck electrical energy converter and a nonlinear switched system in IR2. The
second part of the paper proposes and demonstrates an extension to IRn for a class of systems, which is then
illustrated on a nonlinear switched system in IR3.

Key words: Switched dynamical system, stability, hybrid limit cycle, nonlinear optimization, stabilizing
control.

1. Introduction

Switched dynamical systems (SDS) are an impor-
tant class of hybrid dynamic systems [25] in which
the trajectory is continuous or piecewise continuous
with controlled or autonomous switches (i.e.with or
without a control signal) between different dynamics
(or modes). This class of dynamic systems typically
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consists of a process with autonomous switching
(caused by shocks or using diodes etc) or controlled
switching (using transistors, relays, valves, etc.). The
controlled switching sequence is the discrete control.
The SDS are found in many fields of application:
transport, embedded systems, electronics power,
aeronautics, chemical engineering, pharmaceutical,
etc. It can be seen in these applications that
interactions between discrete events and continuous
phenomena give rise to complex system behavior
that can only be properly controlled if the hybrid
phenomena (continuous and discrete features, and
interactions between them) are fully taken into
consideration [11, 15, 16].
Significant progress has been made in stability
analysis and control synthesis for specific classes of
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hybrid systems (piecewise linear systems, switched
systems, etc.). However the field synthesis of control
laws with or without constraints remains wide open
(robustness, performance, delay, saturation, etc.)
[9, 10, 11, 15, 16, 17, 18, 19, 21, 26].
Several important results regarding stability and
stabilization of dynamic switched systems are pre-
sented in [4, 5, 6]. These provide us with different
definitions of stability (total stability, uniform stabil-
ity, conditional stability, global asymptotic stability,
etc.) as well as the relevant conceptual tools (hybrid
solution, duration time, common Lyapunov function,
multiple Lyapunov functions, convexified system,
etc.). In [6], stabilization methods are given in the
linear and nonlinear case (uniform stabilization).

If xd is the desired operating point of the SDS and
if it is different from the equilibrium points (same or
different) of the two discrete modes, if any, the SDS
is stable if, and only if, there exists at least one sta-
ble hybrid limit cycle around the desired operating
point, xd, or as close as possible to it [24]. If the
technological constraints which impose a minimum
duration between two successive switchings are met,
this hybrid limit cycle can not be degenerated at a
Zeno state. The most commonly used method for
stability analysis and systems stabilization, includ-
ing for switched systems, is based on the Lyapunov
theory [16, 7, 12, 8, 6, 2, 23]. However, the synthesis
of Lyapunov functions is, and has always been, a
difficult task especially for nonlinear systems. Some
synthesis methods based on quadratic Lyapunov
functions have been proposed for Piecewise Linear
Systems (PLS), for example, in [14, 20]. In his PhD
thesis [12], Goncalves defines some conditions for
the existence and stability of hybrid limit cycles for
PLS with known switching surfaces. This means
that the control function is also known. Then, over
execution time τ , the τ -trajectory (τ -solution) can
be calculated and the existence and the stability of
the obtained limit cycle proven.

The approach presented in this paper deals with
the synthesis of stabilizing control with unknown
switching surfaces. It is an extension of [1].

One widely studied family of switched dynamical
systems is that of electrical energy converters, how-
ever it remains difficult to synthesize a direct control
law for the switching because of the high frequency
of their dynamics (or modes). These systems are
usually controlled using pulse width modulation
(PWM) due to the simplicity with which it can be
implemented (output continuous signal compared
to a triangular signal). However, this method is
unreliable in some cases. For example, in [3] the
authors illustrate the instability of multicellular (or
multilevel) converters with an odd number of cells
under PWM control, and propose a direct and rapid
control using a geometric approach which respects
an optimal limit cycle with the switching frequency
imposed by the characteristics of the semiconductors
and which can be synthesized for any number of cells.
Another control law is proposed for this converter in
[22]. It is based on the switching surfaces calculated
using a Lyapunov theory based method which forces
the energy of the system to decrease continuously
over time.

In the greatest part of this paper, switched dy-
namic systems (SDS) have a dimension two and
switch between two discrete modes without state
discontinuity. The main objectives are to define the
set of all points around which a hybrid limit cycle
can be established (named E in IR2 and E in IRn

with n > 2) and to find a hybrid limit cycle which
respects the technological constraints (minimum
duration between two successive switchings, bound-
edness of the real valued state variables). It presents
a new method, based on the geometric properties of
the vector fields [9], and provides an alternative way
of addressing the stabilizing control problem. The
hybrid limit cycle is determined around a desired
operating point, xd, or as close as possible to it.
This cycle can be reached from an initial state, with
a reachability sequence optimized according to time
and which meets the physical constraints on the
continuous real variables (hypersurfaces threshold)
or on the time (minimum duration between two
switchings, etc.). A classic method can be used [17].
The threshold hypersurfaces can also be switching
surfaces so that the constraints are met. In the
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latter part of this paper, the extension of the main
two theorems 3.1 and 3.2 to IRn is presented and
demonstrated for a restricted class of systems.

There are other methods to analyse existence and
stability of limit cycles in SDS, as Poincare’ maps.
For example [24] extends the Poincare’ Bendixson
criterion to hybrid systems with reset functions (i.e.
with state discontinuities).

Section 2 sets out some notations and assumptions
on geometric properties of vector fields and condi-
tions of existence of a hybrid limit cycle. Section 3
presents and demonstrates the main results of this
paper in theorems 3.1 and 3.2. Section 4 formulates
the reachability problem in a generic way and sec-
tion 5 the optimization of the reachability sequence.
The algorithm we have developed for the stabilizing
control synthesis is given in section 6 and illustrated
in section 7 on the linear Buck energy converter and
in section 8 on a nonlinear example in IR2. Sections
9 and 10 present and demonstrate the extension of
the two theorems 3.1 and 3.2 to IRn for a restricted
class of systems. Finally, a nonlinear example in IR3

is given.

2. Notations and assumptions

Assumption 2.1. A continuous trajectory (param-
eterized arc) in IR2 is defined by an enough smooth
map γ : I ⊆ IR 7−→ IR2.

The Taylor series of γ(t + t0) is:

γ(t + t0) = γ(t0) + Σk
i=1

ti

i!
γ(i)(t0) + tkε(t)

where ε(t) → 0 when t → 0 and γ(i)(t0) represents
the ith derivative of γ with respect to t. We de-
note k1 the smallest strict positive integer such that
γ(k1)(t0) 6= (0, 0) and k2 the smallest strict positive
integer such that det(γ(k1)(t0), γ

(k2)(t0)) 6= 0. If M
is the point of coordinate γ(t+ t0) and O is the point
of coordinate γ(t0), it is clear that, for small t:

−−→
OM = (

tk1

k1!
+ . . .)−→v1 +

tk2

k2!
−→v2 + tk2ε(t)

, with −→v1 = γ(k1)(t0) (−→v1 is the tangent vector of
the parametrized curve γ at t0) and −→v2 = γ(k2)(t0).
The shape of the continuous trajectory depends on k2

and k1. The two possible shapes corresponding to k1

odd are represented in figure 1 and the two possible
shapes corresponding to k1 even are represented in
figure 2 (without loss of generality, the vectors −→v1

and −→v2 are represented orthogonally).

Figure 1: Shapes of the continuous trajectory if k1 is odd: on
the left, k2 is even and on the right, k2 is odd.

Figure 2: Shapes of the continuous trajectory if k1 is even: on
the left, k2 is odd and on the right, k2 is even.

Assumption 2.2. Let γj : I ⊆ IR −→ IR2, j ∈
{1, 2}, be two enough smooth maps. Suppose that
γ1(t0) = γ2(t0) (the two continuous trajectories in-
tersect at t0 at the point O) with γ′

1(t0) 6= 0 and
γ′
2(t0) 6= 0 and det(γ′

1(t0), γ
′
2(t0)) = 0 (i.e. γ′

1(t0)
and γ′

2(t0) are collinear. ∀j ∈ {1, 2}, kj1 = 1 so the
two possible shapes of the two continuous trajectories
near the point O are represented figure 1).
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The Taylor series of γj(t + t0) with j ∈ {1, 2} are:

γj(t + t0) = γj(t0) + Σk
i=1

ti

i!
γ

(i)
j (t0) + tkεj(t)

where εj(t) → 0 when t → 0.

For SDS which meet the assumption 2.2, the
existence of a hybrid limit cycle around the point
O depends on the relative position of the two
continuous trajectories near this point.

Let us denote v = γ′
1(t0), p1 as the smallest strict

positive integer such that det(γ
(p1)
1 (t0), v) 6= 0 and

p2 as the smallest strict positive integer such that

det(γ
(p2)
2 (t0), v) 6= 0. Without loss of generality,

suppose that p1 ≤ p2. Let Mj be the point of
coordinate γj(tj + t0). Under these notations, for
SDS which meet assumption 2.2, we can write, for
small t1 and t2:

−−→
OM1 = γ1(t1 + t0) − γ1(t0)

= t1γ
′

1(t0) + . . . +
t
p1
1

p1!
γ

(p1)
1 (t0) + . . .

−−→
OM2 = γ2(t2 + t0) − γ2(t0)

= t2γ
′

2(t0) + . . . +
t
p2
2

p2!
γ

(p2)
2 (t0) + . . .

If t2 =
t1

〈
γ
′

1(t0)|v
〉

〈γ′

2(t0)|v〉
, M1 and M2 have the same ab-

scissa in the basis (v, v⊥). Note that
〈
γ

′

2(t0)|v
〉
6= 0

because the SDS under consideration meets assump-
tion 2.2.

Definition 2.1. For SDS which meet the assumption
2.2, p is the smallest positive integer such that:〈

γ
′

2(t0)|γ
′

1(t0)
〉p

det(γ
(p)
1 (t0), γ

′

1(t0))

6=
〈
γ

′

1(t0)|γ
′

1(t0)
〉p

det(γ
(p)
2 (t0), γ

′

1(t0)).

Note that 〈γ
(p)
i (t0)|v

⊥〉 = det(γ
(p)
i (t0), v) with

i ∈ {1, 2} and v⊥ a vector orthogonal to v.

If p2 > p1 then p = p1 and the difference between
M1 and M2 ordinates in the basis (v, v⊥), is:

〈
−−−→
OM1|v

⊥〉 − 〈
−−−→
OM2|v

⊥〉 ∼=
t
p1
1

p1!
det(γ

(p1)
1 (t0), v)

(1)

If ((p2 = p1) and (p1 6= p)) then p > p2 and the
difference between M1 and M2 ordinates in the basis
(v, v⊥), is:

〈
−−−→
OM1|v

⊥〉 − 〈
−−−→
OM2|v

⊥〉
∼=

t
p

1

p!

〈
γ

(p)
1 (t0)|v

⊥
〉
−

t
p

2

p!

〈
γ

(p)
2 (t0)|v

⊥
〉

∼=
t
p

1

p!

〈
γ

(p)
1 (t0)|v

⊥
〉
−

t
p

1

p!

〈
γ
′

1(t0)|v
〉p

〈γ′

2(t0)|v〉
p

〈
γ

(p)
2 (t0)|v

⊥
〉

∼=
t
p

1

p!

(
〈

γ
′

2(t0)|v
〉p

det(γ
(p)
1 (t0),v)−

〈
γ
′

1(t0)|v
〉p

det(γ
(p)
2 (t0),v))

〈γ′

2(t0)|v〉
p

(2)

The two parameterized curves are transverse at t0 if
the sign of (〈

−−−→
OM1|v

⊥〉− 〈
−−−→
OM2|v

⊥〉) changes when t1
changes sign.

Theorem 2.1. For SDS which meet assumption 2.2,
the two parameterized curves are transverse if p is
odd. Otherwise they are not transverse.

Proof : this theorem comes directly from the equa-
tions (1) and (2) because the sign of (〈

−−−→
OM1|v

⊥〉 −

〈
−−−→
OM2|v

⊥〉) depends on the sign of
t
p

1

p! . Figure 3
presents two possible respective shapes of γ1 and γ2.

Figure 3: On the left, p is even (curves not transverse) and on
the right, p is odd (curves transverse).

Let us consider the time invariant switched dy-
namic system (SDS) in IRn:

ẋ = uf1(x) + (1 − u)f2(x) (3)
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with the so-called switching function (or discrete con-
trol) u(.) : [0 ∞] 7→ {0, 1} and x ∈ IRn. It is made
of two locations (modes, subsystems) li (i ∈ {1, 2}),
with respective Lipchitz vector fields f1(x) and f2(x)
in IRn. There is no state discontinuity at the moment
of switching.

The state of the SDS is hybrid (continuous and
discrete states): (x, lj) ∈ IRn × L with L = {lj , j ∈
{1, 2}}. The (Carathéodory) solution of the dif-
ferential equation ẋ = fi(x) after elapsed time δ
with initial condition x(0) = x0 is denoted Φi(x0, δ),
i ∈ {1, 2}. In section 4 and 5, we also use the follow-
ing notation: Φδ

i (x0), i ∈ {1, 2}.
If both modes l1 and l2 have an equilibrium point
xe1 and xe2 (same or different), and are globally
asymptotically stable, then, for all x0 ∈ IRn and
i ∈ {1, 2}, limδ→∞ Φi(x0, δ) = xei. If xd = xe1 or
xd = xe2, then, the desired operating point xd can
be reached asymptotically.

Definition 2.2. Let us consider xc1 and xc2 two
points in IRn, with xc1 6= xc2. CC(xc1, xc2) is the
hybrid limit cycle of the SDS ẋ = fi(x), i ∈ {1, 2},
between the switching points xc1 and xc2, if and only
if (δc1, δc2) ∈ IR2

+ exists such that: xc1 = Φ1(xc2, δc1)
and xc2 = Φ2(xc1, δc2). Then

CC(xc1, xc2) = {Φ1(xc2, δ)/0 ≤ δ ≤ δc1}∪

{Φ2(xc1, δ)/0 ≤ δ ≤ δc2}.

If xd 6= xe1 and xd 6= xe2 or if at least one of
the subsystems is unstable, stabilizing a SDS whilst
respecting the technological constraints involves
determining a stable hybrid limit cycle as close as
possible to xd.

Definition 2.3. In the plane, a loop Lγ is defined
by a continuous map in the interval [a, b], γ : [a, b] →
IR2, t 7→ γ(t) such that γ(a) = γ(b). The interior
of the loop Lγ = γ([a, b]) is the union of open sets
bounded by this loop. This is denoted as Int(Lγ).

An example in which the interior of the loop is
formed from a single open bounded set is given in
figure 4.

Figure 4: Example of the interior of a loop Lγ in the plane.

A hybrid limit cycle in IR2, CC(xc1, xc2), with at
least one point x ∈ CC(xc1, xc2) such that f1(x) 6=
−f2(x), is a loop. Since xc1 6= xc2, such a hybrid limit
cycle is not degenerated at a single point. If ∀x ∈
CC(xc1, xc2), f1(x) = −f2(x), the hybrid limit cycle
is made up of two opposite trajectories and reduced
to a curve, the trajectory making a roundtrip between
the two switching points, and δc1 = δc2. An example
of a hybrid limit cycle in IR2 with at least one point
x ∈ CC(xc1, xc2) such that f1(x) 6= −f2(x) is given
in figure 5.
Note that a hybrid limit cycle is a closed trajectory
made up of two dynamics unlike a periodic orbit in
the real valued state space that is generated by a
single continuous dynamic (one time invariant state
space representation ẋ = f(x) with x ∈ IRn).

Figure 5: Example of hybrid limit cycle for a SDS in IR2.

3. A necessary and sufficient condition of ex-

istence and stability of a hybrid limit cycle

Notation: Let us denote as dp−1fi(x) =
dpΦi(x,t)

dtp |t=0
with p ≥ 1.

v = f1(x) 6= 0, p1 is the smallest integer such that
p1 > 1 and det(dp1−1f1(x), v) 6= 0 and p2 the smallest
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integer such that p2 > 1 and det(dp2−1f2(x), v) 6= 0.
From definition (2.1), p(x) is the smallest positive
integer such that:
〈f2(x)|v〉

p
det(dp−1f1(x), v)

6= 〈f1(x)|v〉
p
det(dp−1f2(x), v).

Definition 3.1. E = {z ∈ IR2/det(f1(z), f2(z)) =
0, 〈f1(z)|f2(z)〉 < 0 and p(z) is even } is the set of
points in IR2 with collinear and opposite vector fields
fi(x), i ∈ {1, 2}, and with non transverse trajectories.

Let us recall that
Int(CC(xc1, xc2))

⋃
CC(xc1, xc2) is denoted as

Int(CC(xc1, xc2)). Int(CC(xc1, xc2)) is the closure
of Int(CC(xc1, xc2)).

Theorem 3.1. Let us consider a SDS (3) with
x ∈ IR2. Let CC(xc1, xc2) in IR2 be a hybrid
limit cycle with xc1 6= xc2 with at least one point
x ∈ CC(xc1, xc2) such that f1(x) 6= −f2(x). If
the closure Int(CC(xc1, xc2)) does not include any
of the equilibrium points of the two dynamics f1

and f2, then, there exists a non-empty set of points
z ∈ IR2, such that z ∈ E

⋂
Int(CC(xc1, xc2)) i.e

E
⋂

Int(CC(xc1, xc2)) 6= φ.

Proof : Let us consider the hybrid cycle
CC(xc1, xc2). Some part of the trajectory, defined
by A = {Φ2(xc1, t) with 0 ≤ t ≤ δc2} is fixed. For
any points xc of A, the trajectories with dynamic
f1(x), starting from xc may have three shapes be-
cause there is at least one point x ∈ CC(xc1, xc2)
such that f1(x) 6= −f2(x). First, consider the tra-
jectories that renter inside Int(CC(xc1, xc2)). Nec-
essarily, δc > 0 exists such that xc̃ = Φ1(xc, δc) ∈ A
because Int(CC(xc1, xc2)) does not include an equi-
librium point of the dynamic f1. Since two tra-
jectories from the same vector field do not inter-
sect, it follows that CC(xc, xc̃) ⊂ Int(CC(xc1, xc2)).
Secondly, let us consider the trajectories that leave
Int(CC(xc1, xc2)). In this case, δc > 0 exists such
that xc̃ = Φ1(xc,−δc) ∈ A, then CC(xc, xc̃) ⊂
Int(CC(xc1, xc2)). In the third case, the trajectory
starting from xc with dynamic f1(x) is tangent to A
at xc. Figure 6 represents cases 1 and 3. Case 2 can
be easily deduced.

Figure 6: Geometric motivation of thorem 3.1.

In the following, it is proved that a point xc neces-
sarily exists in A and that this point verifies the third
condition and belongs to E.
For any point xc in A a hybrid cycle CC(xc, xc̃) can
be constructed. Since two trajectories from the same
vector field do not intersect, then for any two points
xc and xc′ in the set A, we have:

Int(CC(xc, xc̃)) ⊂ Int(CC(xc′ , xc̃′))

or

Int(CC(xc′ , xc̃′)) ⊂ Int(CC(xc, xc̃))

This creates a non-empty closed set, A, of hybrid
limit cycles with switching points belonging to the
fixed path A:

A =
{

Int(CC(xc, xc̃))/xc ∈ A
}

Note that CC(xc, xc̃) ⊆ Int(CC(xc1, xc2)). The ele-
ments of A are nested one inside each other and are
ordered by set inclusion. According to Zorn’s lemma
[27] (Any inductive, ordered and non-empty set ad-
mits at least a minimum element), this set accepts a
minimum that cannot be a cycle, because within a
cycle, we can always find another cycle (continuity of
the two vector fields), but a point, z. So, the intersec-
tion between the fixed trajectory, A, and the trajec-
tory with dynamic f1(.) passing through z, is reduced
to this point z. As this trajectory is tangent to A at
z, det(f1(z), f2(z)) = 0. Moreover, 〈f1(z)|f2(z)〉 > 0
would mean that there is no cycle around this point,
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which contradicts the fact that z is the minimum el-
ement, thus 〈f1(z)|f2(z)〉 < 0. As z is the minimum
element of a set of hybrid limit cycles, the trajectory
with dynamic f1(.) passing through z is not trans-
verse with A, then z ∈ E. This completes the proof.

Theorem 3.2. Let us consider the SDS (3) with
x ∈ IR2. For each point z ∈ E 6= φ, there ex-
ists a hybrid limit cycle CC(xc1, xc2) such that z ∈
Int(CC(xc1, xc2)).

Proof : ∀ z ∈ E, f1(z) = αf2(z) with α < 0
and the trajectories issued from z with dynamic
f1 and f2 are not transverse in z. Figures 7.a
and 7.b represent two possible trajectory shapes in
the neighbourhood of z. As the trajectories from
z with dynamic f1 and f2 are not transverse in
z, it follows that two trajectories from these two
vector fields in the neighbourhood of z create a
hybrid limit cycle. Figures 8.a and 8.b represent
two possible shapes in the state space. Therefore,
a hybrid limit cycle can always be designed around
the point z, where it exists. This completes the proof.

Figure 7: Sections of trajectories passing through z ∈ E in
IR2.

Figure 8: Geometric motivation of theorem 3.2.

Note that there exists an infinity of hybrid limit

cycles around each point of the non-empty set E.
Then, if xd ∈ E, there exists a hybrid limit cycle,
between two different switching points, where the
SDS (3) can be stabilized. If xd does not belong to
E, it is necessary to find the nearest point belonging
to the non-empty set E, around which the SDS can
be stabilized. Note that the physical constraints
imposed by the system (minimum duration time
between two switchings, states thresholds, etc.)
must also be fulfilled.

Note that CC(xd, xd) is a stable cycle degener-
ated at the point xd. It has a physical meaning only
if xd = xe1 or xd = xe2. Otherwise, the SDS is Zeno,
i.e there are an infinite number of switchings at a
finite time and the period of the cycle becomes null.

4. Reachability domain

Let us now recall the classic method for reaching
the hybrid limit cycle determined in the previous
section, from an initial state, and stabilizing it,
with respect to the constraints on the continuous
variables. Let us formulate this reachability problem
in a generic way.

A trajectory (or solution) of a SDS from a hybrid
initial state (x0, li) with i ∈ {1, 2} to a hybrid final
state (xc, lk) ∈ CC(xc1, xc2) is defined as follows:
x0 → x1 = Φi(x0, δs1

) → x2 = Φj(x1, δs2
) → . . . →

xm = Φi(xm−1, δsm
) → . . . → xc = Φk(xc−1, δsc

)
with (i, j, k) ∈ {1, 2}3 and ∀ m ∈ {1, ..., c},
δsm

∈ IR+ with δsm
the duration time in the active

subsystem (or mode) before the mth switching in
the sequence S. This continuous trajectory is made
up of a succession of continuous trajectories with
different dynamics. The concatenation of dynamics
(discrete states) defines the switching sequence
S = (ls1

, ls2
, ..., lsc

) with sk ∈ {1, 2} and 1 ≤ k ≤ c.
The switching points are (x1, x2, ..., xc). The SDS
vector field may be discontinuous at the moment of
switching, but there is no state discontinuity. The
total duration of time the SDS takes to reach the
hybrid limit cycle CC(xc1, xc2) from the initial point
is therefore: tc = δs1

+ δs2
+ . . . + δsc

.
The global constraints of the system define the global
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operating domain which is denoted as Ω. It can be
represented using the g following linear inequalities:
∀ k ∈ {1, ..., g}, Ckx + dk ≤ 0 with Ck of dimension
n and dk is a constant.

Definition 4.1. Let us consider a hybrid limit cycle
CC(xc1, xc2). We define:
A1 = {Φ1(z,−δ) ∈ Ω,∀z ∈ CC(xc1, xc2) and δ ≥ 0}
B1 = {Φ2(z,−δ) ∈ Ω,∀z ∈ CC(xc1, xc2) and δ ≥ 0}
...
Ai+1 = {Φ1(z,−δ) ∈ Ω,∀z ∈ Bi and δ ≥ 0}
Bi+1 = {Φ2(z,−δ) ∈ Ω,∀z ∈ Ai and δ ≥ 0}
...

These are the sets of trajectories that define all
backward inferences from the hybrid limit cycle
CC(xc1, xc2) following the two vector field flows.
It should be noted that these Ai and Bi do not
necessarily define a partition of the state space.

A necessary and sufficient condition for SDS reach-
ability by switching between two vector fields in IRn

is given in the following theorem 4.1:

Theorem 4.1. Let us consider that D =
(
⋃

i≥1 Ai)
⋃

(
⋃

i≥1 Bi) ⊆ IRn is the global reachabil-
ity domain of the SDS. If x0 ∈ D, there exists at
least a sequence with a finite number of switchings,
which leads the state of the system from the point x0

to the hybrid limit cycle CC(xc1, xc2).

Proof : If we consider that x0 ∈ D, then there ex-
ists an integer J ≥ 1 such that x0 ∈ AJ (without loss
of generality because AJ ⊂ BJ+1). Then, from def-
inition 4.1 and because D = (

⋃
i≥1 Ai)

⋃
(
⋃

i≥1 Bi),
∃δs1

∈ IR+ and ∃zJ−1 ∈ BJ−1 such that

x0 = Φ
−δs1
1 (zJ−1) and ∃δs2

∈ IR+ and ∃zJ−2 ∈ AJ−2

such that zJ−1 = Φ
−δs2
2 (zJ−2), · · ·

By inference, ∃xc ∈ CC(xc1, xc2) and ∃δsc
∈ IR+

such that: x0 = Φ
−δs1
1 ◦Φ

−δs2
2 ◦Φ

−δs3
1 ◦· · ·◦Φ

−δsc

k (xc)

Therefore,

xc = Φ
δsc

k ◦ · · · ◦ Φ
δs3
1 ◦ Φ

δs2
2 ◦ Φ

δs1
1 (x0)

After the selection of a hybrid limit cycle
CC(xc1, xc2), all the possible trajectories obtained
by backward inferences from this cycle and meeting
the global operating domain Ω can be determined,
according to definition 4.1. If D covers the totality
of Ω, then, the hybrid limit cycle can be reached by
switching from all point x0 in Ω. Otherwise, the
initial point x0 must be in D ⊂ Ω, so that there is
at least one possible switching sequence that leads
the SDS from this point x0 to the hybrid limit cycle
CC(xc1, xc2). This analysis involves calculating all
the state space regions from which the final hybrid
limit cycle can be reached.

If one is interested only in finding a hybrid switch-
ing sequence that drives the system from the initial
state x0 to the final hybrid limit cycle CC(xc1, xc2),
the analysis is completed as soon as the initial state
is included into one of these regions. This analysis is
done backwards in the continuous state space. For
more details see [17, 18].

5. Reachability sequence optimization

Let S be a switching sequence obtained by
switching between the two vector fields fi(x) with
i ∈ {1, 2} that defines a trajectory of the SDS from
the initial hybrid state (x0, li) to a final hybrid state
(xc, lk) ∈ CC(xc1, xc2). c is the length of S i.e. the
number of switchings in the sequence S. fsk

(x) with
1 ≤ k ≤ c and sk ∈ {1, 2}, is the vector field active
in the kth mode lsk

of S during a time δsk
called

duration time. x0 and xc are respectively the initial
and the final continuous states of SDS trajectory. tc
is the total duration time for the system to reach
xc from x0 with the switching sequence, S. The
optimization problem involves minimizing tc, which
depends on the duration times δsk

.
For all t such that 0 ≤ t ≤ tc, the continuous state,
x, must belong to the global reachability domain of
the SDS, D. In this problem, we must also ensure
that the trajectory leads to the hybrid limit cycle
CC(xc1, xc2).

8



So, the problem can be written as the follow-
ing constrained minimization problem,

tc = min
S

(
c∑

k=1

δsk
)

such that,

• ∀ x ∈ D, ∃ sk ∈ S / ∀ δ ∈ [0 δsk
], Φδ

sk
(x) ∈ D,

• xc = Φ
δsc
sc ◦ · · · ◦ Φ

δs2
s2 ◦ Φ

δs1
s1 (x0) ∈ CC(xc1, xc2).

Two methods to solve this problem are given in [17,
18]. In the litterature, the reachability analysis has
been realized by many other methods as explained
for instance in [13].

6. Stabilizing control synthesis algorithm

The algorithm for the synthesis of a stabilizing con-
trol for the SDS (3) has six steps:

1. Write the SDS model in the form: ẋ = fi(x)
with i ∈ {1, 2}.

2. Determine the set E given in definition 3.1:

• If E 6= φ, then at least a hybrid limit cycle
exists and the SDS can be stabilized around
all points of E. Go to step 3.

• If E = φ, no switching sequence exists to
stabilize the SDS around any point of the
continuous state space. The SDS cannot be
stabilized.

3. After choosing the desired operating point, xd,
determine xdE , the point of E around which a
hybrid limit cycle CC(xc1, xc2) can be designed:

• If xd ∈ E, then xdE = xd.

• Otherwise, xdE ∈ E is such that
d(xdE , xd) = minz∈E d(z, xd).

4. Determine a hybrid limit cycle CC(xc1, xc2)
around xdE that meets the desired specifications.
By definition, a hybrid limit cycle whose inte-
rior includes xdE always exists but not necessar-
ily one that meets the technological constraints
(δc1 > δmin and δc2 > δmin, δmin is the minimum

duration time between two successive switchings
(dwell time), the state variables are bounded by
specific values, the cycle duration time, δc1+δc2,
is bounded, etc.). This hybrid limit cycle is not
unique.

• If there is such a hybrid limit cycle, go to
Step 5.

• Otherwise, remove a constraint or choose
another point xdE .

5. Determine backward (according to defini-
tion 4.1), all regions from which the hybrid
limit cycle CC(xc1, xc2) can be reached whilst
respecting the global operating constraints. If
one is interested only in finding a hybrid switch-
ing sequence that drives the system from the
initial state x0 to the final hybrid limit cycle
CC(xc1, xc2), the algorithm is completed as soon
as the initial state x0 is included into one of these
regions. If possible, all the regions included in Ω
can be calculated and all the possible switching
sequences that drive the system from the initial
hybrid state to the desired hybrid limit cycle are
made known.

6. Calculate the switching instants of a reachability
sequence found in the previous step to obtain
the shortest total reaching time, tc.

7. Application to the Buck energy converter

In this section, the control synthesis algorithm pre-
sented in the previous section is applied to the Buck
converter control. The usual Buck circuit is given in
Figure 9. T and D represent the system switches
(electrical semi-conductors). D is a self-switching
diode and T is a controlled transistor (or thyristor).
This system operates in continuous mode. The case
with both switches open is not considered (no discon-
tinuity of the current through the inductance). The
case with both switches closed is not considered ei-
ther, short-circuiting the voltage source. Thus, only
two SDS modes of operation are used: mode l1 with
T closed and D blocked and mode l2 with T open and
D closed. If T is closed, the load receives energy from
the source. If T is opened, the energy is dissipated

9



by the load.
The goal is to define a hybrid limit cycle for this sys-
tem, as near as possible to the desired operating point
xd, as well as to define a trajectory for reaching this
cycle that meets the desired specifications (operat-
ing and technological constraints). The synthesized
control sequence defines the switching signal.

Figure 9: The Buck energy converter.

Now let us apply the control synthesis algorithm
presented in the previous section to the following
Buck circuit: U = 20V , L = 20mH, C = 47µF ,
R = 22Ω.

The model of the Buck converter is ẋ = fi(x) with
i ∈ {1, 2} and x = [V i]T = [x1 x2]

T





f1(x) = Ax + B =




−1
RC

1
C

−1
L

0


x +




0

U
L




f2(x) = Ax =




−1
RC

1
C

−1
L

0


x

(4)

This SDS is a Piecewise Linear System (PLS).

Let us now calculate the set E = {z ∈
IR2 / det(f1(z), f2(z)) = 0 and 〈f1(z)|f2(z)〉 < 0
and p(z) is even }:





x1 = Rx2

(− x1

RC
+ x2

C
)2 + x1

L2 (x1 − U) < 0

x1 6= U such that p1 = p2 = p = 2

⇐⇒ x1(x1 − U) < 0 ⇐⇒ 0 < x1 < U

Thus, E = {z ∈ IR2 / z1 = R z2 and 0 < z1 < U} is

part of a straight line with slope 1
R

and end points

(0, 0) and (U, U
R

) (the straight line that connects
the two stable equilibrium points of the two Buck
converter modes of operation, xe1 and xe2). E is the
set of all points around which a hybrid limit cycle
may be synthesized for this system.
Figure 10 gives the possible trajectories for the
two modes of operation of the Buck converter with
vector fields f1(z) (blue curves) and f2(z) (red
curves) as well as the set E (part of a straight
line in black color). One can intuitively verify the
properties of the points which belong to E. If xd

Figure 10: Buck converter trajectories and set E.

does not belong to the set E, xdE is chosen so
that d(xdE , xd) = minz∈E d(z, xd). If CC(xc1, xc2)
is a hybrid limit cycle, according to the equations (4):

xc1 = Φ1(xc2, δc1)

= eAδc1xc2 +
∫ δc1

0
eA(δc1−t)Bdt

xc2 = Φ2(xc1, δc2) = eAδc2xc1

with δc1 (respectively δc2) the duration time in
mode l1 (respectively l2) of the hybrid limit cycle.
The switching points are:





xc1 = (I − eA(δc1+δc2))−1A−1(eAδc1 − I)B

xc2 = eAδc2xc1

(5)

If xc1 is chosen near xdE , the choice of δc1 and δc2
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determines a hybrid limit cycle whose interior in-
cludes xdE . xc2 is given in equations (5). According
to theorem 3.2 such a cycle always exists.
The global reachability domain D is obtained ac-
cording to the backward inference method presented
in definition 4.1 and by the property of theorem 4.1,
given that Ω = {x ∈ IR2 / 0 ≤ x1 ≤ x1max and
0 ≤ x2 ≤ x2max}. Thus, the system is controllable,
and hybrid sequences exist which drive the system
from an initial state into the global reachability
domain D to the hybrid limit cycle CC(xc1, xc2).

The synthesis and simulation results are given in
figure 11. The desired operating point is xd =
[15 V 0.7 A]. The choice of δc1 = 0.24 ms and
δc2 = 0.33δc1 defines a cycle around xd with the
switching points xc1 = [15.007 V 0.711 A] and
xc2 = [15.005 V 0.651 A]. The global operating do-
main is defined by: x1max = 25 V , x2max = 1.2 A
and x1min = 0 V and x2min = 0 A. Then, the
possible and admissible control sequences from the
initial point x0 = [0 0]T and final point xf =
[14.968 0.681]T which belongs to Φ1(xc2, δ) with
0 < δ < δc1 are (l1, l2)

k, l2(l1, l2)
k, (l1, l2)

kl1 or
l2(l1, l2)

kl1 with k ∈ IN . The switching sequence with
minimum time duration is (l1, l2) and each mode du-
ration time is δs1

= 1.407 ms and δs2
= 0.565 ms.

Thus, tc = 1, 972 ms.

8. Nonlinear example in IR
2

Here, the algorithm presented in section 6 is ap-
plied to the stabilizing control of a nonlinear SDS,
ẋ = fi(x), x = [x1 x2]

T with the following vector
fields:





f1(x) =

(
−2x1 − x3

1 − 5x2 − x3
2

6x1 + x3
1 − 3x2 − x3

2

)

f2(x) =

(
x2 + x2

1 − x3
1

4x1 + 2x2

) (6)

The objective is to define a hybrid limit cycle for
this system, which remains as close as possible to the
desired point xd, as well as to find the most rapid

trajectory for reaching this limit cycle from every
initial state that meets operating constraints (global
operating domain and global reachability domain).

This system (6) belongs to the class defined by
the SDC (3).
It should be noted that mode l1 is stable at the ori-
gin (”spiral” trajectories) while mode l2 is unstable
(hyperbolic trajectories).

Now, let us determine the set of points around
which a stable hybrid limit cycle can be designed for
this system. E = {z ∈ IR2 / det(f1(z), f2(z)) = 0
and 〈f1(z)|f2(z)〉 < 0 and p(z) is even }





det(f1(z), f2(z)) = 0 ⇔ −8z2
1 − 30z1z2+

2z4
1 − 6z3

1z2 − 7z2
2 − 4z3

2z1 − z4
2 − 6z3

1 − z5
1+

3z2
1z2 + z2

1z3
2 + z6

1 − z3
1z3

2 = 0.

〈f1(z)|f2(z)〉 < 0
⇔ (−2z1 − z3

1 − 5z2 − z3
2)(z2 + z2

1 − z3
1)+

(6z1 + z3
1 − 3z2 − z3

2)(4z1 + 2z2) < 0.

Figure 12 gives the dynamics of the two modes
of the SDS, associated with vector field f1(x) (black
stable ”spiral” trajectories) and f2(x) (red unstable
hyperbolic trajectories) and the set E (blue curves
match the condition det(f1(z), f2(z)) = 0, and green
curves match the condition 〈f1(z)|f2(z)〉 = 0). The
properties of the E points given in theorems 3.1 and
3.2 can be checked intuitively. Indeed, the properties
det(f1(z), f2(z)) = 0 and 〈f1(z)|f2(z)〉 < 0 ensure
that a limit cycle exists around each point of E.

Let xd = [−1 5]T /∈ E. The nearest point
in E such that d(xdE , xd) = minz∈E d(z, xd), is
xdE = [−0.89 5.01]T ∈ E. The hybrid limit cycle
CC(xc1, xc2) is determined by choosing one of the
switching points, for example xc2 = [−0.5 5.5]T .
The second one can be calculated from the tra-
jectories using the Lipchitz subsystems vector
fields starting from xc2

. The solution is unique
for the both modes f1(x) and f2(x). The limit
cycle CC(xc1, xc2) passing through the switching
point xc2 = [−0.5 5.5]T has xc1 = [−1.29 4.71]T

as the second switching point. This hybrid limit
cycle CC(xc1, xc2) is given in figure 13. Then, the
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Figure 11: Synthesis and simulation results for the Buck converter.

global reachability domain D can be determined
by backward inference from the hybrid limit cycle
CC(xc1, xc2) (see definition 4.1) with respect to
the global operating domain of the system, Ω.
Ω = {x ∈ IR2 / − 2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 8}. All
regions Ai and Bi are calculated until AN+1 = BN .
Thus, D = (

⋃
i≥1 Ai)

⋃
(
⋃

i≥1 Bi) = AN+1 = BN .
Figure 14 presents all Ai’s and Bi’s regions, Ω and
D. Note that Ai and Bi regions expand step-by-step
(Ai−1 ⊂ Ai and Bi−1 ⊂ Bi). According to the
theorem 4.1, the SDS (6) is controlable for all
x0 ∈ D, and there exists a switching sequence which
drives the system from the initial state x0 to the
final hybrid limit cycle CC(xc1, xc2). The possible
switching sequences are: (l1, l2)

k, (l1, l2)
kl1, (l2, l1)

k

and (l2, l1)
kl2 with k ∈ IN.

The optimization of the constrained timed switch-
ing sequence to reach CC(xc1, xc2) from different ini-
tial points of D is done using time criterion and con-

straints imposed by Ω. The trajectory reaches the
hybrid limit cycle at xf = [−1.2 4.8]T ∈ Φ1(xc2, δ)
with 0 < δ < δc1. There are three examples of tra-
jectories which drive the SDS from an initial point
in D to the hybrid limit cycle CC(xc1, xc2) with a
minimum total duration time:

• if x0 = [−1.5 5]T , the switching sequence
is (l1, l2), the duration times are (δs1

=
2.97ms, δs2

= 63.89ms) and the total reachabil-
ity time is tc = 66.86ms (pink trajectory).

• if x0 = [2 1]T , the switching sequence is
(l1, l2, l1, l2, l1, l2, l1), the duration times are
(δs1

= 2, 97ms, δs2
= 344, 66ms, δs3

=
0, 78ms, δs4

= 61, 13ms, δs5
= 0.61ms, δs6

=
53, 54ms, δs7

= 12.35ms) and the total reacha-
bility time is tc = 476.02ms (black trajectory).

• if x0 = [−1 3]T , the switching sequence is (l2, l1),
the duration times are (δs1

= 464.36ms, δs2
=
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Figure 14: Synthesis results of the hybrid limit cycle and of the reachability domain, D, for the nonlinear example (6).

10.61ms) and the total reachability time is tc =
474.97ms (blue trajectory).

Note that no shorter sequence can reach the hybrid
limit cycle from these initial states, whilst meeting
the constraints imposed by Ω, and note that any
longer sequence results a longer total reachability
time.
The trajectories of the controlled SDS from its initial
state to the chosen hybrid limit cycle are given in
figure 15.

To extend the theorems 3.1 and 3.2 to IRn, the
intention is to find a submanifold of IRn which is
a surface and which includes the hybrid limit cycle
CC(xc1, xc2). Thus, the proofs of the theorems 3.1
and 3.2 extended to IRn, can be carried out on this
submanifold with dimension 2. As this submanifold
must exist, the class of systems concerned by this

extension is restricted.

9. Extension of the theorem 3.1 to IR
n

Let us consider a SDS with the two follow-
ing vector fields: ∀ i ∈ {1, 2}, ẋ = fi(x) =
[f1

i (x) f2
i (x), · · · , fn

i (x)]T with x ∈ IRn.

Let us consider the function ϕ:
ϕ : IRn → IRn−2

x 7−→ ϕ(x) = [ϕ1(x), ϕ2(x), · · · , ϕn−2(x)]T

Definition 9.1. b ∈ IRn−2 is a regular value of ϕ
if and only if ∀a ∈ ϕ−1(b), rank(Jϕ(a)) = n−2, with

Jϕ(a) =




∂ϕ1

∂x1
(a) · · · ∂ϕ1

∂xn
(a)

...
...

∂ϕn−2

∂x1
(a) · · · ∂ϕn−2

∂xn
(a)
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Figure 12: 2 Subsystems dynamics (red and black trajectories)
and set E (left-upper and right-lower parts of the blue curves)
for the nonlinear example (6).

being the Jacobian matrix of ϕ at a.
i.e. b is not a stationary value of ϕ and there exists a
submatrix of Jϕ(a) of order n-2 which has a non-zero
determinant.

In the sequel, we note:

• M = ϕ−1(b) = {x ∈ IRn/ ϕ(x) = b} a submani-
fold of IRn with dimension 2.

• E = {z ∈ IRn/ ∃η < 0/ (f1(z) = ηf2(z) and p(z)
is even}. In the plane, E represents E, the set
of points with collinear and opposite direction
f1(x) and f2(x) and non transverse trajectories.

• TaM = ker(Jϕ(a)) is the set of vector fields
which are tangent to the submanifold M at point
a. Then, TaM is orthogonal to grad(ϕj(a)),
j ∈ {1, · · · , n − 2}.

• Ĩnt(CC(xc1
, xc2

)) = Int(CC(xc1
, xc2

)
⋂

M) is
the union of open sets in M bounded by the
hybrid limit cycle CC(xc1

, xc2
).

Theorem 9.1. Let us consider a SDS (3). Let
CC(xc1, xc2) in IRn be a hybrid limit cycle with
{xc1

, xc2
} ∈ M, xc1 6= xc2, with at least one point

x ∈ CC(xc1, xc2) such that f1(x) 6= −f2(x). Let us
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Figure 13: hybrid limit cycle of the nonlinear example (6).

consider x0 ∈ E ∩M (6= φ) and γ ∈R+. If ∀ x ∈
B(x0, γ)∩M, ∀ i ∈ {1, 2} and ∀ j ∈ {1, · · · , n− 2},
〈fi(x)|grad(ϕj(x))〉 = 0, and if the closure of its in-

terior, Ĩnt(CC(xc1, xc2)), does not include any of the
equilibrium points of the two dynamics f1 and f2,
then, there exists a non-empty set of points z ∈ IRn,

such that z ∈ E
⋂

Ĩnt(CC(xc1, xc2)) ⊂ B(x0, γ)∩M

i.e. E
⋂

Ĩnt(CC(xc1, xc2)) 6= φ.

Proof : As ∀i ∈ {1, 2} and ∀j ∈ {1, · · · , n − 2},
〈f(x, li)|grad(ϕj(x))〉 = 0, ∀ x ∈ B(x0, γ) ∩M, the
trajectory x(t) stays inside B(x0, γ) ∩ M, whatever
its length. Then, if CC(xc1, xc2) exists, necessarily it

is on B(x0, γ) ∩ M. Moreover, if Ĩnt(CC(xc1, xc2))
does not include any of the equilibrium points of the
two dynamics f1 and f2, the proof of theorem 9.1 is
equivalent to that of theorem 3.1 to conclude that

E ∩ Ĩnt(CC(xc1, xc2)) 6= φ.

10. Extension of the theorem 3.2 to IR
n

Theorem 10.1. Let us consider x0 ∈ E ∩M (6= φ)
and γ > 0. If ∀x ∈ B(x0, γ) ∩M, ∀i ∈ {1, 2}, ∀j ∈
{1, · · · , n−2}, 〈fi(x)|grad(ϕj(x))〉 = 0, a hybrid limit
cycle CC(xc1, xc2) exists around the point x0 (such

that x0 ∈ Ĩnt(CC(xc1, xc2))).
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Figure 15: Trajectories of the controlled SDS (6) to reach the
hybrid limit cycle from different initial points

Proof : The proof of theorem 10.1 is the same as
the proof of theorem 3.2 because E ∩M is a sub-
manifold of IRn and M is a surface which includes
the hybrid limit cycle CC(xc1, xc2).

Then, the existence of a hybrid limit cycle for the
switched dynamical system is directly related to the
existence of the submanifold M 6= φ which is defined
from a regular point of the function ϕ. The submani-
fold M is the surface which includes the hybrid limit
cycle. If the SDS is switching between two discrete
modes with continuous dynamics in IR2, this surface
M is the plane IR2.

11. Nonlinear example in IR
3

Let us consider two nonlinear three dimensional
vector fields to illustrate theorems 9.1 and 10.1:

f1(x) =




x1x
2
2

−x2
1x2 + x3

−x2


 (7)

f2(x) =




x2(x
2
1 + x2

2 + x2
3)

−x1 + x2
3

−x2x3


 . (8)

Let us consider the function ϕ:

ϕ : IR3 → IR
(x1 x2 x3) 7−→ x2

1 + x2
2 + x2

3

∀b ∈ IR+, ∀a ∈ ϕ−1(b), rank(Jϕ(a)) = 1. Then, b is
a regular value of ϕ.
The submanifold in IR3, M = ϕ−1(b), is the sphere:

M = {x ∈ IR3/x2
1 + x2

2 + x2
3 = b, b ∈ IR+}

E is the set of points in IR3 such that f1(x) = ηf2(x),
with η < 0 and p(z) is even.

E = {x ∈ IR3/x1x2x3 = 1}.

Choosing b=6 ensures that E∩M 6= φ. A quadrant of
the submanifolds M and E and of their intersections
is given in figure 16.

Since ∀i ∈ {1, 2}, ∀x ∈ M, 〈fi(x)|grad(ϕ(x))〉 =
0, then, for x0 ∈ E ∩M (6= φ) and γ > 0, ∀x ∈
B(x0, γ) ∩ M, 〈fi(x)|grad(ϕ(x))〉 = 0 and a hybrid
limit cycle CC(xc1, xc2) exists around the point x0.

Figure 16: Submanifolds M and E of nonlinear example with
vector fields (7) and (8) in IR3.

12. Conclusion

This paper presents a new constructive method
for the synthesis of a stabilizing control for a class
of switched dynamical systems in IR2, switching be-
tween two discrete modes, without state discontinu-
ity and which respect the technological constraints
(minimum duration between two successive switch-
ings, boundedness of the real valued state variables).
For each mode, the system dynamic is continuous,
linear or nonlinear. The main result of this paper,
a necessary and sufficient condition of existence and
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stability of a hybrid limit cycle consisting of a se-
quence of two operating modes in IR2, is presented
in theorems 3.1 and 3.2. The method is based on a
geometric approach. It is made of three main steps:
firstly, determining a stable hybrid limit cycle around
the desired operating point, xd or as close as possi-
ble to it, then calculating the regions of the state
space from which the hybrid limit cycle is reachable
from the initial state and finally synthesizing a sta-
bilizing control which optimizes time. Theorems 9.1
and 10.1 extend to IRn, n > 2 the necessary and
sufficient condition of existence and stability of a hy-
brid limit cycle proven in IR2 but only for a restricted
class of systems. Then, the stabilizing control synthe-
sis method can be extended to IRn, n > 2. Different
examples are used to illustrate these theorems.
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quetti, ”Stabilité et stabilisation d’une classe
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de fonctionnement des systèmes dynamiques
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