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de València), Valencia, Spain
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Abstract. The EvoEvo project was a 2013–2017 FP7 European project
aiming at developing new evolutionary approaches in information science
and producing novel algorithms based on the current understanding of
molecular and evolutionary biology, with the ultimate goals of address-
ing open-ended problems in which the specifications are either unknown
or too complicated to express, and of producing software able to operate
even in unpredictable, varying conditions. Here we present the main ra-
tionals of the EvoEvo project and propose a set of design rules to evolve
adaptive software systems.

1 Introduction

Evolution by natural selection is the major source of biological complexity on
earth, the origin of all the species we can observe, interact with, or breed. On a
smaller scale, evolution is at the heart of the adaptation process for many species,
in particular microorganisms (e.g. viruses, bacteria or unicellular eukaryotes).
Microbial evolution not only results in the emergence of the species itself but also
contributes to real-time adaptation of the organisms when facing perturbations
or environmental changes. These organisms are not only built up by evolution,
they are also organized to evolve.
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As far as information science is concerned, evolution has inspired genera-
tions of researchers since the pioneers of the 1950s and 1960s. Nevertheless, most
evolutionary algorithms do not take into account the fact that all the molecu-
lar systems involved in the evolutionary process are themselves shaped by past
evolution. This implies that evolution can influence its own course. This evolu-
tion of evolution (“EvoEvo”) is at the heart of many phenomena overlooked by
evolutionary algorithms, like second-order evolution, evolution of robustness, of
evolvability, of mutation operators and rates, co-evolution. . . Yet, all these pro-
cesses are at work in living organisms from viruses to whales. Particularly in the
case of microorganisms, possibly accelerating their evolution and enabling them
to quickly adapt in response to environmental changes like new drugs, pollution,
response of their host immune system, or emergence of new ecological niches.

The EvoEvo project was a 2013–2017 FP7 European project aiming at devel-
oping new evolutionary approaches in information science and producing novel
algorithms based on the current understanding of molecular and evolutionary
biology, with the ultimate goals of addressing open-ended problems in which the
specifications are either unknown or too complicated to express, and of produc-
ing software able to operate even in unpredictable, varying conditions. To do
so, the project consortium proposed to start from experimental observations of
the evolution of microorganisms under laboratory conditions and to use these
observations to reproduce EvoEvo, first in computational models, and then in
application software. Our aim was to observe EvoEvo in action, model EvoEvo,
understand EvoEvo and, ultimately, reproduce EvoEvo to exploit it in software
and computational systems.

In this article we briefly present the rationale of the EvoEvo project. We then
focus on the main outcomes of the project, with specific emphasis on those that
are likely to have an influence on evolutionary computation and evolutionary
software development, as detailed in the project deliverables1.

2 Overview of the EvoEvo project

2.1 Introduction

One ultimate goal of Information and Communications Technologies (ICT) is to
improve human life through the extension of human capacities, abilities or com-
munications. Yet, one of the profound movements that traverse modern social
and human sciences is that the world cannot be described as a stable system.
Humans and societies continuously change due to the many interactions that
lead to instability, to the emergence of new social groups, ideas, modes, media.
But today’s ICT can barely tackle such highly unstable situations: Every en-
countered situation needs to be foreseen long before it occurs, at the time the

1 The following text is massively derived from the EvoEvo project documents. In
particular, many paragraphs are derived from the EvoEvo Description of Work
(DoW) and from the project Final Report (EvoEvo Deliverable 6.8), available at
www.evoevo.eu.
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software is designed; and the development cycle of ICT systems is so long that
its environment is likely to have changed before the first release of a system. A
consequence of this necessary stability of today’s ICT systems is that users –
individuals and society – must adapt to the ICT systems that are supposed to
serve them. Inside the ICT world, the same difficulties are at work since software
systems cannot efficiently adapt to the emergence of other pieces of software (or
new releases of existing ones) in their environment. Thus, one of the challenges
of modern ICT is to develop technologies that are able to adapt dynamically
to the evolution of their context, of their user, of the data they receive, and of
other systems they interact with – in a single word, of their environment.

The situation in completely different when looking at biology: Evolution,
the process that created (and still creates) all the diversity of life, is a pro-
cess by which generations of organisms continually adapt to their environment.
Moreover, the environment of an organism is never stable as it also depends
on the evolution of other organisms. Higher eukaryotes have evolved complex
sensori-motor systems to adapt their behavior to their changing environment.
Microorganisms are less sophisticated systems that lack complex sensori-motor
abilities, yet they efficiently use mutation and selection to dynamically adapt to
new conditions. Recent experimental evolution results have shown that they are
able to evolve at an amazing speed: in virtually all experimental studies that
have used bacteria or viruses, important phenotypic innovations have emerged
in only a few tens of generations [16]. These results show that, more than being
adapted to a specific condition, microorganisms are adapted to evolve: evolution
has optimized their own ability to evolve, as a primary means to react to environ-
mental changes. The central idea of the EvoEvo project is that this “evolution
of evolution” could offer ICT new paradigms to enable computational systems
to dynamically adapt to their environment, i.e. to their users, domain of use or
condition of use.

2.2 How can evolution evolve?

Variation and selection are the two core engines of Darwinian Evolution. Yet,
both are directly regulated by many processes that are themselves products of
evolution (e.g. DNA repair, mutator genes, transposable elements, horizontal
transfer, stochasticity of gene expression, sex, network modularity, niche con-
struction. . . ). Moreover, in a biological system, variation and selection do not act
at the same organization level. While variation modifies organisms at the genetic
level (by modification of their DNA content), selection acts at the phenotypic
level (on the whole organism). The genotype-to-phenotype mapping summarizes
in a single conceptual entity (the “mapping”) the complex molecular processes
by which information flows from the genetic sequence to the organism’s phe-
notype. It captures in a single abstract process different phenomena such as
mRNA transcription, gene translation, protein folding, biochemistry and cell
dynamics. Again, all these process are themselves dependent on the genetic ma-
terial that encodes the decoding machinery. Hence the genotype-to-phenotype
mapping is itself evolving. Since this mapping directly influences the phenotypic
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consequences of a DNA modification, the evolution of the genotype-to-phenotype
mapping is likely to change the evolutionary dynamics, e.g. by buffering the ef-
fect of mutations.

“Evolution of Evolution”, or “EvoEvo”, encompasses all the processes by
which evolution is (or may be) able to influence its own dynamics and to accel-
erate (or slow down) its own course depending on the environmental conditions.
EvoEvo is thus a very general concept that can be difficult to study as a whole,
given the wide diversity of mechanisms at stake. That is why, in the context of
the EvoEvo project, we decided to focus on four simpler concepts, directly linked
to EvoEvo but easier to define, hence to measure in vivo, to model in silico and,
ultimately, to exploit in evolutionary software.

Variability. Variability is the ability to generate new phenotypes, by genetic
or epigenetic mutations or by stochastic fluctuations. It is a necessary con-
dition for any evolutionary process to take place. In biological organisms,
the amount of variability is controlled by complex pathways that e.g. cor-
rect DNA mismatches or double strand-breaks. In an ICT context, evolution
of variability could help the evolving system to quickly discover new solu-
tions either on a transient or on a stable way through efficient exploration of
the functional space. Moreover, in real biological systems, mutational oper-
ators are highly diversified: they include not only point mutations, but also
large chromosomal rearrangements that can rapidly reshuffle the chromo-
some organization, extend or reduce the gene repertoire of an organism, or
even duplicate its entire genome through whole genome duplication. Current
evolutionary algorithms exploit only a tiny part of this complex mutation
repertoire.

Robustness. Although necessary, variation is a dangerous process since it pro-
duces deleterious mutations that lead to maladapted individuals. Robustness
may evolve to correct these deleterious effects. It enables evolving systems
to support mutational events without losing fitness, through e.g. canaliza-
tion or the selection of structures that create neutral landscapes. In an ICT
context, selection of robustness may favor the emergence of an “organism”
structured such that its service will not be perturbed by the random occur-
rence of mutational events.

Evolvability. Depending on the genotype-to-phenotype mapping, the propor-
tion of deleterious/neutral/favorable mutational events may vary. Evolvabil-
ity is the ability of a specific genotype-to-phenotype mapping to increase the
proportion of favorable events. This can be done by the selection of specific
genome structures or by the selection of specific networks structures. In an
ICT context, evolvability would enable evolution to exploit past events to
increase the system’s ability to adapt to new users or conditions.

Open-endedness. Biological evolution is not directed towards a specific tar-
get. On the contrary, evolution has the ability to generate new challenges
while evolving, e.g. by exploiting new niches created by the evolution of
other species. In an ICT context, open-endedness [2] can be exploited when
an application is made from an ecosystem of evolving individuals. In such
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a structure, new functions would arise continuously by emergence of new
species in the ecosystem and/or the extinction of maladapted ones.

2.3 A route from biological evolution to artificial evolution

The idea of using a bio-inspired evolutionary metaphor in ICT has led to many
powerful developments such as genetic algorithms, evolutionary strategies, and
genetic programming. However, most of these developments stay far from current
knowledge in evolutionary and molecular biology. The EvoEvo project aimed at
creating a true interdisciplinary consortium gathering experimental and compu-
tational biologists as well as computer scientists. This gives rise to a difficult
question: how can one guarantee that the biological foundations of EvoEvo –
which we aimed to observe in vivo – are effectively and efficiently transfered
to the ICT world and to the computational application? To tackle this issue,
we proposed a particular route from evolutionary biology to artificial evolution
through modeling. The project was organized to benefit from the pivotal role of
computational modeling of evolution, aka in silico experimental evolution [16, 3].
These models are computational artifacts that mimic the phenomenon observed
in vivo. They thus constitute an intermediate step between life science and ICT.
Now, models must not be mistaken for application code. Their objectives are –
and must stay – clearly different. That is why the transition from life science
to application code was organized in two steps. The in vivo experiments were
modeled in silico, and those models were then reinterpreted to develop a com-
putational framework that benefited from them but enabled the introduction of
simplification and/or generalization of the full model’s bio-like structures.

2.4 EvoEvo. . . What for?

As explained above, the EvoEvo project covered a large range of research do-
mains, from experimental biology to software development. To ensure that Evo-
Evo would produce results that fulfill the target of the EVLIT European pro-
gram2 (designing “empirical, theoretical and synthetic approaches that define
the key bio-inspired principles that can drive future living technologies and the
environment to use them in a controlled way”), we proposed to develop proof-of-
concept applications aiming to demonstrate the power of EvoEvo. This opened a
difficult discussion within the consortium on which kind of application were (1)
doable in a reasonable time and (2) likely to benefit from the EvoEvo principles.
We finally decided to develop “personal evolutionary companions”: software sys-
tems that continuously evolve through the interaction with their user by means
of sensor networks. To keep the system’s complexity low enough, we focused on a
very specific situation: the interaction between a dancer and the music. This led
to the development of the EvoMove system, a personal companion that learned
to play music while the dancer is dancing through continuous adaptation to the
dancer’s moves. EvoMove is briefly described in section 4.2.

2 ICT-2013.9.6 – FET Proactive: Evolving Living Technologies (EVLIT).
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3 Results: EvoEvo insights from biological and in silico
evolutionary experiments

3.1 What is evolution?

After Darwin and “The Origin of Species” (1859), evolution can be basically
defined by the process of species emergence through the simultaneous action
of variation and selection. Given that evolution takes place in the context of
populations, a third mechanism was later added by Motoo Kimura [20]: Neu-
tral genetic drift, which accounts for the unavoidable effect of sampling in finite
populations. This mechanistic definition of evolution can easily be shared by dif-
ferent disciplines, from evolutionary biology to computer sciences, even though
the underlying mechanisms can be very different. However, the disciplines are
much less in agreement when defining evolution by its consequences on the or-
ganisms and on the species. While computer scientists and mathematicians tends
to consider that evolution is an optimization process, this notion of optimization
is not clearly defined in biology, not least because there is no universal definition
of an “optimum” and of what must be considered as the “fitness” of the organ-
isms (i.e. their reproductive success). When dealing with a “simple” artificial
system, the fitness can often be easily computed though a predefined algorithm.
But this is not the case for a real organism in which the fitness encompass many
different effects (e.g. number of offspring, offspring viability, sexual selection. . . ).
If Darwinian evolution is an optimization process, we are completely blind to
what it optimizes.

During the EvoEvo project, we developed many computational models of
evolution with different formalisms [9, 28, 31]. Hence, the definition of fitness
in these different models also varied. However, a strong point of convergence
of all these models is that the measured fitness is generally different from the
specified fitness (i.e. from the coded criteria of success at the individual level).
In these models, which all encoded an optimization process through selection
at the individual level, the evolutionary outcome was a much more complicated
process that involved different levels of organization: the interaction between
the multiple levels of organization encoded in the models (genotype, phenotype,
population. . . ) blurred the optimization criterion that acted at a single level
(the phenotype). Hence, we were facing the same kind of problem biologists face
when measuring the evolutionary success of an organism. On the one hand, this
is an interesting result for biology (as it enabled us to identify new evolutionary
mechanisms) but on the other hand, it makes it difficult to transfer our models
and results to the computational world since the outcome of evolution is no
longer clearly defined.

To overcome this difficulty, we propose an alternative definition of the evolu-
tionary outcome. Even if evolution is not optimization, it can still be defined as
the process by which an organism (or a species) accumulates information about
its environment while thriving in it. This definition opens interesting issues. In-
formation is evidently accumulated in the inherited material (the genome), but
it can also be accumulated in other characteristics of the organisms, providing
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these characteristics can be transmitted to the next generation. An example of
this process is the spatial or temporal organization of the population (section
3.2). The information accumulation in the genome depends on many parameters
that are likely to vary during evolution (the genome size, the coding proportion,
the genome structure, the epigeneetic methylation patterns) and this opens a
clear path to EvoEvo mechanisms (section 3.3). Viewing evolution as informa-
tion accumulation also poses the question of information stability: information
can accumulate to the extent that the organisms are able to transmit it efficiently
to the next generation. This directly links the notion of fitness to the notion of
robustness and evolvability (section 3.4).

3.2 Long-term information integration

Long-term information integration – the capacity of evolving systems to accu-
mulate information over long time scales, possibly overriding immediate disad-
vantages – has long been taboo for explaining what has evolved, because without
explicit modeling it invites just-so stories. Moreover, classical evolutionary mod-
els and algorithms in which evolution is limited to modifying allele frequencies,
or few parameters, do not allow long-term information integration.

All the models we designed or used during the EvoEvo project included not
only a genetic information level but also many additional degrees of freedom.
These degrees of freedom were different in the various models, but included: the
spatial position of the organisms (and subsequently the spatial interaction be-
tween the organisms); non-coding sequences and relative position of the genes
along the genomic sequence; waste production and release in a shared environ-
ment... In virtually all in silico experiments we conducted with these models,
evolution found ways to use these degrees of freedom to accumulate information
about its environment. This information was then empowered to regulate evolu-
tion (e.g. in the case of additional degrees of freedom at the genomic sequence
level, see next section) or led to transitions from individual levels of selection
to higher level selection of composite entities, one of the “major evolutionary
transition” [30] and a clear stepping-stone for open-ended evolution [2].

One example is the in silico experiments of E. S. Colizzi at Utrecht University
[9], which shows how such higher level selection can overcome the well known
tragedy of the commons problem. When the production of an essential “com-
mon good” is costly, individual level selection will reduce its production leading
to eventual extinction of the whole population. However when the population is
embedded in space this is no more the case. Instead, when the cost of production
is high enough, the population splits in a subpopulation of cheaters, not produc-
ing the common good, and a subpopulation that produces much of it. But space
enables both subpopulations to self-organize, hence evolving stable higher-level
entities: both subpopulations together form traveling waves, the producers in
front, and the cheaters in the tail (figure 1). It is this robust spatial organization
which overcomes individual level selection to avoid the cost, and thus prevents
the tragedy of the commons. Strikingly the system as a whole will produce more
common good the higher the cost! Interestingly, the structure of the traveling
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waves is not encoded in the genome of the organisms. It is rather encoded in the
dynamic eco-evolutionary interactions between producers and cheaters, i.e. at a
higher organization level.

Fig. 1. Example of the high-level structures (traveling waves) created by the interaction
between producers (gray) and cheaters (black). The producers form an expanding front
that colonizes free space. The cheaters follow common good gradient, hence the front,
thereby leading to the extinction of the wave. This frees space that hence become
available for another wave. This interaction between front expansion and space freeing
results in a stable high-level spatial temporal dynamics which enables evolution of high
production common good despite high cost to individuals (reproduced from [9]).

The “real world” (in our case, the biotic world) contains many of such degrees
of freedom (e.g. spatial interactions, non-specific interactions between molecu-
lar compounds, non-genetic inheritance) and evolution can empower them to
accumulate information. Our results suggest that including similar “messy” in-
teractions between all levels and components could be a way to increase the
innovation power (the “open-endedness”) of evolutionary algorithms, although
maybe not their optimization efficiency. A first, easy, step would be to embed
populations in space (providing individuals can spatially interact with each oth-
ers), as it improves even simple evolutionary search. Similarly, exploiting long
term information integration by using sparse fitness evaluation, in which sub-
problems co-evolve with solutions, could improve evolutionary search [11, 22].

3.3 Evolution of genetic architecture and the role of non-coding
sequences

One fundamental mechanism we identified is the evolution of the size and the
structure of the genome. The size and structure determines the dimensionality



Evolving Living Technologies — Insights from the EvoEvo project 9

of the evolutionary search space and the overall mutation pressure; it also de-
termines the relative pressure due to the different mutational operators and the
kind of genomic changes these mutational operators can achieve.

While most evolutionary theory in biology, as well as in computer science,
has focused on point mutations and crossovers, we have highlighted the role of
mutations which change the size of the genome – e.g. large and small duplications
and deletions – thereby changing the dimensionality of the fitness landscape and
search space. We have shown that this increases the effectiveness of evolutionary
search in several ways. Typically, successful evolutionary adaptation involves
early genome expansion, followed by streamlining, whereas in the absence of
genome expansion less fitness is obtained in the end: the gradual reduction of
the dimensionality of the search space facilitates optimization [10]. These op-
erators hence increase the evolutionary potential: by allowing the information
content of the genome to evolve, they facilitate adaptation to changing condi-
tions. We should note however they also impose strong robustness constraints
on the genome size, hence bounding the quantity of information the genome can
accumulate [13].

Structuring of genomes goes beyond the effect on genome size and so does its
impact on evolution. Indeed, the variation operators modifying the genetic con-
tent are differently impacted by the genome structure (e.g. including non-coding
sequence between two genes does not change the effect of point mutations while
it strongly changes the effect of duplications). Hence, an evolvable genetic struc-
ture enables evolution to fine tune the distribution of offspring fitness, selecting
for robustness and/or evolvability when needed. This fine tuning can even al-
low for simultaneous selection of robustness and evolvability, as exemplified by
the results of Jaap Rutten [29]. His experiments show that organisms in which
the point mutation rate is raised by a factor of 100 react by reorganizing their
genome. While theoretical results with simpler models predict a fitness loss due
to the loss of robustness, genome reorganization enables the organisms to change
the distribution of offspring fitness, and so to increase evolvability. Although the
high mutation rate occasionally leads to fitness loss through loss of the master
sequence, the increased evolvability enables the population to quickly recover,
hence keeping the fitness of the best individuals at the same level (and some-
times at a higher level) than that of the wild-type individuals that evolved under
a constant mutation rate. Similar results have been obtained in another class of
model studied in the course of the project: by evolving RNA sequences, E. S.
Colizzi [8] has shown that the RNA structure (the equivalent of the genome
structure in the RNA model) is selected such that the population contains an
efficient proportion of mutated sequences and such that the mutants help the
master sequence to thrive.

In conclusion, genome structuring, mediated by a plethora of mutational
operators, is a powerful mechanism for EvoEvo. It helps explain recent obser-
vations of very fast adaptation to novel environments in experimental evolution
[27], and may help regulate evolutionary dynamics by changing the impact of
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the different kinds of mutation, hence the distribution of sequences/fitnesses in
the population.

3.4 On the importance of long jumps

One of the difficult open questions in evolutionary biology (and so far an un-
solved issue in artificial evolution) is the question of evolutionary innovation:
When trapped on a local optimum, how does a population escape to find a new,
higher, peak in the fitness landscape? Different hypotheses have been proposed in
the literature, one of the most popular being exploration of the so-called “neutral
landscape”. In this view, a local optimum can be changed into a plateau when
the number of dimensions increases, and this plateau is likely to be connected
to higher peaks, whereas in lower dimensions (a shorter genome), it would have
been surrounded by fitness valleys. Though this theory has many advocates, it
suffers from a major drawback: the curse of dimensionality. When the number of
dimensions increases, the time needed to explore the plateau increases exponen-
tially [6], making it very unlikely to find an escape route in a reasonable time.
Moreover, as we explain above, increasing the size of the genome may have a
strong effect on robustness [13], hence limiting the interest of this strategy.

We studied evolutionary innovation in the Aevol in silico experimental evolu-
tion platform (www.aevol.fr) by evolving populations for a very long time. Once
these populations get stuck on local fitness optima, we cloned them and resumed
the evolution of the clones. This procedure enabled us to isolate the clones that
innovate from those that stay stuck on the initial optimum, and so to analyze
the route to innovation [4]. The results emphasize again the role of large scale
modifications of the genome structure: In a large majority of the “innovator
clones” innovation was triggered by a specific mutational event that strongly
increased the evolvability of the clone by increasing the size of its genome, gen-
erally through duplication of a small sequence. This result sheds new light on the
innovation dynamics: rather than randomly diffusing on a neutral landscape or
accumulating deleterious mutations to cross a fitness valley, the innovator clones
stay on the top of their local fitness peak but try “long jumps”: mutations that
directly connect them to a distant part of the fitness landscape. Of course, the
vast majority of these jumps are deleterious, but their combinatorics is much
larger than the one of point mutations: the number of possible point mutations
in a genome is proportional to N , the size of the genome, while the number of
possible sequence duplications is proportional to N3. Hence, a population can
quickly explore the whole set of available point mutations (if the population
is large enough), ending stuck on a local optimum. Exploring the whole set of
chromosomal duplications does takes time, but leads to innovation.

Following this result, a strong recommendation for evolutionary algorithms
is to include a set of mutations with a very high combinatorics, that enables long
jumps in the fitness landscape. In our experiments this role is played by chro-
mosomal duplications, but other operators could play the same role. One could
for instance consider Horizontal Gene Transfer (HGT), providing the source and
destination of the gene are different enough (this is not the case in the classical
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crossover operators used in evolutionary computation) or large scale modification
of the genome conformation and folding.

4 Results: EvoEvo algorithms and applications for living
technologies

4.1 EvoEvo algorithms and computational concepts

Based on the insights gained from studying various evolutionary phenomena (sec-
tion 3), the EvoEvo project developed several novel evo-evolutionary algorithms
and architectures.

EvoMachina. EvoMachina [19] is a novel meta-evolutionary algorithm that in-
corporates several of key findings: that genomic reorganization is an important
factor in the evolution of evolvability; that the machinery of evolution (expres-
sion, replication, etc) is implemented by machines that are themselves encoded
on the genome, and hence are themselves subject to evolution; that spatial orga-
nization of replicating entities provides an extra level of information integration.

EvoMachina allows multiple different types of genomes, allowing appropriate
representations and machinery to be used for different parts of the application.
For example, the mutation machinery can be encoded in a separate genome,
allowing the mutation operators to evolve in a different manner, and at a different
rate, from the applications candidate solutions.

An implementation of EvoMachina is available as an open-source Java frame-
work at github/evoevo-york/evomachina. The framework includes a variety of
evolutionary variants such as classic EA and microbial GA, as well as the Evo-
Machina specific operators, and a variety of spatial options, including a well-
mixed option and a 2D toroidal grid.

Bio-reflective architecture. We have argued that computational reflection is
an essential component of computational novelty generation [2]. Based on this,
we developed a new bio-reflective architecture [14]. It is a synthesis of concepts
from: von Neumann’s Universal Constructor Architecture; procedural compu-
tational reflection; evolutionary algorithms; computational open-ended novelty
mechanisms; the EvoMachina architecture of evolvable active machines and pas-
sive genomic structures.

Parts of this architecture were realised in the stringmol automata chemistry
and used to demonstrates a form of semantic closure [7]. Parts were realised in
a stand-alone evolutionary music application [15], and also informed the “com-
mensual architecture” of the dance application [1] (section 4.1).

The commensal architecture. One of the core universal properties of living
beings is their autonomy. Even if some forms of cooperation or altruism can be
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observed in nature, every biological system is fundamentally selfish and coop-
eration can emerge only when multiple levels co-evolve, the selfishness of some
constraining the cooperativeness to others. On the opposite, one of the core
universal properties of technology is its controllability.

These two antagonistic properties immediately conflict when one wants to
design “living technologies”. They also conflict when one wants to design open-
ended technologies: if open-ended systems are to continuously produce novelty
[2], how can they be designed? So when designing living technologies, one of the
central problems is to design a system that is autonomous enough to surprise its
user (by producing novelties) and, at the same time, is constrained enough to
serve the goals it has been built for (as a technology). Since the very beginning
of this project, this tension has been at the heart of EvoEvo: if autonomy is one
of the core properties of life, how can a technology be simultaneously alive and
controllable?

As said above, biological systems can be cooperative or altruistic provided
they are embedded in higher/lower levels of evolution that constrain them. We
propose here a bio-inspired approach to resolve the autonomy vs. controllability
conundrum. We called this approach “commensal computation” [1]. In biology a
commensal (from the Latin cum mensa, at the same table) interaction is a form
of mutualism between two organisms where the association is not detrimental
but not obviously beneficial to the partners [17]. Indeed, the idea of commensal
computation is based on one of the main functions of the gut microbiota: nutri-
ent processing. Gut microbes degrade ingested substances that would otherwise
be non-digestible or even harmful to the gut [18]. This role enables the organ-
ism to uptake nutrients originating from a wider variety of sources than would
otherwise be the case: microbes preprocess the complex flow of nutrients and
transfer the results to the host, helping it to regulate its feeding and to extract
specific nutrients. While doing so, the microbiota live their own lives, and change
and evolve according to their environment: what the host eats: The commensal
association of the microbiota and the host contains a part of autonomy (the
microbes) and a part of control (the host).

We propose to organize living computational system following the manner in
which host and microbiota are engaged in a mutualistic association. In commen-
sal computation, the complex data (e.g., data generated by the sensor networks)
are pre-processed by a virtual microbiome that transforms them in digestible
data that the processing system can use. Such an architecture differs from clas-
sical pre-processing in that here the pre-processing is performed by an evolving
community of virtual bacteria that uptake data, transform them in recognizable
objects (symbols, clusters, classes, . . . ) and feed them to the main processing
system. In the context of the EvoEvo project, we used a subspace-clustering layer
to implement the commensal level3: virtual bacteria evolve subspace classifiers

3 Clustering is a data-mining task that aims to group objects sharing similar charac-
teristics into a same cluster over the whole data space. Subspace clustering similarly
aims at identifying groups of similar objects, but it also aims at detecting the sub-
spaces where similarity occurs. Hence it can be conceived as “similarity examined
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and send the result to the processing layer. The interest of subspace classification
here is that it enables a sensor network (or more generally the source of data)
to change its dimensionality (e.g., adding/removing sensors) without causing a
complete failure of the classification: new dimensions can be dynamically added
to the system and will (or will not) be integrated to the clustering depending on
their pertinence with regards to the existing clusters and to the data.

We designed an evolutionary subspace clustering algorithm using the evo-
lutionary principles detailed in the previous sections. In particular, we tried
to empower the principle of an evolvable genomic structure (variable number of
genes, regulation of coding proportion. . . ) and the principle of using a large vari-
ety of mutational operators (point mutations, gene duplication and deletion. . . ).
Simultaneously we tried to simplify as much as possible the models that were
used as a source of inspiration in order to reduce the computational load and to
enable real-time execution of the algorithm, a mandatory property for its use in
an evolving personal companion.

These principles led to a series of algorithms from “Chameleoclust” [24] to
“SubCMedian” [26]. All these algorithms have been tested on public benchmarks
and have shown state-of-the-art levels of performances.

4.2 Proof of concept: Evolving a living personal companion

One of the objectives of EvoEvo was to produce not only concepts but to test
these concepts in proof-of-concept applications. This has been done in two steps
corresponding to the commensal architecture described previously. In a first step,
we designed the “commensals”: artificial entities able to evolve in an environ-
ment composed of static and dynamic data (the evolutionart subspace clustering
algorithms described above). Then, in a second step, we used these algorithms
as a commensal pre-treatment layer in a musical personal companion: EvoMove.

The ultimate proof-of-concept of our EvoEvo approach of evolving software
was to evolve a real application and to have it used by a real “naive” user. That is
why we choose to implement a personal companion, software able to continuously
evolve through interaction with its user. Then, in order both to address naive
users and to test the software in short training sessions, we decided to design
a musical personal companion: a system that would be able to evolve music
depending on the performance of a dancer and that would evolve in real time
while the performance is ongoing. This resulted in the EvoMove System [25].

The principles of EvoMove are detailed in figure 2. The system leverages
the evolutionary subspace clustering algorithm described above, by embedding
it into a commensal architecture: the moves of the dancer are captured through
Inertial Measurement Units (IMU) and transmitted to the subspace clustering
algorithm that identifies moves similar to those it has seen before. The subspace
clustering is then computed in complete autonomy, intentionless and without any

under different representations” [23]. Subspace clustering is recognized as a more
complicated and general task than standard clustering. Moreover, retrieving mean-
ingful subspaces is particularly useful when dealing with high dimensional data [21].
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need for calibration. The identified clusters are then transmitted to the “host”,
here a sound generating system that triggers new sounds each time a new cluster
is identified and that repeats this sound each time this cluster is activated again.
The commensal architecture hence results in a host fed by motion data and
producing music, and a bacterial community that processes the motion data,
helping the host to interpret the moves. Both organisms thus “eat at the same
table” (the motion) and co-evolve. The music produced by the host depends on
the command objects produced by the virtual bacteria. The motion fed to the
bacteria depends on the movements the users make in reaction to the music they
hear.

Fig. 2. The EvoMove feed-back loop. (A) Dancer moves are captured by Inertial Mea-
surement Unit (IMU). (B) The sensors produce a high-dimensional data-stream. (C)
This data-stream is clustered by SubCMedian algorithm that outputs a set of clusters.
(D) The sound system outputs sounds that are immediately perceived by the dancers
who can adapt their dance, leading to reciprocal adaptation of the clusters, hence of
the music. This feedback loop produces coherent music due to the close integration
of dancers and clustering algorithm: the duration of the loop is less than 1 second,
enabling real-time response of the system.

Thus, this system creates a feedback loop including the human user. One
iteration of the loop is run approximately every second. This timing is short
enough to allow interaction. Contrary to most software where the human is
acting on a system, here the users are acting in the system. They do not have
full freedom about what sounds will be produced, but they can influence them.
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They have to decide how they react to what could be called “sound proposals”
from the system, and this decision changes the shape of what the system produces
next. And contrary to most of music software, the output of the system is not
only the sound produced, but what is produced at each step of the loop and
especially what is visible: music and moves.

[12] presents a short video of an EvoMove test with a EvoMove-naive dancer
(an experienced dancer who had not used the system before and who did not
know its mechanisms). EvoMove has also been used during the “Meute” dance
performance, which has been publicly presented at several dance festivals in
Lyon (France). It is difficult to claim that such a system “works” or not since it
is strongly dependent on the sensations of the user. But in all these situations,
EvoMove has convinced the dancers by stimulating them in such a way that
they were all eager to use it again and interact with it on other occasions. Our
supposition about what produces this, besides the possibilities offered by the
commensal layer, is the integration of the human user in the feedback loop. As
a consequence, the dancers are always adapting their own moves and actions
to fit what they understand of the state of the system. Thus, even though the
machine part of the system is deviating from what would be seen as interaction,
the human is able to follow it so as to keep this interaction alive. This process
does not have to be conscious from the user perspective. Just by investing effort
into being understood by the system, the user adapts their actions alongside
the system state changes. Hence, the “living technology” is not (or not only) in
the system; it is rather in the close interaction of the system and its user, both
reacting to each other’s proposal.

5 Conclusion

As the 2011 FET Consultation Report “Living Technology, Artificial Systems,
Embodied Evolution” shows, many approaches have been proposed to create
living technologies. Now at the end of the EvoEvo project, and having created
what we think is a living technology (“EvoMove”), one can draw the big picture
of the design principles we identified and briefly exposed here. Indeed, we claim
that the key insight into building evolutionary living technologies is to go back to
a fundamental property of living systems. Living systems are in essence strongly
integrated systems, while technological systems are, by construction, strongly
modular systems. Evolutionary living technologies will only be efficient if they
are strongly integrated within the systems (in order to enable the system to
innovate) and with their users, be it a real person (as in EvoMove), or a software
entity (as in commensal architecture).

In some sense, this proposal is not a total surprise, since it is a similar mind
shift as the one that happened at the end of the 1980s in robotics. The devel-
opment of Behavior-Based Robotics under the impulsion of Rodney Brooks was
nothing else than the close integration of robots with their environments and of
robots components one with the others [5]. We now propose that software sys-
tems themselves, although they are not physical entities, follow the same path
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in order to be able to leverage Darwinian evolution to dynamically react and
adapt to their users. This will enable living software systems to co-construct
their behavior with a user who, in that same moment, will become a partner of
this behavior.
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