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Abstract

Using the in silico experimental evolution platform Aevol, we
evolved populations of digital organisms in conditions where
a simple functional structure is best. Strikingly, we observed
that in a large fraction of the simulations, organisms evolved
a complex functional structure and that their complexity in-
creased during evolution despite being a lot less fit than sim-
ple organisms in other populations. However, when submit-
ted to a harsh mutational pressure, we observed that a signifi-
cant proportion of complex individuals ended up with a sim-
ple functional structure. Our results suggest the existence of a
complexity ratchet that is powered by epistasis and that can-
not be beaten by selection. They also show that this ratchet
can be overthrown by robustness because of the strong con-
straints it imposes on the coding capacity of the genome.

Introduction
Despite decades of deep interest by different scientific com-
munities (including artificial life, population genetics, com-
putational biology and, of course, evolutionary biology), the
question of the evolution of biological complexity is still
controversial. While there is a general agreement — tem-
pered by the recognition that complexity has decreased in
some organisms (Batut et al., 2014) — that biological com-
plexity has globally increased during geological time, there
is no general agreement on whether or not this is a gen-
eral trend (McShea, 1996). But the most discussed point
is the ultimate causes of complexity increase. Roughly, two
classes of theories are competing to explain this increase:
those based upon selection and those invoking the variation
process itself. According to theories of the former class,
complexity rises because complex organisms are more likely
to outcompete simple ones in a demanding environment (but
the precise mechanisms vary among the authors). For the-
ories belonging to the latter class, complexity is rooted in
the properties of the variation process that is supposed to
be biased toward an increase in complexity (there again, the
origin of the bias varies among the authors). Examples of
the former can be found in Adami et al. (2000) or Yaeger
et al. (2008). A famous tenant of the latter is Gould (1996)
who proposed that, since complexity has a lower bound, it

can only increase through a random variational process (the
“drunkards walk” model), hence the observed trend. Fol-
lowing a similar “neutral” hypothesis, Soyer and Bonhoef-
fer (2006) proposed that the complexification trend is due to
duplication being less deleterious than deletion, an unbiased
mutational process is then likely to produce more and more
complex organisms on the long run.

There are many reasons why evolution of complexity is
controversial (Miconi, 2008). Two of them are central: First,
the lack of universally accepted measure of complexity (al-
though an elegant way to bypass this difficulty has been
proposed by Adami (2002) who considers complexity as
equivalent to the quantity of information an organism in-
tegrates about its environment); Second, biological organ-
isms are multi-scale systems that can increase their com-
plexity at different organization levels. A striking exam-
ple is the strong loss of complexity undergone by endosym-
bionts that is directly linked to the emergence of a new sys-
tem through the association of an eukaryote and a bacterium
(Batut et al., 2014). Even when considering single organ-
isms, there is no reason to suppose that the variations in com-
plexity (or quantity of information) are homogeneous across
the genome/transcriptome/proteome/phenotype. Some well
known paradoxes such as the C-Value paradox (Thomas,
1971) and the G-Value paradox (Hahn et al., 2002) illus-
trate the fact that the quantity of information encoded in the
genome may not be linked to the quantity of information
at the phenotypic level. Hence, while most models used to
investigate evolution of complexity focus on a single orga-
nization level, it is necessary to consider the evolution of
complexity at a given level in the context of the complexity
needed at higher levels. Following this idea, in order to in-
vestigate whether or not the complexity increase is selected,
one has to use a multi-scale model and let organisms evolve
in an environment requiring only a simple phenotype (hence
excluding the selective hypothesis). By observing whether
this simple phenotype will be encoded by a complex func-
tional organization, it is then possible to distinguish between
passive and active trends towards complex structures.

Here we used the Aevol model (Knibbe et al., 2007; Batut



et al., 2013) to implement this research program. Aevol
is a digital evolution platform in which organisms are en-
coded at the genome level but with a decoding procedure
directly inspired from the biological genotype-to-phenotype
mapping and an abstract description of the functional levels
(proteins and phenotype). Since this decoding procedure in-
cludes many degrees of freedom, it allows the different lev-
els (typically genome, proteome and phenotype) to evolve
different levels of complexity. For instance a simple phe-
notypic function can be encoded by many different genes
or, conversely, by a single gene. Similarly, the genome can
evolve to be more or less compact depending on the amount
of non-coding sequence and the sharing of sequences among
multiple genes by e.g. operons or gene overlapping. This
decoupling of complexity levels among the different levels
makes Aevol perfectly suited to study the evolution of com-
plexity. We used a slightly modified version of the model in
which the environment allows for very simple organisms to
thrive and studied a very large number of evolutionary tra-
jectories to test whether or not these trajectories show some
“arrows of complexity”. Our results show that even though
simple organisms are likely to have a higher fitness than
complex ones, most lineages show a long-term increase in
complexity during evolution. This shows that even in sim-
ple environments there is a “complexity ratchet” that cannot
be beaten by selection. However, when a complex organism
experiences an increase in its mutation rate, its complexity
is very likely to fall-down, ultimately switching to a sim-
ple structure. This shows that while selection is not power-
ful enough to drive evolution toward simplicity, the need for
mutational robustness is.

Methods
The Aevol model
Aevol (www.aevol.fr and references therein) is an in sil-
ico experimental evolution platform developed by the Bea-
gle team. Figure 1 presents an overview of the model. Since
Aevol has been extensively described in previous publica-
tions, here we will only describe its basic organization and
focus on the structure of the information coding as it is the
target of in our experiments.

Overview The rationale of Aevol is that the structure of
the fitness landscape is likely to be strongly determined by
the structure of the biological information coding. Hence,
Aevol mimics precisely the biological genomic structure
as well as the process of genotype-to-phenotype mapping.
These structures are then embedded in an evolutionary loop
that includes classical selection operators and a large vari-
ety of mutational operators including base switch, small in-
sertions, small deletions and large scale chromosomal re-
arrangements (duplications, deletions, inversions, transloca-
tions). All mutation operators have their own rate expressed
in mutations.base-pair−1.generation−1 (mut.bp−1.gen−1).

Figure 1: The Aevol model. (A) Overview of the genotype-
to-phenotype map. (B) Population on a grid and evolution-
ary loop. (C) Local selection process with a Moore neigh-
borhood. (D) Variation operators include chromosomal re-
arrangements and local mutations.

Information coding in Aevol Each individual owns a
genome containing its heritable information. The genome is
a binary double-strand sequence. It is decoded in two steps:
Transcription and Translation. Transcription uses consen-
sus promoter signals as starting sequences and hairpin-
like structures as terminators. Translation uses consen-
sus Ribosome-Binding-Sites (RBS) and an artificial genetic
code based on triplet codons (including START and STOP
codons). The sequence of codons then constitutes the pri-
mary structure of a protein. Importantly, this decoding pro-
cess introduces degrees of freedom between the genome and
the proteome: complex genomes can encode for simple pro-
teomes (e.g. if all genes have the same sequence). On the
opposite, complex proteomes can be encoded on small se-
quences if genes share sequences through e.g. polycistronic
mRNA or overlapping genes. These degrees of freedom are
similar to the ones real organisms own.

Given the primary structure of a protein, Aevol computes
its functional contribution. Although mimicking biological
processes at the sequence level is feasible, it is — at least
to date — impossible to compute the function of a protein
from its primary structure in a realistic way. That is why
Aevol uses an abstract mathematical formalism to describe
the functional levels (i.e. protein functional contribution and
phenotype). In Aevol all functions are expressed in a one-
dimensional continuous “functional space” (more precisely
on the [0, 1] interval) by an activation value in the [−1, 1] in-
terval (upper and lower bounds corresponding to a fully ac-



tivation and to a fully inhibition respectively). In this space,
proteins are described as isosceles-triangle-shaped kernel
functions. These triangles can themselves be described by
three parameters (their mean m, height h and half-width w)
which are computed from three interlaced variable-length
binary codes in the primary structure of the protein (hence
the longer the gene the more precise the m, w and h values).
Once all the kernels have been computed from the protein set
(Figure 1.A, center), they are summed to compute the phe-
notype (Figure 1.A, right). As for the genome-to-proteome
step, this procedure introduces degrees of freedom between
the proteome and the phenotype. Indeed, the combination of
different proteins can result in a simple functional shape e.g.
if the proteins share the samem and w values (see Complex-
ity measures section below).

Finally, in Aevol, the fitness is computed as the exponen-
tial of the difference between the phenotypic function and
a target function indirectly representing the abiotic condi-
tions the organisms evolve in (in light red on Figure 1.A,
right). Classically in Aevol the target function is defined
by a sum of Gaussians, hence requiring a virtually infinite
number of triangular kernels to be perfectly fitted. In the
experiment described here, we used a modified version of
Aevol in which the target function is described by triangles,
hence being perfectly fittable by the phenotype (see below).

Experimental design
In order to test whether evolution has a spontaneous ten-
dency to increase complexity or whether the complexity in-
crease is due to the environmental pressure, we let evolve
populations of 1,024 individuals in Aevol in a null model
where the environment is so simple that it does not require a
complex proteome nor a complex genome. To this aim, we
designed an environmental target which shape is an isosce-
les triangle (Fig. 2.A – to be compared to the classical en-
vironment used in Aevol experiments, Figure 1.A, light red
filled curve). Hence, the target can be fitted by a single pro-
tein and thus a single gene. More precisely, the target is an
isosceles triangle with mean m = 0.5, height h = 0.5 and
half-width w = 0.1. Note that although this target can be
fitted with a single gene, it is still hard to fit since it requires
that the corresponding gene be long to get enough precision
(see previous section).

All simulations are initialized with a random 5,000
bp genome containing one functional gene. We tested
three mutation rates1: µ = 10−4, µ = 10−5 and
µ = 10−6 mut.bp−1.gen−1. Each population evolved for
270,000 (270k) generations. We then reconstructed the lin-
eage of the best final individual and the statistics of the fit-
ness, genome size, number of genes and structure of the pro-
tein network along the line of descent from generation 0 to

1We also tested µ = 10−7 but evolution was too slow for the
data to be usable on 270k generations only.

Figure 2: (A) Phenotypic target used during the experiment.
(B, C) Genome (top) and proteome (bottom) of a simple
(B) and a complex (C) individual (both evolved exactly in
the same conditions; µ = 10−5 mut.bp−1.gen−1). The red
dashed line indicates the target function. (D) Zoom on the
proteome of the complex individual.

generation 250k (the last 20k generations being canceled be-
cause the notion of a fixed lineage vanishes when getting
close to the final generation). We then repeated the exper-
iment 100 times for each mutation rate for a total of 300
simulated evolutions.

Complexity measures
Generally speaking, there is no consensus on complexity
measures. Moreover, since Aevol is a multiscale model,
one has to choose different measures for the different lev-
els (typically here the sequence level — the genome — and
the functional level — the proteome). We thus adopted two
strategies. First, we adapted principles from Adami et al.
(2000) to Aevol in order to get quantitative measures at the
genome and proteome levels by estimating the quantity of
information stored in both structures. Second, we designed
a qualitative classification of “simple” (S) vs. “complex” (C)
organisms based upon the structure of the model.
Quantitative measure at the sequence level Aevol pro-
vides numerous statistics on the lineage of a given organ-
ism. In particular, it provides statistics about the number
of “essential” base pairs (i.e. base pairs which, if mutated,
change the phenotype of the organism). Hence, this measure
can be directly used to estimate the quantity of information



stored on the genome CG. Note that it may be very differ-
ent from the genome size since the genome can accumulate
non-coding sequences. It can also be shorter than the sum of
gene lengths since genes can share sequences through gene
overlapping.

Quantitative measure at the functional level While
measuring complexity on the genome is relatively straight-
forward, measuring complexity on the proteome is a more
difficult. Indeed, in a first approximation, one could consider
that the proteome complexity is given by the number of non-
degenerated proteins2. However, since different proteins can
perform similar functions, this would overestimate the quan-
tity of information contained in the proteome. Hence, we
considered proteome information in a more precise way by
estimating the number of different parameters in the pro-
teome. The functional complexity measure CP is then the
sum of the number of different m, different w and different
h values (all with a small tolerance ε = 0.001 to account for
rounding errors) used to encode the protein set.

Qualitative classification To study the long-term fate of
simple vs. complex organisms, we defined a qualitative clas-
sification procedure. Since the environmental target con-
strains the functional (i.e. phenotypic) level we chose to
classify organisms according to their functional structure,
hence focusing on the proteome level. A simple solution
would have been to define a threshold on the quantitative
measure but this threshold would be arbitrary. To avoid this,
we used knowledge from the model structure to define the
two classes. In Aevol, if all the non-degenerated proteins of
an organism have the same meanm and the same half-width
w, then their functions linearly sum-up to produce a trian-
gular phenotype with the same characteristics. We used this
property to propose the following classes:
Simple organisms (S – Simples) are organisms for which
all the non-degenerated proteins have the same function (i.e.,
the samem andw values, both with an ε = 0.001 tolerance),
possibly with different activity levels (h). Figure 2.B shows
an example of a simple individual. Note that all organisms
owning a single protein are necessarily simple but that Sim-
ples may contain many genes and many proteins (possibly
differing in their h values).
Complex organisms (C – Complexes) are organisms own-
ing at least two non-degenerated proteins for which either
the triangle mean m or the triangle half-width w values are
different (with the same tolerance ε). Figures 2.B and 2.C/D
show examples of S and C individuals respectively.

Results
Among the 300 simulations we analyzed, 210 were classi-
fied as C (see Methods) at generation 250k. Table 1 shows

2Degenerated proteins encode for triangles which area is equal
to zero (i.e. h = 0 and/or w = 0). These proteins hence don’t
contribute to the organism function nor to the phenotype.

the repartition of S and C organisms for the 3 mutation rates.

Mutation rate (µ) Number of S Number of C

10−4 mut.bp−1.gen−1 39± 9.6 61± 9.6

10−5 mut.bp−1.gen−1 29± 8.8 71± 8.8

10−6 mut.bp−1.gen−1 22± 8.0 78± 8.0

Table 1: Number of S and C lineages at generation 250k
for the three tested mutation rates. 95% Confidence Intervals
(CI95%) estimated from the number of samples in both classes:
CI95% = 1.96

√
NSNC/(NS +NC − 1).

We first verified that the C organisms (resp. S) correspond
to those accumulating information (resp. not). Figures 3
and 4 respectively show the amount of information of the
proteomes (CP ) and the genomes (CG) for S and C organisms
and for all the mutation rates3.

Figure 3: Distribution of functional complexity CP for the
Complexes (top) and Simples (bottom). Colors indicate
the mutation rates. Blue: 10−4 mut.bp−1.gen−1; Red:
10−5 mut.bp−1.gen−1; Green: 10−6 mut.bp−1.gen−1

Figure 3 clearly shows that Simples tend to accumulate
less information in their proteome. The amount of infor-
mation in the genome also tends to be smaller for Sim-
ples although the trend is less clear (Figure 4). This dif-
ference is not surprising given that our qualitative classifi-
cation is based on the proteome structure and that Aevol al-
lows degrees of freedom between the information coding in
the genome and the information coding in the proteins (see
Methods). Both figures also show a strong effect of mutation
rates: the higher the mutational pressure, the lower CG and
CP . This is not a surprise either, since this effect has already
been described in the literature (Knibbe et al., 2007; Fischer
et al., 2014) albeit on the genome size. Contrary to the trend
on the amount of information, this effect is more pronounced
on the genome, probably because mutational effects directly
affect the genome but only indirectly the proteome.

3Note that CG and CP cannot be quantitatively compared since
they account for information content in a binary sequence and in a
set of real values respectively.



Figure 4: Distribution of genomic complexity CG for the
Complexes (top) and Simples (bottom). Same color code as
in Figure 3.

Simple organisms are fitter than complex ones
Having observed organisms evolving either simple or com-
plex functional structure in the same simple environment,
the decisive question is whether or not complexity is driven
by selection. Figure 5 shows the fitness of the lineage at
generation 250k against CG and CP . It clearly shows that
simpler organisms have a higher fitness than more complex
ones. This is confirmed by the fitness distribution among
the two qualitative classes (Figure 6): Figure 6 shows that
many Simples reach a fitness that approaches 1 (mean fit-
ness of Simples: 0.97 ± 0.02), the best possible fitness in
Aevol, while Complexes hardly evolve fitnesses higher than
0.5 (mean fitness of Complexes: 0.38± 0.04)

This result demonstrates that in our simulations, the
switch between functional simplicity and functional com-
plexity is not driven by selection. On the opposite, here,
complex functional structures evolve in spite of selection.

Complex organisms evolve greater complexity
So far we have analyzed only one time point: generation
250k. To address the dynamics of the evolution of com-
plexity, we analyzed the fate of S and C organisms between
generations 10k and 250k. Table 2 shows that the class (S or
C) an organism belongs to at generation 10k is in most cases
permanent, suggesting it is part of the organism’s identity.

Table 3 presents the evolution of CG, CP and the fitness
of organisms that retained their S/C identity between gen-
erations 10k and generations 250k. Even though the S→S
organisms had their CG decrease, we see that their CP re-
mains constant and their fitness increases only slightly on
average. This is because their CP is already very close to
the lower bound at generation 10k, and their fitness already
close to the optimum, leaving only so much space for im-
provement. On the other hand, the C→C organisms had both
their CG and CP but also their fitness increase (Figure 7).
This demonstrates the existence of some kind of complex-

Figure 5: Fitness of the lineage at generation 250k as a func-
tion of (top) functional complexity ∼ log(Cp) and (bottom)
genomic complexity ∼ log(CG). Triangles and circles in-
dicate lineages classified as S or C respectively; Same color
code as in Figure 3. Linear regressions, top: Fitness ∼
log(CP ): r-square 0.70 and p-value < 10−15; bottom:
Fitness ∼ log(Cg): r-square 0.39 and p-value < 10−15.

Figure 6: Distribution of fitness values at generation 250k
for Complexes (top) and Simples (bottom). .

ity ratchet that is stronger than selection (Simples are still
far fitter than Complexes) while being created by selection
itself (selection tends to make complex organisms become
even more complex).



µ = 10−4 µ = 10−5 µ = 10−6

PS→S
94.4± 7.5%

(34/36)
89.7± 11.0%

(26/29)
86.4± 14, 3%

(19/22)

PC→C
92.2± 6.7%

(59/64)
95.8± 4.7%

(68/71)
96.2± 4.3%

(75/78)

Table 2: Fraction of organisms that conserved their S/C
identity between generations 10k and 250k. Values in paren-
theses give the number of individuals with identity S (resp.
C) at generations 250k and 10k. CI95% computed from the
fractions PI→I and PI→I at generation 250k and NI10k,
the number of individuals of identity I at generation 10k:
CI95% = 1.96

√
PI→IPI→I/(NI10k − 1).

∆CG ∆CP ∆Fitness
S→S −36.2± 14.3 −0.05± 0.12 +0.06± 0.02
C→C +33.3± 23.1 +3.97± 0.65 +0.16± 0.14

Table 3: Mean CG, CP and Fitness variation between gen-
erations 10k and 250k for organisms that conserved their
identity. CI95% computed from the standard deviation and
the number of individuals: CI95% = 1.96

√
σ2/NI10k.

Figure 7: Evolution of CP in a Complex individual from gen-
eration 0 to generation 270k.

Effect of robustness constraints on complexity
It is well known that under elevated mutational stress, ro-
bust lineages can be selected against fitter ones (Wilke et al.,
2001) and that genome compactness is a direct driver of
mutational robustness (Knibbe et al., 2007). Hence, if fit-
ness cannot drive evolution toward complexity reduction, as
shown previously, we hypothesized that robustness could,
by imposing a strong complexity limit on the genome.

To test this hypothesis, we submitted the 300 final pop-
ulations to a harsh mutation rate during 100k generations.
Specifically, each population was further evolved with mu-
tation rates 10, 100 and 1,000 times greater than the initial
rate (without exceeding the extreme rate of µnew = 10−3)
Table 4 shows the percentage of former complex organisms

having switched to simple (C→S) for the different levels of
mutation rate increase.

µ = 10−4 µ = 10−5 µ = 10−6

µnew = 10−3
60± 12%

(37/61)
86± 8%
(61/71)

91± 6%
(71/78)

µnew = 10−4 /
8± 6%
(6/71)

13± 8%
(13/78)

µnew = 10−5 / /
4± 4%
(3/78)

Table 4: Fraction of C→S transitions for all initial (columns)
and final (lines) mutation rates. Values in parenthesis give
the number of transitions and number of C at generation
250k. CI95% = 1.96

√
PC→CPC→S/(NC250k − 1).

Among the 600 experiments, 437 started with C organ-
isms. 191 (43.7± 6.1%) of those switched from C to S (Ta-
ble 4). Strikingly, while these C→S organisms experienced
a harsh robustness constraint, their fitness strongly increase
(mean variation: +0.72± 0.04 during the 100k generations
of the experiment). In contrast, the 261 C→C organisms
experienced a fitness variation of +0.16 ± 0.2. Note that
although they retained their C identity, these organisms ex-
perienced a strong complexity decrease in reaction to the ro-
bustness pressure (CG and CP mean variation: −135.1±21.8
and −2.04± 0.78 respectively).

Compared to the proportion of C→S switches in the main
experiment, the C→S proportion in this robustness experi-
ments is huge, and even more so when focusing on the ex-
treme rate µnew = 10−3. Note that the robustness pressure
needs to be very harsh to observe this effect (Table 4). This is
probably due to selection for robustness already acting dur-
ing the first part of the experiment: at generation 250k the
C organisms were probably already robust enough to cope
with a reasonable increase in the mutational pressure.

Discussion
By evolving in a very simple environment populations of
digital organisms whose complexity can evolve at the ge-
nomic and functional levels independently, we were able to
acquire important insights into the evolution of complexity.
First, the continuous increase in complexity in such a non-
demanding environment is a strong argument in favor of a
“complexity ratchet”, i.e. an irreversible mechanism that can
add components (or information) to the evolving system but
that cannot get rid of existing ones, even though this could
be more favorable (Cairns-Smith, 1995). Indeed, one of the
most astonishing observations is that the complexity ratchet
clicks and goes on clicking despite the selective advantage
of simple solutions over complex ones. Second, by submit-
ting the same organisms to a harsh robustness constraint, we
have shown that, contrary to selection for fitness, selection
for robustness, when severe, can overcome the ratchet and
push complex organisms back toward simplicity.



In our experiments, simple organisms are fitter than com-
plex ones. Previous results with Aevol, showed that se-
lection for robustness favors streamlined genomes (Knibbe
et al., 2007); and that the joint effect of duplications and
deletions biases mutations toward reduction (Fischer et al.,
2014). Then, if selection, robustness and mutational biases
all push in the same direction — simplicity — what is the
force that counterbalances them all hence leading to com-
plexity increases? To answer this question, we first have to
look back at Table 3. It shows that even though Complexes
stay far worse than Simples, Complexes still substantially
gain fitness between generations 10k and 250k: although
complexity increases in spite of selection, its increase is nev-
ertheless driven by selection! This immediately points to-
ward a negative epistatis phenomenon: mutations that would
have been beneficial in a given S individual are deleterious
in the genetic context of C individuals (and reciprocally).
Indeed, selection only acts on the basis of the local topology
of the fitness landscape, which depends on the genetic back-
ground of the individuals. In a C genetic context, negative
epistasis forbids the acquisition of some genes that could be
highly favorable in an S context. Since gene deletion is obvi-
ously deleterious, the only available evolutionary path for al-
ready complex organisms is a headlong rush toward increas-
ing complexity by acquiring new genes. Hence the ratchet
clicks, further widening the fitness valley that separates the
current genome from a simple one, soon making it so wide
it is very unlikely to be crossed. Indeed, it has already been
shown that in natural populations, epistasis correlates with
complexity (Sanjuán and Elena, 2006).

The geometric properties of Aevol functional structure
provide a good illustration of the ratchet mechanism. In
our experiments, the phenotypic target can only be fitted by
a single triangular kernel/protein. However, as soon as the
proteome contains a protein with m 6= 0.5 or w 6= 0.1, this
is no longer possible because the function that remains to
be fitted (i.e. the target minus the protein kernels) becomes
multilinear... and the ratchet starts clicking. In other words,
each protein added to the proteome increases the complexity
of the function that remains to be fitted, forbidding its fitting
by a single triangle and triggering further gene recruitment.

Now, if selection cannot overcome the ratchet, how come
an increase in mutational pressure can? It is known that se-
vere robustness constraints can overcome selection by im-
posing an upper limit to the amount of information an or-
ganism can transmit to its offspring at the genetic (Eigen
and Schuster, 1977) and at the genomic (Knibbe et al., 2007;
Fischer et al., 2014) levels. In our experiments, raising the
mutation rate strongly decreases the storage capacity of the
genome, hence forcing gene elimination despite the fitness
loss. This can lower epistatic constraints enough to allow
the transition from complexity to simplicity.

Table 1 shows that the ratchet does not systematically start
clicking: in nearly one third of our simulations, evolution

leads to simple solutions. Moreover, we saw that the path
toward simplicity or complexity is taken very early in the
simulations (often before generation 1,000, data not shown)
which indirectly confirms that the ratchet is engaged when
the organisms recruits its first genes. But how is this initial
direction determined? Starting with a single gene, the or-
ganisms can evolve in two ways: (1) optimizing this gene
by mutation, (2) recruiting new genes through a duplication-
divergence mechanism. Depending on this highly contin-
gent alternative, evolution is more or less likely to lead to
either S or C identity. However, selection can also play its
role: since the former path gives higher fitnesses, clonal in-
terference between both paths is likely to favor simplicity.
Hence, if our explanation is correct, the fraction of Simples
should increase in very large populations (clonal interfer-
ence being more frequent in large populations).

Finally, if contingency explains the initiation of the
ratchet and epistasis explains its mechanisms, what about
its long term behavior? Will the ratchet click forever, thus
reaching very high complexities? In our simulations the fi-
nal complexity seems to be bound despite a great room for
improvement in most of the C organisms (Fig. 5). Three
effects can bound complexity: (1) As complexity grows, the
advantage provided by new genes may become too small for
selection to allow their fixation. Indeed, Lynch and Conery
(2003) proposed that genome complexity is mainly driven
by population genetics effects. However this is unlikely to
explain the apparent bound we observe since Complexes can
still improve greatly (Fig. 6). (2) Proteome complexity
needs to be encoded in the genome but there is an upper
bound to the amount of information a genome (hence a pro-
teome) can carry with given mutation (Eigen and Schuster,
1977) and rearrangement (Fischer et al., 2014) rates. (3) The
waiting time to the next innovation grows as the organism
becomes more complex. Indeed, it is well known that evo-
lution suffers from a “cost of complexity” that slows down
adaptation as the number of selected traits increases (Orr,
2000). In our simulation, Simples fit the target globally —
as a single trait — while Complexes virtually split the target
in parts which they fit more or less independently. Hence
Complexes are likely to suffer from the cost of complexity:
complexity increase can slow down in such a way that it
would require virtually-infinite waiting time to approach the
two above-mentioned bounds.

When experimenting with models, a tricky question is al-
ways to tell evolutionary trends apart from model artifacts.
Here, we used Aevol, a model that has already proven its
consistency, but that nevertheless has its limits. Among
them, three at least are likely to interfere with our results.
First, as in all ALife models, we deal with very small popu-
lations compared to natural populations. Larger population
size may change the initial direction toward S or C or the
upper complexity bounds but since selection cannot invert
the ratchet we hypothesize that our conclusions qualitatively



hold whatever the size of the population. Second, the prop-
erties of our artificial chemistry may differ from real bio-
chemistry. In particular, dosage effects are stronger in Aevol
than in Nature. However, this property is likely to limit the
complexity increase since gene duplications are more delete-
rious in the model than in Nature. Then, this should not alter
our main conclusions. Last but not least, although Aevol is
a multi-scale model, it lacks some scales that are likely to
play a crucial role in the evolution of complexity. In par-
ticular it lacks a complex ecosystem and a gene network.
Hence, we cannot observe here the effect of niche construc-
tion that are often proposed as a major player in the evo-
lution of complexity. On the gene network side, our results
match very well those we got when we used the RAEvol ver-
sion of the model to evolve genetic networks in constant vs.
variable environments (Beslon et al., 2010; Vadée-Le-Brun
et al., 2016). Indeed, in these experiments the complexity of
the network appeared to be driven by the mutation rate and
highly complex networks evolved even in constant environ-
ments. This opens the interesting perspective of replicating
the present experiments in RAevol.

Our work opens many other perspectives. Specifically, we
would like to analyze the evolutionary dynamic of our pop-
ulations at a finer grain. In particular, analyzing the effect
of every single mutation on complexity, fitness, evolvability
and robustness depending on the mutation type (point mu-
tations vs. rearrangements) would allow for a better char-
acterization of the epistatic interactions in the model. Fi-
nally, the most engaging perspective would be to generalize
the mechanism observed here to other kinds of systems. In-
deed, an open question is whether this complexity ratchet
could contribute to Open-Ended Evolution (Banzhaf et al.,
2016), hence opening the door for non-selectively-driven
Open-Endedness. A difficult question here is whether epis-
tasis has an equivalent in other Open-Ended systems such as
economy or innovation.

In conclusion, we would like to stress that our results,
gathered on a null model, do not imply that there is no
such thing as selection for complexity. But importantly,
they show that selection for complexity is not mandatory for
complexity to evolve. Hence, complex biological structures
could flourish in conditions where complexity is not needed.
Reciprocally, the global function of these complex structures
could very well be simple. We think this result is greatly sig-
nificant for both evolutionary biology and systems biology.
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