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3D watertight mesh generation with
uncertainties from ubiquitous data

Laurent Caraffa, Mathieu Brédif, Bruno Vallet

Université Paris-Est, IGN Recherche, SRIG, MATIS

Abstract. In this paper, we propose a generic framework for watertight
mesh generation with uncertainties that provides a confidence measure
on each reconstructed mesh triangle. Its input is a set of vision-based or
Lidar-based 3D measurements which are converted to a set of mass func-
tions that characterize the level of confidence on the occupancy of the
scene as occupied, empty or unknown based on Dempster-Shafer Theory.
The output is a multi-label segmentation of the ambient 3D space ex-
pressing the confidence for each resulting volume element to be occupied
or empty. While existing methods either sacrifice watertightness (local
methods) or need to introduce a smoothness prior (global methods), we
derive a per-triangle confidence measure that is able to gradually char-
acterize when the resulting surface patches are certain due to dense and
coherent measurements and when these patches are more uncertain and
are mainly present to ensure smoothness and/or watertightness. The sur-
face mesh reconstruction is formulated as a global energy minimization
problem efficiently optimized with the α-expansion algorithm. We claim
that the resulting confidence measure is a good estimate of the local lack
of sufficiently dense and coherent input measurements, which would be
a valuable input for the next-best-view scheduling of a complementary
acquisition.

Beside the new formulation, the proposed approach achieves state-of-the-
art results on surface reconstruction benchmark. It is robust to noise,
manages high scale disparity and produces a watertight surface with a
small Hausdorff distance in uncertainty area thanks to the multi-label
formulation. By simply thresholding the result, the method shows a good
reconstruction quality compared to local algorithms on high density data.
This is demonstrated on a large scale reconstruction combining real-
world datasets from airborne and terrestrial Lidar and on an indoor
scene reconstructed from images.

1 Introduction

Surface reconstruction from point cloud is an important topic that has already
been studied extensively. The first reason is the ill-posed characteristic of the
problem. The second reason is the constantly increasing number of applications
that require surface reconstruction: digital elevation model computation for flood
simulation, 3D modeling, robot path planning, etc. Furthermore 3D acquisition
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Fig. 1: Result of the proposed method on scanned object and city environment.
Areas with strong confidence are blue while occluded or conflict areas are red.

techniques such as Lidar and multi-view stereo are now mainstream and cur-
rently harvest vast amounts of data on a daily basis. These two aspects result
in multiple and various methods based on different assumptions related to the
characteristics of the acquisition device and of the scene and to the user appli-
cations. This observation is pointed out by [1] that lists most of the commonly
used assumptions for a given situation: smoothness prior, shape primitive recon-
struction where the output is composed of a combination of primitives, visibility
prior that uses the sensor information in order to detect empty areas, watertight-
ness, etc. Because of the implicit relation between the surface definition and the
smoothness prior, this assumption has been historically the most studied. De-
spite the important diversity of methods, the smoothness prior can be broadly
categorized as local, global or piecewise. Local methods ensure that the output
surface is smooth where the point cloud density is large enough. Global meth-
ods produce a watertight surface on the whole data range by filling empty holes
regardless of the density. This fact is emphasized by the benchmark introduced
in [2] where global methods based on indicator functions are robust with a small
Hausdorff distance to the ground truth, while local methods produce a locally
accurate reconstruction when the quality of the input data is good. When the
density is large enough, it indicates that both approaches produce good results.
Based on this consideration, we consider that rather than trying to improve the
quality of the resulting mesh, we should instead characterize its quality and pro-
duce a qualified mesh where uncertain areas are localized. To this end, we use
a global approach and pose the surface reconstruction problem as a volumetric
segmentation of a 3D confidence space.

1.1 Background

The volumetric segmentation approach has been first used in [3] for surface re-
construction. In [4], it is used with a Delaunay triangulation and the visibility
assumption for labelling tetrahedra crossed by a ray as outside and tetrahedra
behind the 3D detected point as inside the surface to be reconstructed. Unla-
belled tetrahedra are regularized in a global optimization framework related to
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a surface smoothness prior. [5] shows that this approach is mature and produces
high quality results when the amount of data is large enough in the multi-view
reconstruction context. In [6], the visibility prior is improved to better recon-
struct surfaces having a lack of information. This approach has been greatly
extended in various cases like hybrid primitive mesh reconstruction [7] or struc-
ture preserving approach where coherent crust, plane and corner are detected
for an extra sampling of the point cloud [8]. In [9], a similar approach is used to
produce a watertight surface from airborne Lidar with planar assumption.

When the normal orientation or the visibility prior are not available, [10]
proposes a method that defines an unsigned function related to the detection of
crusts around high density point, which allows to reconstruct the surface without
any normal information. In [11], a method is based on the winding number that
produces a piecewise mesh when a significant number of facet orientations are
available. The advantage is the definition of a function in the space that tells,
on each point, its probability to be occupied or empty.

Recently, from the perspective to merge multiple source data, [12] propose an
approach that takes into account multiple-scale datasets. It produce high quality
surface in high detailed area embedded in higher scale reconstruction.

Even if modern algorithms are robust enough to handle bad quality inputs,
some conflicts will always be impossible to prevent in uncontrolled environments
like moving pedestrians or cars. Outliers and conflict detection from multiple
point clouds has been recently studied. [13] use the Dempster-Shafer Theory
(DST) for modeling the space occupancy as empty, occupied or unknown.

1.2 Proposed approach

One may argue that surface reconstruction in easy cases is now mature and
many methods produce good results thanks to different priors in multiple cases
([5] for urban reconstruction or [14] for scanned objects). However, the amount
and types of input are constantly increasing such that [1] points out acquisition
ubiquity as a challenging task for the future. It is to that extent that we propose a
new perspective for surface reconstruction: instead of choosing a strong surface
prior and specific output, the method produces a segmentation of the space
related to the confidence to be empty or occupied. The input of our algorithm
is a set of mass functions that describe the occupancy of the scene with the
Dempster-Shafer Theory. Instead of producing a binary segmentation, the result
is a multi-label segmentation of the space where each label is a confidence to
be inside or outside an object. The final surface is defined as a level set of this
confidence at a given threshold of the interface between the mostly-occupied and
mostly-empty volumes. Thanks to this multi-label formulation, the confidence of
the output can be characterized as the gradient in occupancy confidence between
the neighboring volumes of each output facet. Mesh patches composed by facets
with greater confidence may be seen as patches featuring enough data support
which result mainly from a local smoothing. By contrast, in uncertain areas, this
confidence measure properly documents the fact that corresponding facets are
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Fig. 2: Example. First, two pointsets merged with their local descriptor (fig. 2a),
the combined mass function of the two sets of points (fig. 2b), the normalized
integral of the mass function on each cell (fig. 2c). The resulting segmentation
with 2,4 and 8 labels (figs. 2d, 2e and 2f).

only present to ensure smoothness and watertightness with little data support
as it may be the case in any global surface reconstruction approaches.

In this paper, we propose two models, one based on a local descriptor intro-
duced in [15], the second on the visibility prior for surface reconstruction when
the sensor position is known for each 3D measurement. The result of the pro-
posed method is shown in the figure 1 (The redder the color, the smaller the
confidence). One may note that the confidence increases with the point density.
However, areas that have not been scanned or with an important scale remain
red (i.e uncertain). To our knowledge, producing a multi-label result, according
to the surface confidence has not been explored in the surface reconstruction
literature.

Figure 2 shows an example of the proposed approach in 2D. First, a local de-
scriptor is computed on each point cloud for extracting normal and local point
cloud distribution(fig. 2a). The space is then discretized with a 3D Delaunay
triangulation (as in [4]), the mass function (fig. 2b) is then integrated on each
cell (fig. 2c). Finally, a multi-label segmentation is performed on each tetra-
hedron where a label relates to the confidence of the result to be occupied or
empty (fig. 2d, 2e, 2f). This labelling relies on a global optimization that penalizes
large surfaces. For the problem to be tractable, a mapping from labels {occupied,
empty, unknown} to labels {empty, occupied} is performed. This allows to for-
malize the problem with a sub-modular energy that can be optimized globally
in polynomial time. The multi-label segmentation is then conceptually cast as
a binary empty/occupied segmentation by thresholding the label confidence at
e.g. 50%, which enables the well-known extraction of the resulting mesh as the
set of triangles separating an empty-labeled tetrahedron from a occupied -labeled
one.

Our main contributions are:
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– A method that takes an arbitrary number and type of input measurements
defined by a confidence function.

– A multi-label segmentation that produce a watertight surface and enables
the confidence characterization of each resulting mesh triangle.

For that, we will first define in section 2 the problem statement of the multi-
label segmentation of the mass function. The energy formulation of the problem
is defined, then the mass function for the case of the point cloud reconstruction
is introduced. In section 3, technical aspect of the implementation is discussed:
the space is quantification, the mass function computation and the optimization
of the resulting energy. Then, the method is evaluated and compared to state
of the art algorithms in section 4. Section 5 shows applications and results on
mesh generation on both the ability to merge heterogeneous datasets and the
confidence characterization of the resulting mesh.

2 Problem formulation

The aim of the proposed method is to find, for a set of inputs I, a segmentation
of the space as occupied or empty following a suitable model. Inputs are given
by a set of mass functions mi defined by (see section 2.2):

mi(P ) = (e, o, v) ∈ [0, 1]3 s.t. e+ o+ u = 1 (1)

where e, o and u are respectively the occupancy masses for a 3D point P ∈ R3

to be empty, occupied or unknown. The mass functions are then merged to yield
an overall mass function:

mf (P ) = ⊕
i∈I
mi(P ) (2)

where mf (P ) is the overall mass that gives, for a point P ∈ R3, the confidence
to be empty, occupied or unknown for the set of mass functions (mi)i∈I .

The problem is then defined as a multi-label segmentation of the space re-

garding to mf where the labels set is L = {0, 1
(N−1) ,

2
(N−1) , ...,

(N−2)
(N−1) , 1}. Each

label l ∈ L represents the occupancy confidence where l = 1 represents a abso-
lute confidence to be occupied and l = 0 a absolute confidence to be empty. The
space is discretized with a 3D Delaunay triangulation, where T is its set of tetra-
hedra and F ⊂ T 2 the set of facets represented by pairs of adjacent tetrahedra
such that the set of facets is {(t1 ∩ t2)s.t.(t1, t2) ∈ F}. We denote as lt the label
of the tetrahedron t ∈ T and lT = (lt)t∈T the labelling lt of each tetrahedron in
the triangulation T . Following this formulation, a per-facet confidence is defined
as

confidence(t1 ∩ t2) = |lt1 − lt2 | (3)

Thus, what is required is to find, for each tetrahedron of the triangulation, a
label lt that encodes the confidence of the tetrahedron in being either occupied
or empty for a given set of input mass functions mi. To this end, the problem
is formulated as an energy minimization framework composed of two terms: the
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data term Edata(lT ), which represents how a solution is close to the overall mass
function mf and the smoothness term Eprior(lT ), which penalizes solutions with
large interfaces between labels. The final energy minimization is:

min
lT∈LT

Edata(lT ) + λ Eprior(lT ) (4)

where λ is the weight balancing the prior and data terms. Now the two terms
will be described in details.

2.1 Energy terms

0.2
0.4
0.6
0.8

0 0.2 0.4 0.6 0.8 1

Fig. 3: Example of the related confidence of the 3 mass functions.

The data term models how a label l fits to the overall mass function mf

defined in equation 2. To take into account the unknown label, the confidence
of a label l to be occupied is decomposed into 3 functions pe(l), po(l) and pu(l)
defined as:

pj(l) =

pe(l) = max(0, 1− 2l)
po(l) = max(0, 2l − 1)
pu(l) = 1− po(l)− pu(l)

(5)

Figure 3 shows the mapping between labels and the 3 functions. When l =
0.2, the corresponding scores are pe(l) = 0.6, po(l) = 0, and pu(l) = 0.4. With
this decomposition, the case pe(l) = 0.6, po(l) = 0.4 and pu(l) = 0.4 are mutually
exclusive solutions for the input l = 0.6 . It tells that the solution is a conflict or
a fuzzy zone. This allows to separate the conflict case from the unknown case.
However, one can imagine another cost function for conflict, change detection,
accuracy measurement.

Finally, the data term is the integral of the difference between the function
pj(l) and the mass function mi for each label i ∈ (e, o, u) over the volume of the
tetrahedron, which gives:

Edata(l) =
∑
t∈T

∑
j∈{e,o,u}

∫
t

|pj(lt)−mf (v)|dv (6)

A prior term is added that generally enforces solutions with a small surface.
This idea is extended to the multi-label case by minimizing the surface multiplied
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by the distance between label probabilities, which leads to the following term:

Eprior(l) =
∑

(t1,t2)∈F 2

area(t1 ∩ t2)|lt1 − lt2 | (7)

where area(t1 ∩ t2) returns the area of the triangle t1 ∩ t2.

2.2 Mass function definition

All that remains is to define the function me,mo and mu for an input set of
data. When the oriented normal is known, tetrahedra in the oriented normal
direction have great confidence to be empty and those right after the 3D point
have great confidence to be occupied. In the case of 3D reconstruction when the
center of the sensor is known, the visibility prior tells that tetrahedra crossed
by the beam formed by the sensor and the 3D point have great confidence to be
empty along the ray. This idea is encoded here in the independent definition of
a mass function for each input measurement, which will be merged into a single
overall function using DST.

Fig. 4: Mass function in R2. (Left) For a single point Q, model parameters are: a
spanning parameter σ1 and the noise parameter σd. σe and σo are the thickness
parameter. (Right) The mass with the visibility prior in R2 for a point Q when
the sensor center is known, model parameters are: the incertitude on the angle
σθ and the noise parameter σd.

In this section, two mass functions representing the space occupancy in R3

are defined: one representing the space occupancy around the 3D detected point
with normal, the second representing the visibility prior when the sensor center
is known.

Local mass definition: For a 3D detected point Q with a normal −→n , an
occupancy mass along the normal is defined by (er,or,ur). Let P ∈ R3 be a 3D
point and r its signed distance to the plane (Q,−→n ). When r > 0, P is on the
same side as the normal, it is empty, er should tends to 1 and or to 0. Inversely,
when r < 0, P , it is occupied, then the mass er should tends to 0 and or to 1.
When P is close to Q, the probability to be occupied or empty or and er should
be 0.5. Finally, when P is far from Q, or and er should decrease from 1 to 0 for
modeling the thickness of the scene and the empty area. One mass related to
this behavior is :

r < 0 : er = 0.5 e
−(
|r|
σd

)2

; or = (1 − 0.5 e
−(
|r|
σd

)2

) e
−(
|r|
σo

)2

r > 0 : er = (1 − 0.5 e
−(
|r|
σd

)2

)e
−(
|r|
σe

)2
; or = 0.5 e

−(
|r|
σd

)2
(8)
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where σd is the noise parameter, σo the scale of the scene thickness prior and
σe the thickness of the empty area.

Space occupancy mass:
In the 3D case, the mass of occupancy on the plane is large while decreasing as

it moves away from the point, introducing a spanning parameter, the occupancy
function is represented as

f(P, P 1, P 2) = e−(
||P1−P ||

σ1
)2−( ||P

2−P ||
σ2

)2 (9)

where (−→v1 ,−→v2,−→n ) is a standard basis defined from the normal vector. P 1 and
P 2 are the orthogonal projection on −→v1,−→v2. σ1,σ2 are the scale of the spanning
parameter on the basis.

Adding the visibility prior: When the sensor center O is known, the mass
of occupancy is large on the ray while decreasing as it moves away from it, for
that we define

f(θ) = e
−( θσθ )

2

(10)

where θ is the angle formed by the ray
−−→
OQ and

−−→
OP , σθ is the scale of the angle

uncertainty. In this case, the scale of the empty area σe is set to ∞ and or = 0
when r < 0 in equation 8.

Mass of an input: Finally, the mass function of a 3D point is defined by:

mi(P ) =

 e
o
u

 =

sc · f · er
sc · f · or
1− e− o

 (11)

where er and or models the uncertainty along the normal and f the uncertainty
as it moves away from the data. sc ∈ [0, 1] is the scale coefficient. The figure 4
shows an example of the two mass functions in 2D.

Fig. 5: Example of fusion. First, four rays with a large uncertainty. The confidence
at the intersection is much higher. Then, a fusion with both a strong confidence
to be empty and occupied. The confidence at the intersection is equal to 0.5 for
both empty and occupied, the unknown label remains small.

Overall mass: The DST is used to combine all inputs and gives the overall
mass mf . Let m1 m2 two mass functions, the fusion can be computed with the
DST as following:

e1
o1
u1

⊕


e2
o2
u2

 =
1

1 −K


e1 · e2 + e1 · u2 + u1 · e2
o1 · o2 + o1 · u2 + u1 · o2
u1 · u2

 (12)
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where K = o1 · e2 + e1 · o2 represents the conflict term. When K is equal to 0,
there is no conflict between inputs.

The combination rule is commutative and associative, enabling an order-
independent aggregation of the measurements. At a location P for a set of mass
functions mi ∈ I, the overall mass is computed following the equation 2. Figure 5
shows two examples of mass merging in 2D.

2.3 Setting parameters with local descriptor

The mass function needs local information like normal, noise level and scale.
When a parameter is not provided, it can be extracted by computing the lo-
cal descriptor proposed in [15]. Based on a local Principal Component Analysis
(PCA), it provides 3 eigenvectors v1, v2, v3 with their eigenvalues σ1, σ2, σ3. As-
suming a planar surface, its normal direction −→n is given by v3, σ3 denotes its
noise level. σ1 and σ2 are the spanning scale for each scale of standard basis
component.

The scale of the point is represented by its noise level sc = min( ε
σ3
, 1) where

ε is the targeted level of details. σ3 < ε denotes that the highest level of details
is reached.

3 Algorithm

3.1 Triangulation

Thanks to the previous formulation, any 3-space partitioning could by used to
discretized the aggregated mass function in order to yield a tractable combina-
torial optimization problem. Ideally, this tessellation should be driven directly
by the behavior of mf , with less refined tessellation where it is homogeneous and
facets orthogonal to its gradients. To limit the computing time and be robust to
noise, the number of points is reduced using a K-means approach on the point
cloud to approximate the tessellation. To adapt the mesh accuracy to the noise
level, points are added while the distance of closest plane of the triangulation
in the normal direction for each input point is above 3σd. This approach helps
to produce mesh with large facet in noisy area and small facet in detailed ar-
eas according to the noise level. We currently use the Delaunay triangulation
as implemented in the Computational Geometry Algorithms Library (CGAL,
http://www.cgal.org).

3.2 Score computation

Equation 6 requires to compute the integration of the mass function on each
tetrahedron. The integral

∫
t
|pj(lt)−mf (v)|dv can be estimated using Monte

Carlo integration as Volume(t)
|S|

∑
P∈S |pj(lt) − mf (P )| where S is a set of |S|

uniformly sampled points in the tetrahedron t. Volume(t) is the volume of the
tetrahedron t. The mass function of each point P is computed with the equa-
tion 2.
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3.3 Optimization

According to [16], the equation 4 with a metric function on the prior term 7 is
sub-modular and thus, the global minimum can be reached in polynomial time.
Many methods exist for optimizing sub-modular functions. When the number
of labels is small and the scene composed by large homogeneous label areas, the
α-expansion algorithm first introduced in [16], converges in practice quickly on
a good local minimum which is guaranteed to have an energy at most twice the
globally optimal energy.

The α-expansion consists in starting from an arbitrary set of labels lt in each
tetrahedra t ∈ T and solve iteratively equation 4 with a proposition α ∈ L. It
refers to a Boolean optimization problem studied in quadratic pseudo-Boolean
optimization (QPBO). As mentioned in [17], in our case where the quadratic
function on the two labels is a metric, the equation 4 can always be solved
globally in polynomial time in the binary case with a min-cut reduction. We use
the graph-cut code introduced in [18] to solve the binary fusion problem.

3.4 Parameter settings

The proposed formulation requires to choose an arbitrary number of labels. For
surface reconstruction, an even number of labels should be chosen in equations 5:
an odd number of labels results in the presence of the label l = 0.5 in L which
hinders a decision between an empty and an occupied volume. With a small
number of labels, the solution is smoother according to λ. With a large number of
labels, extra areas with low confidence appear thanks to the small cost between
the occupied and empty volumes in ambiguous regions. In our tests, 6 labels
appears to be a good compromise between the time computation, the accuracy
of the global result and the number of outliers.

4 Evaluation on benchmark

The method is evaluated on the benchmark introduced in [2], it allows to eval-
uate the surface according to both error metrics and topological aspects. The
benchmark is dedicated to surface reconstruction from point cloud with normal.
It is composed of 5 datasets generated from an implicit function with a synthetic
scanner. For each dataset, 48 acquisitions are generated with different variations
of the scanner’s parameters such as noise or different camera positions which
lead to occlusions. In order to show the advantage of computing a multi-label
segmentation, a single result is computed for each file. For that, we use a confi-
dence threshold Tc. A facet is removed when the confidence defined in equation 3
is lower than Tc. The resulting surface is non manifold. The larger Tc, the larger
the certainty on the surface.

The result is then evaluated with two different confidence threshold Tc = 0
(full area) and Tc = 0.5 (confident area) that can be computed on the fly. In this
test, the scale is set to the maximum level of detail (sc = 1 for each point), the
thickness to σo = σe = 0.3.



3D watertight mesh generation with uncertainties from ubiquitous data 11

apss fourier scattered wmwu
algorithm comps bnd mani genus
apss 47.37 140.86 0.50 1.82
fourier 1.54 0.00 1.00 0.49
scattered 1.90 214.21 1.00 7.47
wmwu (Tc = 0) 1.00 0 1 0.61
wmwu (Tc = 0.5) 2.72 77.08 0.02 12.45
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Fig. 6: Result of 4 algorithms on the benchmark: APSS, Fourier, Scattered and
the proposed approach: the global surface (wmwu Tc = 0) and with the confident
threshold set to 0.5 (wmwu Tc = 0.5). First line shows an easy case, the second
case is much more noisy with occlusions. The error mean and the Hausdorff
distance are compared on the 5 datasets. Black dots show outliers when the box
plot show the median and quartiles. The table shows the average shape properties
over the full benchmark: comps refers to number of connected components, bnd is
the length of boundary components, mani is whether or not a mesh is manifold,
1 being manifold and 0 otherwise, genus refers to the amount which deviates
from the actual genus. The first section refers to the state of the art algorithm
evaluated in [2], the second section shows the score of the proposed methods
with both thresholds.

4.1 Evaluation on the dataset

Figure 6 shows the result of the proposed method (wmwu) with the two thresh-
olds (Tc = 0 and Tc = 0.5) compared to APSS [14], Fourier [19] and Scat-
tered [20]. Two results are shown: on the first one, the resulting mesh of the
proposed approach is highly confident (blue color) and results in an high quality
mesh as other methods. The second case is much more uncertain because of a
noisy sensor and occlusions (red areas) where other algorithms work also poorly.
The global surface remains close to the ground truth. This fact is emphasized by
the benchmark: when thresholding the mesh to Tc = 0.5, the mean error is very
close to state-of-the art algorithms such as APSS or Scattered. The distribution
of the means has globally a small variance and lowest maximum error on all the
dataset that reflect the robustness of the proposed approach and the ability to
detect uncertain facets. Like Scattered, the number of components remains low
compared to APSS. Thanks to the multi-label global optimization framework
that enforces the confident surface to be close, the boundary distance is 77.08
compared to 140.86 and 214.21 for APSS and Scattered.

The global mesh displays more error, this is the consequence of shapes pro-
duced by extra labels in unknown areas. The result remains good compared to
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Fig. 7: Merging many data points. First and second line: the results on the union
of 1, 2, 5, 10 and 20 point clouds. Third line: the accumulated point cloud. The
confident threshold is set to Tc = 0.5. Facets in the confidence region that are
on the boundary are green. Last column, the error of the global surface and the
confidence surface. Then the area of regions upper and lower the threshold.

other algorithms in the benchmark. The advantage of extra labels makes sense
by analyzing the Hausdorff distance which is very good compare to other algo-
rithms. The extra labels allow to better explore the unscanned area as [6] thanks
to a small regularization where classic graph-cut based approaches tend to over-
smooth the solution and produce holes in missing data areas. This is confirmed
by the characteristic that the global surface is 100% manifold and watertight
with only one component on the whole benchmark.

4.2 Merging

The aim of the proposed approach is to merge a large amount of data. Figure 7
shows the result up to 20 point clouds processed at the same time on the Daratech
dataset. For this test, the coefficient of each point cloud mass is 0.1 in order
to reach the confidence threshold Tc = 0.5 only with a consequent number
of data. We clearly show the confidence increasing while the number of files
increases. Badly fitted surfaces caused by sensor drift on first iterations with
high uncertainty are progressively removed and replaced by surface with high
confidence. Statistics show that the confidence area is constantly increased along
iterations while the mean error decreases until converging to 0.20 which is equal
to the lower Quartile of best algorithms on this dataset. This test confirms the
ability of the DST on managing uncertainty.

5 Results

Airborne and terrestrial Lidar reconstruction: This example shows how
the DST helps for modeling different types of data. Figure 8 shows an urban scene
reconstruction with both airborne and terrestrial Lidar data. Two overlapping
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airborne Lidar acquisition stripes cover a large area. A terrestrial point cloud is
included at the center of the scene for a final 5.2M point cloud.

Local model’s parameters are fixed by the dimensionality descriptor (sec:2.3).
Airborne and terrestrial Lidar point clouds are both represented as beams. The
angle’s scale of the visibility prior is set to 0.001 for the airborne and for the
terrestrial data. The thickness parameter is equal to 0.07m for terrestrial Lidar
to reconstruct thin structures such as poles, cars or advertising hoarding. It is set
to 30m for airborne. This allows to reconstruct high buildings only with points
recorded on the top. λ is equal to 0.005. The targeted scale is set to ε = 0.02.

Results show that both datasets are taken into account to produce a mesh
that combines both the fine details from the ground based Lidar and a global
watertight surface from the airborne data. The large thickness parameter on
airborne data allows to reconstruct high building. Thanks to the small thickness
and extra points on the terrestrial data, pillars are well meshed. The close up
view shows that the merging between airborne and terrestrial points is well
managed. We clearly see how the point cloud density affects the confidence of
the resulting mesh where the confidence scale is reached. In the ground scanned
place, the quality of reconstruction of the building’s facade is large whereas the
areas behind cars remain unknown and call for extra acquisitions.

Fig. 8: Result of the proposed algorithm with terrestrial and airborne data com-
bined.

Structure from motion data: We tested the proposed approach on in-
door datasets from 3D reconstruction. A dataset of the full scene of 3.4M point
is merged to a 5.4M points dataset representing a mechanical object. This scene
has the particularity to have both high quality, noisy and unscanned areas. The
targeted scale is set to ε = 0.03. Figure 9 show the result of the proposed ap-
proach. Results show high quality reconstruction with high confidence in high
detailed areas. On the contrary, uncertain areas are well smoothed with small
confidence, unscanned areas are flat with the lowest confidence. The proposed
approach is compared to FSSR [12], two appropriate scales are affected to each
dataset. Where FSSR produces artifacts or holes, the proposed approach pro-
vides a low confidence and fills empty holes with the smallest confidence. The
quality of the reconstruction is comparable in good quality areas.
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Fig. 9: Result of the proposed algorithm on structure from motion data. First
line, 3 results of the proposed algorithm. Second line, two results with: the
dataset, FSSR [12] and ours.

6 Limitations

The benchmark shows that the resulting mesh after thresholding is not water-
tight and manifold anymore in many cases. More complex energies could be ex-
plored in order to manage the watertightness of the mesh at different thresholds.
The algorithm is actually slow, the time computation can be highly improved
by parallelizing the triangulation construction, the sampling and the score com-
putation. Parallel heuristics can be used for the multi-label optimization.

7 Conclusion and perspectives

A generic framework for watertight mesh generation with uncertainties is pro-
posed for the surface reconstruction of ubiquitous data of the same scene. A
confidence criterion is given on the resulting mesh. The problem is formalized
as a global optimization problem that is efficiently solved with the α-expansion
algorithm. The proposed approach shows results close to state of the art on
both benchmark datasets and real cases like urban reconstruction from Lidar or
structure from motion data. We advocate that the resulting confidence measure
is a good estimate of the local lack of sufficiently dense and coherent input mea-
surements, which would be a valuable input for the next-best view scheduling
of a complementary acquisition or to detect unexplored area for terrestrial or
airborne robot path planning.
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