
HAL Id: hal-01882600
https://hal.science/hal-01882600

Submitted on 17 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Descriptor extraction based on a multilayer dictionary
architecture for classification of natural images

Stefen Chan Wai Tim, Michèle Rombaut, Anuvabh Dutt, Denis Pellerin

To cite this version:
Stefen Chan Wai Tim, Michèle Rombaut, Anuvabh Dutt, Denis Pellerin. Descriptor extraction based
on a multilayer dictionary architecture for classification of natural images. Computer Vision and
Image Understanding, 2020, 191, pp.102708. �10.1016/j.cviu.2018.08.002�. �hal-01882600�

https://hal.science/hal-01882600
https://hal.archives-ouvertes.fr


Descriptor extraction based on a multilayer dictionary architecture for classification of
natural images.

Stefen Chan Wai Tima, Michele Rombauta,∗∗, Denis Pellerina, Anuvabh Dutta,b

aUniv. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, F-38000 Grenoble France
bUniv. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble France

ABSTRACT

This paper presents a descriptor extraction method in the context of image classification, based on a
multilayer structure of dictionaries. We propose to learn an architecture of discriminative dictionaries
for classification in a supervised framework using a patch-level approach. This method combines
many layers of sparse coding and pooling in order to reduce the dimension of the problem. The
supervised learning of dictionary atoms allows them to be specialized for a classification task. The
method has been tested on known datasets of natural images such as MNIST, CIFAR-10 and STL, in
various conditions, especially when the size of the training set is limited, and in a transfer learning
application. The results are also compared with those obtained with Convolutional Neural Network
(CNN) of similar complexity in terms of number of layers and processing pipeline.

1. Introduction

Dictionary learning and sparse representations have received
a lot of focus in recent years because they have led to state-of-
the-art results in many applications, in particular in image pro-
cessing. One reason for their success is that they can efficiently
learn the underlying patterns in the image, leading to good per-
formances for example in denoising (Elad and Aharon (2006);
Mairal et al. (2008)) or inpainting (Aharon et al. (2006)). The
sparse codes obtained can also be seen as a new representation
of the input or as features in image classification tasks (Mairal
et al. (2012); Raina et al. (2008); Bradley and Bagnell (2008);
Wright et al. (2009); Chan Wai Tim et al. (2015)). In such cases,
the dictionary is often learned in an unsupervised way, mean-
ing that the dictionary is learned without taking into account the
class of the images. Then, the sparse codes obtained can either
be used directly for classification (Qiu et al. (2011)), or as fea-
tures fed to a classifier i.e SVM (Chan Wai Tim et al. (2015)).

Recent research has emphasized the advantages of learning
discriminative sparse models (Mairal et al. (2012); Bradley
and Bagnell (2008); Yang et al. (2010)) instead of purely re-
constructive ones. It is usually done by learning the sparse
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representation and the classifier conjointly. In practice, each in-
put image is matched with a label and the dictionary is learned
in a supervised setup.

Generally, in image processing applications, dictionary
learning and sparse coding are computed on a small portion
of an image (i.e image patches) because learning a dictionary
directly on high resolution images is computationally intensive.
There is no particular problem in doing so in denoising, how-
ever, in the case of classification, a means to fuse efficiently the
representation of the patches into an image-level descriptor is
needed such as pooling (Yang et al. (2010)) or Bag of words
(Wang et al. (2009)).

Method framework
In the proposed multilayer architecture, the sparse codes ob-

tained by encoding signals on a dictionary are used as inputs to
a subsequent coding layer. Each additional layer of dictionary
encoding changes the representation by projecting the features
into a new space. The prospective objective is to increase the
discriminability of the features by building a hierarchy of dic-
tionaries.

In Section 2, we recall the dictionary learning framework go-
ing from the unsupervised setup to the supervised dictionary
learning setup, and we detail the patch decomposition of the in-
put data. In Section 3, we introduce our multilayer dictionary
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learning setup. In Section 4, we present the multilayer learning
process and finally, in section 5, we present the experiments and
their results, especially when the training set is small and in the
context of transfer learning when the architecture is trained on
one dataset and applied to a different dataset.

2. Dictionary learning

In this section, we recall various formulations of the dictio-
nary learning problem, starting with an unsupervised method
more suited to reconstruction of an image and followed by the
supervised method tailored around a specific task such as clas-
sification.

2.1. Unsupervised dictionary learning

Unsupervised dictionary learning has been widely used in re-
construction tasks. In its classical formulation, the goal is to
learn a set of atoms directly from data in order to optimise the
reconstruction of the image. Let’s consider a set of N signals
Y = [y1, ..yN] where each signal yk is extracted from an image
Ik. In this case, column vector yk of the image k can be the gray
level of the m pixels of the image. Dictionary D is represented
by the matrix D = (di j) with i ∈ [1,m], j ∈ [1,K] where K is
the number of dictionary atoms d j. The atom d j has the same
dimension m as the dimension of each vector yk.

Dictionary D can be learned by solving:

min
D,xk

N∑
k=1

‖yk − Dxk‖
2
2 + Φ(xk) (1)

with xk a sparse vector of dimension K containing the coeffi-
cients to reconstruct yk. We denote ‖ · ‖2 and ‖ · ‖1 the `2-norm
and `1-norm respectively. In this formulation, the reconstruc-
tion error is minimized and the sparsity can be controlled with
the function Φ(x) which can be:

• for the LASSO approach as in Tibshirani (2013): Φ(x) =

λ‖x‖1

• for the Elastic Net approach as in Zhou and Hastie (2005):

Φ(x) = λ1‖x‖1 +
λ2

2
‖x‖22 (2)

A higher λ (or λ1) increases sparsity. Once a sparse code xk is
obtained, the original signal can be approximated by computing
ŷk ≈ Dxk.

This problem has been widely studied and many approaches
exist in order to obtain both dictionary D and coefficients xk

(Aharon et al. (2006); Olshausen and Field (1996); Tibshirani
(1996)). Using such an unsupervised approach can yield good
results in image reconstruction problems. Code xk can be seen
as a sparse representation of yk. Since it can find the underlying
patterns in the data, some authors have proposed using these
codes in classification tasks (Raina et al. (2008); Wright et al.
(2009)).

2.2. Supervised dictionary learning
The idea is to optimize the dictionary learning for reconstruc-

tion and also for classification. Supervised dictionary learning
methods began to be investigated by Mairal et al. (2012); Yang
et al. (2010) in order to take advantage of parsimony in clas-
sification tasks. In this case, the learning process requires a
training set made up of labeled elements yk. Encoding a datum
using a dictionary can be seen as a projection into another coor-
dinate system. The objective is to obtain projected features that
are discriminative in the new space.

Let’s assume we know a training set E of pairs (yk, lk) where
yk, k ∈ [1,N] is a set of signals representing the image and lk is
the corresponding label of the image attached to the vector yk.
We defineL, a differentiable classification loss function and W,
its set of parameters.

The supervised dictionary learning problem can be written
with the two following equations:

x̂k = argmin
x

‖yk − Dxk‖
2
2 + Φ(xk) (3)

min
W,D

N∑
k=1

L(lk, x̂k,W) (4)

Eq.3 gives the optimal sparse code x̂k for the reconstruction
of signal yk with the learned dictionary D. The Eq.4 has the ob-
jective of minimizing the suitable cost function L with respect
to its parameters W and a dictionary D as represented in Fig. 1.
This cost function depends on the sparse codes x̂k used for clas-
sification, the associated labels lk, and the parameters W of the
classifier. The main difference between this formulation (Eq.3
and Eq.4) and the previous one (Eq.1) is that the goal now is to
minimize the classification loss instead of a reconstruction error
term.

To minimize the cost function L with respect to the param-
eters of the dictionary D and the parameters W of the cost
function, it is possible to use a method similar to the back-
propagation algorithm used in neural networks (LeCun et al.
(1998)). The minimization can be done using gradient descent
on W with step η1 and D with step η2.

Computing the gradient ofL with respect to parameters W is
usually classical and simple. The main difficulty when solving
Eq.4 is the minimization of the cost function L with respect to
dictionary D because it does not appear explicitly and involves
the other optimization problem of solving Eq.3 for x̂k. To over-
come this problem, a way to compute the gradient of the cost
functionL(lk, x̂k,W) with respect to the dictionary D is needed.
This problem has been tackled in Mairal et al. (2012); Bradley
and Bagnell (2008).

In this work, we follow the ideas of Mairal et al. (2012) which
show the differentiability of L and give the steps to compute its
gradient with respect to parameters W and dictionary D. Ac-
cording to the paper, the desired gradient can be computed as
follows:

∇DL(lk, x̂k,W) = Dβx̂>k + (y − Dx̂k)β> (5)

We define the set Λ = {i|xi , 0} made up of non-zero coef-
ficients of the considered code xk and x̂kΛ corresponds to x̂k

restricted to its non-zero coefficients.
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Fig. 1. A signal yk associated to a label lk is encoded by a dictionary D, the
resulting code x̂k is used as an input to a cost function with parameters W.
The cost function L(lk , x̂k ,W) is computed. Then, the dictionary D and the
parameters W are updated to fit the classification problem.

Vector β ∈ RN is computed as β j = 0, if j < Λ and βΛ, which
is vector β restricted to the indices in Λ, is defined as follows:

βΛ = (D>ΛDΛ)−1∇x̂kΛ
L(lk, x̂k,W) (6)

where DΛ is the dictionary restricted to the set Λ.
Now, it is necessary to compute the gradient ∇x̂kΛ

L(lk, x̂k,W)
(with respect to x̂ which explicitly appears in L, instead of D).

The optimisation process consists of:

1. Inputs: set E of pairs (yk, lk) where:

• yk, k ∈ [1,N] is a set of signals (i.e images repre-
sented as column vectors)

• lk, k ∈ [1,N] is the corresponding label for yk

2. Initialization: compute an initial D for reconstruction
(Eq.1)

3. While Convergence not reached
3..1 Draw a signal randomly yk ∈ E
3..2 Compute x̂k, solution of (Eq.3) with the dictionary D
3..3 Compute

∇WL(lk, x̂k,W)
∇x̂kΛ
L(lk, x̂k,W)

βΛ

∇DL(lk, x̂k,W)

3..4 Update D and W by gradient descent:

D← D − η1∇DL(lk, x̂k,W)
W←W − η2∇WL(lk, x̂k,W)

4. Return D and W

In this work, we have chosen to use the cross-entropy func-
tion (Eq.7) for the classification loss as it has proven to give
good results in multiclass classification problems. The chosen
classifier is a linear classifier coupled with Softmax for the out-
put. If we consider a classification problem with C classes, the
cross-entropy loss defined for the input vector yk coded by the
vector x̂k of size K is computed as follows:

L(lk, x̂k,W) = −

C∑
i=1

liklog(pik) + λ′‖W‖22 (7)

where λ′ is a parameter that penalizes the vector W and lik = 1
if the image is associated with the class i and 0 elsewhere. pik

is defined by:

pik =
exp(x̂>k wi)∑C

j=1 exp(x̂>k w j)
(8)

where wi is a column vector of size K corresponding to the class
i of the matrix W.

2.3. Patch decomposition
A supervised dictionary learning approach can successfully

learn patterns for an image classification task. Usually, dictio-
nary learning approaches are the most effective when the input
images are relatively small and the object of interest homoge-
neously localized. However, in practice, some limitations can
be observed: on the one hand, the larger the size of the im-
age, the further the disparity between images of the same class
increases and then the dictionary used would need a huge num-
ber of atoms in order to obtain an efficient sparse decomposi-
tion. On the other hand, the computational cost for encoding
operations (size and number of atoms) and learning will also
increase.

Dictionary learning methods have been used for reconstruct-
ing or classifying either full image or image patches. It means
that in practice, a signal yk can be either from an image or from
a patch reshaped as a column vector containing the pixel values.

We propose to decompose the image I into a set of patches
to obtain a local representation of the image. Image decompo-
sition is often performed using overlapping patches to obtain
a more accurate local description. The considered signals yk

are extracted from patches of a priori defined size, presented
in the form of vectors containing the values of the pixels (the
representation may be in colors or in gray levels). This type of
approach is used, for example, in denoising.

Moreover, classifying a set of patches extracted from an im-
age instead of the image itself is different, from the dictionary
methods point of view. Indeed, when dealing with patches, a
method to fuse the information extracted from the set of patches
composing an image is needed. This particular problem has
been studied by Yang et al. (2010) in which he chose to per-
form a single sparse coding step at patch level (with a patch
size smaller than the input image) followed by numerous pool-
ing steps in order to efficiently reduce the dimensions and to
obtain a multi-scale representation.

3. Multilayer dictionary structure

Intuitively, sparse coding can extract important characteris-
tics for reconstruction in unsupervised frameworks and for clas-
sification in supervised methods such as presented in Mairal
et al. (2012); Bradley and Bagnell (2008). We could use the
extracted codes directly with a classifier but, in order to achieve
good performances, we would need large atoms (about the size
of the input images) and a huge number of them to cope with
the image diversity. In practice, this approach is restricted by
the computation time.

In this paper, we propose a multilayer architecture. The
method is inspired by convolutional networks (LeCun et al.
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1 2
X′(q−1)

−→ Y(q) = {y(q)
k } −→ x(q)

k
3-4 5

x(q)
k −→ x′(q)

k′ −→ X′(q)

Table 1. Succession of operations at the q-th layer: Patch decomposition
1 , Encoding 2 , ReLU and Average-Pooling 3-4 , Concatenation 5

(1998)): the convolution by a filter is replaced by a sparse cod-
ing step. The idea is to reiterate the sparse coding layer in order
to increase the discriminability of the features.

The other goal of the proposed method is to control the di-
mension of the input patches by reducing the sparse coding of a
large image, computationally intensive, to the sparse coding of
small patches which can be processed more efficiently.

3.1. Definition of the multilayer structure
Encoding a vector on a dictionary is similar to projecting into

a new space. The projection is non-linear and the resulting vec-
tor is sparse. The vector is then used as new input for the fol-
lowing layer. So, adding another dictionary encoding step is
akin to doing another projection in a new coordinate system.
The process can be repeated many times, with as many dictio-
naries as the number of layers in the architecture.

The input of a layer q ∈ {1, ...,Q} is the 2D (or 3D) image
X′(0) for the first layer and 3D “image” X′(q−1) for the following
layers.

We develop below the different processing steps for the layer
q as represented in Table 1 and Fig. 2:

1. The input 3D image X′(q−1) is broken down into a set of
paches Y(q) = {y(q)

k } of size n × n × K(q−1) which are over-
lapping with stride = 1.

2. Each patch y(q)
k gives the code x(q)

k of size 1×1×K(q) when
encoded with the q-th dictionary D(q) of K(q) atoms.

3. The ReLU(x) = max(0, x) function is applied to each code
(see Yang et al. (2010)). This function eliminates the neg-
ative coefficients of a code vector and acts as a step which
introduces non-linearity.

4. The Average-Pooling function is also used to reduce size.
To do that, the 3D image from X(q) = {x(q)

k } is broken down
into m×m×K(q) small images. Each small image is reduced
to a vector x′(q)

k′ of size 1 × 1 × K(q) whose values are the
average of the m×m values associated with the component
pixels x(q)

k of the small image.
5. Since the spatial localization of the patches has been re-

tained, the set of sparse codes x′(q)
k′ can be concatenated as

a 3D volume X′(q) with a depth equal to the number K(q)

of atoms in dictionary D(q).
6. This 3D output volume X′(q) is treated as a 3D image input

where each pixel x′(q) is a vector of dimension K(q).

For the first layer, image X′(0) is the real 2D (or 3D) image
I. For the last layer Q, input image X′(Q−1) is broken down
into patches Y(q) which are encoded by the last dictionary D(Q)

3D image X’(2)

Input image X’(0) Patch Y(1) Sparse coding x(1)

Patch Y(2)Sparse coding x’(1)

Pooling

Fig. 2. Example of an architecture with 2 layers with ReLU and Pooling
operations. An input image I = X′(0) in presented to the first layer. The
image is decomposed into patches y(1)

k which are encoded by dictionary
D(1). The codes x(1)

k are processed into x′(1) and restructured into a 3D
volume X′(2) and then decomposed again into 3D patches y(2)

k in the second
layer. These patches are encoded using dictionary D(2).

giving the codes X(Q). Only the last codes X(Q) are used in the
classifier (Fig. 2).

Related works on multilayer dictionary learning have been
done by Tariyal et al. (2016). The approach is quite similar
with a faster but unsupervised learning process. The idea is to
decompose dictionary D in sub-dictionaries D(q) as represented
in Eq.9. Then the problem is to solve the system represented
for each layer q. Eq.10 gives the resolution for the first layer
q = 1. The last step is represented in Eq.11. This approach is
a simplified version of our proposal without using the labels of
the training set and without the patch-level processing.

min
D(1),··· ,D(Q),xk

m∑
k=1

‖yk − D(1) · · ·D(Q)xk‖
2
2 + φ(xk) (9)

min
D(1),z1k

m∑
k=q

‖yk − D(1)z1k‖
2
2, z1k = D(2) · · ·D(Q)xk (10)

min
D(Q),xk

m∑
k=1

‖z(Q−1)k − D(Q)xk‖
2
2 + φ(xk) (11)

4. Dictionary learning step

As the label of image I is l, the patches of the image are as-
sociated to the same label l. In this section, to simplify the no-
tations, each subscript k used for denoting the index of patches
or codes is tied to a specific layer q (it can be read as kq). The
upper index (q) denotes the q-th layer.

In order to optimize the multilayer architecture for classifica-
tion, it is necessary to find the optimal dictionaries at each layer
and the parameters of the classifier. Each dictionary is learned
for classification in a supervised manner.

To optimize the classification cost function with respect to
the dictionaries at each layer, we will use the back-propagation
algorithm. Therefore, we need to compute the gradients with
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Coding
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(2)^
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Update
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Update
W

D(1) D(2) W

L(l
k
, x

k
(2), W)^

Fig. 3. Structure with 2 layers. Input vectors Y(1) go through a sparse
coding step. We have Y(2) = f (X̂(1)) as input to the second layer. lk is
the label of the image and the function f models pulling and concatenation
operations. Back-propagation is then used to update both dictionaries D(1),
D(2) and the parameters W simultaneously.

respect to the various dictionaries D(1), · · · ,D(Q) as well as W
the parameters of the classifier.

For q ∈ {1, ...,Q− 1} and for the fixed dictionaries D(q) (same
as in (Eq.3))

x̂(q)
k = argmin

x
‖y(q)

k − D(q)xk‖
2
2 + Φ(xk) (12)

The codes x̂(q)
k of all layers q could be used by the classifier.

However, we decided only to use the output x̂(Q)
k of the last layer

as features for the classification (Fig. 3) in order to limit the
size of the descriptors. The cost function is minimized over the
entire training set of N images.

To use the back-propagation algorithm (i.e computing each
gradient using the chain rule, the gradient is computed the same
way as presented in Section 2.2 by replacing x̂k by x̂(q)

k and yk

by y(q)
k .

By extending the formulation given in Eq.4, we obtain:

min
W,D(1),··· ,D(Q)

N∑
k=1

L(lk, x̂(Q)
k ,W) (13)

where x̂(Q)
k is computed by Eq.12.

During this learning step, the cost function is modified to
penalize high values of W as in Eq.7:

L(lk, x̂k,W) = −

C∑
i=1

liklog(pik) + λ′‖W‖22 (14)

where pik is defined Eq.8.

4.1. Computation of the gradients at last layer Q
At first, for an image-label pair (I, l), the gradient

∇WL(lk, x̂(Q)
k ,W) of L with respect to W is computed.

Then, the gradient of L with respect to last layer dictionary
D(Q) is computed using Eq.5 and Eq.6. If we introduce the no-
tation using the layer number, the equation for the last layer Q
becomes:

∇D(Q)L(lk, x̂(Q)
k ,W) = D(Q)βx̂(Q)>

k + (y(Q)
k − D(Q)x̂(Q)

k )β> (15)

For the indexes contained in the set Λ, β is defined as:

βΛ = (D(Q)>
Λ

D(Q)
Λ

)−1∇x̂(Q)
kΛ

L(lk, x̂(Q)
k ,W) (16)

and β j = 0, if j < Λ. By choice, the output of the last layer is a
single code vector meaning that k = 1 for this Q-th layer.

4.2. Computation of the gradients at layer q
We underline that only the last layer Q is used in the clas-

sification step. To compute the gradient of the cost function
L(lk, x̂(Q)

k ,W) with respect to dictionary D(q) of the q-th layer
using Eq.5 and Eq.6, we need to compute ∇x̂(q)

kΛ

L(lk, x̂(Q)
k ,W).

That is why the gradient of layer q becomes:

∇D(q)L(lk, x̂(Q)
k ,W) = D(q)βx̂(q)>

k + (y(q)
k − D(q)x̂(q)

k )β> (17)

βΛ = (D(q)>
Λ

D(q)
Λ

)−1∇x̂(q)
kΛ

L(lk, x̂(Q)
k ,W) (18)

In Eq.18, only the term L(lk, x̂(Q)
k ,W) is used and not

L(lk, x̂(q)
k ,W) because only x̂(Q)

k is used for classification. The
computation of this gradient can be broken down in three terms:

∂L

∂x̂(q) =
∂L

∂x̂(q+1) .
∂x̂(q+1)

∂y(q+1) .
∂y(q+1)

∂x̂(q) (19)

The computation of the two first terms is quite simple:

• the term ∂L
∂x̂(q+1) is previously computed at layer q + 1.

• the term ∂x̂(q)

∂y(q) is given by derivation of Eq.12 and 0 else-
where.

∂x̂(q)
Λ

∂y(q) = (D(q)>
Λ

D(q)
Λ

)−1D(q)
Λ

(20)

From Eq.19 and Eq.20, it gives the term:

∂L

∂y(q+1) =
∂L

∂x̂(q+1) .
∂x̂(q+1)

∂y(q+1) (21)

The computation of the third term ∂y(q+1)

∂x̂(q) is more complex be-
cause y(q+1) is computed from x̂(q)

k by the sequence of functions
ReLU and Average-pooling giving x′(q)

k , concatenated into X′(q)

and broken down into patches y(q+1). So the back-propagation
includes an image “reconstruction” step to reverse the patch de-
composition such as represented in Table 2.

Each patch y(q+1) comes from the decomposition in patches
covering the 3D image X(q). We have ∂L

∂y(q+1) with the Eq.21:
these errors must be transferred to the “pixel” of X′(q) formed
from the patch overlay y(q+1). We have chosen to add up the
errors on the pixels of the same overlap 3 .

The concatenation operation 2 can be treated in the same
way, but this time without overlapping: each pixel keeps the
associated error.

For the Average−Pooling 1 function, we just distribute the
error of the pixel on the pixels that have been “pooled”. For
example, if each pixel x′(q) of X′(q) comes from four pixels x̂(q)

of X̂(q), the error associated with x̂(q) corresponds to a quarter
of the error associated with x′(q).

Finally, for the ReLU function, the errors associated with x̂(q)

are maintained where the coefficients of x̂(q) are greater than 0,
and equal to 0 everywhere else.
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x̂(q)
k −→ x′(q)

k′ −→ X′(q)
−→ Y(q+1) = {y(q+1)

k }

1 2 3

∂L
∂x̂(q) ←− ∂L

∂x′ (q)
k′

←− ∂L
∂X′(q) ←− ∂L

∂y(q+1)
k

Table 2. The first line represents the data processing. The second line rep-
resents the differential computation: Pooling 1 , Concatenation 2 , Patch

decomposition 3

4.3. Back-propagation of the gradient
We have opted for a stochastic gradient descent (SGD) as in

Bottou (2010) where, at each iteration, small groups of samples
(about ten) are used instead of a single sample to “smooth” the
direction of descent. At each iteration, a small number b of sig-
nals are selected in their order of appearance (Bottou (2012)):
at the first iteration, the first b signals (after random mixing) are
used, at the second iteration, the next b, and so on. Thus, the
learning set is cycled.

Stochastic Gradient Descent (SGD) is often used in Ma-
chine Learning algorithms. Its asymptotic convergence has
been proved for convex systems. Since our problem is not con-
vex, the convergence cannot be proved theoretically. However,
we rely on the same intuition as in Deep Learning which states
that finding a local minima is sufficient in practice.

Learning rate η used for the gradient descent decreases peri-
odically after a number of cycles (Krizhevsky et al. (2012)): it
is kept constant for two or three cycles and then it is divided by
two.

1. From an initial set of dictionaries {D1, ...,DQ} built for ex-
ample by unsupervised learning for image reconstruction,
we compute the optimal codes for the classification x̂ with
the Eq.12.

2. We compute the gradients with respect to W, and with re-
spect to the dictionaries.

3. We update W and the dictionaries with a gradient descent
step.

4. The training process is done until the minimum of cost
function L is reached: after each training cycle, loss and
accuracy are computed on the validation set.

5. Experiments

Numerous experimentations of image classification have
been done using different approaches such as Convolutional
Neural Networks CNN (Hinton et al. (2012)). Synthetic results
of image classification can be found in Mairal et al. (2014). In
this paper, we propose to test our approach on particular con-
ditions when the results of the “classical” approaches are less
efficient:

1. The size of the training dataset is limited (experiment 1)
2. The structure of the CNN is similar to our structure (num-

ber of layers, same pooling, ...) (experiment 2)
3. Transfer learning application (experiment 3).

5.1. Datasets used for testing

In order to compare the results of our approach, we tested
the proposed algorithm on the MNIST dataset (LeCun et al.
(1998)), CIFAR-10 dataset (Krizhevsky and Hinton (2009)) and
STL dataset (Coates et al. (2011)).

The first well-known MNIST dataset used for classification
is made up a set of handwritten digits divided in 10 classes (dig-
its 0 - 9) and contains 60, 000 28× 28× 1 pixels images of gray
level for training and 10, 000 for testing.

The second dataset is CIFAR-10 dataset and represents
more natural color images. Only a few works present classifica-
tion results on the CIFAR-10 dataset using a dictionary learning
method only. The CIFAR-10 image database is made up of real
color images of 32 × 32 × 3 pixels. It contains 10 classes and
60, 000 images distributed in a predefined and balanced way, in
50, 000 learning images and 10, 000 test images.

The STL dataset is particular because there are few images
labeled. The STL-10 image dataset consists of real color im-
ages of 96 × 96 × 3 pixels. It contains 10 classes and contains
10, 000 training images and 8, 000 test images. This database
also includes 100, 000 unlabeled images for unsupervised learn-
ing.

In order to facilitate the use of the algorithms, we have re-
sized the image databases to the dimensions of the CIFAR-10
dataset. Thus, the images of MINIST have been rescaled to
32 × 32 × 1 pixels and the images of STL are scaled to the size
32 × 32 × 3 pixels.

The images used in these experiments are small because we
had some constraints in computation resources. The method
proposed could be theoretically used on larger images but it
would require a more efficient implementation (i.e Python in-
stead of MATLAB, GPUs).

5.2. Parametrization

Several parameters must be configured in the architecture
proposed. An usual method to configure these parameters is
to search the parameter space using a cross validation on the
training set but this method needs a lot of experiments and com-
putational power. We chose these parameters according to their
properties.

The size of atoms and patches influences the patterns that
are learned. For example, small atoms (5 × 5 patch) will learn
simple patterns while larger atoms can learn “richer” patterns
but require larger dictionaries. In this work, we use patches of
size 5 × 5 pixels.

In order to compute x̂ with Eq.12, we choose the “Elastic-
net” regularization defined Eq.2 with λ1 = 0.1 and λ2 = 0.01.
The parameter λ2 with a small value allows the gradient descent
to be smoothed. The classifier chosen is a linear classifier cou-
pled with the Softmax function (Eq.7) where W is the vector of
parameters penalized by the parameter λ′. The initial step for
the gradient descent is η = 0.6 and the size of the batches for
each iteration is 10 signals. The learning step η is divided by
two every two cycles.

Unlike the context of reconstruction where the number of
atoms influences the ability to faithfully represent a signal by a
parsimonious code, in classification it is not necessary to have
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Architecture A-3-25 Architecture A-3-50
Inputs 32 × 32 × n 32 × 32 × n

Layer 1 5 × 5 - 25 atoms 5 × 5 - 50 atoms
f ReLU ReLU

Pooling 2 × 2, stride 2 Pooling 2 × 2, stride 2
Layer 2 5 × 5 - 25 atoms 5 × 5 - 50 atoms

f ReLU ReLU
Pooling 2 × 2, stride 2 Pooling 2 × 2, stride 2

Layer 3 5 × 5 - 50 atoms 5 × 5 - 100 atoms
f ReLU ReLU

Table 3. Two architectures with 3 layers used with our dictionary ap-
proach. n = 1 for gray level images. n = 3 for color images.

large dictionaries (“over-complete” case). In our architecture,
the dimensions of the dictionaries at the different layers are
linked, which limits their choice. Moreover, the limitation is
essentially due to the explosion of the computation time and
often we decide to choose a number of atoms smaller than the
dimension of the signal.

We chose to study some architectures (number of layers,
pooling, ...) which are specified in Table 3 and Table 4.

Architecture A-5-50
Inputs 32 × 32 × n

Layer 1 5 × 5 - 50 atoms
Layer 2 1 × 1 - 50 atoms

f Pooling 2 × 2, stride 2
Layer 3 5 × 5 - 50 atoms
Layer 4 1 × 1 - 50 atoms

f ReLU
Pooling 2 × 2, stride 2

Layer 5 1 × 1 - 100 atoms

Table 4. Architecture with 5 layers used with our dictionary approach. n =

1 for gray level images. n = 3 for color images.

These architectures have been defined in order to get only one
code at the last layer. For instance for the architecture A-3-25,

• The initial image of gray level is 32 × 32 × 1

• Layer 1: Decomposition of the image gives 28 × 28 × 1
patches of 5×5×1 patches (stride = 1 pixel, 28 = 32−4)

• Coding operation gives 28×28 codes of size K1 leading to
a 28 × 28 × K1 3D image.

• Pooling operation gives 14 × 14 × K1 codes

• Layer 2: Decomposition of the 3D image gives 10×10×K1
patches (10 = 14 − 4)

• Coding operation gives 10×10 codes of size K2 leading to
a 10 × 10 × K2 3D image.

• Pooling operation gives 5 × 5 × K2 codes

• Layer 3: The 3D image is one patch 5 × 5 × K2

• Coding operation gives a 1 × 1 × K3 code used for classi-
fication

5.3. Experiment 1: Limited training dataset

We have tested our approach on the dataset MNIST (LeCun
et al. (1998)) which gives good results with the whole training
set.

The two architectures A-3-25 and A-3-50 of three layers have
been tested. The two architectures are similar but the second
one has twice the number of atoms at each layer (Table 3).

In a first step, we compare the results obtained for various
approaches on MNIST dataset without data augmentation, on
the complete training dataset of 60K images (Table 5).

Type Approaches Test error in %
DL Tariyal et al. (2016) 1.36%
DL Yang et al. (2014) 0.84%

CNN Ranzato et al. (2007) 0.53%
Scattering Bruna and Mallat (2013) 0.40%

CNN Mairal et al. (2014) 0.39%
DL Architecture A-3-25 0.46%
DL Architecture A-3-50 0.41%

Table 5. Classification results for MNIST dataset with full trained dataset
of 60K, without data augmentation. The approaches are DL (Dictionary
Learning), Scattering and CNN (Convolutional Neural Network)

The results of the different approaches are relatively similar
for a full training set. As Mairal et al. (2014) do, we compare
the approaches when the training set is reduced, without data
augmentation (Table 6).

Training Size 300 1K 10K 60K
Ranzato et al. (2007) 7.2 3.2 0.9 0.5

Bruna and Mallat (2013) 4.7 2.3 0.9 0.4
Mairal et al. (2014) 4.2 2.1 0.9 0.4

A-3-25 λ′ = 0 5.6 2.7 0.8 0.4
A-3-25 λ′ = 0.01 3.7 1.9 0.8 0.5

Table 6. Test error in % for various approaches on MNIST dataset. The
parameter λ′ is defined in Eq.7

We can conclude on the importance of the parameter λ′

which penalizes the vector W (Eq.7). The explanation is proba-
bly that for 10k and 60k, the amount of training data is sufficient
(relative to the number of parameters) and penalizing the W-
weights prevents the “fitting” of the values to the data, which
slightly reduces performance. For smaller sets, it would be the
opposite: the W-weights limit “over-fitting”.

5.4. Experiment 2: Comparison with CNN results with similar
architecture

Because the MNIST dataset is relatively simple, we tested
our approach on the CIFAR-10 dataset. The classical CNN ap-
proach has good results on CIFAR-10 as Mairal et al. (2014)
state. It can be noted that the best performance given in this
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paper corresponds to Goodfellow et al. (2013) with 88.32%
but with data augmentation. The objective here is to compare
results with CNN approaches, but with similar architectures
(number of layers, similar pooling, ...).

The number of layers is determined as a function of the size
of the images to be processed. In this architecture, the output
is fixed to a single vector used for classification. That is why
an example of a proposed structure consists of 3 layers using
patches of size 5 × 5 shifted by 1 pixel and separated by “pool-
ing” operations of size 2 × 2.

The choice of the stride of 1 pixel is the smallest possible
and also the most expensive in calculation. However, it is also
the one that generally provides the best results: the effects of
choosing different stride values for classification are presented
by Coates et al. (2011). The tests are made for both CNN and
Dictionary approaches for architectures with three layers and
five layers as represented in Table 7.

Concerning the CNN, the tests are carried out using the Torch
library. The descriptors are extracted after the first full con-
nected layers as advocated by Razavian et al. (2014).

Type Methods Accuracy
DL Fawzi et al. (2015) 53.4%

Clustering Coates et al. (2011) 79.6%
DL Coates and Ng (2011) 81.5%
DL Lin and Kung (2014) 81.5%

CNN Mairal et al. (2014) 82.2%
CNN Hinton et al. (2012) 83.4%

Scattering Oyallon and Mallat (2015) 82.3%
CNN A-3-25 like + fully-connected layers 66.5%
CNN A-3-50 like + fully-connected layers 83.2%
CNN A-3-50 like + linear SVM 74.1%
DL A-3-25 + Softmax 78.9%
DL A-3-50 + Softmax 83.2%
DL A-5-50 + Softmax 83.9%

Table 7. Performance comparison on the CIFAR-10 dataset without data
augmentation. For the proposed architectures - DL: Dictionary + Softmax.
CNN: Convolutional Neural Network with same architecture as Dictionary
(Table 3 and Table 4) + fully-connected architecture and Softmax or linear
SVM

For CNN architectures, we first chose to use the same ar-
chitecture as for the Dictionary approach (A-3-25 like, A-3-50
like, A-5-50 like) which means three convolutional layers
for feature extraction followed by a fully connected output
layer with softmax activation. But the results were bad so we
decided to include two additional fully connected layers with
ReLU after the convolutional layers, still followed by a fully
connected output layer with softmax activation. We also tested
the previous CNN architecture for feature extraction followed
by a linear SVM classifier (see Table7). As expected, this
architecture gives worse results. However for the dictionary
learning approach for feature extraction, we only used one
output layer with softmax. For the same type of architecture
(A-3-25, A-3-50), we can notice that the dictionary learning
approach gives better or similar results as the CNN approach.

5.5. Experiment 3: Transfer learning

The transfer learning experiment consists in training the sys-
tem with one dataset (CIFAR-10 or ImageNet) and using it on
a different dataset (STL-10 dataset) to measure the ability of
the system to learn globally meaningful descriptors. STL-10
dataset is made up of real color images of 96× 96× 3 pixels re-
sized images at the 32×32×3 pixels (Coates et al. (2011)), and
ImageNet (Russakovsky et al. (2015)) is large database (fea-
tures 1K).

The method is broken down into three steps for the two ap-
proaches, CNN and DL:

1. Learning architecture on CIFAR10 or ImageNet (only for
CNN):

• Dictionary structures A-3-50 with linear SVM clas-
sifier.

• Full architecture VGG Net.

2. Learning classifier on STL learning database.

• Descriptors extracted with learned dictionary and
learning of linear SVM classifier.

• Features extracted with learned VGG Net (after first
full connected layer) and learning of linear SVM
classifier.

3. Test step on STL test database.

• Features extracted with learned dictionary and use of
learned linear SVM classifier

• Features extracted with learned VGG Net and use of
learned linear SVM classifier.

At steps 2 and 3, no re-learning is done: the descriptors are
extracted directly from the first learned architecture step and
then coupled with a linear SVM classifier.

Table 8 shows some performance comparisons with the un-
supervised methods of the state of the art to obtain descriptors
which are not suited to this specific classification task. This al-
lows the relevance of the descriptors learned on other datasets
to be estimated.

Transfer learning is a difficult task. As we can see, the full
VGG Net architecture learned on the large ImageNet database
(features 1K) gives better results: the classifier manages to give
74% with the test set. It is considered as the base line of transfer
learning.

Given the simplicity of the model (A-3-25) and the poor
CIFAR-10 training database, the dictionary learning approach
gives better results than the CNN approach, meaning that the
dictionary approach is more efficient to learn adequate descrip-
tors. This approach also provides better results than the unsu-
pervised learning methods of the state of the art, which illus-
trates the ability of the method to extract generic and discrimi-
native descriptors for classification.
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Type Training Methods Accuracy
STL

Clustering No Coates et al. (2011) 51.5%
DL No Coates and Ng (2011) 59.0%
DL No Lin and Kung (2014) 60.4%

CNN No Mairal et al. (2014) 62.3%
DL No Bo et al. (2013) 64.5%

CNN ImageNet VGG Net 74.0%
CNN CIFAR 10 A-3-50 like 45.0%

(83.2%)
DL CIFAR 10 A-3-50 66.4%

(83.2%)

Table 8. Comparison of performance of unsupervised (No) or trained
methods with the CIFAR-10 and ImageNet databases and applied to the
STL-10 database. In brackets, the percentage of the CIFAR-10 classifica-
tion as Table 7

6. Conclusion

The multilayer dictionary structure used to extract descrip-
tors from an image gives quite satisfactory results compared to
CNNs for classifying natural images when the learning set is re-
duced or in transfer learning applications. The patch decompo-
sition at all layers makes it possible to extract local information
that makes the classification more robust.

We still have not fully investigated this method and we will
continue to work on the proposed structure in order to study
the effects of the choices of the different parameters (dictionary
size, sparsity, number of layers). For future work, we will con-
front this method to more complex datasets, containing larger
images, to challenge the limit of this approach.

It could be possible to build hybrid architecture with convolu-
tional and dictionary layers. For example, it may be interesting
to replace the first dictionary layer by a convolutional layer to
compare their performances in selecting low-level attributes.

The tests of the system were carried out using the same algo-
rithm but with different settings. The Software implementation
has not been optimized. It should be noted that depending on
the parametrization chosen, the learning phase can be extremely
intensive in terms of computation time (experiments carried out
on a machine using 8 cores @2.67GHz and MATLAB). As a
consequence, the training phase can take up to several days.
However, predicting the label of an image can be done in a few
seconds.

It will be necessary to consider an implementation with a
strong parallelisation, which is quite possible considering the
multilayer structure of the system proposed and the decompo-
sition of the images into patches.
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