
HAL Id: hal-01882564
https://hal.science/hal-01882564

Submitted on 21 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe PLC Controller Implementation IEC 61131-3
Compliant based on a Simple SAT Solver: Application

to Manufacturing Systems
Romain Pichard, Philippot Alexandre, Bernard Riera

To cite this version:
Romain Pichard, Philippot Alexandre, Bernard Riera. Safe PLC Controller Implementation IEC
61131-3 Compliant based on a Simple SAT Solver: Application to Manufacturing Systems. Inter-
national Conference on Informatics in Control, Automation and Robotics (ICINCO), 2018, Porto,
Portugal. �10.5220/0006885502310239�. �hal-01882564�

https://hal.science/hal-01882564
https://hal.archives-ouvertes.fr

Safe PLC Controller implementation IEC 61131-3 compliant based
on a simple SAT solver:

Application to manufacturing systems

Romain PICHARD1, Alexandre PHILIPPOT1, Bernard RIERA1
1CReSTIC (EA3804), University of Reims Champagne Ardenne Moulin de la Housse,

BP 1039, 51687 Reims CEDEX 2, France

romain.pichard@univ-reims.fr, {alexandre.philippot, bernard.riera}@univ-reims.fr

Keywords: Discrete-Event Systems, Safety, Programmable Logic Controllers, Manufacturing Systems, Constraint

Programming.

Abstract: In this study, manufacturing systems are considered as Discrete Event Systems (DES) with logical Inputs

(sensors) and logical Outputs (actuators). In previous work, an original implementation of safe controllers

(using safety logical constraints) for manufacturing systems, based on the use of a CSP (constraint

satisfaction problem) solver, was proposed. However, the proposed solution was not IEC 61131-3

compliant. In other words, it was not possible to implement it in a PLC (Programmable Logic Controller).

In this paper, a proof of concept IEC 61131-3 compliant has been carried out. To perform this challenge, an

original simple CSP - SAT solver in ST (Structured Text) has been developed and programmed. The

algorithm has been tested and validated by using a M340 Schneider Electric PLC and a box sorting

simulated process using the FACTORY I/O software from the Real Games Company (www.realgames.co).

It seems to be the first time that a SAT solver developed for PLC, is used in real time as a part of a PLC

program to get a safe controller.

1 INTRODUCTION

In this work, manufacturing systems are considered

as Discrete Event Systems (DES) (Cassandras et al.,

1999) with logical Inputs (sensors) and logical

Outputs (actuators). The proposed approach for

control synthesis separates the functional control

part from the safety control part. The methodology is

based on the use of safety constraints or guards

placed at the end of the PLC program which act as a

logic filter in order to be robust to control errors.

Safety and functional requirements, separately

defined, provide an intuitive and natural way to

represent the safety constraints as well as a means to

simplify the definition of functional aspects

(Zaytoon and Riera, 2017). The safety requirements

are expressed as logic functions to set/reset the PLC

outputs. These logic functions should be formally

checked offline to verify their sufficiency (Marangé

et al., 2010) and their consistency (Pichard et al.,

2017). However, this approach cannot guarantee

deadlock-freeness. Furthermore, since the safety

aspects have priority over the functional aspects, the

execution of the resulting PLC program may not be

compliant to the functional specifications when they

violate the safety constraints (Pichard et al., 2018).

In a previous paper (Pichard et al., 2016), an original

implementation of this safe control synthesis

approach based on the use of a CSP (Constraint

Satisfaction Problem) solver was proposed. The

principle consisted of, at each scan time, to get all

outputs vectors respecting the set of safety

constraints and to select the closest, in the sense of

Hamming distance, from the functional outputs

vector. The proof of concept was performed using a

soft PLC developed in Python, which was not IEC

61131-3 standard compliant.

In this paper, we propose a PLC implementation IEC

61131-3 compliant. It is based on the development,

of a simple CSP solver in ST (Structured Text). This

work introduces the possibility to control

manufacturing systems by constraint programming.

The first part of the paper is dedicated to the concept

of Boolean guards for safe PLC program. In the

second part, the definition and mathematical

formalism used for the safety guards are detailed

then, it is shown that the problem is a SAT problem

(SATisfiability). The third part presents the SAT

solver algorithm developed for PLC. At last, an

experimental platform using a real PLC and a virtual

plant (sorting system) is used to validate the

approach.

It seems to be the first time that a SAT solver

algorithm developed for PLC, is used in real time as

a part of a PLC program to get a safe controller.

2 BOOLEAN GUARDS FOR SAFE

PLC PROGRAM

Since a PLC is a dedicated controller it will only

process this one program over and over again. One

cycle through the program is called a scan time and

involves reading the inputs (I) from the other

modules (input scan), executing the logic based on

these inputs (logic scan) and then updated the

outputs (O) accordingly (output scan). The memory

in the CPU stores the program while also holding the

status of the I/O and providing a means to store

values. A controller at each PLC scan time has to

compute the outputs values (controllable variables)

based on inputs (uncontrollable variables) and

internal memories. The use of a memory map

enables to guarantee that all the calculations are

performed with inputs values which are not modified

during a PLC scan time. Outputs update is

performed with the last outputs calculation in the

PLC program. These three basic stages of operations

(input scan, logic solve and output scan) are repeated

at each scan time.

The idea proposed by (Marangé et al., 2010) is to

place a logic filter between the logic solve and the

output scan. The goal of this filter is to detect and

compensate control errors (Figure 1).

Figure 1: Principle of the logic filter.

Three use cases can be thought of doing with the

logic filter: safe blocking, supervisor, and controller

(Riera et al., 2015). In the first case, when a safety

constraint is violated, the controller is frozen in a

safe state which is supposed known. The supervisory

approach consists in correcting the control errors

without blocking the controller. This enables for

instance to safe existing PLC program without

changing the code. The controller approach is

similar to the supervisor approach. The main

difference is that in the design of the controller, it is

taken into account by the designer that the safety

part is managed by the safety constraints. Hence,

there is a separation between functional and safety

aspects of the controller. In addition, even if the

functional part is badly defined, the system remains

safe (Riera et al., 2015). Contrary to the supervisor

approach, the fact to violate a safety constraint can

be seen as normal behavior of the controller. This

last approach modifies the way to design a PLC

program but presents several advantages (tasks

synchronization, management of running modes,

connection to a Manufacturing Execution System

…). However, control design based on logical

constraints involves 2 main difficulties:

1) Constraints definition and validation which

are not always easy to manage. We suppose in this

paper that the designer has got a correct set of safety

constraints.

2) The proposal of a control algorithm which

defines, when one or several constraints are violated,

a safe outputs vector compliant with all the safety

constraints.

We have already proposed several algorithms to

compute at each PLC scan time a safe outputs vector

(Pichard et al., 2016, Pichard et al., 2018). One of

them is based on CSP to perform the detection and

the correction stages. The main advantage of this

approach is that it is not necessary to define priority

between outputs when a constraint is violated.

However, this approach has not yet been

implemented and tested with a PLC.

3 BOOLEAN SAFETY

CONSTRAINTS FORMALISM

The notations used in this paper are based on the

Boolean algebra and PLC programming. 0 means

False and 1 means True. Σ and Π are respectively

the logical sum (OR) and the logical product (AND)

of logical variables. ΣΠ is a logical polynomial

(sum of products expression also called SIGMA-PI).

“.”, “+”, “⊕” “‾‾” are respectively the logical

operators AND, OR, XOR and NOT. t is the current

scan time (from PLC point of view), t-1 is the

previous PLC scan time. ok = ok(t) is the logical

variable corresponding to the kth variables at the tth

PLC scan time. Outputs at t are considered as the

one and only variables that can be controlled (write

variables) at each PLC scan time. All other PLC

variables (inputs, previous outputs…) are

uncontrollable (read-only variables). O is the set of

output variables at t. Y is the set of uncontrollable

variables at t, t-1, t-2… No is the PLC Boolean

outputs number. NCSs is the Simple Safety

Constraints number. NCSc is the Combined Safety

Constraints number.

The proposed methodology to design safe

controllers is based on the use of logical safety

constraints, which act as logical guards placed at the

end of the PLC program, and forbid sending unsafe

control to the plant (Marangé et al., 2010). The set

of safety constraints (or guards) acts as a control

filter. Some guards involve a single output at time t

(called simple safety constraints CSs), other

constraints involve several outputs at time t

(combined safety constraints CSc). Safety

constraints are not always depending only on PLC

inputs at t. It may be necessary to define

supplementary uncontrollable variables called

observers. Observers are memories enabling to get a

combinatory constraint.

In this approach, it is assumed that the safety

constraints can always be represented as a monomial

and depend on the inputs (at time t, t-1, t-2…),

outputs (at time t, t-1, t-2…) and observers

(depending ideally on only inputs (at time t, t-1, t-

2…). In the initial methodology (Marangé et al.

2010), the control filter is validated offline by

model-checking (Behrmann et al., 2002) and stops

the process in a safe state if a safety constraint (CSs

and CSc) is violated.

In this paper, CSs and CSc are represented

(equations (1) and (2)) as logical monomial

functions (Π, logical products of variables but not

necessarily minterms) which have always to be

False at the end of each PLC scan time, before

updating the outputs, in order to guarantee the

safety. It is important to note that each CSs depends

only on one controllable variable (output: ok) at time

t and that each CSc depends on several controllable

variables (outputs: ok, ol,…) at time t.

 (1)

 (2)

To guarantee the safety, CSs and CSc must be False

(=0) in the PLC program before updating outputs,

the logical sum of safety constraints computed with

all ok has to be False (equation 3). It is the detection

function of the logic filter. A PLC program can be

considered as safe if, for the outputs vector

, equation (3) is verified before

output scan.

 (3)

There are only 2 exclusive forms of simple safety

constraints (CSs) because they are expressed as a

monomial function, and they only involve a single

output at time t (equation (4)):

with (4)

These simple safety constraints (CSs) express the

fact that if , which is a monomial (product)

function of only uncontrollable variables at t, is

True, ok must be necessarily False in order to keep

the constraints equal to 0. If is True, ok must

be necessarily True. In addition, it is not possible to

have and true simultaneously. For

each output, it is possible to write equation (5)

corresponding to a logical OR of all simple safety

constraints.

 (5)

 is a logical ΣΠ function independent of

the other outputs at t because only CSs are

considered. can be developed in equation

(6) where and are polynomial functions

(sum of products, ΣΠ) of uncontrollable (read-only)

variables. Equation (6) has always to be False

because all simple safety constraints must be False

at the end of each PLC scan time. To simplify

equations, a logical function can be represented by a

logical variable having the same name.

 (6)

From equations (5) and (6), it is possible to write

equation (7).

(7)

The outputs vector can be considered as safe at the

end of the PLC scan time if equation (8) is checked.

 (8)

One can notice that we have got a set of safety

constraints and a formalism which is compliant with

a constraints satisfaction problem (CSP) to find a

safe outputs vector. To be more precise, it is a

Boolean satisfiability problem (sometimes called

propositional satisfiability problem and abbreviated

as SATISFIABILITY or SAT (Vizel et al., 2015)).

The problem consists of determining if there exists

an interpretation that satisfies a given Boolean

formula. In other words, it asks whether the

variables of a given Boolean formula can be

consistently replaced by the values True or False in

such a way that the formula evaluates to True. If this

is the case, the formula is called satisfiable. On the

other hand, if no such assignment exists, the

function expressed by the formula is False for all

possible variable assignments and the formula is

unsatisfiable. For example, the formula "NOT a

AND NOT b" is satisfiable because one can find the

values a = False and b = False, which make (NOT a

AND NOT b) = TRUE. In contrast, "b AND NOT

b" is unsatisfiable.

4 SAFE PLC CONTROLLER

BASED ON A SIMPLE SAT

SOLVER

CSP are mathematical problems defined as a set of

objects whose state must satisfy a number of

constraints or limitations (Hooker, 2000) (Krzysztof,

2003) (Tsang, 1993). CSP represent the entities in a

problem as a homogeneous collection of finite

constraints over variables, which is solved by

constraint satisfaction methods. CSP are the subject

of intense research in both artificial intelligence and

operations research, since the regularity in their

formulation provides a common basis to analyze and

to solve problems of many seemingly unrelated

families. CSP often exhibit high complexity,

requiring a combination of heuristics and

combinatorial search methods to be solved in a

reasonable time. Formally, in this work, a constraint

satisfaction problem is defined as a triple:

 is the set of outputs variables,

 is a set of the respective

domains of values,

 is the set of simple safety constraints and combined

safety constraints.

Each variable oi can take a value in the nonempty

domain . Every constraint Crk is, in

turn, a pair where is a subset of k

variables and Rj is an k-ary relation on the

corresponding subset of domains . An

evaluation of the variables o is a function from a

subset of variables to a particular set of values in the

corresponding subset of domains. An evaluation v

satisfies if the values assigned to the

variables satisfies the relation Rj. An evaluation is

consistent if it does not violate any of the

constraints. An evaluation is complete if it includes

all variables. An evaluation is a solution if it is

consistent and complete.

A CSP solver, at each PLC scan time, can supply all

the safe output vectors based on the safety

constraints. From these, in our approach, we select

the first one which is the closest from the functional

output vectors. For that, the Hamming distance is

used. In information theory, the Hamming distance

between two strings of equal length is the number of

positions at which the corresponding symbols are

different. In another way, it measures the minimum

number of substitutions required to change one

string into the other, or the minimum number of

errors that could have transformed one string into

the other. This heuristic is simple and seems

appropriate. Indeed, if the Hamming distance is null,

this means that the functional outputs vector is safe

and can be updated. If the Hamming distance is

different from 0, this means that the functional

outputs vector is not safe. One can suppose that the

functional part of the controller performed by the

expert is not out of sense. Hence, selecting the safe

outputs vector which has got the smallest Hamming

distance from the functional one enables to select the

closest outputs vector has got the maximum chance

to achieve the production (i.e. functional) goals. Of

course, that will work if the functional part of the

controller is partially correctly designed. However,

whatever the functional part (even if it is really

badly designed), the system will remain safe.

5 IMPLEMENTATION IN A PLC

Today, PLC does not include CSP solver. In a

previous paper (Pichard et al., 2016), a soft PLC in

IronPython was used to preliminary test the idea and

to get a proof of concept. We used the package

“logilab-constraint”, an open source constraint

solver written in pure Python with constraint

propagation algorithms. The proposed control

algorithm calculated at each scan all the safe outputs

vectors and selects the one with the minimum

Hamming distance compared to the Functional

Output Vector (FOV). The control algorithm based

on CSP has been implemented successfully, with no

problem of time calculation. However, it is

important to test the concept with real PLC. For that,

it is necessary to develop a SAT solver in ST

(Structured Text) compliant with the IEC 61131-3.

This development seems possible because the

structure of the safety constraints is known and

simple (monomial), moreover only 1 solution is

required. In addition, because of the structure of

manufacturing systems (subsystems interconnected),

the number of CSc violated at each PLC scan time is

low. In this paper, we propose a simple SAT solver

algorithm which can be implemented easily in ST,

whatever the PLC brand in order to satisfy the

Boolean safety constraints problem.

5.1 The proposed Hamming-based
SAT solver

Classical SAT solver algorithm is based on recursive

functions. However, it is not possible to perform a

recursive program in a PLC by using languages from

IEC 61131-3 standard. In addition, it is necessary to

avoid to trigger the PLC watchdog.

The objective of the proposed SAT solver algorithm

(Algorithm 1) is to test, at each PLC scan time, the

functional outputs vector (array FOV) given by the

PLC program (cf. Figure 1). If at least 1 constraint is

violated by FOV, new values of actuators must be

computed (array solution). The sensors values and

internal variables values are grouped in vector I, this

vector is given as entry of the algorithm to compute

the constraints values.

The main idea of the proposed algorithm is to find

the closest values to FOV values (i.e. changing

minimum values’ number of FOV). This is carried

out by using the Hamming distance. Indeed, all the

possible vectors with an increasing Hamming

distance are computed, then as soon as a vector

solved every constraint, this vector is used as the

solution and applied to the outputs values.

In order to improve the algorithm efficiency, 2

vectors are tested simultaneously: the closest

(minimum Hamming distance) and the farthest

(maximum Hamming distance). The farthest is

computed by complementing the closest’s values. If

the closest solved the problem, the algorithm is

stopped and the closest is used as the solution. Else,

if the farthest solved the constraints, it is memorized.

With this approach, the computation time is almost

divided by 2. At last, if no closest vector has solved

the constraints, the latest farthest vector is used as

the solution. Indeed, the last memorized farthest

vector has the minimum hamming distance.

function HammingFilter(Boolean[] FOV, Boolean[] I)
 Compute the values of FS0 and FS1;

 solution := Initialize the solution vector by applying the FS to

the vector FOV;
 Test the CSc with solution

 If CSc are not solved

 index := Find the index of the free actuators
 For k = 1 to dim(index)/2

 closest := Compute the first closest k-subset

 Test the CSc with closest
 If CSc are not solved

 farthest := Compute the first farthest k-subset by

inversing closest
 Test the CSc farthest

 farthestSolution := Store the farthest if it solved the

CSc
 Repeat

 If a new k-subset exists

 closest := Compute the next closest k-subset
 Test the CSc with closest

 If CSc are not solved

 farthest := Compute the next farthest k-
subset by inversing closest

 Test the CSc with farthest

 farthestSolution := Store the farthest if it
solved the CSc

 endif

 Until the problem is solved or all the k-subset

are tested

 endif

 If closest solved the CSc
 solution := closest //Use closest as solution

 exit

 endif
 endfor

 If the closest doesn't solve the CSc

 If the farthest solved the CSc
 solution := farthest //Use farthest as solution

 Else

 solution := Compute the worst case by
complementing the values in FOV of the free variables

 endif

 endif
 endif

 return solution

end

Algorithm 1: Hamming-based SAT solver algorithm.

We proposed in the next section (section 5.2) an

implementation of the proposed algorithm in

Structured Text language.

5.2 Implementation in ST (Structured
Text, IEC 61131-3)

The implementation respects the algorithm

previously presented. Hence, the algorithm stops as

soon as a solution (array of Boolean: mem) is found.

The entry of the algorithm is vector I (sensors and

internal variables values) and the functional outputs

vector (array FOV). The set and reset functions F0s

and F1s are computed by using the I values. At each

scan time, from the number of output variables (No),

the number of output variables that can be modified

to solve the set of CSc is determined (Noc). This is

done through the subroutine initCSC where the

result (GG) is an array of integers) which indicates

outputs variables implied in violated CSc. An array

(tabMot2) of integers with a size of Noc stores the

index of these output variables. For generating all

combinatorial combinations of tabMot2,

incrementing the Hamming distance, we have

adapted an algorithm found in (Cameron, 1994). For

instance, if one considers a word of 3 bits,

corresponding respectively to 3 output variables that

can be changed, the sequence, where each object is

represented by the array HamMot, will generate in

this order:

- Hamming distance of 1: 100, 010, 001

- Hamming distance of 2: 110, 101, 011

- and finally, Hamming distance of 3: 111.

For instance, let’s suppose that No=5 (5 outputs: O0,

O1, O2, O3, O4), Noc =3, with tabMot2[0]=1

(corresponding to O1), tabMot2[1]=3

(corresponding to O3) and tabMot2[2]=4

(corresponding to O4). If HamMot[0]=0,

HamMot[1]=1 and HamMot[2]=1, this means that

the solution inverting O3 and O4 is going to be

tested. In addition, in this case GG[0]=False,

GG[1]=True, GG[2]=False, GG[3]=True and

GG[4]=True.

The 2 subroutines test_CSC and calcul_CSC

respectively test if a CSC is violated, and calculate

the CSC. As already noticed, in order to improve the

algorithm performance speed, 2 solutions: k and

Noc-k Hamming distances are calculated (arrays

mem and membis1) at each loop.

FOR k := 0 TO (No-1) DO

 mem[k] := NOT F0s[k] AND FOV[k] OR F1s[k];

 membis1[k]:= NOT F0s[k] AND NOT FOV[k] OR F1s[k];

END_FOR;

tabMot:=mem;

calcul_CSC();

test_CSC();

IF Flag THEN

 Flagbis:=TRUE;

 initCSC();

 Noc := 0;

 FOR i := 0 TO (No-1) DO

 IF NOT F0s[i] AND NOT F1s[i] and GG[i] THEN

 tabMot2[Noc]:=i;

 Noc:=Noc+1;

 END_IF;

 END_FOR;

 maxHam:=Noc;

 FOR k := 1 to DIV(Noc,2) do

 Flag1:=TRUE;

 FOR ii := 0 TO k-1 DO (* First k-subset *)
 HamMot[ii]:=TRUE;

 END_FOR;

 FOR ii := k TO Noc-1 DO

 HamMot[ii]:=FALSE;

 END_FOR;

 FOR i := 0 TO (Noc-1) DO (* test first k-subset *)

 IF HamMot[i] THEN

 mem[tabMot2[i]]:=NOT tabMot[tabMot2[i]];

 ELSE

 mem[tabMot2[i]]:=tabMot[tabMot2[i]];

 END_IF;

 END_FOR;

 calcul_CSC();

 test_CSC();

 IF Flag and (maxHam>Noc-k) THEN

 FOR i := 0 TO (Noc-1) DO (* test first k-subset *)

 IF HamMot[i] THEN

 mem[tabMot2[i]]:=tabMot[tabMot2[i]];

 ELSE

 mem[tabMot2[i]]:=NOT tabMot[tabMot2[i]];

 END_IF;

 END_FOR;

 calcul_CSC();

 test_CSC(); (* bis*)

 IF NOT Flag THEN

 Flagbis:=FALSE;

 membis1:=mem;

 maxHam:=Noc-k;

 Flag:=TRUE;

 END_IF;

 REPEAT (* Next k-subset *)

 cpt := 0;

 FOR i:=0 TO Noc-2 DO

 IF HamMot[i] THEN

 cpt:=cpt+1;

 IF NOT HamMot[i+1] THEN EXIT;

 END_IF;

 END_IF;

 END_FOR;

 IF i=Noc-1 THEN flag1:=FALSE;

 ELSE

 HamMot[i]:=FALSE;

 HamMot[i+1]:=TRUE;
 FOR j := 0 TO i-1 DO

 HamMot[j]:=FALSE;

 END_FOR;

 WHILE (cpt>1) DO

 HamMot[cpt-2]:=TRUE;

 cpt:=cpt-1;

 END_WHILE;

 FOR i := 0 TO (Noc-1) DO

 IF HamMot[i] THEN

 mem[tabMot2[i]]:=

 NOT tabMot[tabMot2[i]];

 ELSE

 mem[tabMot2[i]]:=

 tabMot[tabMot2[i]];

 END_IF;

 END_FOR;

 calcul_CSC();

 test_CSC();

 IF Flag and (maxHam>Noc-k) THEN

 FOR i := 0 TO (Noc-1) DO

 IF NOT HamMot[i] THEN

 mem[tabMot2[i]]:=

 NOT tabMot[tabMot2[i]];

 ELSE

 mem[tabMot2[i]]:=

 tabMot[tabMot2[i]];
 END_IF;

 END_FOR;

 calcul_CSC();

 test_CSC(); (* bis*)

 IF NOT Flag THEN
 Flagbis:=FALSE;

 membis1:=mem;

 maxHam:=Noc-k;

 Flag:=TRUE;

 END_IF;

 END_IF;

 END_IF;

 UNTIL NOT Flag OR NOT Flag1 END_REPEAT;

 END_IF;

 IF NOT Flag THEN EXIT; END_IF;

 END_FOR;

 IF Flag THEN

 IF NOT Flagbis THEN mem:=membis1;

 ELSE

 FOR i:= 0 TO (Noc-1) DO

 mem[tabMot2[i]]:=NOT tabMot[tabMot2[i]];

 END_FOR;

 calcul_CSC();

 test_CSC();

 IF Flag THEN

 FOR i := 0 TO (No-1) DO

 mem[i] := NOT F0s[i] AND F1s[i];

 END_FOR;

 END_IF;

 END_IF;

 END_IF;

END_IF;

(* update outputs with mem*)

Figure 2: simple SAT solver in ST.

The control algorithm has been implemented in a

real PLC and tested by the mean of a virtual system

from the software FACTORY I/O

5.3 Sorting system application

FACTORY I/O (https://factoryio.com/) is a new

generation of 3D factory simulation for learning

automation technologies. It integrates most of the

features described in the paper “Virtual systems to

train and assist control applications in future

factories” (Riera and Vigario, 2013). Designed to be

easy to use, it allows to quickly build a virtual

factory using a selection of common industrial parts.

FACTORY I/O also includes many scenes inspired

by typical industrial applications ranging from

beginner to advanced difficulty levels. We propose

in this paper to use the same benchmark as in the

previous paper (Pichard et al., 2016): the sorting

system. The main goal of the “sorting system” is to

transport and sort cardboard boxes by height using a

turntable (Figure 3).

Figure 3: Sorting system from FACTORY I/O.

The descriptions of sensors, actuators and safety

constraints used for this example are presented in the

previous paper (Pichard et al., 2016).

The control algorithm based on CSP has been

successfully implemented in a real M340 PLC. The

connection between the PLC and FACTORY I/O is

performed using USB I/O DAQ (cf. Figure 4). With

this device, the PLC does not see difference between

real and virtual plant.

We did not have any problem with time calculation

and a scan time of 5 ms was respected for the PLC.

In this example, with the functional part of the

https://factoryio.com/

controller, the maximum Hamming distance is 2,

and the time to execute the SAT solver algorithm is

always less than 1 ms.

Figure 4: Experimental platform with M340 PLC,

FACTORY I/O and USB DAQ Advantech 4750.

6 CONCLUSION

This paper has proposed an implementation of a safe

control synthesis method based on the use of safety

guards (represented as a set of logical constraints

which can be simple or combined) with a SAT

solver developed in ST (Structured Text) compliant

with the IEC 61131-3 standard for PLC. This

approach to PLC programming makes safety a

priority and allows for a controller to create a safe

environment where functional and safety aspects are

clearly separated. The algorithm has been

successfully tested with a real M340 PLC and a

virtual sorting system. The controller code is

efficient. However, even if the controller is safe, it is

not deterministic and it has to be proved that the

minimum Hamming distance compared to the

functional output vector is suitable in the sense of

the specification of the functional control. It seems

to be the first time that, a controller based on the use

in real time of a SAT solver, is implemented in a

real PLC. Even if the idea of using a SAT solver in a

PLC presents several advantages, the proposed

control methodology is very different from the

“traditional” way to design controllers of the

automated production system. However, it seems

interesting to the control of cyber physical systems

(CPS) in the framework of Industry 4.0.

REFERENCES

Behrmann, G., Bengtsson, J., David, A., Larsen, K.-G.,

Pettersson, P., Yi, W., 2002. Uppaal implementation

secrets. 7th International Symposium on Formal

Techniques in Real-Time and Fault Tolerant Systems.

In Springer, Verlag London, UK 2002: 3-22.

Cameron, P. J. Combinatorics: Topics, Techniques,

Algorithms. Cambridge University Press, 1994

(reprinted 1996). ISBN 0521457610.

Cassandras C. G., Lafortune S. (1999). Introduction to

discrete event systems. Boston, MA: Kluwer

Academic Publishers.

Hooker J (2000). Logic-Based Methods for Optimization -

Combining Optimization and Constraint Satisfaction.

Wiley-Interscience series in discrete mathematics and

optimization. John Wiley and Sons, 2000.

IEC INTERNATIONAL STANDARD 61131-3 (2003).

Programmable controllers – Part 3: Programming

languages. Reference number CEI/IEC 61131-3:

2003.

Krzysztof A. (2003). Principles of Constraint

Programming. Cambridge University Press, ISBN:

0521825830, New York, NY, USA.

Marangé P., Benlorhfar R., Gellot F., Riera B. (2010).

Prevention of human control errors by robust filter

for manufacturing system, 11th

IFAC/IFIP/IFORS/IEA Symposium on Analysis,

Design, and Evaluation of Human-Machine Systems,

Valenciennes, France.

Pichard, R., Rabah, N. B., Carre-Menetrier, V., & Riera,

B. (2016). CSP solver for Safe PLC Controller:

Application to manufacturing systems. IFAC-

PapersOnLine, 49(12), 402-407.

Pichard, R., Philippot, A., & Riera, B. (2017). Consistency

Checking of Safety Constraints for Manufacturing

Systems with Graph Analysis. IFAC-PapersOnLine,

50(1), 1193-1198.

Pichard, R., Philippot, A., Saddem, R., & Riera, B. (2018).

Safety of Manufacturing Systems Controllers by

Logical Constraints With Safety Filter. IEEE

Transactions on Control Systems Technology.

Riera B., Philippot A., Coupat R., Gellot F., Annebicque

D. (2015). A non-intrusive method to make safe

existing PLC Program, 9th IFAC Symposium on

Fault Detection, Supervision and Safety for Technical

Processes (SAFEPROCESS'15), Paris, France,

September 2015.

Riera, B. Vigario, B (2013). Virtual Systems to Train and

Assist Control Applications in Future Factories.

IFAC Analysis, Design, and Evaluation of Human-

Machine Systems, Volume # 12 | Part# 1, pp 76-81,

Elsevier, Las Vegas, 2013.

Tsang E.P.K. (1993). Foundations of Constraints

Satisfaction, Academic Press Limited, UK, 1993.

Vizel, Y., Weissenbacher, G., Malik, S. (2015). Boolean

Satisfiability Solvers and Their Applications in Model

Checking. Proceedings of the IEEE 103 (11).

doi:10.1109/JPROC.2015.2455034.

Zaytoon, J. and Riera, B. Synthesis and implementation of

logic controllers – A review. Annual Reviews in

Control, Volume 43, 2017, Pages 152-168, 2017.

