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Abstract: In this study, manufacturing systems are considered as Discrete Event Systems (DES) with logical Inputs 

(sensors) and logical Outputs (actuators). In previous work, an original implementation of safe controllers 

(using safety logical constraints) for manufacturing systems, based on the use of a CSP (constraint 

satisfaction problem) solver, was proposed. However, the proposed solution was not IEC 61131-3 

compliant. In other words, it was not possible to implement it in a PLC (Programmable Logic Controller). 

In this paper, a proof of concept IEC 61131-3 compliant has been carried out. To perform this challenge, an 

original simple CSP - SAT solver in ST (Structured Text) has been developed and programmed. The 

algorithm has been tested and validated by using a M340 Schneider Electric PLC and a box sorting 

simulated process using the FACTORY I/O software from the Real Games Company (www.realgames.co). 

It seems to be the first time that a SAT solver developed for PLC, is used in real time as a part of a PLC 

program to get a safe controller.  

1 INTRODUCTION 

 

In this work, manufacturing systems are considered 

as Discrete Event Systems (DES) (Cassandras et al., 

1999) with logical Inputs (sensors) and logical 

Outputs (actuators). The proposed approach for 

control synthesis separates the functional control 

part from the safety control part. The methodology is 

based on the use of safety constraints or guards 

placed at the end of the PLC program which act as a 

logic filter in order to be robust to control errors. 

Safety and functional requirements, separately 

defined, provide an intuitive and natural way to 

represent the safety constraints as well as a means to 

simplify the definition of functional aspects 

(Zaytoon and Riera, 2017). The safety requirements 

are expressed as logic functions to set/reset the PLC 

outputs. These logic functions should be formally 

checked offline to verify their sufficiency (Marangé 

et al., 2010) and their consistency (Pichard et al., 

2017). However, this approach cannot guarantee 

deadlock-freeness. Furthermore, since the safety 

aspects have priority over the functional aspects, the 

execution of the resulting PLC program may not be 

compliant to the functional specifications when they 

violate the safety constraints (Pichard et al., 2018).  

In a previous paper (Pichard et al., 2016), an original 

implementation of this safe control synthesis 

approach based on the use of a CSP (Constraint 

Satisfaction Problem) solver was proposed. The 

principle consisted of, at each scan time, to get all 

outputs vectors respecting the set of safety 

constraints and to select the closest, in the sense of 

Hamming distance, from the functional outputs 

vector. The proof of concept was performed using a 

soft PLC developed in Python, which was not IEC 

61131-3 standard compliant.  

In this paper, we propose a PLC implementation IEC 

61131-3 compliant. It is based on the development, 

of a simple CSP solver in ST (Structured Text). This 

work introduces the possibility to control 

manufacturing systems by constraint programming. 

The first part of the paper is dedicated to the concept 

of Boolean guards for safe PLC program. In the 

second part, the definition and mathematical 

formalism used for the safety guards are detailed 



then, it is shown that the problem is a SAT problem 

(SATisfiability). The third part presents the SAT 

solver algorithm developed for PLC. At last, an 

experimental platform using a real PLC and a virtual 

plant (sorting system) is used to validate the 

approach.  

It seems to be the first time that a SAT solver 

algorithm developed for PLC, is used in real time as 

a part of a PLC program to get a safe controller. 

2 BOOLEAN GUARDS FOR SAFE 

PLC PROGRAM 

Since a PLC is a dedicated controller it will only 

process this one program over and over again. One 

cycle through the program is called a scan time and 

involves reading the inputs (I) from the other 

modules (input scan), executing the logic based on 

these inputs (logic scan) and then updated the 

outputs (O) accordingly (output scan). The memory 

in the CPU stores the program while also holding the 

status of the I/O and providing a means to store 

values. A controller at each PLC scan time has to 

compute the outputs values (controllable variables) 

based on inputs (uncontrollable variables) and 

internal memories. The use of a memory map 

enables to guarantee that all the calculations are 

performed with inputs values which are not modified 

during a PLC scan time. Outputs update is 

performed with the last outputs calculation in the 

PLC program. These three basic stages of operations 

(input scan, logic solve and output scan) are repeated 

at each scan time. 

The idea proposed by (Marangé et al., 2010) is to 

place a logic filter between the logic solve and the 

output scan. The goal of this filter is to detect and 

compensate control errors (Figure 1).  

 

 

Figure 1: Principle of the logic filter. 

Three use cases can be thought of doing with the 

logic filter: safe blocking, supervisor, and controller 

(Riera et al., 2015). In the first case, when a safety 

constraint is violated, the controller is frozen in a 

safe state which is supposed known. The supervisory 

approach consists in correcting the control errors 

without blocking the controller. This enables for 

instance to safe existing PLC program without 

changing the code. The controller approach is 

similar to the supervisor approach. The main 

difference is that in the design of the controller, it is 

taken into account by the designer that the safety 

part is managed by the safety constraints. Hence, 

there is a separation between functional and safety 

aspects of the controller. In addition, even if the 

functional part is badly defined, the system remains 

safe (Riera et al., 2015). Contrary to the supervisor 

approach, the fact to violate a safety constraint can 

be seen as normal behavior of the controller. This 

last approach modifies the way to design a PLC 

program but presents several advantages (tasks 

synchronization, management of running modes, 

connection to a Manufacturing Execution System 

…). However, control design based on logical 

constraints involves 2 main difficulties:  

1) Constraints definition and validation which 

are not always easy to manage. We suppose in this 

paper that the designer has got a correct set of safety 

constraints. 

2) The proposal of a control algorithm which 

defines, when one or several constraints are violated, 

a safe outputs vector compliant with all the safety 

constraints.  

We have already proposed several algorithms to 

compute at each PLC scan time a safe outputs vector 

(Pichard et al., 2016, Pichard et al., 2018). One of 

them is based on CSP to perform the detection and 

the correction stages. The main advantage of this 

approach is that it is not necessary to define priority 

between outputs when a constraint is violated. 

However, this approach has not yet been 

implemented and tested with a PLC.  

3 BOOLEAN SAFETY 

CONSTRAINTS FORMALISM 

The notations used in this paper are based on the 

Boolean algebra and PLC programming. 0 means 

False and 1 means True. Σ and Π are respectively 

the logical sum (OR) and the logical product (AND) 

of logical variables. ΣΠ is a logical polynomial 

(sum of products expression also called SIGMA-PI). 



 

 

     

 

“.”, “+”, “⊕” “‾‾” are respectively the logical 

operators AND, OR, XOR and NOT. t is the current 

scan time (from PLC point of view), t-1 is the 

previous PLC scan time. ok = ok(t) is the logical 

variable corresponding to the kth variables at the tth 

PLC scan time. Outputs at t are considered as the 

one and only variables that can be controlled (write 

variables) at each PLC scan time. All other PLC 

variables (inputs, previous outputs…) are 

uncontrollable (read-only variables). O is the set of 

output variables at t. Y is the set of uncontrollable 

variables at t, t-1, t-2… No is the PLC Boolean 

outputs number. NCSs is the Simple Safety 

Constraints number. NCSc is the Combined Safety 

Constraints number. 

The proposed methodology to design safe 

controllers is based on the use of logical safety 

constraints, which act as logical guards placed at the 

end of the PLC program, and forbid sending unsafe 

control to the plant (Marangé et al., 2010). The set 

of safety constraints (or guards) acts as a control 

filter. Some guards involve a single output at time t 

(called simple safety constraints CSs), other 

constraints involve several outputs at time t 

(combined safety constraints CSc). Safety 

constraints are not always depending only on PLC 

inputs at t. It may be necessary to define 

supplementary uncontrollable variables called 

observers. Observers are memories enabling to get a 

combinatory constraint. 

In this approach, it is assumed that the safety 

constraints can always be represented as a monomial 

and depend on the inputs (at time t, t-1, t-2…), 

outputs (at time t, t-1, t-2…) and observers 

(depending ideally on only inputs (at time t, t-1, t-

2…). In the initial methodology (Marangé et al. 

2010), the control filter is validated offline by 

model-checking (Behrmann et al., 2002) and stops 

the process in a safe state if a safety constraint (CSs 

and CSc) is violated. 

In this paper, CSs and CSc are represented 

(equations (1) and (2)) as logical monomial 

functions (Π, logical products of variables but not 

necessarily minterms) which have always to be 

False at the end of each PLC scan time, before 

updating the outputs, in order to guarantee the 

safety. It is important to note that each CSs depends 

only on one controllable variable (output: ok) at time 

t and that each CSc depends on several controllable 

variables (outputs: ok, ol,…) at time t. 

 

     (1)  

   (2) 

To guarantee the safety, CSs and CSc must be False 

(=0) in the PLC program before updating outputs, 

the logical sum of safety constraints computed with 

all ok has to be False (equation 3). It is the detection 

function of the logic filter. A PLC program can be 

considered as safe if, for the outputs vector 

, equation (3) is verified before 

output scan.  

  (3) 

There are only 2 exclusive forms of simple safety 

constraints (CSs) because they are expressed as a 

monomial function, and they only involve a single 

output at time t (equation (4)): 

 

  

with    (4) 

These simple safety constraints (CSs) express the 

fact that if , which is a monomial (product) 

function of only uncontrollable variables at t, is 

True, ok must be necessarily False in order to keep 

the constraints equal to 0. If  is True, ok must 

be necessarily True. In addition, it is not possible to 

have  and  true simultaneously. For 

each output, it is possible to write equation (5) 

corresponding to a logical OR of all simple safety 

constraints.  

   (5) 

 is a logical ΣΠ function independent of 

the other outputs at t because only CSs are 

considered.  can be developed in equation 

(6) where  and  are polynomial functions 

(sum of products, ΣΠ) of uncontrollable (read-only) 

variables. Equation (6) has always to be False 

because all simple safety constraints must be False 

at the end of each PLC scan time. To simplify 

equations, a logical function can be represented by a 

logical variable having the same name. 

 

 (6) 

From equations (5) and (6), it is possible to write 

equation (7). 

 

 

(7) 



The outputs vector can be considered as safe at the 

end of the PLC scan time if equation (8) is checked. 

  (8) 

One can notice that we have got a set of safety 

constraints and a formalism which is compliant with 

a constraints satisfaction problem (CSP) to find a 

safe outputs vector. To be more precise, it is a 

Boolean satisfiability problem (sometimes called 

propositional satisfiability problem and abbreviated 

as SATISFIABILITY or SAT (Vizel et al., 2015)). 

The problem consists of determining if there exists 

an interpretation that satisfies a given Boolean 

formula. In other words, it asks whether the 

variables of a given Boolean formula can be 

consistently replaced by the values True or False in 

such a way that the formula evaluates to True. If this 

is the case, the formula is called satisfiable. On the 

other hand, if no such assignment exists, the 

function expressed by the formula is False for all 

possible variable assignments and the formula is 

unsatisfiable. For example, the formula "NOT a 

AND NOT b" is satisfiable because one can find the 

values a = False and b = False, which make (NOT a 

AND NOT b) = TRUE. In contrast, "b AND NOT 

b" is unsatisfiable. 

4 SAFE PLC CONTROLLER 

BASED ON A SIMPLE SAT 

SOLVER 

CSP are mathematical problems defined as a set of 

objects whose state must satisfy a number of 

constraints or limitations (Hooker, 2000) (Krzysztof, 

2003) (Tsang, 1993). CSP represent the entities in a 

problem as a homogeneous collection of finite 

constraints over variables, which is solved by 

constraint satisfaction methods. CSP are the subject 

of intense research in both artificial intelligence and 

operations research, since the regularity in their 

formulation provides a common basis to analyze and 

to solve problems of many seemingly unrelated 

families. CSP often exhibit high complexity, 

requiring a combination of heuristics and 

combinatorial search methods to be solved in a 

reasonable time. Formally, in this work, a constraint 

satisfaction problem is defined as a triple: 

 is the set of outputs variables, 

 is a set of the respective 

domains of values, 

 is the set of simple safety constraints and combined 

safety constraints. 

Each variable oi can take a value in the nonempty 

domain . Every constraint Crk is, in 

turn, a pair  where  is a subset of k 

variables and Rj is an k-ary relation on the 

corresponding subset of domains . An 

evaluation of the variables o is a function from a 

subset of variables to a particular set of values in the 

corresponding subset of domains. An evaluation v 

satisfies  if the values assigned to the 

variables  satisfies the relation Rj. An evaluation is 

consistent if it does not violate any of the 

constraints. An evaluation is complete if it includes 

all variables. An evaluation is a solution if it is 

consistent and complete.  

A CSP solver, at each PLC scan time, can supply all 

the safe output vectors based on the safety 

constraints. From these, in our approach, we select 

the first one which is the closest from the functional 

output vectors. For that, the Hamming distance is 

used. In information theory, the Hamming distance 

between two strings of equal length is the number of 

positions at which the corresponding symbols are 

different. In another way, it measures the minimum 

number of substitutions required to change one 

string into the other, or the minimum number of 

errors that could have transformed one string into 

the other. This heuristic is simple and seems 

appropriate. Indeed, if the Hamming distance is null, 

this means that the functional outputs vector is safe 

and can be updated. If the Hamming distance is 

different from 0, this means that the functional 

outputs vector is not safe. One can suppose that the 

functional part of the controller performed by the 

expert is not out of sense. Hence, selecting the safe 

outputs vector which has got the smallest Hamming 

distance from the functional one enables to select the 

closest outputs vector has got the maximum chance 

to achieve the production (i.e. functional) goals. Of 

course, that will work if the functional part of the 

controller is partially correctly designed. However, 

whatever the functional part (even if it is really 

badly designed), the system will remain safe.  

5 IMPLEMENTATION IN A PLC 

Today, PLC does not include CSP solver. In a 

previous paper (Pichard et al., 2016), a soft PLC in 



 

 

     

 

IronPython was used to preliminary test the idea and 

to get a proof of concept. We used the package 

“logilab-constraint”, an open source constraint 

solver written in pure Python with constraint 

propagation algorithms. The proposed control 

algorithm calculated at each scan all the safe outputs 

vectors and selects the one with the minimum 

Hamming distance compared to the Functional 

Output Vector (FOV). The control algorithm based 

on CSP has been implemented successfully, with no 

problem of time calculation. However, it is 

important to test the concept with real PLC. For that, 

it is necessary to develop a SAT solver in ST 

(Structured Text) compliant with the IEC 61131-3. 

This development seems possible because the 

structure of the safety constraints is known and 

simple (monomial), moreover only 1 solution is 

required. In addition, because of the structure of 

manufacturing systems (subsystems interconnected), 

the number of CSc violated at each PLC scan time is 

low. In this paper, we propose a simple SAT solver 

algorithm which can be implemented easily in ST, 

whatever the PLC brand in order to satisfy the 

Boolean safety constraints problem.  

5.1 The proposed Hamming-based 
SAT solver 

Classical SAT solver algorithm is based on recursive 

functions. However, it is not possible to perform a 

recursive program in a PLC by using languages from 

IEC 61131-3 standard. In addition, it is necessary to 

avoid to trigger the PLC watchdog. 

The objective of the proposed SAT solver algorithm 

(Algorithm 1) is to test, at each PLC scan time, the 

functional outputs vector (array FOV) given by the 

PLC program (cf. Figure 1). If at least 1 constraint is 

violated by FOV, new values of actuators must be 

computed (array solution). The sensors values and 

internal variables values are grouped in vector I, this 

vector is given as entry of the algorithm to compute 

the constraints values. 

The main idea of the proposed algorithm is to find 

the closest values to FOV values (i.e. changing 

minimum values’ number of FOV). This is carried 

out by using the Hamming distance. Indeed, all the 

possible vectors with an increasing Hamming 

distance are computed, then as soon as a vector 

solved every constraint, this vector is used as the 

solution and applied to the outputs values.  

In order to improve the algorithm efficiency, 2 

vectors are tested simultaneously: the closest 

(minimum Hamming distance) and the farthest 

(maximum Hamming distance). The farthest is 

computed by complementing the closest’s values. If 

the closest solved the problem, the algorithm is 

stopped and the closest is used as the solution. Else, 

if the farthest solved the constraints, it is memorized. 

With this approach, the computation time is almost 

divided by 2. At last, if no closest vector has solved 

the constraints, the latest farthest vector is used as 

the solution. Indeed, the last memorized farthest 

vector has the minimum hamming distance. 

 
function HammingFilter(Boolean[] FOV, Boolean[] I) 
     Compute the values of FS0 and FS1; 

     solution := Initialize the solution vector by applying the FS to 

the vector FOV; 
     Test the CSc with solution 

     If CSc are not solved 

          index := Find the index of the free actuators 
          For k = 1 to dim(index)/2 

               closest := Compute the first closest k-subset 

               Test the CSc with closest 
               If CSc are not solved 

                    farthest := Compute the first farthest k-subset by 

inversing closest 
                    Test the CSc farthest 

                    farthestSolution := Store the farthest if it solved the 

CSc 
                    Repeat      

                         If a new k-subset exists 

                              closest := Compute the next closest k-subset 
                              Test the CSc with closest 

                              If CSc are not solved 

                                   farthest := Compute the next farthest k-
subset by inversing closest 

                                   Test the CSc with farthest 

                                   farthestSolution := Store the farthest if it 
solved the CSc 

                              endif 

                              Until the problem is solved or all the k-subset 

are tested 

                         endif 

                         If closest solved the CSc 
                              solution := closest //Use closest as solution 

                              exit 

                         endif 
          endfor 

          If the closest doesn't solve the CSc 

               If the farthest solved the CSc 
                    solution := farthest //Use farthest as solution 

               Else 

                    solution := Compute the worst case by 
complementing the values in FOV of the free variables 

               endif 

          endif 
     endif 

     return solution 

end 

Algorithm 1: Hamming-based SAT solver algorithm. 

We proposed in the next section (section 5.2) an 

implementation of the proposed algorithm in 

Structured Text language. 



5.2 Implementation in ST (Structured 
Text, IEC 61131-3) 

The implementation respects the algorithm 

previously presented. Hence, the algorithm stops as 

soon as a solution (array of Boolean: mem) is found. 

The entry of the algorithm is vector I (sensors and 

internal variables values) and the functional outputs 

vector (array FOV). The set and reset functions F0s 

and F1s are computed by using the I values. At each 

scan time, from the number of output variables (No), 

the number of output variables that can be modified 

to solve the set of CSc is determined (Noc). This is 

done through the subroutine initCSC where the 

result (GG) is an array of integers) which indicates 

outputs variables implied in violated CSc. An array 

(tabMot2) of integers with a size of Noc stores the 

index of these output variables. For generating all 

combinatorial combinations of tabMot2, 

incrementing the Hamming distance, we have 

adapted an algorithm found in (Cameron, 1994). For 

instance, if one considers a word of 3 bits, 

corresponding respectively to 3 output variables that 

can be changed, the sequence, where each object is 

represented by the array HamMot, will generate in 

this order:  

- Hamming distance of 1: 100, 010, 001 

- Hamming distance of 2: 110, 101, 011 

- and finally, Hamming distance of 3: 111. 

For instance, let’s suppose that No=5 (5 outputs: O0, 

O1, O2, O3, O4), Noc =3, with tabMot2[0]=1 

(corresponding to O1), tabMot2[1]=3 

(corresponding to O3) and tabMot2[2]=4 

(corresponding to O4). If HamMot[0]=0, 

HamMot[1]=1 and HamMot[2]=1, this means that 

the solution inverting O3 and O4 is going to be 

tested. In addition, in this case GG[0]=False, 

GG[1]=True, GG[2]=False, GG[3]=True and 

GG[4]=True.  

The 2 subroutines test_CSC and calcul_CSC 

respectively test if a CSC is violated, and calculate 

the CSC. As already noticed, in order to improve the 

algorithm performance speed, 2 solutions: k and 

Noc-k Hamming distances are calculated (arrays 

mem and membis1) at each loop. 

 

FOR k := 0 TO (No-1) DO 

     mem[k] := NOT F0s[k] AND FOV[k] OR F1s[k]; 

     membis1[k]:= NOT F0s[k] AND NOT FOV[k] OR F1s[k]; 

END_FOR; 

tabMot:=mem; 

calcul_CSC(); 

test_CSC(); 

IF Flag THEN 

     Flagbis:=TRUE; 

     initCSC();  

     Noc := 0; 

     FOR i := 0 TO (No-1) DO   

          IF NOT F0s[i] AND NOT F1s[i] and GG[i] THEN 

                tabMot2[Noc]:=i; 

                Noc:=Noc+1; 

           END_IF;    

      END_FOR; 

      maxHam:=Noc; 

       FOR k := 1 to DIV(Noc,2) do 

            Flag1:=TRUE;             

            FOR ii := 0 TO k-1 DO (* First k-subset *) 
 HamMot[ii]:=TRUE;    

             END_FOR; 

             FOR ii := k TO Noc-1 DO 

 HamMot[ii]:=FALSE;   

              END_FOR;  

              FOR i := 0 TO (Noc-1) DO  (* test first k-subset *) 

                   IF HamMot[i] THEN 

       mem[tabMot2[i]]:=NOT tabMot[tabMot2[i]]; 

   ELSE 

        mem[tabMot2[i]]:=tabMot[tabMot2[i]]; 

   END_IF;   

               END_FOR; 

                calcul_CSC();  

                test_CSC(); 

                IF Flag and (maxHam>Noc-k) THEN 

                    FOR i := 0 TO (Noc-1) DO  (* test first k-subset *) 

       IF HamMot[i] THEN 

             mem[tabMot2[i]]:=tabMot[tabMot2[i]]; 

        ELSE 

             mem[tabMot2[i]]:=NOT tabMot[tabMot2[i]]; 

        END_IF;  

    END_FOR; 

    calcul_CSC();  

    test_CSC(); (* bis*) 

    IF NOT Flag THEN 

         Flagbis:=FALSE; 

         membis1:=mem;  

         maxHam:=Noc-k; 

         Flag:=TRUE; 

    END_IF; 

   REPEAT  (* Next k-subset *)  

          cpt := 0; 

          FOR i:=0 TO Noc-2 DO  

          IF HamMot[i] THEN  

              cpt:=cpt+1; 

              IF NOT HamMot[i+1] THEN EXIT; 

              END_IF;   

          END_IF;   

          END_FOR;  

           IF i=Noc-1 THEN flag1:=FALSE; 

           ELSE 

                HamMot[i]:=FALSE; 



 

 

     

 

                HamMot[i+1]:=TRUE;  
                FOR j := 0 TO i-1 DO 

                      HamMot[j]:=FALSE; 

                                  END_FOR; 

                 WHILE (cpt>1) DO 

                     HamMot[cpt-2]:=TRUE; 

                     cpt:=cpt-1; 

                 END_WHILE; 

                 FOR i := 0 TO (Noc-1) DO   

                       IF HamMot[i] THEN 

                            mem[tabMot2[i]]:= 

                                             NOT tabMot[tabMot2[i]]; 

                        ELSE 

            mem[tabMot2[i]]:= 

                                              tabMot[tabMot2[i]]; 

                          END_IF;   

                   END_FOR; 

                   calcul_CSC(); 

                                    test_CSC();   

                   IF Flag and (maxHam>Noc-k) THEN

                       FOR i := 0 TO (Noc-1) DO   

                            IF NOT HamMot[i] THEN 

                 mem[tabMot2[i]]:= 

                                                   NOT  tabMot[tabMot2[i]]; 

                            ELSE 

                                       mem[tabMot2[i]]:= 

                                                    tabMot[tabMot2[i]]; 
           END_IF;  

                       END_FOR; 

                       calcul_CSC(); 

                       test_CSC(); (* bis*) 

                       IF NOT Flag THEN 
          Flagbis:=FALSE; 

           membis1:=mem;  

           maxHam:=Noc-k; 

           Flag:=TRUE; 

                       END_IF; 

                   END_IF;   

           END_IF; 

                      UNTIL NOT Flag OR NOT Flag1 END_REPEAT; 

               END_IF; 

               IF NOT Flag THEN EXIT; END_IF; 

     END_FOR; 

     IF Flag THEN 

         IF NOT Flagbis THEN mem:=membis1; 
  

         ELSE 

              FOR i:= 0 TO (Noc-1) DO 

                   mem[tabMot2[i]]:=NOT tabMot[tabMot2[i]]; 

               END_FOR; 

               calcul_CSC(); 

               test_CSC();  

               IF Flag THEN  

   FOR i := 0 TO (No-1) DO 

        mem[i] := NOT F0s[i] AND F1s[i]; 

    END_FOR; 

               END_IF; 

          END_IF; 

     END_IF; 

END_IF;  

(* update outputs with mem*) 

Figure 2: simple SAT solver in ST. 

The control algorithm has been implemented in a 

real PLC and tested by the mean of a virtual system 

from the software FACTORY I/O 

5.3 Sorting system application 

FACTORY I/O (https://factoryio.com/) is a new 

generation of 3D factory simulation for learning 

automation technologies. It integrates most of the 

features described in the paper “Virtual systems to 

train and assist control applications in future 

factories” (Riera and Vigario, 2013). Designed to be 

easy to use, it allows to quickly build a virtual 

factory using a selection of common industrial parts. 

FACTORY I/O also includes many scenes inspired 

by typical industrial applications ranging from 

beginner to advanced difficulty levels. We propose 

in this paper to use the same benchmark as in the 

previous paper (Pichard et al., 2016): the sorting 

system. The main goal of the “sorting system” is to 

transport and sort cardboard boxes by height using a 

turntable (Figure 3).  

 

 

Figure 3: Sorting system from FACTORY I/O. 

  

The descriptions of sensors, actuators and safety 

constraints used for this example are presented in the 

previous paper (Pichard et al., 2016). 

The control algorithm based on CSP has been 

successfully implemented in a real M340 PLC. The 

connection between the PLC and FACTORY I/O is 

performed using USB I/O DAQ (cf. Figure 4). With 

this device, the PLC does not see difference between 

real and virtual plant.   

We did not have any problem with time calculation 

and a scan time of 5 ms was respected for the PLC. 

In this example, with the functional part of the 

https://factoryio.com/


controller, the maximum Hamming distance is 2, 

and the time to execute the SAT solver algorithm is 

always less than 1 ms. 

 

Figure 4: Experimental platform with M340 PLC, 

FACTORY I/O and USB DAQ Advantech 4750. 

6 CONCLUSION 

This paper has proposed an implementation of a safe 

control synthesis method based on the use of safety 

guards (represented as a set of logical constraints 

which can be simple or combined) with a SAT 

solver developed in ST (Structured Text) compliant 

with the IEC 61131-3 standard for PLC. This 

approach to PLC programming makes safety a 

priority and allows for a controller to create a safe 

environment where functional and safety aspects are 

clearly separated. The algorithm has been 

successfully tested with a real M340 PLC and a 

virtual sorting system. The controller code is 

efficient. However, even if the controller is safe, it is 

not deterministic and it has to be proved that the 

minimum Hamming distance compared to the 

functional output vector is suitable in the sense of 

the specification of the functional control. It seems 

to be the first time that, a controller based on the use 

in real time of a SAT solver, is implemented in a 

real PLC. Even if the idea of using a SAT solver in a 

PLC presents several advantages, the proposed 

control methodology is very different from the 

“traditional” way to design controllers of the 

automated production system. However, it seems 

interesting to the control of cyber physical systems 

(CPS) in the framework of Industry 4.0.  
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