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Abstract. We intend to combine Huber’s loss with an adaptive reversed version as a penalty
function. The purpose is twofold: first we would like to propose an estimator that is robust to
data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection
problem in presence of highly correlated predictors. For instance, in this framework, the adaptive
least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection
method, although it is a popular technique for simultaneous estimation and variable selection. We
call this new penalty adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute
through their `1 norm to this penalty while larger coefficients cause it to grow quadratically (as ridge
regression). We will show that the estimator associated with Huber’s loss combined with adaptive
BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared
to existing regularization methods such as adaptive elastic net and is illustrated via simulation
studies and real data.
Keywords. Adaptive BerHu penalty; concomitant scale; elastic net penalty; Huber’s criterion;

oracle property; robust estimation.
Availability. The software program developed in Matlab that implements the procedures, on

which this paper is focused, is available at http://ljk.imag.fr/membres/Laurent.Zwald.

1 Introduction

Variable selection is a significant problem in linear regression analysis. Its goal is to identify relevant
predictors to improve prediction performances and to achieve an easy interpretation of the model.
Here we will focus on the variable selection problem in the robust context first, where data sub-
ject to heavy-tailed errors or outliers are encountered, and second in presence of highly correlated
predictors. Occurences of these two contexts are very common in practice.

When there is a group of variables among which the pairwise correlations are very high, the
adaptive lasso penalty, introduced in [39], tends to select a single variable from this group. This
penalty was recently combined with Huber’s criterion (see [18]). The estimator associated with this
procedure enjoys oracle properties (as in [39]) but behaves poorly when there are highly correlated
variables. Ridge regression (`2 penalty) does not lead to variable selection but tends to share the
coefficients’ value among the group of correlated predictors. Moreover if there are high correlations
among predictors, the prediction performance of ridge regression dominates the lasso ([29]). In
order to overcome this drawback, [40] proposes a new regularization technique that combines lasso
and ridge penalties. This method is called the “elastic net” (Enet). This penalty is the sum of lasso
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and ridge penalties. In [9], a new version of the elastic net called adaptive elastic net (ad-Enet)
which inherits some of the desirable properties of the adaptive lasso and elastic net is proposed.
Its oracle properties are proven. In [23], the author proposes to use a reversed version of Huber’s
loss (called BerHu) as a penalty function. Let us recall that the Huber loss (see [15]) is a hybrid
of squared error for relatively small errors and absolute error for relative large ones. The BerHu
penalty is such that relatively small coefficients contribute through their `1 norm to this penalty
while larger ones cause it to grow quadratically. This hybrid sets some coefficients to 0 as the lasso
does while shrinking the larger coefficients in the same way as ridge regression. In [23], a way is
provided to optimize objective function constituted of both the Huber loss and the BerHu penalty.
Nevertheless, nothing is shown about statistical properties. Since [23] presents the BerHu penalty
in its non-adaptive form, the corresponding estimator does not generally satisfy the oracle property.

In this paper we introduce an adaptive concomitant BerHu penalty. We use it with Huber’s loss
in order to take into account data subject to heavy-tailed errors or outliers. Indeed, in this case,
the Ordinary Least Square (OLS) estimator is considered to be not efficient. Nevertheless, our
method is designed to maintain good properties in the Gaussian noise case. Moreover the adaptive
concomitant BerHu penalty encourages a grouping effect in the following sense: the concomitant
BerHu penalty implicitly creates one group with the largest coefficients. This group is penalized in
a `2 way like the grouped lasso of [35] to avoid removing any of the largest coefficients. The smallest
coefficients are treated individually by an `1-penalty.

In addition, contrary to [23], we show that the estimator associated with Huber’s loss combined
with adaptive concomitant BerHu penalty enjoys some “oracle” properties in the fixed design context
as already satisfied by the adaptive lasso penalty (see [39, 18]). In addition to [39, 18], the adaptive
concomitant BerHu penalty is designed to keep all the largest coefficients whatever the correlation
structure. It should be noted that the needed assumptions to get oracle property for BerHu penalty
are the same as in the lasso case. Contrary to elastic net (see [9]) no supplementary assumptions
are needed. These asymptotic results are valid in the case where p is fixed and n goes to infinity.
Recently [41] obtained oracle properties for ad-Enet when p diverges for the least squares loss.
These proof techniques are reused by [6] for a more general penalty. These results are based on
a sparsity inequality (see for instance theorem 3.1 in [41]). Unfortunately we can not use similar
proof techniques for adaptive BerHu penalty. Extending this result to the case of p diverging
is not so straightforward and is left for future work. Extensive simulation studies show that in
presence of highly correlated variables, the lasso and the elastic net procedures tend to underfit, i.e.
suppress some influencing variables whereas adaptive concomitant BerHu penalty tends to identify
all influencing variables but keeps some non-influencing variables.

The article is subsequently organized as follows: in Section 2, we introduce the adaptive con-
comitant BerHu penalty, in Section 3, we give its statistical properties. Section 4 is devoted to
simulations and illustration over real data. All technical proofs are relegated to the Appendix.
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2 The BerHu penalty

2.1 The adaptive BerHu

We focus on the following model

yi = α∗ + xTi β
∗ + σεi, i = 1, . . . , n, (1)

where xi = (xi1, . . . , xip)
T denote centered covariables, α∗ and β∗ = (β∗1 , . . . , β

∗
p)
T the regression

coefficients. The constant σ is positive and εi are independent and identically-distributed random
errors with mean 0 and variance 1, when it exists. Without loss of generality, we put β∗j 6= 0, for
j ≤ p0 and β∗j = 0, for j > p0 for some p0 ≥ 0. Let βA be the vector given by the nonzero coordinates
of β (A = [1, . . . , p0].)

The lasso has already been extensively critized (see e.g. [40]). In this paper, we focused on the
fact that when some variables are highly correlated the `1 penalty tends to keep only one variable
for each group. The literature already lists attempts to solve this problem. To begin with, grouped
lasso procedures were proposed first in [35] where the `1 penalty is imposed on predefined groups
of coefficients. More precisely, the penalty is the l1-norm of the vector composed of the `2-norm of
each group of coefficients:

n∑
i=1

(yi − α− xTi β)2 + λn

L∑
j=1

√
pl‖(β)j‖2,

where λn > 0 is the tuning parameter and (β)j is the coordinate block corresponding to the j-th
group. Consequently, sparsity is encouraged at group level (see also [36] and [12] page 91 for further
references). In our framework it is difficult to use the group lasso approach since there is no obvious
way of choosing the groups a priori. Next, [40] proposed the Elastic Net. The naive Enet is obtained
by minimizing in α and β:

n∑
i=1

(yi − α− xTi β)2 + λ1,n

p∑
j=1

|βj|+ λ2,n

p∑
j=1

β2
j , (2)

and Enet is a modification of this. In this procedure, the penalty imposed on the small coefficients
is the sum of an `1-norm and a squared `2-norm. Moreover, a ridge penalty reduces the variance of
the estimates by imposing a small squared norm of all the coefficients. Following [23], we focused
on a penalty that acts separately on small and large coefficients: only the largest coefficients have
quadratic penalty. We consider the BerHu penalty defined by

BL(z) =

{
|z| |z| ≤ L,
z2+L2

2L
|z| > L,

(3)

where L is a positive real. As Huber criterion, the BerHu function needs to be scaled. The penalty
can be precisely defined by

p∑
j=1

BL
(
βj
τ

)
,
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where τ is a scale parameter to be determined. This scale parameter was introduced by [23] and
plays a similar role to s in concomitant scale Huber’s Criterion defined in (5) that was introduced
by [15]. When this parameter is set to a value (for instance τ = 1), the procedure is not scale
invariant. So [23] proposes to replace the penalty term by

pen(β) = min
τ>0

(
pτ + τ

p∑
j=1

BL
(
βj
τ

))
.

This makes it possible to avoid algorithms that alternate between estimating α and β for fixed τ
and reciprocally. The reference [23] is the only existing literature on this kind of penalty as far as
we know. However, [23] does not provide any statistical analysis of the resulting estimator.

Fan and Li [7] showed that the lasso method leads to estimators that may suffer an appreciable
bias. Furthermore they conjectured that the oracle properties do not hold for the lasso. Hence Zou
[39] proposes to consider the following modified lasso criterion, called adaptive lasso,

n∑
i=1

(yi − α− xTi β)2 + λn

p∑
j=1

ŵadlj |βj|,

where ŵadl = (ŵadl1 , . . . , ŵadlp ) is a known weight vector. This modification makes it possible to
produce sparse solutions more effectively than lasso. Indeed, Zou [39] shows that, with a proper
choice of λn and of ŵadl, the adaptive lasso enjoys the oracle properties. Such a penalty has been
used in the Enet penalty (see [9]). In the sequel, we will call it ad-Enet.

Here we propose to make the BerHu penalty adaptive ([23] only proposes the penalty pen(·) in a
non-adaptive form ). We thus consider the following penalty: penadb(β) = minτ≥0 P

adb(β, τ) with

P adb(β, τ) =


τ
(∑p

j=1
1

ŵadbj
+
∑p

j=1 ŵ
adb
j BL

(
βj
τ

))
if τ > 0,

0 if β = 0, τ = 0,
+∞ if β 6= 0, τ = 0.

where ŵadb = (ŵadb1 , . . . , ŵadbp ) is a known weight vector. We will see in Section 3 that the resulting
estimator enjoys some “oracle ” properties. Let us note that [23] introduced the BerHu penalty in
its non-adaptive form and in the context of robust regression only. Moreover nothing is mentioned
about asymptotic feature.

In general, the (adaptive) Berhu penalty behaves like the lasso on the smallest coefficients and
does not delete the largest ones, whatever the correlation structure. This is expected of a correct
model selection procedure. This interpretation relies on the following calculation when β is fixed
(its proof is postponed in Section 5.2). Let us sort the absolute values of the coordinates of β:

|β(p)| ≤ · · · ≤ |β(1)|.

Theorem 1. Let k(β) denote the number of non-zeros coefficients of β. Then

penadb(β) = 2

√√√√ p∑
j=1

1

ŵj
+
L

2

q(β)−1∑
j=1

ŵ(j)

√√√√ 1

2L

q(β)−1∑
j=1

β2
(j)ŵ(j) +

k(β)∑
j=q(β)

|β(j)|ŵ(j), (4)
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where q(β) is the unique integer between 2 and k(β) + 1 such that the following inequalities hold

|β(q(β))|
L

≤

√√√√ ∑q(β)−1
j=1 β2

(j)ŵ(j)

2L
∑p

j=1
1
ŵj

+ L2
∑q(β)−1

j=1 ŵ(j)

≤
|β(q(β)−1)|

L
.

We can note here the spirit of the concomitant BerHu penalty: it implicitly creates one group
with the largest coefficients (see first term (4)). This group is penalized in a `2 way like the grouped
lasso of [35] to avoid removing any of these largest coefficients. Let us note that as in the grouped
lasso penalty, the `2-norm of the q(β) − 1 largest coefficients is scaled by the squared root of the
number of such coefficients present in this group. The smallest coefficients are treated individually
by an `1-penalty (see second term (4)). Consequently, whatever the structure of the correlation
matrix, the concomitant BerHu penalty tends to keep all the largest coefficients and to delete the
smallest ones. [3] also groups together the largest coefficients but with the squared `2-norm instead
of a `2-norm as in our case. It should be noted that in [3], nothing is mentioned about its asymptotic
features.

Let us note that elastic net (adaptive version or not) is well adapted to the presence of highly-
correlated predictors but not the lasso (adaptive version or not).

2.2 Robust estimation

Let us recall the definition of the loss function based on Huber’s criterion introduced by [15]: for
any positive real M,

HM(z) =

{
z2 |z| ≤M,
2M |z| −M2 |z| > M.

This function is quadratic in small values of z (of absolute value less than M) and grows linearly
for large values of z. The concomitant scale Huber loss is defined by

LH(α, β, s) =


ns+

∑n
i=1HM

(
yi−α−xTi β

s

)
s if s > 0,

2M
∑n

i=1 |yi − α− xTi β| if s = 0,
+∞ if s < 0,

(5)

which is to minimize with respect to s ≥ 0, α and β. The loss function involving a concomitant
estimation of the scale and location parameter was first proposed by Huber ([15]). The parameter
s is a scale parameter for the distribution. That is if each yi is replaced by cyi for c > 0 then
an estimate ŝ should be replaced by cŝ. When setting this parameter, the procedure is not scale
invariant. The concomitant scale Huber criterion is jointly convex as a function of β and s. This
removes the need for backfitting algorithms to estimate α and β; the parameter s is only a nuisance
parameter. The introduction of these parameters is also crucial to have the asymptotic performance

To achieve a robust scale invariant Lasso type procedure, [18] proposes to minimize simultaneously
over s, α and β the function

LH(α, β, s) + λn

p∑
j=1

ŵadhj |βj|. (6)
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where ŵadh = (ŵadh1 , . . . , ŵadhp ) is a known weight vector. We propose here to use the concomitant
Huber estimation with the adaptive BerHu penalty:

QHadb(α, β, s, τ) = LH(α, β, s) + λnP
adb(β, τ). (7)

This convex criterion is minimized simultaneously over α ∈ R, β ∈ Rp, s ∈ R+ and τ ∈ R+. So we
get another scale invariant robust location estimation. Contrary to the procedure proposed in [18],
the largest coordinates of β are quadratically penalized. We consider two types of procedures: one
with s = 0 in the equation (7) that leads to `1-loss and one with s > 0 that leads to Huber’s loss.
Let us observe that there is no closer form of the minimizers of (7). For numerical optimization, we
use CVX, a set of matlab functions (see Appendix 5.1).

2.3 Tuning parameter estimation

Let us now consider the problem of tuning parameter estimation. To run these procedures we
have to determine the weights vector in the adaptive penalties, the regularization constant λn, the
parameter M for Huber’s criterion and L for BerHu’s penalty. Usually the weights vector is given
by (see [39, 18]) ŵadlj = |β̂unpenj |−γ, j = 1, . . . , p, where γ > 0 and β̂unpen denotes the unpenalized

estimator. For instance, in the least squares context β̂unpen is the ordinary least squares estimator.
In fact this estimator need only be root-n-consistent estimator of β∗. Let us note that the theoretical
part is given for these forms of weights vector and γ is fixed to be equal to 1 for the numerical results.
For Huber’s Criterion with concomitant scale we need a value for M . As in [15], we fix M = 1.345.
For BerHu’s penalty we fix as in [23], L = M. Let us note that there is no justification for this.
However in practice we have observed that these parameters have little impact on the results.

To find optimal values for λn, we use BIC-type criteria. When using least squares criterion we
consider the classical BIC criterions ([26]), That is recommended to select λn minimizing

log

(
n∑
i=1

(
yi − α̂λn − xTi β̂λn

)2)
+ kλn

log(n)

n
,

over λn, where kλn is the number of non-zero coefficients of the estimator (see [32] and [34]) and
corresponds to the model dimension. When using Huber’s criterion, we consider the BIC-type
procedure introduced in [18]: we select λn by minimizing

log
(
LH
(
α̂λn , β̂λn , ŝλn

))
+ kλn

log(n)

2n
,

over λn. As previously, kλn denotes the number of non-zero coefficients of β̂λn . For `1-loss, it is
recommended to select λn minimizing

log

(
n∑
i=1

∣∣∣yi − α̂λn − xTi β̂λn

∣∣∣)+ kλn
log(n)

2n
.
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3 Theoretical Properties

In this section we give the asymptotic properties of the concomitant estimator of Huber with the
BerHu penalty. We show that it enjoys the oracle properties in the fixed design context with p is
fixed and n goes to infinity. We have the same property by replacing Huber’s loss by least squares
loss. When necessary, we give the difference (for example for the assumptions) between the two loss
functions.

Let X denote the design matrix, i.e. the n × p matrix the ith rows of which is xTi . We will use
the following assumptions on this design matrix.

(D1) max1≤i≤n ‖xi‖/
√
n→ 0 as n→∞ .

(D2) XTX/n→ V as n→∞ with V1,1 > 0, where V1,1 is the first p0×p0 block of V , corresponding
to the covariables associated with non zero coefficients.

Assumption (D1) and (D2) are classical. It can be seen as a “compactness assumption”: for
instance, it is satisfied if the variables are supposed to be bounded. When considering least squares
criterion as loss function, we need only the assumption (D2) (see for example [39]) while considering
Huber’s criterion we need both (D1) and (D2) (see [18]).

Let us denote by ε a variable with the same law as εi, i = 1, . . . , n. As in [18], we define

s∗ = argmin
s>0

F (s),

where for s > 0,

F (s) = E
[

1

n
LH(α∗, β∗, s)

]
= s+ sE

[
HM

(σε
s

)]
.

In addition, let us define τ ∗ > 0 satisfying

τ ∗ = argmin
τ>0

τ

(
p∑
j=1

|β∗j |γ +

p0∑
j=1

1

|β∗j |γ
BL
(
β∗j
τ

))
. (8)

The following assumptions on the errors are used in the following:

(N0) The distribution of the errors does not charge the points ±Ms∗:

P [σε = ±Ms∗] = 0.

(N1) The variable ε is symmetric (i.e. ε has the same distribution as −ε).

(N2) For all a > 0, P [ε ∈ [−a, a]] > 0 .

The assumptions (N1) or (N2) are usual in a robust context (see [15, 33]). The classical laws
used to model data with outliers such as double exponential and Cauchy distributions satisfy these
constraints. It should be noted that there is no integrability condition assumed on the errors ε. These
three hypotheses are assumed for the Huber’s loss. For the penalized least squared estimators (e.g.

7



[17] and [39]) we assume that εi are independent identically distributed random variables with mean
0 and have a finite variance.

Let (α̂Hadb, β̂Hadb, ŝHadb, τ̂Hadb) be defined as the minimizer of QHadb(·) where ŵadbj = 1/|β̂unpenj |γ

with β̂unpen a root-n-consistent estimator of β∗ (i.e.
√
n(β̂ − β∗) = OP (1)). We denote An = {1 ≤

j ≤ p, β̂Hadbj 6= 0}. Let us remark that if λn > 0, the minimizer (α̂Hadb, β̂Hadb, ŝHadb, τ̂Hadb) exists
since the criterion QHadb(·) is a convex and coercive function.

The following theorem shows that, with a proper choice of λn, the proposed estimator keeps the
asymptotic properties already satisfied by adaptive lasso penalty as proved in [18]. It should be
noted that the needed assumptions to get this property are the same as in [18]. No supplementary
hypotheses are required to quadratically penalize large coefficients. It is not the case for Elastic Net
as shown by [9] for which some assumptions must be added to move from the lasso penalty to the
Elastic Net penalty. Moreover, contrary to [18], the proof requires more technicalities due to the
use of the BerHu concomitant penalty (instead of the lasso penalty). More precisely, as in [39], the
proof relies on the epi-convergence of the objective function. However, in [39] and [18], the proof of
the epi-convergence is not provided. The proposed proof (postponed in Appendix 5.3) provides the
necessary theoretical computations to obtain epi-convergence. This leads to a self-contained proof
including both the adaptive BerHu concomitant penalty of the present work and the adaptive lasso
penalty of [39].

Theorem 2. Suppose that λn/n
γ∧1/2 → 0, λnn

(γ−1)/2 → ∞, λn → ∞ as n → ∞. Let us also
assume that conditions M > 1, p0 > 0, (N0), (N1), (N2), (D1) and (D2) hold. Moreover, for
j = 1, . . . , p, the weights in QHadb are ŵadbj = 1/|β̂j|γ where β̂ is a root-n-consistent estimator of β∗.

Then, any minimizer (α̂Hadb, β̂Hadb, ŝHadb) of QHadb satisfies the following:

• Consistency in variable selection: P [An = A]→ 1 as n→ +∞.

• Asymptotic normality:

√
n
(
α̂Hadb − α∗, β̂HadbA − β∗A, ŝHadb − s∗

)
−→d Np0+2

(
0,Σ2

)
,

where Σ2 is the squared block diagonal matrix

Σ2 = diag

E
[
H′M

(
σε
s∗

)2]
4A2

s∗
,
E
[
H′M

(
σε
s∗

)2]
4A2

s∗
V −11,1 ,

E [Z2]

4D2
s∗


and where

Ds∗ =
1

s∗3
E
[
σ2ε211|σε|≤Ms∗

]
, As∗ =

1

s∗
P [|σε| ≤Ms∗] ,

Z = 1 +HM

(σε
s∗

)
− σε

s∗
H′M

(σε
s∗

)
,

and where H′M (·) is the derivative function of HM (·).

In order to have this result, we have to add the constraint λn/n
γ tends to 0, as n→∞, compared

to the work of [39]. This assumption implies, with λnn
(γ−1)/2 →∞, that γ > 1/3 . This was not the
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case for [39]; currently the case 0 < γ ≤ 1/3 remains an open problem. To determine the weights
ŵadbj , we can use the unpenalized Huber estimator β̂unpen that is a root-n-consistent estimator of

β∗. When M = +∞ (least squares loss), the asymptotic variance matrix E[H′Ms (σε)2]V −11,1 /(4A
2
s∗)

obtained in Theorem 2 is equal to σ2V −11,1 as in theorem 2 of [39]. Otherwise we find the asymptotic
variance of the unpenalized Huber estimator associated with the sub-model induced by β∗A. In
that sense the procedure satisfies some “oracle” property. Let us remark that [20] proposed a
generalized Huber criterion with bridge penalty for variable selection in linear regression when they
are heavy-tailed errors or outliers in the response. This generalized Huber criterion is no longer
convex. Our theoretical results do not remain valid for this loss function since they are based on
convex minimization properties. Note that the theorem is not valid in the case s = 0. In this case
the loss `1 is not differentiable and we can not use our proof technique based on the use of Taylor
expansions.

Let us remark that our proof can be generalized to the random design setting using other technical
arguments. One way to proceed would be to use the results of [33] that give asymptotic properties in
random design. Another way would be to use the results of [38] that consider asymptotic properties
of adaptive penalized quantile regression in random design. They underline the use of Bernstein’s
inequality.

4 Some numerical experiments

In this section, the estimators β̂Hadb (with s = 0 and s > 0) are compared with four estimators
of the literature: the adaptive lasso, ridge, adaptive elastic net and the adaptive lasso with Huber
loss. We call these methods respectively ad-lasso, ridge, ad-Enet, Huber-ad-lasso, whereas our
methods (β̂Hadb ) are called l1-loss-ad-BerHu for s = 0 and Huber-ad-BerHu for s > 0. The
adaptive weights are obtained from the corresponding unpenalized estimator and γ = 1.

4.1 Simulation Results

Our aim here is to compare the finite sample performances of these procedures. Paragraph 4.1.1
presents the studied models. The way simulations are conducted is described in 4.1.2 and an insight
of conclusions is provided in paragraph 4.1.3.

4.1.1 Models used for simulations

As in [40] (example 4), we use models that involve groups of highly correlated variables by block to
compare the performances of the algorithms. Let us remark that [40] considered a model without
intercept. Here we add an intercept. We now recall the definition of this model in a different way.
Our formulation allows us to clearly identify the groups of influencing correlated variables. The
models all have the form y = 11n + Xβ∗ + σε , where 11n denotes the vector of Rn composed of ones

and y (resp. ε) represents the response (resp. error) vector (y1, ..., yn)T (resp. (ε1, ..., εn)T ). The
design matrix X is constructed as follows. The rows of X are given by n independent gaussian
vectors N40(0,Σ). They are normalized such that the corresponding p-dimensional covariables are
centered (as assumed in (1)). The variance matrix of the variables is a block diagonal matrix of
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size 40. The first block is the squared matrix of size 5 composed of 1 outside the diagonal and
taking values 1.01 on the diagonal. The second and third blocks are the same as the first. The
last block is the identity matrix of size 25. The vector of true coefficients β∗ is defined as follows:
the first 15 coordinates are equal to 3 and the last 25 coefficients are 0. This means that, in this
model, only the first 15 variables influence the response. The 25 following are pure noise. Amongst
the 15 influencing variables, there are three groups of highly correlated variables: these groups are
composed of the first five variables, the next five and the last five. The variables of different groups
are independent. As compared with (1), this means that the intercept of the model is α∗ = 1 and
the number of variables (without the intercept) is p = 40. Depending on the nature of the noise,
various models are considered.

• Model 1: block-variable model, gaussian noise. Here the standard deviation of the noise is
σ = 15 and the variables ε1, · · · , εn are independent standard normal variables. Except for the
part of the intercept parameter, this is exactly example 4 of [40].

• Model 2: block-variable model, mixture of gaussians. Here the variables ε1, · · · , εn are an
independent mixture of gaussians. Indeed, with probability 0.9, ε is a standard normal variable
and with probability 0.1, ε is a centered normal with variance 225. The value σ = 3.1009 has
been chosen such that the standard deviation of the noise is the same as in Model 1. The
common value is std(σε) = 3.1009

√
1 + 0.1(225− 1) = 15.

• Model 3: block-variable model, double-exponential noise. ε = D/
√

var(D) and σ = 212. The
distribution of D is a standard double exponential i.e. its density is x ∈ R → e−|x|/2 and
var(D) = 2.

These three models create a grouped variable situation. They can be divided into two types.
The first type contains light tailed error models (Model 1) whereas the second type is composed
of heavy tailed error models (Model 2 and Model 3). Model 1 makes it possible to quantify the
deterioration of the performances of the robust algorithms in the absence of outliers. With regard
to the maximum likelihood approach, the least squares loss (resp. Huber’s loss) is well designed for
Models 1 (resp. 2,3).

4.1.2 Assessing prediction methods

To compare the performances of the various algorithms in the fixed design setting, the performances
are measured both by the prediction errors and the model selection ability (as in [18]). For any
considered underlying models, we generate a first set of n training designs (x1, · · · ,xn) and a
second set of m =10 000 test designs (xn+1, · · · ,xn+m). These two sets are centered so as to fit the
theoretical definition (1) of the model (i.e. ensures that

∑n
i=1 xi = 0). Since the theoretical results

are established in a fixed design framework, the training and test designs are fixed once and for all:
they will be used for all the data generations. 100 training sets of size n are generated according
to definition (1) of the model. All the algorithms have been run on the 100 training sets of size
n =100, 200, 400 and their prediction capacity have been evaluated on the test design set of size
m =10 000. To compare the prediction accuracy, the Relative Prediction Errors (RPEs) already
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considered in [39] are computed (see also [18] for explicit definition). Figures 1, 2 and 3, provide
the boxplots associated with the 100 obtained RPE.

The model selection ability of the algorithms are reported in the same manner as in [33], [29] and
[7] in Tables 1, 2 and 3. Ridge penalty procedures are not reported since they do not constitute
variable selection procedures. To provide the indicators defined below, a coefficient is considered to
be zero if its absolute value is strictly less than 10−5 (i.e. its first five decimals vanish). In all cases,
amongst the 100 obtained estimators, the first column (C) has the number of well chosen models,
i.e. the cases where first 15 coordinates of β̂ are non-zeros and the last 25 coefficients are zeros.
We consider other measurements to go further in our model selection ability analysis. The first
(in the second column (O)) represents the number of overfitting models (i.e. those selecting all the
non-zero coefficients and at least one zero coefficient). The second (in the third column (U)) reports
the number of chosen underfitting models (i.e. those not selecting at least one non-zero coefficient).
In this way, all the 100 models are counted once. Columns (O) and (U) aim to explain the results
obtained in (C). The column (Z) is the average number of estimated zeros, the column (CZ) provides
the average number of correctly estimated zeros and (TZ) recalls the number of theoretical zeros.
Model selection abilities are closely related to the accuracy of estimations of the coefficients. This
fact is illustrated by boxplots of the coefficient estimations (see Figures 4, 5 and 6).

Concerning the hyperparameter choices, the regularization parameters associated with adaptive
lasso or BerHu penalties are chosen by BIC criterion in each of the 100 training sets as described in
Section 2.3. The same grid has always been used. It is composed of 100 log-linearly spaced points
between 0 and 1400 for BerHu and 200 log-linearly spaced points between 0 and 10 000 for the lasso.
For Huber’s loss, the simulation studies report the performances obtained with M = 1.345. This
value was recommended by Huber in [15]. For adaptive BerHu penalty, we report the performances
obtained with L = M = 1.345 Let us remark that it is possible to choose the M and L parameters
from the data (for example by cross-validation simultaneous with the tuning parameter), but in
practice we do not observe any improvement to make it data adaptive. For ridge-type procedures
the hyperparameter is chosen as usual by 5-fold cross-validation for each of the 100 training sets.
The grid is composed of 100 points, log-linearly spaced between 0 and 1400. For adaptive Enet
procedure, we use the similar protocol as in [40]: we first pick a relatively small grid of values for
λ2,n over {0, 0.01, 0.1, 1, 10, 100} and 25 log-linearly spaced points between 0 and 5000 for λ1,n.
Then both parameters are chosen simultaneously by 5-fold cross-validation.

4.1.3 Comparison results

Tables 1, 2 and 3 present the performances in terms of selection model ability. For Model 1 and 2,the
lasso and Enet penalties methods lead in most cases to underfitting models (columns U). This is
quite a surprising outcome for the Enet penalty. Indeed the penalty imposed on the small coefficients
is the sum of an `1-norm and a squared `2-norm. This implies that penalty thus obtained is closer
to differentiability than the `1-penalty. As shown in [1], if the penalty is far from differentiability,
smaller coefficients are deleted. These penalties have a relatively high number of zeros (columns Z)
with the number of correct zeros (columns CZ) very close to the true value (columns TZ). However,
the number of incorrect zeros (columns Z−CZ) is almost the same whatever n and whatever the
model: the lasso (resp. Enet) does not identify approximately 10 (resp. 8) influencing variables.
For Model 3 the trend reverses. In particular these two methods tend to underestimate the number
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of zeros and are very bad at recognizing correct zeros. In all cases these methods almost never
identify the right model. The Behru penalty leads to some compromise between over and under
fitting. Its number of incorrect zeros is approximatively 1 even in Model 3 : Berhu penalty deletes
fewer non influencing variables than the lasso and Enet but keeps more non influencing variables.
We point out that contrary to Enet and lasso type methods, in Model 2 the BerHu penalty allows
us to identify the right model a reasonable number of times.

This behavior occurs on the quality of estimation of the non zero coefficients (see Figures 4, 5
and 6)). In these figures, we report, for n = 200, boxplots associated to the differences between
β̂1 and β1. Let us note that the conclusions for the other influencing coefficients remain the same.
The ridge method is given here as a reference since it is known to lead to good performances in
presence of high correlation between the covariables. We observe that the BerHu penalty leads to
good performance in terms of bias, as the ridge method, with higher variability for Model 1 and 2.
The bias and sometimes the variability are very high for the other methods due to their tendency
to underfit. Most of the time (for Model 1 and 2), the median of the differences between β̂1 and
β1 is equal to −3 = −β1 (that is β̂1 = 0). For model 3, ad-lasso has a very high variability in
comparison with other methods.

Figures 1, 2 and 3 provide the boxplots associated with RPE. Let us recall that the Model
1 (without outliers) was introduced to quantify the potential fall of performances of Huber type
methods. For n sufficiently large (n ≥ 200), all the methods behave similarly. It should be noted
that this model includes 40 variables, consequently n = 100 is very small. One can note that
Huber-ad-Berhu has better performances than l1-loss-ad-Berhu in the Gaussian case (Model 1).
Concerning the Model 2 (gaussian mixtures) and Model 3 (double-exponential noise), the RPE of
Huber type methods are significantly better than those of the other methods as well as in term
of bias and variance. We observe that Huber-ad-lasso provides several extreme values du to
numerical instabilities and is often more variable.

4.1.4 Numerical illustration of Theorem 2 (consistency of variable selection)

Previous simulations illustrated the behavior of the methods in realistic cases that is to say for
n not very large. In this subsection we aim at illustrating the consistency of the variable selection
part of Theorem 2 when n becomes large. We introduce a new model, denoted by Model 4, which
is a variant of Model 2 with fewer covariates: the number of covariates (without the intercept) is
equal to 8, 2 blocks of 2 active variables (instead of 3 blocks of 5 active variables) and one block of
4 inactive variables (instead of 15 inactive variables). The simulations are conducted as previously,
using n = 100, 200, 400, 1000 and 2000. Table 4 gives, for each value of n, C, the number of well
chosen models from the 100 samples and the mean and standard deviation of the RPE. We observe,
as stated in Theorem 2, that in the simulations C tends to 100 when n becomes large.

4.2 Prostate cancer data example

This data set comes from a prostate cancer study (see [28]) and was previoulsly analyzed in the
elastic net paper by [40, 9]. There are eight clinical covariates, namely: logarithm of the cancer
volume (lcavol), logarithm of the prostate weight (lweight), age, logarithm of the amount of benign
prostatic hyperplasia (lbph), seminal vesicle invasion (svi), logarithm of the capsular penetration
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(lcp), Gleason score (gleason) and percentage Gleason score 4 or 5 (pgg45). The response variable
is the logarithm of prostate-specific antigen (lpsa). The predictors are named 1, . . . , 8 in results.
OLS and the previous methods were applied to these data.

In [40], the data were divided into two parts: a training set with 67 observations and a test set with
30 observations while in [9], they randomly divided the original data set into training and testing
sets containing 60 and 37 observations respectively. To fairly compare the methods we propose to
perform a resampling study: we randomly divided 100 times the original data set into training and
testing sets containing 67 and 30 observations respectively. The hyperparameters are chosen as in
the simulation study. We then compared the performances of the methods by computing their RPEs
on the 100 resampling testing sets (see Table 5). Contrary to what had been observed in [40, 9], our
resampling study does not allow us to claim that one method emerges in terms of RPE: almost all
these methods have similar RPEs. We can only say that perhaps Huber-ad-lasso is slightly less
good. It should be noted that we observe a great variability in the choice of λ2,n for the ad-Enet
(see first column of Table 5). This is also the case for Huber-ad-lasso. On the contrary, the choice
of λn for Behru type procedures is more stable (it is comparable to the stability of ridge). Figure 7
shows (except for OLS and ridge procedures) the histogram associated with the selected variables.
We see that Huber-ad-Berhu leads to good models in terms of sparsity in comparison with Enet.
We observe that Huber-ad-Berhu procedure is a compromise between lasso type methods which
select few variables and ad-Enet type methods which select many variables.

5 Appendix

5.1 Computations: software used for numerical optimization

When the regularization parameter is fixed, to solve all the involved optimization problems we used
CVX, a package for specifying and solving convex programs [10, 11]. CVX is a set of Matlab func-
tions using the methodology of disciplined convex programming. Disciplined convex programming
imposes a limited set of conventions or rules, which are called the DCP ruleset. Problems which
adhere to the ruleset can be rapidly and automatically verified as convex and converted to solvable
form. Problems that violate the ruleset are rejected, even when convexity of the problem is obvious
to the user. The version of CVX we use, is a preprocessor for the convex optimization solver SeDuMi
(Self-Dual-Minimization [27]).

Let us now recall a well-known fact of convex analysis: the Huber function is the Moreau-Yosida
regularization of the absolute value function ([13, 24, 25]). Precisely, it can be easily shown that
the Huber function satisfies

HM(z) = min
v∈R

(
(z − v)2 + 2M |v|

)
.

We can derive the same kind of formulation for the BerHu function leading to a characterization of
the BerHu function as quadratic optimization problem. Indeed, the function (3) satisfies

BL(z) = min
w≥L∨|z|

(
w2

2L
− w + |z|+ L

2

)
,
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where a ∨ b denotes the maximum of the two real numbers a and b. The proof of this equality is
trivial since it amounts to minimize a quadratic function on an interval.

This allows to write our optimization problem in a conforming manner to use CVX. Note that
[23] uses an expression of HM(z) as the solution of a quadratic optimization problem (borrowed
from the user guide of CVX) to write his problem in a conforming manner to use CVX. However, the
expression of [23] involves more constraints and more variables than the previous formulation. We
give here the way to use CVX in order to compute the estimators alpha=α̂Hadl, beta=β̂Hadl and
s=ŝHadl. The variable X represents the design matrix X. The unpenalized estimator betaUNP= β̂H
is calculated beforehand (using also CVX) and the regularisation parameter λn is fixed and denoted
by lambda.

cvx_begin

variables alpha beta(p) s v(n) tau w(p);

minimize (n*s+quad_over_lin(y-alpha-X*beta-v,s)+2*M*norm(v,1)

+ mu*(tau*norm(betaUNP,1)+quad_over_lin(w./(sqrt(abs(betaUNP))),2*L*tau)

+norm(beta./betaUNP,1)-sum(w./abs(betaUNP))+0.5*L*tau*norm(1./betaUNP,1)))

subject to

s > 0;

tau > 0;

w >= L*tau;

w >= abs(beta);

cvx_end

Let us remark that betaUNP is computed in the same way but deleting the term multiplied by
lambda.

5.2 Proof of Theorem 1

Let us fix some β 6= 0. The following holds penadb(β) = minτ≥0 f(τ) where f(τ) = P adb(β, τ). The
function f is clearly convex continuous on R∗+. The set R+ can be cut up into intervals such that,
on each interval the function f get the form a/τ + bτ + c for various constants a, b and c. Precisely,
we have:

f(τ) =


+∞ if case 1,∑m−1

j=1 β2
(j)
ŵ(j)

2Lτ
+
(∑p

j=1
1
ŵj

+ L
2

∑k(β)−1
j=1 ŵ(j)

)
τ +

∑k(β)
j=m |β(j)|ŵ(j) if case 2,

τ
∑p

j=1
1
ŵj

+
∑p

j=1 |βj|ŵj if case 3,

where
case 1: τ = 0,

case 2: ∃m ∈ [2, k(β) + 1] ,
|β(m)|
L

< τ ≤ |β(m−1)|
L

,

case 3: τ >
|β(1)|
L
.

The function τ −→ a/τ + bτ + c with a ≥ 0 and b > 0 is decreasing on ]0,
√
a/b[ and increasing on

[
√
a/b,+∞[. So, its minimum on R∗+ is reached at

√
a/b and is equal to 2

√
ab+ c. The function f
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is a valley on R+ since f is convex, f(τ) −→ +∞ as τ −→ 0+ and f(τ) −→ +∞ as τ −→ +∞. By
convexity of f , among the intervals ]|β(m)|/L, |β(m−1)|/L] for m = 2, . . . , k(β) + 1, there is only one
where f is a valley.

Consequently, the minimum of f on R+ is reached at

τ̂(β) =

√√√√ ∑q(β)−1
j=1 β2

(j)ŵ(j)

2L
∑p

j=1
1
ŵj

+ L2
∑q(β)−1

j=1 ŵ(j)

,

and is equal to the expression given in Theorem 1.

5.3 Proof of Theorem 2

The asymptotic normality of this estimator is proved in Step 1 and the consistency in variable
selection in the Step 2. This proof in an adaptation to our case of the proof given by [39] or [18].
The difference with [18] concerns the treatment of the penalty term. So in the following, we will
use notations similar to the ones of [18]. We will point out the difference between the both proofs.
Step 1. Let us first prove the asymptotic normality. Let us define Un(u) =

QHadb ((α∗, β∗, s∗, τ ∗)T + u/
√
n)−QHadb(α∗, β∗, s∗, τ ∗) with u = (u0, . . . , up+2)

T ∈ Rp+3. Obviously,
Un(u) is minimized at

û(n) =
√
n

(
α̂Hadb − α∗, β̂Hadb − β∗, ŝHadb − s∗,

√
λn√
n

(τ̂Hadb − τ ∗)
)T

.

The principle of the proof of [39] or [18] is to study the epi-limit of Un. Epi-convergence provides
natural conditions under which, if Un epi-converges to U , one can guarantee the convergence of
the minimizer of Un to the minimizer of U. [8] defines epi-convergence in distribution (denoted by
→e−d) for random lower semicontinuous extended real-valued variables from Rq as the convergence
in distribution for the distance d defined in Lemma 3.

Using the proof of theorem 3.2 in [18], we only need to study the epi-limit of the penalty term
given by

Pn(u) = λn

(
P̃ adb

(
β∗ +

u1:p√
n
, τ ∗ +

up+2√
λn

)
− P̃ adb(β∗, τ ∗)

)
,

where P̃ adb(β, τ) = P adb(β, τ), if τ ≥ 0, ∞ if τ < 0. The epi-limit of this term is given in the
Lemma 1 . This lemma together with lemma 2 of [18] indicates that Un →e−d U, where U(u) =
As∗

(
uT1:pV u1:p + u20

)
+ Ds∗u

2
p+1 −W Tu + up+2

2C(up+2), if uj = 0, ∀ j /∈ A, +∞ otherwise. Under
condition β∗ 6= 0, equation (20) in Lemma 2 implies that

∑p0
j=1 |β∗j |2−γ11|β∗j |>Lτ∗ > 0 thus the function

z → z2C(z) is strictly convex. Moreover, V1,1 is supposed positive definite in assumption (D2) and
we assume that the noise satisfies (N2). Consequently, U get a unique minimizer. Theorem 5 of
[16] ensures that û(n) converges in distribution to the minimizer of U . The asymptotic normality
part is proved. It should be noted that [39] does not provide proof for the epi-convergence for the
lasso penalty: our proof is self-contained.
Step 2. Let us now show the consistency in variable selection part. It suffices to show that

P [A ⊂ An]→ 1 as n tends to infinity and P [Ac ⊂ Anc]→ 1 as n tends to infinity. The first claim
is an easy consequence of asymptotical normality obatined in Step 1.
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Let us now show the second claim. Let j such that β∗j = 0. We have to prove that P
[
β̂Hadbj 6= 0

]
→

0 as n tends to infinity. As in [18], we have for a such j,

P
[
β̂Hadbj 6= 0

]
≤ P

[(
ŝHadb, τ̂Hadb

)
= (0, 0)

]
+

P

[
τ̂Hadb > 0 and ŝHadb > 0 and

n∑
i=1

xi,jH′M

(
yi − α̂Hadb − xTi β̂

Hadb

ŝHadb

)
= −λnŵHadbj B′L

(
β̂Hadbj

τ̂Hadb

)]
.

Using similar arguments as in [18], we have, as n tends to infinity,

P
[
(ŝHadb, τ̂Hadb) = (0, 0)

]
→ 0.

Since ∀x ∈ R∗, |B′L (x) | ≥ 1, we have

P

[
τ̂Hadb > 0 and ŝHadb > 0 and

n∑
i=1

xi,jH′M

(
yi − α̂Hadb − xTi β̂

Hadb

ŝHadb

)
= −λnŵHadbj B′L

(
β̂Hadbj

τ̂Hadb

)]

≤ P

[
ŝHadb > 0 and

1√
n

∣∣∣∣∣
n∑
i=1

xi,jH′M

(
yi − α̂Hadb − xTi β̂

Hadb

ŝHadb

)∣∣∣∣∣ ≥ λn√
n
ŵHadbj

]
As in [18], we have

1√
n

n∑
i=1

xi,jH′M

(
yi − α̂Hadb − xTi β̂

Hadb

ŝHadb

)
= OP (1),

and
√
n/(λnŵ

Hadb
j )

P→ 0, that implies that P
[
β̂Hadbj 6= 0

]
→ 0 as n tends to infinity. �

5.4 Technical lemma

5.4.1 Proof of lemma 1

Lemma 1. Suppose that λn/n
γ∧1/2 → 0, λnn

(γ−1)/2 →∞, λn →∞ and β∗ 6= 0. Then we have

Pn(u)→e−d

{
up+2

2C(up+2) if uj = 0, ∀ j /∈ A,
+∞ otherwise ,

where

C(up+2) =
1

2Lτ ∗3

p0∑
j=1

|β∗j |2−γ11|β∗j |>Lτ∗ +
L1−γ

2τ ∗(γ+1)
#{1 ≤ j ≤ p, |β∗j | = Lτ ∗}11up+2<0.

Since β∗ 6= 0, Lemma 2 ensures that τ ∗ > 0. Consequently, we have Pn(u) =
∑p

j=1 Pn,j(u), where

Pn,j(u) =


λn

(
up+2√
λnŵadbj

+ ŵadbj

(
τ ∗ + up+2√

λn

)
BL
(

β∗j+
uj√
n

τ∗+
up+2√
λn

)
− τ ∗ŵadbj BL

(
β∗j
τ∗

))
if up+2 > −

√
λnτ

∗,

−λnτ ∗
(

1
ŵadbj

+ ŵadbj BL
(
β∗j
τ∗

))
if up+2 = −

√
λnτ

∗,

and uj = −
√
nβ∗j ,

+∞ otherwise.
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Proof. The proof is divided into two steps.
Step 1. First let us prove that

p0∑
j=1

Pn,j(u)→e−d u
2
p+2C(up+2) . (9)

We show that, for every u fixed in Rp+2, we have this convergence in probability. Since τ ∗ > 0 and
λn → +∞ as n tends to infinity, for n sufficiently large (with respect to a bound depending on
up+2), up+2/

√
λn + τ ∗ > 0 and

Pn,j(u) =
up+2

√
λn

ŵadbj

+ λnŵ
adb
j

(
Gj

(
uj√
n
,
up+2√
λn

)
−Gj(0)

)
,

where

∀ j ∈ [1, p0], Gj : (z1, z2)→ (z2 + τ ∗)BL
(
z1 + β∗j
z2 + τ ∗

)
.

For 1 ≤ j ≤ p0 such that |β∗j | 6= Lτ ∗, Gj is two times differentiable at 0 and the Taylor-Young
theorem entails that, ∀ (z1, z2) ∈ R2,

Gj(z1, z2) = Gj(0) + z1B′L
(
β∗j
τ ∗

)
+ z2B

(
β∗j
τ ∗

)
+

z21
2Lτ ∗

11|β∗j |>Lτ∗

+
z22β

∗
j
2

2Lτ ∗3
11|β∗j |>Lτ∗ −

z1z2β
∗
j

Lτ ∗2
11|β∗j |>Lτ∗ + ξ(z1, z2) ,

where ξ(z1, z2)/‖(z1, z2‖2 → 0 as (z1, z2)→ 0 , B : z ∈ R→ BL (z)− zB′L (z) and we have used that
B′′L
(
β∗j /τ

∗) = 11|β∗j |>Lτ∗/L. Consequently, for 1 ≤ j ≤ p0 such that |β∗j | 6= Lτ ∗,

Pn,j(u) =
up+2

√
λn

ŵadbj

+
√
λnup+2ŵ

adb
j B

(
β∗j
τ ∗

)
+
u2p+2|β∗j |2−γ

2Lτ ∗3
11|β∗j |>Lτ∗ + an,j(u) , (10)

where

an,j(u) =
λnujŵ

adb
j√

n
B′L
(
β∗j
τ ∗

)
+
λnu

2
j ŵ

adb
j

2nLτ ∗
11|β∗j |>Lτ∗−

√
λnup+2β

∗
jujŵ

adb
j√

nLτ ∗2
11|β∗j |>Lτ∗+λnŵ

adb
j ξ

(
uj√
n
,
up+2√
λn

)
.

Let us now consider 1 ≤ j ≤ p0 such that |β∗j | = Lτ ∗. When β∗j = Lτ ∗, for n sufficiently large
(with respect to a bound depending on u),

Pn,j(u) =

√
λnup+2

ŵadbj

+ λnŵ
adb
j

((
τ ∗ +

up+2√
λn

)
BL

(
Lτ ∗ +

uj√
n

τ ∗ + up+2√
λn

)
− Lτ ∗

)

Let us consider n sufficiently large (with respect to a bound depending on u) such that Lτ ∗+uj/
√
n >

0 and τ ∗+up+2/
√
λn > 0. It is possible since τ ∗ > 0. Thus, combined with the assumption λn → +∞
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as n tends to ∞, the involved sequence tends to a strictly positive limit as n tends to ∞. Since
λn/n→ 0 as n tends to ∞, two cases are possible. Either,

√
λn/nuj ≤ Lup+2 and

bn,j(u) = Pn,j(u)−
√
λnup+2

ŵadbj

=
λnujŵ

adb
j√

n
, (11)

or
√
λn/nuj > Lup+2 and

bn,j(u) =
λnŵ

adb
j(

τ ∗ + up+2√
λn

) ( u2j
2Ln

+
τ ∗uj√
n

)
+

Lŵadbj

2
(
τ ∗ + up+2√

λn

)u2p+2. (12)

Similiarly, we get the same result if β∗j = −Lτ ∗. Gathering (10) and using B(±L) = 0, we have the
following decomposition:

p0∑
j=1

Pn,j(u) =

p0∑
j=1

cn,j(u) +

p0∑
j=1

(
an,j(u)11|β∗j |6=Lτ∗ + bn,j(u)11|β∗j |=Lτ∗

)
+
up+2

2

2Lτ ∗3

p0∑
j=1

|β∗j |2−γ11|β∗j |>Lτ∗,

(13)
where

cn,j(u) = up+2

√
λn

p0∑
j=1

(
1

ŵadbj

+ ŵadbj B

(
β∗j
τ ∗

))
.

We now study the convergence of each term. The
√
n-consistency of β̂unpen implies that ŵadbj

P→
1/|β∗j |γ < +∞. Moreover, λn/

√
n → 0 as n tends to infinity, thus, by Slutsky’s theorem, the first

three terms of an,j(u) tends to 0 in probability for any (u) ∈ Rp+2 fixed. Concerning the last term
(the rest), we have that

∀ ε > 0 ,∃Nε(u), ∀n ≥ Nε(u), λnξ

(
uj√
n
,
up+2√
λn

)
≤ ε

(
u2jλn

n
+ u2p+2

)
.

Moreover, (λn/n)n≥1 is a bounded sequence (since it converges to 0 as n tends to infinity). Thus,
λnξ(uj/

√
n, up+2/

√
λn) → 0 as n tends to ∞. Consequently, for any u ∈ Rp+2 fixed, the forth

term of an,j tends to 0 in probability. Using Slutsky’s lemma, this entails that, for any u ∈ Rp+2

fixed, an,j(u)
P→ 0. Concerning the term bn,j(u) As previously we have ŵadbj

P→ 1/|β∗j |γ < +∞ and
λn/
√
n→ 0 as n tends to infinity, so, if β∗j = Lτ ∗,

bn,j(u)
P→ L(1−γ)

2τ ∗(γ+1)
u2p+211up+2<0 .

Similarly, we get the same result if β∗j = −Lτ ∗. Concerning the term cn,j(u), Property (20) (see
Lemma 2) is available since β∗ 6= 0 and

cn,j(u) = up+2

√
λn
n

p0∑
j=1

√n(|β̂unpenj |γ − |β∗j |γ) +B

(
β∗j
τ ∗

)√n
(
|β̂unpenj |γ − |β∗j |γ

)
|β̂unpenj |γ|β∗j |γ

 . (14)
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Since β∗j 6= 0, x→ |x|γ is differentiable at β∗j and the Taylor-Young theorem entails that

√
n
(
|β̂unpenj |γ − |β∗j |γ

)
= γsign(β∗j )|β∗j |γ−1

√
n
(
β̂unpenj − β∗j

)
+
√
n
(
β̂unpenj − β∗j

)
ξj

(
β̂unpenj

)
with ξj(x)→ 0 as x tends to β∗j . Now, the

√
n-consistency of β̂unpen implies that the first term of this

expansion is bounded in probability. It also entails that β̂unpenj
P→ β∗j which leads to ξj

(
β̂unpenj

)
P→ 0

since ξj(x)→ 0 as x tends to β∗j . Consequently, the second term of this expansion is also bounded

in probability and, finally,
√
n(|β̂unpenj |γ − |β∗j |γ) = OP (1). Since λn/n → 0 as n tends to infinity,

and |β̂unpenj |γ P→ |β∗j |γ 6= 0, so cn,j(u) converges in probability to 0. Combining (13) with all these
convergences, the convergence in probability of (9) is proved. Using first theorem 2.7 (vi) of [30]
and then that convergence in probability is stronger than convergence in distribution (theorem 2.7
(ii) of [30]), we get that convergence in probability implies finite-dimensional convergence in (9).
Theorem 5 of [16] implies that (9) holds since the limit function u→ u2p+2C(up+2) is finite.
Step 2. Next, we treat the sum of terms Pn,j for j > p0, and first show that

(Pn,p0+1, · · · , Pn,p)→e−d
(
IBp0+1 , · · · , IBp

)
, (15)

where Bj = {(u1:p, up+2) ∈ Rp+1, uj = 0} and for a set A, IA denotes the indicator function of A
(i.e. IA(x) = 0 if x ∈ A and IA(x) = +∞ otherwise). Let us put

qn,j(u) = Pn,j(u)−
√
λnup+2|β̂unpenj |γ. (16)

Since β̂unpen is a
√
n-consistent estimator and j ∈ [p0 + 1, p], nγ/2|β̂unpenj |γ is a tight sequence.

Moreover, we have λn/n
γ → 0 as n tends to infinity, thus ∀up+2 ∈ R,

√
λnup+2|β̂unpenj |γ =

up+2

√
λnn−γ(

√
n|β̂unpenj |)γ P→ 0. Using first theorem 2.7 (vi) of [30], we get that convergence in

probability implies finite-dimensional convergence:
√
λnup+2|β̂unpenj |γ →f−d 0. Since the involved

limit function is finite and by convexity, theorem 5 of [16] ensures that we have the epiconvergence
in distribution. Moreover, BL (x) ≥ |x| and BL (0) = 0, Lemma 3 with q(x) = BL (x) leads to

d(qn,j, IBj) ≤ 2−[τ∗
√
λn]+1 +

2
√
n|β̂unpenj |γ

λn
,

where d is defined as in (21). We have λn → +∞ as n tends to infinity and 2−[τ∗
√
λn]+1 → 0 as

n tends to infinity since τ ∗ > 0. Furthemore 2
√
n|β̂unpenj |γ/λn = 2(

√
n|β̂unpenj |)γ/λn/n(γ−1)/2 and

since β̂unpen is a
√
n-consistent estimator and j ∈ [p0 + 1, p], the numerator is a tight sequence

and the denominator tends to +∞ as n tends to infinity. Consequently, 2
√
n|β̂j|γ/λn

P→ 0 and

d(qn,j, IBj)
P→ 0. Finally, using part (ii) of lemma 1.10.2 page 57 of [31], we have qn,j →e−d IBj .

The notion of epi-convergence in distribution of convex lower semicontinuous random variables is a
particular case of weak convergence of a net as stated in definition 1.33 of [31]. Consequently, we
can use Slutsky’s theorem page 32, example 1.4.7 of [31] to ensure that(√

λnup+2|β̂j|γ, qn,j(u1:p, up+2)
)
→e−d (0, IBj) (17)
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since 0 is deterministic. Moreover, we have
√
λnup+2|β̂unpenj |γ →u−d 0 since we have shown the

finite dimensional convergence in distribution and since
√
λnup+2|β̂j|γ and 0 are finite convex func-

tions ([2] and [16]). We are now in position to use part (b) of theorem 4 of [16]: gathering (17),√
λnup+2|β̂unpenj |γ →u−d 0, continuity of 0 and (16), it ensures that Pn,j →e−d IBj holds. Since IBj

is deterministic, theorem 18.10 (ii) of [30] ensures that the convergence in probability holds. Now,
theorem 18.10 (vi) of [30] leads to the convergence in probability in (15). Moreover, convergence in
probability is stronger than convergence in distribution thus (15) is proved.

For all I ⊂ [p0 + 1, p], dom
(∑

i∈I IBi
)

= {(u1:p, up+2) ∈ Rp+1, ui = 0,∀ i ∈ I}. Thus, for all
I ⊂ [p0 + 1, p] and J ⊂ [p0 + 1, p] satisfying I ∩ J = ∅,

0 ∈ int

(
dom

(∑
i∈I

IBi

)
− dom

(∑
j∈J

IBj

))
,

where for f , a function defined on Rp+1, dom(f) = {x ∈ Rp+1/f(x) < +∞} and A−B = {a−b, a ∈
A, b ∈ B}. Using successively this fact, (15), Theorem 5 of [21] and theorem 18.10 (iii) (v) (vi) and
18.11 of [30], we get

p∑
j=p0+1

Pn,j →e−d

p∑
j=p0+1

IBj (18)

As previously, we can use Slutsky’s theorem page 32, example 1.4.7 of [31] to ensure that (18) and
(9) imply that (

p∑
j=p0+1

Pn,j(u),

p0∑
j=1

Pn,j(u)

)
→e−d

(
p∑

j=p0+1

IBj , u
2
p+2C(up+2)

)
(19)

since u2p+2C(up+2) is deterministic. Moreover, we have
∑p0

j=1 Pn,j(u) →u−d u
2
p+2C(up+2) since we

have shown the finite dimensional convergence in distribution and
∑p0

j=1 Pn,j(u) and u2p+2C(up+2)
are finite (for n sufficiently large) convex functions ([2] and [16]). Using part (b) of theorem 4 of
[16]: gathering (19),

∑p0
j=1 Pn,j(u1:p, up+2) →u−d up+2

2C(up+2) and continuity of up+2
2C(up+2), it

ensures that Lemma 1 holds. �

5.4.2 Proof of lemma 2

Lemma 2. If β∗ 6= 0 then there exists a unique τ ∗ > 0 satisfying equation (8) and

p∑
j=1

|β∗j |γ +

p0∑
j=1

1

|β∗j |γ

(
BL
(
β∗j
τ ∗

)
−
β∗j
τ ∗
B′L
(
β∗j
τ ∗

))
= 0. (20)

Proof. Let us denote by I the following function of τ

I(τ) = τ

(
p∑
j=1

|β∗j |γ +

p0∑
j=1

1

|β∗j |γ
BL
(
β∗j
τ

))
.
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This function is convex and I ′(·) is continuous, increasing with I ′(τ)→
∑p

j=1 |β∗j |γ as τ → +∞ and,
if β∗ 6= 0, I ′(τ) → −∞ as τ → 0. This leads to the existence of τ∗ > 0 by the intermediate value
theorem. The minimum of I is unique since I ′ is strictly increasing on each pieces ]0, |β∗(1)/L|[ and

[|β∗(k|/L, |β∗(k+1)|/L[ for 1 ≤ k ≤ p− 1, continuous and increasing on R∗+, strictly positive at |β∗(p)|/L
since I ′(|β∗(p)|/L) =

∑p
j=1 |β∗j |γ > 0. Note that I ′ is constant on [|β∗(p)|/L,+∞[. This concludes the

proof. �

5.4.3 Proof of lemma 3

For f , a function defined on S, we note epi(f), its epigraph given by epi(f) = {(x, t) ∈ S×R/f(x) ≤
t}.

Lemma 3. Let q be a function such that q(0) = 0 and ∀x ∈ R, q(x) ≥ |x| . We use the notations
of the proof of lemma 1. Let us recall that qn,j(u1:p, up+2) = Pn,j(u1:p, up+2)−

√
λnup+2|β̂j|γ where

Pn,j(u) =


λn

(
up+2√
λn
|β̂j|γ + 1

|β̂j |γ

(
up+2√
λn

+ τ ∗
)
q

( γj√
n
+β∗j

up+2√
λn

+τ∗

)
− τ∗

|β̂j |γ
q
(
β∗j
τ∗

))
if up+2 > −

√
λnτ

∗,

−λnτ ∗
(
|β̂j|γ + 1

|β̂j |γ
q
(
β∗j
τ∗

))
if up+2 = −

√
λnτ

∗,

and γj = −
√
nβ∗j , ,

+∞ otherwise .

Then, ∀j ∈ [p0 + 1, p],

d(qn,j, IBj) ≤ 2−[τ∗
√
λn]+1 +

2
√
n|β̂j|γ

λn
,

where

d(qn,j, IBj) =
+∞∑
k=1

1 ∧ dk(epi(qn,j), epi(IBj))

2k
, (21)

dk is a semi-distance (”constrained Pompeiu-Haussdorf distance”)

dk(epi(qn,j), epi(IBj)) = max
‖x‖≤k

|depi(qn,j)(x)− depi(IBj )(x)| , (22)

and dS(x) = min
y∈S
‖x− y‖ for a subset S of Rp+1.

Proof. Let us note that distance d caracterises the epi-convergence of lower semi-continuous
functions: a sequence {fn} of extended-real-valued lower semi-continuous functions from Rp+1 epi-
converges to a extended-real-valued lower semi-continuous function f if and only if d(fn, f)→ 0 as
n goes ton infinity. We recall that Bj = {(u1:p, up+2) ∈ Rp+1, uj = 0} and for a set A, IA denotes
the indicator function of A. Let us introduce the set Dj = {(u1:p, up+2) ∈ Rp+1, uj = 0 andup+2 ≥
−
√
λnτ

∗}. By using the triangular inequality,

d(qn,j, IBj) ≤ d(qn,j, IDj) + d(IDj , IBj) . (23)

To begin with, let us show that

d(IDj , IBj) ≤ 2−[τ∗
√
λn] . (24)
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Here we use a geometrical point of view. The epigraph of the indicator function IA of a set A
is the “half- cylinder with cross-section A” i.e. A × R+. Consequently, the epigraph of IBj is an
half-hyperplan supported by the uj axis and the epigraph of IDj is the part of this half-hyperplan
where, moreover, up+2 ≥ −

√
λnτ

∗. Note that this cut is perpendicular to the up+2-axis. So if we
consider x ∈ Rp+2 such that xp+1 ≥ −

√
λnτ

∗, the distance between x and epi(IDj) is reached for a
point in epi(IBj). Thus

∀x, ‖x‖2 ≤ kwith k ≤
√
λnτ

∗, depi(IDj )(x) = depi(IBj )(x), (25)

and if k ≤
√
λnτ

∗ then dk(epi(IDj), epi(IBj)) = 0. Now the definition (21) of the distance d implies
that

d(IDj , IBj) =
∑

k≥[
√
λnτ∗]+1

1 ∧ dk(epi(IDj), epi(IBj))

2k
≤

∑
k≥[
√
λnτ∗]+1

1

2k
,

and (24) is proved.
Next, we show that

d(qn,j, IDj) ≤
2
√
n|β̂unpenj |γ

λn
+ 2−[τ∗

√
λn] . (26)

For j ∈ [p0 + 1, p], q(0) = 0 implies that

qn,j(u1:p, up+2) =
λn

|β̂unpenj |γ

(
up+2√
λn

+ τ ∗
)
q

 uj
√
n
(
up+2√
λn

+ τ ∗
)
+ IE (27)

where we set 0/0 = 0 and

E = {(u1:p, up+2), up+2 > −
√
λnτ

∗} ∪ {(u1:p, up+2), up+2 = −
√
λnτ

∗ anduj = 0}.

Consequently, qn,j(u1:p, up+2) ≤ IDj(u1:p, up+2). Indeed, it is clear if (u1:p, up+2) /∈ Dj. More-
over, if (u1:p, up+2) ∈ Dj, qn,j(u1:p, up+2) = 0 since q(0) = 0. Consequently, epi

(
IDj
)
⊂ epi (qn,j),

depi(IDj)
(.) ≥ depi(qn,j)(.) and

dk(epi (qn,j) , epi
(
IDj
)
) = max

‖x‖≤k

(
depi(IDj )(x)− depi(qn,j)(x)

)
.

Since ∀ t ∈ R, q(t) ≥ |t|, it holds that,∀ (t, τ) ∈ R× R∗+, τq(t/τ) ≥ |t| and expression (27) entails

qn,j(u1:p, up+2) ≥ Fn,j(u1:p, up+2) ,

where Fn,j(u1:p, up+2) = λn|uj||β̂unpenj |−γ/
√
n+IE. Consequently, epi (qn,j) ⊂ epi (Fn,j), depi(qn,j)(.) ≥

depi(Fn,j)(.) and

dk(epi (qn,j) , epi
(
IDj
)
) ≤ max

‖x‖≤k

(
depi(IDj )(x)− depi(Fn,j)(x)

)
. (28)

Now, epi(Fn,j) = S1 ∪ S2 where

S1 = {(u1:p, up+2, t) ∈ Rp+2, up+2 > −
√
λnτ

∗ and
λn|uj|√
n|β̂unpenj |γ

≤ t},
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and
S2 = {(u1:p, up+2, t) ∈ Rp+2, up+2 = −

√
λnτ

∗ , uj = 0, and t ≥ 0}.
Thus,

depi(Fn,j)(x) = dS1(x) ∧ dS2(x) . (29)

Easy calculations lead to, ∀x ∈ Rp+2,

d2S2
(x) = inf

z∈S2

p+2∑
i=1

(xi − zi)2 = x2j + (xp+1 +
√
λnτ

∗)2 + x2p+211xp+2<0, (30)

and

d2S1
(x) = inf

z∈S2

p+2∑
i=1

(xi − zi)2 = d2epi(fn,j)(x1, · · · , xp, xp+2) + (xp+1 +
√
λnτ

∗)211xp+1<−
√
λnτ∗ ,

where fn,j(u1:p) = λn|uj||β̂unpenj |−γ/
√
n. If we consider x ∈ Rp+2 such that ‖x‖2 ≤ k with k ≤√

λnτ
∗, it satisfies that xp+1 ≥ −

√
λnτ

∗ and thus d2S1
(x) = d2epi(fn,j)(x1, · · · , xp, xp+2) . Technical

computations leads to

dS1(x) =



√
x2j + x2p+2 if xp+2 ≤ −

√
n|β̂unpenj |γ

λn
|xj|,

|xj |−xp+2

√
n|β̂unpen

j
|γ

λn√
1+

n|β̂unpen
j

|2γ

λ2n

if −
√
n|β̂unpenj |γ

λn
|xj| < xp+2 ≤ λn√

n|β̂unpenj |γ |xj|,

0 if xp+2 >
λn√

n|β̂unpenj |γ |xj|.

(31)

Using explicit expressions (31) and (30), we can show that for any x ∈ Rp+2 such that ‖x‖2 ≤ k
with k ≤

√
λnτ

∗,
dS1(x) ≤ dS2(x). (32)

Gathering (32) with (29), for any x ∈ Rp+2 such that ‖x‖2 ≤ k with k ≤
√
λnτ

∗,

depi(Fn,j)(x) = dS1(x) = depi(fn,j)(x1, · · · , xp, xp+2). (33)

Combining (28), (33) and (25), if k ≤
√
λnτ

∗, we obtain

dk(epi (qn,j) , epi
(
IDj
)
) ≤ max

‖x‖≤k

(
depi(IBj )(x1, · · · , xp, xp+2)− depi(fn,j)(x1, · · · , xp, xp+2)

)
.

The involved objective function does not depend on xp+1. Moreover, using the form of the con-
straints, if k ≤

√
λnτ

∗, we get

dk(epi (qn,j) , epi
(
IDj
)
) ≤ max

x21+···+x2p+x2p+2≤k2

(
depi(IAj )(x1, · · · , xp, xp+2)− depi(fn,j)(x1, · · · , xp, xp+2)

)
.

Moreover, since ∀u1:p ∈ Rp, IAj(u1:p) ≥ fn,j(u1:p), if k ≤
√
λnτ

∗,

dk(epi (qn,j) , epi
(
IDj
)
) ≤ dk(epi (fn,j) , epi

(
IAj
)
),
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and technical computations leads to

dk(epi (fn,j) , epi
(
IAj
)
) =

k
√
n|β̂unpenj |γ

λn

√
1 +

n|β̂unpenj |2γ

λ2n

.

Finally, using the definition (21), we have

d
(
qn,j, IDj

)
≤

∑
k≤[
√
λnτ∗]

dk(epi (qn,j) , epi
(
IDj
)
)

2k
+

∑
k≥[
√
λnτ∗]+1

1

2k
.

Gathering this inequality with the previous one and the fact that
∑

k≥1
k
2k
≤ 2, (26) is proved.

Using equation (23) with (24) and (26), the bound involved in Lemma 3 holds. �
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Tables and Figures

Table 1: Selection model ability on Model 1 based on 100 replications. C (resp. O and U) is the
number of well-chosen models (resp. number of overfitting models and underfitting models). Z
is the average number of estimated zeros, CZ provides the average number of correctly estimated
zeros, (TZ) recall the theoretical zeros number.

C O U Z(std) CZ(std) TZ λn (std)
n = 100
ad-lasso 0 0 100 35.38(1.87) 24.32(1.33) 25 λn : 2683(1576)
ad-Enet 0 0 100 27.72(5.65) 19.69(4.60) 25 λ1,n : 1252(1197)

λ2,n : 1.4(3.1)
l1-loss-ad-Berhu 0 35 65 5.16(4.06) 4.07(4.19) 25 λn : 1.33(3.39)
Huber-ad-lasso 0 3 97 20.9(12.10) 14.08(8.35) 25 λn : 59.68(103.74)
Huber-ad-BerHu 0 33 67 9.89(6.20) 8.57(6.91) 25 λn : 9.57(12.44)
n = 200
ad-lasso 0 0 100 35.15(1.45) 24.59(0.73) 25 λn : 2718(1562)
ad-Enet 0 2 98 27.71(5.92) 20.52(4.71) 25 λ1,n : 1321(965)

λ2,n : 2.5(3.9)
l1-loss-ad-Berhu 0 28 72 12.81(5.50) 11.54(6.01) 25 λn : 7.59(6.96)
Huber-ad-lasso 0 7 93 29.52(9.75) 19.85(6.76) 25 λn : 135.26(169.02)
Huber-ad-BerHu 0 48 52 16.77(4.65) 15.86(5.19) 25 λn : 27.24(16.67)
n = 400
ad-lasso 0 0 100 34.75(1.61) 24.74(0.70) 25 λn : 3289(2136)
ad-Enet 0 0 100 27.06(4.81) 21.17(3.52) 25 λ1,n : 1260(777)

λ2,n : 6(4.74)
l1-loss-ad-Berhu 0 38 62 16.27(4.69) 15.10(5.14) 25 λn : 14.10(10.05)
Huber-ad-lasso 0 9 91 29.67(11.90) 20.3(8.07) 25 λn : 277.06(545.91)
Huber-ad-BerHu 0 35 65 19.47(4.06) 18.42(4.19) 25 λn : 41.78(18.75)
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Table 2: Selection model ability on Model 2 based on 100 replications. C (resp. O and U) is the
number of well-chosen models (resp. number of overfitting models and underfitting models). Z
is the average number of estimated zeros, CZ provides the average number of correctly estimated
zeros, (TZ) recall the theoretical zeros number.

C O U Z(std) CZ(std) TZ λn (std)
n = 100
ad-lasso 0 0 100 35.03(2.15) 24.18(1.67) 25 λn : 2727(2115)
ad-Enet 0 0 100 28.66(5.85) 20.46(4.63) 25 λ1,n : 1432(1374)

λ2,n : 1.6(3.2)
l1-loss-ad-Berhu 3 23 74 23.30(3.50) 22(2.88) 25 λn : 11.65(3.98)
Huber-ad-lasso 0 22 78 10.79(8.18) 7.38(5.86) 25 λn : 4.19(16.56)
Huber-ad-BerHu 5 24 71 24.36(2.64) 23.12(2.30) 25 λn : 28.90(8.52)
n = 200
ad-lasso 0 0 100 35.25(1.53) 24.61(0.80) 25 λn : 3151(1919)
ad-Enet 0 0 100 28.21(5.16) 20.68(4.08) 25 λ1,n : 1362(975)

λ2,n : 2.3(3.66)
l1-loss-ad-Berhu 8 19 73 24.47(3.82) 23.14(3.54) 25 λn : 14.45(5.16)
Huber-ad-lasso 0 6 94 21.63(9.03) 16.77(6.94) 25 λn : 14.09(16.25)
Huber-ad-BerHu 4 11 85 25.36(2.91) 23.78(2.59) 25 λn : 34.43(12.01)
n = 400
ad-lasso 0 0 100 35.05(1.45) 24.69(0.66) 25 λn : 3362(2142)
ad-Enet 0 0 100 28.10(4.03) 21.69(3.30) 25 λ1,n : 1471(898)

λ2,n : 5.8(4.69)
l1-loss-ad-Berhu 16 7 77 25.65(1.67) 24.31(1.30) 25 λn : 19.30(6.40)
Huber-ad-lasso 0 14 86 21.30(9.61) 17.76(7.68) 25 λn : 104.02(333.07)
Huber-ad-BerHu 23 10 67 24.64(4.30) 23.59(4.08) 25 λn : 37.91(16.07)
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Table 3: Selection model ability on Model 3 based on 100 replications. C (resp. O and U) is the
number of well-chosen models (resp. number of overfitting models and underfitting models). Z
is the average number of estimated zeros, CZ provides the average number of correctly estimated
zeros, (TZ) recall the theoretical zeros number.

C O U Z(std) CZ(std) TZ λn (std)
n = 100
ad-lasso 0 66 34 1.97(1.48) 1.51(1.32) 25 λn : 3239(2999)
ad-Enet 0 83 17 4.46(11.93) 2.87(7.44) 25 λ1,n : 3648(2052)

λ2,n : 65.9(45.8)
l1-loss-ad-Berhu 0 0 100 39.46(1.21) 24.99(0.10) 25 λn : 284(355)
Huber-ad-lasso 0 7 93 24.93(11.20) 18.34(8.25) 25 λn : 3357(3500)
Huber-ad-BerHu 0 1 99 33.45(4.01) 24.62(0.90) 25 λn : 969(333)
n = 200
ad-lasso 0 64 36 2.19(5.55) 1.49(3.52) 25 λn : 2516(3064)
ad-Enet 0 84 16 4.64(12.5) 2.94(7.8) 25 λ1,n : 2147(2266)

λ2,n : 47.9(46.5)
l1-loss-ad-Berhu 0 0 100 38.54(2.72) 24.87(0.66) 25 λn : 299(357)
Huber-ad-lasso 0 14 86 27.97(12.14) 19.92(8.55) 25 λn : 3886(3415)
Huber-ad-BerHu 0 2 98 30.51(4.34) 23.70(1.32) 25 λn : 1091(274)
n = 400
ad-lasso 0 74 26 2.23(6.77) 1.50(4.26) 25 λn : 2041(2869)
ad-Enet 0 91 9 2.64(9.50) 1.71(5.94) 25 λ1,n : 2451(2186)

λ2,n : 50.6(46.9)
l1-loss-ad-Berhu 0 0 100 37.69(4.49) 24.77(1.35) 25 λn : 311(370)
Huber-ad-lasso 0 23 77 25.83(14.31) 18.34(10.13) 25 λn : 3373(3153)
Huber-ad-BerHu 0 3 97 28.45(4.48) 22.70(2.28) 25 λn : 1085(316)

Table 4: Selection model ability and RPE on Model 4. C is the number of well-chosen models

n 100 200 400 1000 2000
C 42 46 69 93 95
RPE mean (std) 0.004(0.002) 0.002(0.001) 0.001(7.7e-04) 4.1e-04(2.9e-04) 1.7e-04(1.1e-04)
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Figure 1: RPE for Model 1 and for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu

(lb), Huber-ad-lasso (hl), and Huber-ad-BerHu (hb). The boxplots are obtained without extreme
values given by, for n = 100, hl: 2.87; n = 200, hl: 2.48, 2.95, 12.79, 2.86, 2.54, 2.96, 2.95; n = 400,
hl: 2.95, 2.49, 2.90, 2.95, 2.94, 2.95, 2.95, 0.61, 0.64, 2.93.
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Figure 2: RPE for Model 2 and for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu

(lb), Huber-ad-lasso (hl), and Huber-ad-BerHu (hb). The boxplots are obtained without extreme
values given by, for n = 100, hl: 2.94; n = 200, hb: 2.24, lb: 0.48; n = 400, hl: 0.29, 0.24.
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Figure 3: RPE for Model 3 and for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu

(lb), Huber-ad-lasso (hl), and Huber-ad-BerHu (hb). The boxplots are obtained without extreme
values given by, for n = 200, hl: 1.52.
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Figure 4: Model 1: Estimation of the difference between first estimated and true coefficients,
n = 200 for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu (lb), Huber-ad-lasso (hl),
and Huber-ad-BerHu (hb).
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Figure 5: Model 2: Estimation of the difference between first estimated and true coefficients,
n = 200 for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu (lb), Huber-ad-lasso (hl),
and Huber-ad-BerHu (hb).
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Figure 6: Model 3: Estimation of the difference between first estimated and true coefficients,
n = 200 for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu (lb), Huber-ad-lasso (hl),
and Huber-ad-BerHu (hb). The boxplots are obtained without extreme values given by 61.55 for
hl.

36



Table 5: Prostate cancer data: comparing methods

Methods mean of 100 parameters (std) mean of 100 RPE (std)
OLS none 0.6054(0.1397)
ad-lasso λn : 2.4177(1.7368) 0.6357(0.1410)
ridge λn : 2.6104(2.3111) 0.6145(0.1406)
ad-Enet λ1,n : 1.1361(1.0048), λ2,n : 2.5032(10.2605) 0.6231(0.1351)
l1-loss-ad-Berhu λn : 1.0173(0.8794) 0.6410(0.1440)
Huber-ad-lasso λn : 26.2749(7.4369) 0.7765(0.1879)
Huber-ad-BerHu λn : 2.7456(1.9015) 0.6322(0.1391)
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Figure 7: Prostate cancer data: histogram associated with number of selection of each variables in
the re-sampling study.
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