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We intend to combine Huber's loss with an adaptive reversed version as a penalty function. The purpose is twofold: first we would like to propose an estimator that is robust to data subject to heavy-tailed errors or outliers. Second we hope to overcome the variable selection problem in presence of highly correlated predictors. For instance, in this framework, the adaptive least absolute shrinkage and selection operator (lasso) is not a very satisfactory variable selection method, although it is a popular technique for simultaneous estimation and variable selection. We call this new penalty adaptive BerHu penalty. As for elastic net penalty, small coefficients contribute through their 1 norm to this penalty while larger coefficients cause it to grow quadratically (as ridge regression). We will show that the estimator associated with Huber's loss combined with adaptive BerHu penalty enjoys theoretical properties in the fixed design context. This approach is compared to existing regularization methods such as adaptive elastic net and is illustrated via simulation studies and real data.

Introduction

Variable selection is a significant problem in linear regression analysis. Its goal is to identify relevant predictors to improve prediction performances and to achieve an easy interpretation of the model. Here we will focus on the variable selection problem in the robust context first, where data subject to heavy-tailed errors or outliers are encountered, and second in presence of highly correlated predictors. Occurences of these two contexts are very common in practice.

When there is a group of variables among which the pairwise correlations are very high, the adaptive lasso penalty, introduced in [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF], tends to select a single variable from this group. This penalty was recently combined with Huber's criterion (see [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF]). The estimator associated with this procedure enjoys oracle properties (as in [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF]) but behaves poorly when there are highly correlated variables. Ridge regression ( 2 penalty) does not lead to variable selection but tends to share the coefficients' value among the group of correlated predictors. Moreover if there are high correlations among predictors, the prediction performance of ridge regression dominates the lasso ( [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]). In order to overcome this drawback, [START_REF] Zou | Regularization and variable selection via the Elastic Net[END_REF] proposes a new regularization technique that combines lasso and ridge penalties. This method is called the "elastic net" (Enet). This penalty is the sum of lasso and ridge penalties. In [START_REF] Ghosh | Adaptive elastic net: An improvement of elastic net to achieve oracle properties[END_REF], a new version of the elastic net called adaptive elastic net (ad-Enet) which inherits some of the desirable properties of the adaptive lasso and elastic net is proposed. Its oracle properties are proven. In [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF], the author proposes to use a reversed version of Huber's loss (called BerHu) as a penalty function. Let us recall that the Huber loss (see [START_REF] Huber | Robust Statistics[END_REF]) is a hybrid of squared error for relatively small errors and absolute error for relative large ones. The BerHu penalty is such that relatively small coefficients contribute through their 1 norm to this penalty while larger ones cause it to grow quadratically. This hybrid sets some coefficients to 0 as the lasso does while shrinking the larger coefficients in the same way as ridge regression. In [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF], a way is provided to optimize objective function constituted of both the Huber loss and the BerHu penalty. Nevertheless, nothing is shown about statistical properties. Since [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] presents the BerHu penalty in its non-adaptive form, the corresponding estimator does not generally satisfy the oracle property.

In this paper we introduce an adaptive concomitant BerHu penalty. We use it with Huber's loss in order to take into account data subject to heavy-tailed errors or outliers. Indeed, in this case, the Ordinary Least Square (OLS) estimator is considered to be not efficient. Nevertheless, our method is designed to maintain good properties in the Gaussian noise case. Moreover the adaptive concomitant BerHu penalty encourages a grouping effect in the following sense: the concomitant BerHu penalty implicitly creates one group with the largest coefficients. This group is penalized in a 2 way like the grouped lasso of [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] to avoid removing any of the largest coefficients. The smallest coefficients are treated individually by an 1 -penalty.

In addition, contrary to [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF], we show that the estimator associated with Huber's loss combined with adaptive concomitant BerHu penalty enjoys some "oracle" properties in the fixed design context as already satisfied by the adaptive lasso penalty (see [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF][START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF]). In addition to [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF][START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF], the adaptive concomitant BerHu penalty is designed to keep all the largest coefficients whatever the correlation structure. It should be noted that the needed assumptions to get oracle property for BerHu penalty are the same as in the lasso case. Contrary to elastic net (see [START_REF] Ghosh | Adaptive elastic net: An improvement of elastic net to achieve oracle properties[END_REF]) no supplementary assumptions are needed. These asymptotic results are valid in the case where p is fixed and n goes to infinity. Recently [START_REF] Zou | On the adaptive elastic net with a diverging number of parameters[END_REF] obtained oracle properties for ad-Enet when p diverges for the least squares loss. These proof techniques are reused by [START_REF] Anbari | On the adaptive Grill estimator with diverging number of parameters[END_REF] for a more general penalty. These results are based on a sparsity inequality (see for instance theorem 3.1 in [START_REF] Zou | On the adaptive elastic net with a diverging number of parameters[END_REF]). Unfortunately we can not use similar proof techniques for adaptive BerHu penalty. Extending this result to the case of p diverging is not so straightforward and is left for future work. Extensive simulation studies show that in presence of highly correlated variables, the lasso and the elastic net procedures tend to underfit, i.e. suppress some influencing variables whereas adaptive concomitant BerHu penalty tends to identify all influencing variables but keeps some non-influencing variables.

The article is subsequently organized as follows: in Section 2, we introduce the adaptive concomitant BerHu penalty, in Section 3, we give its statistical properties. Section 4 is devoted to simulations and illustration over real data. All technical proofs are relegated to the Appendix.

The BerHu penalty 2.1 The adaptive BerHu

We focus on the following model

y i = α * + x T i β * + σ i , i = 1, . . . , n, (1) 
where x i = (x i1 , . . . , x ip ) T denote centered covariables, α * and β * = (β * 1 , . . . , β * p ) T the regression coefficients. The constant σ is positive and i are independent and identically-distributed random errors with mean 0 and variance 1, when it exists. Without loss of generality, we put β * j = 0, for j ≤ p 0 and β * j = 0, for j > p 0 for some p 0 ≥ 0. Let β A be the vector given by the nonzero coordinates of β (A = [1, . . . , p 0 ].)

The lasso has already been extensively critized (see e.g. [START_REF] Zou | Regularization and variable selection via the Elastic Net[END_REF]). In this paper, we focused on the fact that when some variables are highly correlated the 1 penalty tends to keep only one variable for each group. The literature already lists attempts to solve this problem. To begin with, grouped lasso procedures were proposed first in [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] where the 1 penalty is imposed on predefined groups of coefficients. More precisely, the penalty is the l 1 -norm of the vector composed of the 2 -norm of each group of coefficients:

n i=1 (y i -α -x T i β) 2 + λ n L j=1 √ p l (β) j 2 ,
where λ n > 0 is the tuning parameter and (β) j is the coordinate block corresponding to the j-th group. Consequently, sparsity is encouraged at group level (see also [START_REF] Zhao | The composite absolute penalties family for grouped and hierarchical variable selection[END_REF] and [START_REF] Hastie | The Elements of Statistical Learning[END_REF] page 91 for further references). In our framework it is difficult to use the group lasso approach since there is no obvious way of choosing the groups a priori. Next, [START_REF] Zou | Regularization and variable selection via the Elastic Net[END_REF] proposed the Elastic Net. The naive Enet is obtained by minimizing in α and β:

n i=1 (y i -α -x T i β) 2 + λ 1,n p j=1 |β j | + λ 2,n p j=1 β 2 j , (2) 
and Enet is a modification of this. In this procedure, the penalty imposed on the small coefficients is the sum of an 1 -norm and a squared 2 -norm. Moreover, a ridge penalty reduces the variance of the estimates by imposing a small squared norm of all the coefficients. Following [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF], we focused on a penalty that acts separately on small and large coefficients: only the largest coefficients have quadratic penalty. We consider the BerHu penalty defined by

B L (z) = |z| |z| ≤ L, z 2 +L 2 2L |z| > L, (3) 
where L is a positive real. As Huber criterion, the BerHu function needs to be scaled. The penalty can be precisely defined by

p j=1 B L β j τ ,
where τ is a scale parameter to be determined. This scale parameter was introduced by [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] and plays a similar role to s in concomitant scale Huber's Criterion defined in (5) that was introduced by [START_REF] Huber | Robust Statistics[END_REF]. When this parameter is set to a value (for instance τ = 1), the procedure is not scale invariant. So [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] proposes to replace the penalty term by

pen(β) = min τ >0 pτ + τ p j=1 B L β j τ .
This makes it possible to avoid algorithms that alternate between estimating α and β for fixed τ and reciprocally. The reference [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] is the only existing literature on this kind of penalty as far as we know. However, [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] does not provide any statistical analysis of the resulting estimator. Fan and Li [START_REF] Fan | Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties[END_REF] showed that the lasso method leads to estimators that may suffer an appreciable bias. Furthermore they conjectured that the oracle properties do not hold for the lasso. Hence Zou [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF] proposes to consider the following modified lasso criterion, called adaptive lasso,

n i=1 (y i -α -x T i β) 2 + λ n p j=1 ŵadl j |β j |,
where ŵadl = ( ŵadl 1 , . . . , ŵadl p ) is a known weight vector. This modification makes it possible to produce sparse solutions more effectively than lasso. Indeed, Zou [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF] shows that, with a proper choice of λ n and of ŵadl , the adaptive lasso enjoys the oracle properties. Such a penalty has been used in the Enet penalty (see [START_REF] Ghosh | Adaptive elastic net: An improvement of elastic net to achieve oracle properties[END_REF]). In the sequel, we will call it ad-Enet.

Here we propose to make the BerHu penalty adaptive ( [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] only proposes the penalty pen(•) in a non-adaptive form ). We thus consider the following penalty: pen adb (β) = min τ ≥0 P adb (β, τ ) with

P adb (β, τ ) =      τ p j=1 1 ŵadb j + p j=1 ŵadb j B L β j τ if τ > 0, 0 if β = 0, τ = 0, +∞ if β = 0, τ = 0.
where ŵadb = ( ŵadb 1 , . . . , ŵadb p ) is a known weight vector. We will see in Section 3 that the resulting estimator enjoys some "oracle " properties. Let us note that [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] introduced the BerHu penalty in its non-adaptive form and in the context of robust regression only. Moreover nothing is mentioned about asymptotic feature.

In general, the (adaptive) Berhu penalty behaves like the lasso on the smallest coefficients and does not delete the largest ones, whatever the correlation structure. This is expected of a correct model selection procedure. This interpretation relies on the following calculation when β is fixed (its proof is postponed in Section 5.2). Let us sort the absolute values of the coordinates of β:

|β (p) | ≤ • • • ≤ |β (1) |. Theorem 1. Let k(β) denote the number of non-zeros coefficients of β. Then pen adb (β) = 2 p j=1 1 ŵj + L 2 q(β)-1 j=1 ŵ(j) 1 2L q(β)-1 j=1 β 2 (j) ŵ(j) + k(β) j=q(β) |β (j) | ŵ(j) , (4) 
where q(β) is the unique integer between 2 and k(β) + 1 such that the following inequalities hold

|β (q(β)) | L ≤ q(β)-1 j=1 β 2 (j) ŵ(j) 2L p j=1 1 ŵj + L 2 q(β)-1 j=1 ŵ(j) ≤ |β (q(β)-1) | L .
We can note here the spirit of the concomitant BerHu penalty: it implicitly creates one group with the largest coefficients (see first term [START_REF] Bondell | Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR[END_REF]). This group is penalized in a 2 way like the grouped lasso of [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] to avoid removing any of these largest coefficients. Let us note that as in the grouped lasso penalty, the 2 -norm of the q(β) -1 largest coefficients is scaled by the squared root of the number of such coefficients present in this group. The smallest coefficients are treated individually by an 1 -penalty (see second term (4)). Consequently, whatever the structure of the correlation matrix, the concomitant BerHu penalty tends to keep all the largest coefficients and to delete the smallest ones. [START_REF] Argyriou | Sparse Prediction with the k-Support Norm[END_REF] also groups together the largest coefficients but with the squared 2 -norm instead of a 2 -norm as in our case. It should be noted that in [START_REF] Argyriou | Sparse Prediction with the k-Support Norm[END_REF], nothing is mentioned about its asymptotic features.

Let us note that elastic net (adaptive version or not) is well adapted to the presence of highlycorrelated predictors but not the lasso (adaptive version or not).

Robust estimation

Let us recall the definition of the loss function based on Huber's criterion introduced by [START_REF] Huber | Robust Statistics[END_REF]: for any positive real M,

H M (z) = z 2 |z| ≤ M, 2M |z| -M 2 |z| > M.
This function is quadratic in small values of z (of absolute value less than M ) and grows linearly for large values of z. The concomitant scale Huber loss is defined by

L H (α, β, s) =      ns + n i=1 H M y i -α-x T i β s s if s > 0, 2M n i=1 |y i -α -x T i β| if s = 0, +∞ if s < 0, (5) 
which is to minimize with respect to s ≥ 0, α and β. The loss function involving a concomitant estimation of the scale and location parameter was first proposed by Huber ([15]). The parameter s is a scale parameter for the distribution. That is if each y i is replaced by cy i for c > 0 then an estimate ŝ should be replaced by cŝ. When setting this parameter, the procedure is not scale invariant. The concomitant scale Huber criterion is jointly convex as a function of β and s. This removes the need for backfitting algorithms to estimate α and β; the parameter s is only a nuisance parameter. The introduction of these parameters is also crucial to have the asymptotic performance To achieve a robust scale invariant Lasso type procedure, [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF] proposes to minimize simultaneously over s, α and β the function

L H (α, β, s) + λ n p j=1 ŵadh j |β j |. (6) 
where ŵadh = ( ŵadh 1 , . . . , ŵadh p ) is a known weight vector. We propose here to use the concomitant Huber estimation with the adaptive BerHu penalty:

Q Hadb (α, β, s, τ ) = L H (α, β, s) + λ n P adb (β, τ ). ( 7 
)
This convex criterion is minimized simultaneously over α ∈ R, β ∈ R p , s ∈ R + and τ ∈ R + . So we get another scale invariant robust location estimation. Contrary to the procedure proposed in [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF], the largest coordinates of β are quadratically penalized. We consider two types of procedures: one with s = 0 in the equation ( 7) that leads to 1 -loss and one with s > 0 that leads to Huber's loss. Let us observe that there is no closer form of the minimizers of [START_REF] Fan | Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties[END_REF]. For numerical optimization, we use CVX, a set of matlab functions (see Appendix 5.1).

Tuning parameter estimation

Let us now consider the problem of tuning parameter estimation. To run these procedures we have to determine the weights vector in the adaptive penalties, the regularization constant λ n , the parameter M for Huber's criterion and L for BerHu's penalty. Usually the weights vector is given by (see [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF][START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF]) ŵadl j = | βunpen j | -γ , j = 1, . . . , p, where γ > 0 and βunpen denotes the unpenalized estimator. For instance, in the least squares context βunpen is the ordinary least squares estimator. In fact this estimator need only be root-n-consistent estimator of β * . Let us note that the theoretical part is given for these forms of weights vector and γ is fixed to be equal to 1 for the numerical results. For Huber's Criterion with concomitant scale we need a value for M . As in [START_REF] Huber | Robust Statistics[END_REF], we fix M = 1.345. For BerHu's penalty we fix as in [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF], L = M. Let us note that there is no justification for this. However in practice we have observed that these parameters have little impact on the results.

To find optimal values for λ n , we use BIC-type criteria. When using least squares criterion we consider the classical BIC criterions ( [START_REF] Schwarz | Estimating the dimension of a model[END_REF]), That is recommended to select λ n minimizing log

n i=1 y i -α λn -x T i β λn 2 + k λn log(n) n , over λ n ,
where k λn is the number of non-zero coefficients of the estimator (see [START_REF] Wang | Unified Lasso Estimation via Least Squares Approximation[END_REF] and [START_REF] Wang | Tuning parameter selectors for the smoothly clipped absolute deviation method[END_REF]) and corresponds to the model dimension. When using Huber's criterion, we consider the BIC-type procedure introduced in [ 

Theoretical Properties

In this section we give the asymptotic properties of the concomitant estimator of Huber with the BerHu penalty. We show that it enjoys the oracle properties in the fixed design context with p is fixed and n goes to infinity. We have the same property by replacing Huber's loss by least squares loss. When necessary, we give the difference (for example for the assumptions) between the two loss functions.

Let X denote the design matrix, i.e. the n × p matrix the i th rows of which is x T i . We will use the following assumptions on this design matrix.

(D1) max 1≤i≤n x i / √ n → 0 as n → ∞ . (D2) X T X/n → V as n → ∞ with V 1,1 > 0, where V 1,1
is the first p 0 ×p 0 block of V , corresponding to the covariables associated with non zero coefficients.

Assumption (D1) and (D2) are classical. It can be seen as a "compactness assumption": for instance, it is satisfied if the variables are supposed to be bounded. When considering least squares criterion as loss function, we need only the assumption (D2) (see for example [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF]) while considering Huber's criterion we need both (D1) and (D2) (see [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF]).

Let us denote by a variable with the same law as i , i = 1, . . . , n. As in [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF], we define

s * = argmin s>0 F (s),
where for s > 0,

F (s) = E 1 n L H (α * , β * , s) = s + sE H M σ s .
In addition, let us define τ * > 0 satisfying

τ * = argmin τ >0 τ p j=1 |β * j | γ + p 0 j=1 1 |β * j | γ B L β * j τ . (8) 
The following assumptions on the errors are used in the following:

(N0) The distribution of the errors does not charge the points ±M s * :

P [σ = ±M s * ] = 0.
(N1) The variable is symmetric (i.e. has the same distribution as -).

(N2) For all a > 0, P [ ∈ [-a, a]] > 0 .

The assumptions (N1) or (N2) are usual in a robust context (see [START_REF] Huber | Robust Statistics[END_REF][START_REF] Wang | Robust regression shrinkage and consistent variable selection through the LAD-Lasso[END_REF]). The classical laws used to model data with outliers such as double exponential and Cauchy distributions satisfy these constraints. It should be noted that there is no integrability condition assumed on the errors . These three hypotheses are assumed for the Huber's loss. For the penalized least squared estimators (e.g. [START_REF] Knight | Asymptotics for Lasso-type estimators In[END_REF] and [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF]) we assume that i are independent identically distributed random variables with mean 0 and have a finite variance. Let (α Hadb , βHadb , ŝHadb , τ Hadb ) be defined as the minimizer of Q Hadb (•) where ŵadb

j = 1/| βunpen j | γ with βunpen a root-n-consistent estimator of β * (i.e. √ n( β -β * ) = O P (1)). We denote A n = {1 ≤ j ≤ p, βHadb j = 0}.
Let us remark that if λ n > 0, the minimizer (α Hadb , βHadb , ŝHadb , τ Hadb ) exists since the criterion Q Hadb (•) is a convex and coercive function.

The following theorem shows that, with a proper choice of λ n , the proposed estimator keeps the asymptotic properties already satisfied by adaptive lasso penalty as proved in [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF]. It should be noted that the needed assumptions to get this property are the same as in [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF]. No supplementary hypotheses are required to quadratically penalize large coefficients. It is not the case for Elastic Net as shown by [START_REF] Ghosh | Adaptive elastic net: An improvement of elastic net to achieve oracle properties[END_REF] for which some assumptions must be added to move from the lasso penalty to the Elastic Net penalty. Moreover, contrary to [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF], the proof requires more technicalities due to the use of the BerHu concomitant penalty (instead of the lasso penalty). More precisely, as in [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF], the proof relies on the epi-convergence of the objective function. However, in [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF] and [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF], the proof of the epi-convergence is not provided. The proposed proof (postponed in Appendix 5.3) provides the necessary theoretical computations to obtain epi-convergence. This leads to a self-contained proof including both the adaptive BerHu concomitant penalty of the present work and the adaptive lasso penalty of [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF].

Theorem 2. Suppose that λ n /n γ∧1/2 → 0, λ n n (γ-1)/2 → ∞, λ n → ∞ as n → ∞.
Let us also assume that conditions M > 1, p 0 > 0, (N0), (N1), (N2), (D1) and (D2) hold. Moreover, for j = 1, . . . , p, the weights in

Q Hadb are ŵadb j = 1/| βj | γ where β is a root-n-consistent estimator of β * .
Then, any minimizer (α Hadb , βHadb , ŝHadb ) of Q Hadb satisfies the following:

• Consistency in variable selection:

P [A n = A] → 1 as n → +∞.
• Asymptotic normality:

√ n αHadb -α * , βHadb A -β * A , ŝHadb -s * -→ d N p 0 +2 0, Σ 2 ,
where Σ 2 is the squared block diagonal matrix

Σ 2 = diag   E H M σ s * 2 4A 2 s * , E H M σ s * 2 4A 2 s * V -1 1,1 , E [Z 2 ] 4D 2 s *  
and where

D s * = 1 s * 3 E σ 2 2 1 1 |σ |≤M s * , A s * = 1 s * P [|σ | ≤ M s * ] , Z = 1 + H M σ s * - σ s * H M σ s * , and where H M (•) is the derivative function of H M (•).
In order to have this result, we have to add the constraint λ n /n γ tends to 0, as n → ∞, compared to the work of [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF]. This assumption implies, with λ n n (γ-1)/2 → ∞, that γ > 1/3 . This was not the case for [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF]; currently the case 0 < γ ≤ 1/3 remains an open problem. To determine the weights ŵadb j , we can use the unpenalized Huber estimator βunpen that is a root-n-consistent estimator of β * . When M = +∞ (least squares loss), the asymptotic variance matrix

E[H M s (σ ) 2 ]V -1 1,1 /(4A 2 s * ) obtained in Theorem 2 is equal to σ 2 V -1
1,1 as in theorem 2 of [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF]. Otherwise we find the asymptotic variance of the unpenalized Huber estimator associated with the sub-model induced by β * A . In that sense the procedure satisfies some "oracle" property. Let us remark that [START_REF] Li | Robust and sparse bridge regression[END_REF] proposed a generalized Huber criterion with bridge penalty for variable selection in linear regression when they are heavy-tailed errors or outliers in the response. This generalized Huber criterion is no longer convex. Our theoretical results do not remain valid for this loss function since they are based on convex minimization properties. Note that the theorem is not valid in the case s = 0. In this case the loss 1 is not differentiable and we can not use our proof technique based on the use of Taylor expansions.

Let us remark that our proof can be generalized to the random design setting using other technical arguments. One way to proceed would be to use the results of [START_REF] Wang | Robust regression shrinkage and consistent variable selection through the LAD-Lasso[END_REF] that give asymptotic properties in random design. Another way would be to use the results of [START_REF] Zheng | Adaptive penalized quantile regression for high dimensional data[END_REF] that consider asymptotic properties of adaptive penalized quantile regression in random design. They underline the use of Bernstein's inequality.

Some numerical experiments

In this section, the estimators βHadb (with s = 0 and s > 0) are compared with four estimators of the literature: the adaptive lasso, ridge, adaptive elastic net and the adaptive lasso with Huber loss. We call these methods respectively ad-lasso, ridge, ad-Enet, Huber-ad-lasso, whereas our methods ( βHadb ) are called l1-loss-ad-BerHu for s = 0 and Huber-ad-BerHu for s > 0. The adaptive weights are obtained from the corresponding unpenalized estimator and γ = 1.

Simulation Results

Our aim here is to compare the finite sample performances of these procedures. Paragraph 4.1.1 presents the studied models. The way simulations are conducted is described in 4.1.2 and an insight of conclusions is provided in paragraph 4.1.3.

Models used for simulations

As in [START_REF] Zou | Regularization and variable selection via the Elastic Net[END_REF] (example 4), we use models that involve groups of highly correlated variables by block to compare the performances of the algorithms. Let us remark that [START_REF] Zou | Regularization and variable selection via the Elastic Net[END_REF] considered a model without intercept. Here we add an intercept. We now recall the definition of this model in a different way. Our formulation allows us to clearly identify the groups of influencing correlated variables. The models all have the form y = 1 1 n + Xβ * + σ , where 1 1 n denotes the vector of R n composed of ones and y (resp. ) represents the response (resp. error) vector (y 1 , ..., y n ) T (resp. ( 1 , ..., n ) T ). The design matrix X is constructed as follows. The rows of X are given by n independent gaussian vectors N 40 (0, Σ). They are normalized such that the corresponding p-dimensional covariables are centered (as assumed in ( 1)). The variance matrix of the variables is a block diagonal matrix of size 40. The first block is the squared matrix of size 5 composed of 1 outside the diagonal and taking values 1.01 on the diagonal. The second and third blocks are the same as the first. The last block is the identity matrix of size 25. The vector of true coefficients β * is defined as follows: the first 15 coordinates are equal to 3 and the last 25 coefficients are 0. This means that, in this model, only the first 15 variables influence the response. The 25 following are pure noise. Amongst the 15 influencing variables, there are three groups of highly correlated variables: these groups are composed of the first five variables, the next five and the last five. The variables of different groups are independent. As compared with [START_REF] Antoniadis | Regularization of Wavelet Approximations[END_REF], this means that the intercept of the model is α * = 1 and the number of variables (without the intercept) is p = 40. Depending on the nature of the noise, various models are considered.

• Model 1: block-variable model, gaussian noise. Here the standard deviation of the noise is σ = 15 and the variables 1 , • • • , n are independent standard normal variables. Except for the part of the intercept parameter, this is exactly example 4 of [START_REF] Zou | Regularization and variable selection via the Elastic Net[END_REF].

• Model 2: block-variable model, mixture of gaussians. Here the variables 1 , • • • , n are an independent mixture of gaussians. Indeed, with probability 0.9, is a standard normal variable and with probability 0.1, is a centered normal with variance 225. The value σ = 3.1009 has been chosen such that the standard deviation of the noise is the same as in Model 1. The common value is std(σ ) = 3.1009 1 + 0.1(225 -1) = 15.

• Model 3: block-variable model, double-exponential noise. = D/ var(D) and σ = 212. The distribution of D is a standard double exponential i.e. its density is x ∈ R → e -|x| /2 and var(D) = 2.

These three models create a grouped variable situation. They can be divided into two types. The first type contains light tailed error models (Model 1) whereas the second type is composed of heavy tailed error models (Model 2 and Model 3). Model 1 makes it possible to quantify the deterioration of the performances of the robust algorithms in the absence of outliers. With regard to the maximum likelihood approach, the least squares loss (resp. Huber's loss) is well designed for Models 1 (resp. 2,3).

Assessing prediction methods

To compare the performances of the various algorithms in the fixed design setting, the performances are measured both by the prediction errors and the model selection ability (as in [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF]). For any considered underlying models, we generate a first set of n training designs (x 1 , • • • , x n ) and a second set of m =10 000 test designs (x n+1 , • • • , x n+m ). These two sets are centered so as to fit the theoretical definition (1) of the model (i.e. ensures that n i=1 x i = 0). Since the theoretical results are established in a fixed design framework, the training and test designs are fixed once and for all: they will be used for all the data generations. 100 training sets of size n are generated according to definition (1) of the model. All the algorithms have been run on the 100 training sets of size n =100, 200, 400 and their prediction capacity have been evaluated on the test design set of size m =10 000. To compare the prediction accuracy, the Relative Prediction Errors (RPEs) already considered in [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF] are computed (see also [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF] for explicit definition). Figures 1, 2 and3, provide the boxplots associated with the 100 obtained RPE.

The model selection ability of the algorithms are reported in the same manner as in [START_REF] Wang | Robust regression shrinkage and consistent variable selection through the LAD-Lasso[END_REF], [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] and [START_REF] Fan | Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties[END_REF] in Tables 1, 2 and3. Ridge penalty procedures are not reported since they do not constitute variable selection procedures. To provide the indicators defined below, a coefficient is considered to be zero if its absolute value is strictly less than 10 -5 (i.e. its first five decimals vanish). In all cases, amongst the 100 obtained estimators, the first column (C) has the number of well chosen models, i.e. the cases where first 15 coordinates of β are non-zeros and the last 25 coefficients are zeros. We consider other measurements to go further in our model selection ability analysis. The first (in the second column (O)) represents the number of overfitting models (i.e. those selecting all the non-zero coefficients and at least one zero coefficient). The second (in the third column (U)) reports the number of chosen underfitting models (i.e. those not selecting at least one non-zero coefficient). In this way, all the 100 models are counted once. Columns (O) and (U) aim to explain the results obtained in (C). The column (Z) is the average number of estimated zeros, the column (CZ) provides the average number of correctly estimated zeros and (TZ) recalls the number of theoretical zeros. Model selection abilities are closely related to the accuracy of estimations of the coefficients. This fact is illustrated by boxplots of the coefficient estimations (see Figures 4, 5 and6).

Concerning the hyperparameter choices, the regularization parameters associated with adaptive lasso or BerHu penalties are chosen by BIC criterion in each of the 100 training sets as described in Section 2.3. The same grid has always been used. It is composed of 100 log-linearly spaced points between 0 and 1400 for BerHu and 200 log-linearly spaced points between 0 and 10 000 for the lasso. For Huber's loss, the simulation studies report the performances obtained with M = 1.345. This value was recommended by Huber in [START_REF] Huber | Robust Statistics[END_REF]. For adaptive BerHu penalty, we report the performances obtained with L = M = 1.345 Let us remark that it is possible to choose the M and L parameters from the data (for example by cross-validation simultaneous with the tuning parameter), but in practice we do not observe any improvement to make it data adaptive. For ridge-type procedures the hyperparameter is chosen as usual by 5-fold cross-validation for each of the 100 training sets. The grid is composed of 100 points, log-linearly spaced between 0 and 1400. For adaptive Enet procedure, we use the similar protocol as in [START_REF] Zou | Regularization and variable selection via the Elastic Net[END_REF]: we first pick a relatively small grid of values for λ 2,n over {0, 0.01, 0.1, 1, 10, 100} and 25 log-linearly spaced points between 0 and 5000 for λ 1,n . Then both parameters are chosen simultaneously by 5-fold cross-validation.

Comparison results

Tables 1, 2 and 3 present the performances in terms of selection model ability. For Model 1 and 2,the lasso and Enet penalties methods lead in most cases to underfitting models (columns U). This is quite a surprising outcome for the Enet penalty. Indeed the penalty imposed on the small coefficients is the sum of an 1 -norm and a squared 2 -norm. This implies that penalty thus obtained is closer to differentiability than the 1 -penalty. As shown in [START_REF] Antoniadis | Regularization of Wavelet Approximations[END_REF], if the penalty is far from differentiability, smaller coefficients are deleted. These penalties have a relatively high number of zeros (columns Z) with the number of correct zeros (columns CZ) very close to the true value (columns TZ). However, the number of incorrect zeros (columns Z-CZ) is almost the same whatever n and whatever the model: the lasso (resp. Enet) does not identify approximately 10 (resp. 8) influencing variables. For Model 3 the trend reverses. In particular these two methods tend to underestimate the number of zeros and are very bad at recognizing correct zeros. In all cases these methods almost never identify the right model. The Behru penalty leads to some compromise between over and under fitting. Its number of incorrect zeros is approximatively 1 even in Model 3 : Berhu penalty deletes fewer non influencing variables than the lasso and Enet but keeps more non influencing variables. We point out that contrary to Enet and lasso type methods, in Model 2 the BerHu penalty allows us to identify the right model a reasonable number of times.

This behavior occurs on the quality of estimation of the non zero coefficients (see Figures 4, 5 and6)). In these figures, we report, for n = 200, boxplots associated to the differences between β1 and β 1 . Let us note that the conclusions for the other influencing coefficients remain the same. The ridge method is given here as a reference since it is known to lead to good performances in presence of high correlation between the covariables. We observe that the BerHu penalty leads to good performance in terms of bias, as the ridge method, with higher variability for Model 1 and 2. The bias and sometimes the variability are very high for the other methods due to their tendency to underfit. Most of the time (for Model 1 and 2), the median of the differences between β1 and β 1 is equal to -3 = -β 1 (that is β1 = 0). For model 3, ad-lasso has a very high variability in comparison with other methods.

Figures 1, 2 and 3 provide the boxplots associated with RPE. Let us recall that the Model 1 (without outliers) was introduced to quantify the potential fall of performances of Huber type methods. For n sufficiently large (n ≥ 200), all the methods behave similarly. It should be noted that this model includes 40 variables, consequently n = 100 is very small. One can note that Huber-ad-Berhu has better performances than l1-loss-ad-Berhu in the Gaussian case (Model 1). Concerning the Model 2 (gaussian mixtures) and Model 3 (double-exponential noise), the RPE of Huber type methods are significantly better than those of the other methods as well as in term of bias and variance. We observe that Huber-ad-lasso provides several extreme values du to numerical instabilities and is often more variable.

Numerical illustration of Theorem 2 (consistency of variable selection)

Previous simulations illustrated the behavior of the methods in realistic cases that is to say for n not very large. In this subsection we aim at illustrating the consistency of the variable selection part of Theorem 2 when n becomes large. We introduce a new model, denoted by Model 4, which is a variant of Model 2 with fewer covariates: the number of covariates (without the intercept) is equal to 8, 2 blocks of 2 active variables (instead of 3 blocks of 5 active variables) and one block of 4 inactive variables (instead of 15 inactive variables). The simulations are conducted as previously, using n = 100, 200, 400, 1000 and 2000. Table 4 gives, for each value of n, C, the number of well chosen models from the 100 samples and the mean and standard deviation of the RPE. We observe, as stated in Theorem 2, that in the simulations C tends to 100 when n becomes large.

Prostate cancer data example

This data set comes from a prostate cancer study (see [START_REF] Stamey | Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate: II. radical prostatectomy treated patients[END_REF]) and was previoulsly analyzed in the elastic net paper by [START_REF] Zou | Regularization and variable selection via the Elastic Net[END_REF][START_REF] Ghosh | Adaptive elastic net: An improvement of elastic net to achieve oracle properties[END_REF]. There are eight clinical covariates, namely: logarithm of the cancer volume (lcavol), logarithm of the prostate weight (lweight), age, logarithm of the amount of benign prostatic hyperplasia (lbph), seminal vesicle invasion (svi), logarithm of the capsular penetration (lcp), Gleason score (gleason) and percentage Gleason score 4 or 5 (pgg45). The response variable is the logarithm of prostate-specific antigen (lpsa). The predictors are named 1, . . . , 8 in results. OLS and the previous methods were applied to these data.

In [START_REF] Zou | Regularization and variable selection via the Elastic Net[END_REF], the data were divided into two parts: a training set with 67 observations and a test set with 30 observations while in [START_REF] Ghosh | Adaptive elastic net: An improvement of elastic net to achieve oracle properties[END_REF], they randomly divided the original data set into training and testing sets containing 60 and 37 observations respectively. To fairly compare the methods we propose to perform a resampling study: we randomly divided 100 times the original data set into training and testing sets containing 67 and 30 observations respectively. The hyperparameters are chosen as in the simulation study. We then compared the performances of the methods by computing their RPEs on the 100 resampling testing sets (see Table 5). Contrary to what had been observed in [START_REF] Zou | Regularization and variable selection via the Elastic Net[END_REF][START_REF] Ghosh | Adaptive elastic net: An improvement of elastic net to achieve oracle properties[END_REF], our resampling study does not allow us to claim that one method emerges in terms of RPE: almost all these methods have similar RPEs. We can only say that perhaps Huber-ad-lasso is slightly less good. It should be noted that we observe a great variability in the choice of λ 2,n for the ad-Enet (see first column of Table 5). This is also the case for Huber-ad-lasso. On the contrary, the choice of λ n for Behru type procedures is more stable (it is comparable to the stability of ridge). Figure 7 shows (except for OLS and ridge procedures) the histogram associated with the selected variables. We see that Huber-ad-Berhu leads to good models in terms of sparsity in comparison with Enet. We observe that Huber-ad-Berhu procedure is a compromise between lasso type methods which select few variables and ad-Enet type methods which select many variables.

Appendix

Computations: software used for numerical optimization

When the regularization parameter is fixed, to solve all the involved optimization problems we used CVX, a package for specifying and solving convex programs [START_REF] Grant | Cvx: Matlab software for disciplined convex programming (web page and software[END_REF][START_REF] Grant | Graph implementations for nonsmooth convex programs, recent advances in learning and control (a tribute to m. vidyasagar)[END_REF]. CVX is a set of Matlab functions using the methodology of disciplined convex programming. Disciplined convex programming imposes a limited set of conventions or rules, which are called the DCP ruleset. Problems which adhere to the ruleset can be rapidly and automatically verified as convex and converted to solvable form. Problems that violate the ruleset are rejected, even when convexity of the problem is obvious to the user. The version of CVX we use, is a preprocessor for the convex optimization solver SeDuMi (Self-Dual-Minimization [START_REF] Sturm | Using SeDuMi 1. 02, a MATLAB toolbox for optimization over symmetric cones[END_REF]).

Let us now recall a well-known fact of convex analysis: the Huber function is the Moreau-Yosida regularization of the absolute value function ( [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms I[END_REF][START_REF] Rockafellar | Convex analysis[END_REF][START_REF] Sardy | Robust wavelet denoising[END_REF]). Precisely, it can be easily shown that the Huber function satisfies

H M (z) = min v∈R (z -v) 2 + 2M |v| .
We can derive the same kind of formulation for the BerHu function leading to a characterization of the BerHu function as quadratic optimization problem. Indeed, the function (3) satisfies

B L (z) = min w≥L∨|z| w 2 2L -w + |z| + L 2 ,
where a ∨ b denotes the maximum of the two real numbers a and b. The proof of this equality is trivial since it amounts to minimize a quadratic function on an interval. This allows to write our optimization problem in a conforming manner to use CVX. Note that [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] uses an expression of H M (z) as the solution of a quadratic optimization problem (borrowed from the user guide of CVX) to write his problem in a conforming manner to use CVX. However, the expression of [START_REF] Owen | A robust hybrid of lasso and ridge regression[END_REF] involves more constraints and more variables than the previous formulation. We give here the way to use CVX in order to compute the estimators alpha=α Hadl , beta= βHadl and s=ŝ Hadl . The variable X represents the design matrix X. The unpenalized estimator betaUNP= βH is calculated beforehand (using also CVX) and the regularisation parameter λ n is fixed and denoted by lambda. cvx_begin variables alpha beta(p) s v(n) tau w(p); minimize (n*s+quad_over_lin(y-alpha-X*beta-v,s)+2*M*norm(v,1) + mu*(tau*norm(betaUNP,1)+quad_over_lin(w./(sqrt(abs(betaUNP))),2*L*tau) +norm(beta./betaUNP,1)-sum(w./abs(betaUNP))+0.5*L*tau*norm(1./betaUNP,1))) subject to s > 0; tau > 0; w >= L*tau; w >= abs(beta); cvx_end Let us remark that betaUNP is computed in the same way but deleting the term multiplied by lambda.

Proof of Theorem 1

Let us fix some β = 0. The following holds pen adb (β) = min τ ≥0 f (τ ) where f (τ ) = P adb (β, τ ). The function f is clearly convex continuous on R * + . The set R + can be cut up into intervals such that, on each interval the function f get the form a/τ + bτ + c for various constants a, b and c. Precisely, we have: 

f (τ ) =        +∞ if case 1, m-1 j=1 β 2 (j) ŵ(j) 2Lτ + p j=1 1 ŵj + L 2 k(β)-1 j=1 ŵ(j) τ + k(β) j=m |β (j) | ŵ(j) if case 2, τ p j=1 1 ŵj + p j=1 |β j | ŵj if case 3, where case 1: τ = 0, case 2: ∃ m ∈ [2, k(β) + 1] , |β (m) | L < τ ≤ |β (m-1) | L , case 3: τ > |β ( 
(β) = q(β)-1 j=1 β 2 (j) ŵ(j) 2L p j=1 1 ŵj + L 2 q(β)-1 j=1 ŵ(j) ,
and is equal to the expression given in Theorem 1.

Proof of Theorem 2

The asymptotic normality of this estimator is proved in Step 1 and the consistency in variable selection in the Step 2. This proof in an adaptation to our case of the proof given by [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF] or [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF]. The difference with [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF] concerns the treatment of the penalty term. So in the following, we will use notations similar to the ones of [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF]. We will point out the difference between the both proofs.

Step 1.

Let us first prove the asymptotic normality.

Let us define

U n (u) = Q Hadb ((α * , β * , s * , τ * ) T + u/ √ n) -Q Hadb (α * , β * , s * , τ * ) with u = (u 0 , . . . , u p+2 ) T ∈ R p+3 . Obviously, U n (u) is minimized at û(n) = √ n αHadb -α * , βHadb -β * , ŝHadb -s * , √ λ n √ n (τ Hadb -τ * ) T .
The principle of the proof of [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF] or [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF] is to study the epi-limit of U n . Epi-convergence provides natural conditions under which, if U n epi-converges to U , one can guarantee the convergence of the minimizer of U n to the minimizer of U. [START_REF] Geyer | On the asymptotics of constrained M -estimation[END_REF] defines epi-convergence in distribution (denoted by → e-d ) for random lower semicontinuous extended real-valued variables from R q as the convergence in distribution for the distance d defined in Lemma 3.

Using the proof of theorem 3.2 in [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF], we only need to study the epi-limit of the penalty term given by

P n (u) = λ n P adb β * + u 1:p √ n , τ * + u p+2 √ λ n -P adb (β * , τ * ) ,
where P adb (β, τ ) = P adb (β, τ ), if τ ≥ 0, ∞ if τ < 0. The epi-limit of this term is given in the Lemma 1 . This lemma together with lemma 2 of [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF] indicates that U n → e-d U, where

U (u) = A s * u T 1:p V u 1:p + u 2 0 + D s * u 2 p+1 -W T u + u p+2 2 C(u p+2 ), if u j = 0, ∀ j / ∈ A, +∞ otherwise. Under condition β * = 0, equation (20) in Lemma 2 implies that p 0 j=1 |β * j | 2-γ 1 1 |β * j |>Lτ * > 0 thus the function z → z 2 C(z) is strictly convex. Moreover, V 1,1
is supposed positive definite in assumption (D2) and we assume that the noise satisfies (N2). Consequently, U get a unique minimizer. Theorem 5 of [START_REF] Knight | Epi-convergence in distribution and stochastic equi-semicontinuity[END_REF] ensures that û(n) converges in distribution to the minimizer of U . The asymptotic normality part is proved. It should be noted that [START_REF] Zou | The Adaptive Lasso and Its Oracle Properties[END_REF] does not provide proof for the epi-convergence for the lasso penalty: our proof is self-contained.

Step 2. Let us now show the consistency in variable selection part. It suffices to show that P [A ⊂ A n ] → 1 as n tends to infinity and P [A c ⊂ A n c ] → 1 as n tends to infinity. The first claim is an easy consequence of asymptotical normality obatined in Step 1.

Let us now show the second claim. Let j such that β * j = 0. We have to prove that P βHadb j = 0 → 0 as n tends to infinity. As in [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF], we have for a such j, P βHadb j = 0 ≤ P ŝHadb , τ Hadb = (0, 0) + P τ Hadb > 0 and ŝHadb > 0 and

n i=1 x i,j H M y i -αHadb -x T i βHadb ŝHadb = -λ n ŵHadb j B L βHadb j τ Hadb .
Using similar arguments as in [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF], we have, as n tends to infinity,

P (ŝ Hadb , τ Hadb ) = (0, 0) → 0.
Since ∀x ∈ R * , |B L (x) | ≥ 1, we have P τ Hadb > 0 and ŝHadb > 0 and

n i=1 x i,j H M y i -αHadb -x T i βHadb ŝHadb = -λ n ŵHadb j B L βHadb j τ Hadb ≤ P ŝHadb > 0 and 1 √ n n i=1 x i,j H M y i -αHadb -x T i βHadb ŝHadb ≥ λ n √ n ŵHadb j
As in [START_REF] Lambert-Lacroix | Robust regression through the Huber's criterion and adaptive lasso penalty[END_REF], we have 1 Lemma 1. Suppose that λ n /n γ∧1/2 → 0, λ n n (γ-1)/2 → ∞, λ n → ∞ and β * = 0. Then we have

√ n n i=1 x i,j H M y i -αHadb -x T i βHadb ŝHadb = O P (1) 
P n (u) → e-d u p+2 2 C(u p+2 ) if u j = 0, ∀ j / ∈ A, +∞ otherwise ,
where

C(u p+2 ) = 1 2Lτ * 3 p 0 j=1 |β * j | 2-γ 1 1 |β * j |>Lτ * + L 1-γ 2τ * (γ+1) #{1 ≤ j ≤ p, |β * j | = Lτ * }1 1 u p+2 <0 .
Since β * = 0, Lemma 2 ensures that τ * > 0. Consequently, we have P n (u) = p j=1 P n,j (u), where

P n,j (u) =              λ n u p+2 √ λn ŵadb j + ŵadb j τ * + u p+2 √ λn B L β * j + u j √ n τ * + u p+2 √ λn -τ * ŵadb j B L β * j τ * if u p+2 > - √ λ n τ * , -λ n τ * 1 ŵadb j + ŵadb j B L β * j τ * if u p+2 = - √ λ n τ * ,
and

u j = - √ nβ * j , +∞ otherwise.
Proof. The proof is divided into two steps.

Step 1. First let us prove that

p 0 j=1 P n,j (u) → e-d u 2 p+2 C(u p+2 ) . (9) 
We show that, for every u fixed in R p+2 , we have this convergence in probability. Since τ * > 0 and λ n → +∞ as n tends to infinity, for n sufficiently large (with respect to a bound depending on u p+2 ), u p+2 / √ λ n + τ * > 0 and

P n,j (u) = u p+2 √ λ n ŵadb j + λ n ŵadb j G j u j √ n , u p+2 √ λ n -G j (0) ,
where

∀ j ∈ [1, p 0 ], G j : (z 1 , z 2 ) → (z 2 + τ * ) B L z 1 + β * j z 2 + τ * .
For 1 ≤ j ≤ p 0 such that |β * j | = Lτ * , G j is two times differentiable at 0 and the Taylor-Young theorem entails that,

∀ (z 1 , z 2 ) ∈ R 2 , G j (z 1 , z 2 ) = G j (0) + z 1 B L β * j τ * + z 2 B β * j τ * + z 2 1 2Lτ * 1 1 |β * j |>Lτ * + z 2 2 β * j 2 2Lτ * 3 1 1 |β * j |>Lτ * - z 1 z 2 β * j Lτ * 2 1 1 |β * j |>Lτ * + ξ(z 1 , z 2 ) ,
where ξ(z 1 , z 2 )/ (z 1 , z 2 2 → 0 as (z 1 , z 2 ) → 0 , B : z ∈ R → B L (z) -zB L (z) and we have used that

B L β * j /τ * = 1 1 |β * j |>Lτ * /L. Consequently, for 1 ≤ j ≤ p 0 such that |β * j | = Lτ * , P n,j (u) = u p+2 √ λ n ŵadb j + λ n u p+2 ŵadb j B β * j τ * + u 2 p+2 |β * j | 2-γ 2Lτ * 3 1 1 |β * j |>Lτ * + a n,j (u) , (10) 
where

a n,j (u) = λ n u j ŵadb j √ n B L β * j τ * + λ n u 2 j ŵadb j 2nLτ * 1 1 |β * j |>Lτ * - √ λ n u p+2 β * j u j ŵadb j √ nLτ * 2 1 1 |β * j |>Lτ * +λ n ŵadb j ξ u j √ n , u p+2 √ λ n .
Let us now consider 1 ≤ j ≤ p 0 such that |β * j | = Lτ * . When β * j = Lτ * , for n sufficiently large (with respect to a bound depending on u),

P n,j (u) = √ λ n u p+2 ŵadb j + λ n ŵadb j τ * + u p+2 √ λ n B L Lτ * + u j √ n τ * + u p+2 √ λn -Lτ *
Let us consider n sufficiently large (with respect to a bound depending on u) such that Lτ * +u j / √ n > 0 and τ * +u p+2 / √ λ n > 0. It is possible since τ * > 0. Thus, combined with the assumption λ n → +∞ as n tends to ∞, the involved sequence tends to a strictly positive limit as n tends to ∞. Since λ n /n → 0 as n tends to ∞, two cases are possible. Either, λ n /nu j ≤ Lu p+2 and b n,j (u) = P n,j (u) -

√ λ n u p+2 ŵadb j = λ n u j ŵadb j √ n , (11) 
or λ n /nu j > Lu p+2 and

b n,j (u) = λ n ŵadb j τ * + u p+2 √ λn u 2 j 2Ln + τ * u j √ n + L ŵadb j 2 τ * + u p+2 √ λn u 2 p+2 . (12) 
Similiarly, we get the same result if β * j = -Lτ * . Gathering [START_REF] Grant | Cvx: Matlab software for disciplined convex programming (web page and software[END_REF] and using B(±L) = 0, we have the following decomposition:

p 0 j=1 P n,j (u) = p 0 j=1 c n,j (u) + p 0 j=1 a n,j (u)1 1 |β * j | =Lτ * + b n,j (u)1 1 |β * j |=Lτ * + u p+2 2 2Lτ * 3 p 0 j=1 |β * j | 2-γ 1 1 |β * j |>Lτ * , (13) 
where

c n,j (u) = u p+2 λ n p 0 j=1 1 ŵadb j + ŵadb j B β * j τ * .
We now study the convergence of each term. The √ n-consistency of βunpen implies that ŵadb

j P → 1/|β * j | γ < +∞. Moreover, λ n /
√ n → 0 as n tends to infinity, thus, by Slutsky's theorem, the first three terms of a n,j (u) tends to 0 in probability for any (u) ∈ R p+2 fixed. Concerning the last term (the rest), we have that

∀ > 0 , ∃ N (u), ∀ n ≥ N (u), λ n ξ u j √ n , u p+2 √ λ n ≤ u 2 j λ n n + u 2 p+2 .
Moreover, (λ n /n) n≥1 is a bounded sequence (since it converges to 0 as n tends to infinity). Thus,

λ n ξ(u j / √ n, u p+2 / √ λ n ) → 0 as n tends to ∞.
Consequently, for any u ∈ R p+2 fixed, the forth term of a n,j tends to 0 in probability. Using Slutsky's lemma, this entails that, for any u ∈ R p+2 fixed, a n,j (u) P → 0. Concerning the term b n,j (u) As previously we have ŵadb

j P → 1/|β * j | γ < +∞ and λ n / √ n → 0 as n tends to infinity, so, if β * j = Lτ * , b n,j (u) P → L (1-γ) 2τ * (γ+1) u 2 p+2 1 1 u p+2 <0 .
Similarly, we get the same result if β * j = -Lτ * . Concerning the term c n,j (u), Property (20) (see Lemma 2) is available since β * = 0 and

c n,j (u) = u p+2 λ n n p 0 j=1   √ n(| βunpen j | γ -|β * j | γ ) + B β * j τ *   √ n | βunpen j | γ -|β * j | γ | βunpen j | γ |β * j | γ     . (14) 
Since β * j = 0, x → |x| γ is differentiable at β * j and the Taylor-Young theorem entails that

√ n | βunpen j | γ -|β * j | γ = γsign(β * j )|β * j | γ-1 √ n βunpen j -β * j + √ n βunpen j -β * j ξ j βunpen j
with ξ j (x) → 0 as x tends to β * j . Now, the √ n-consistency of βunpen implies that the first term of this expansion is bounded in probability. It also entails that βunpen j P → β * j which leads to ξ j βunpen j P → 0 since ξ j (x) → 0 as x tends to β * j . Consequently, the second term of this expansion is also bounded in probability and, finally,

√ n(| βunpen j | γ -|β * j | γ ) = O P (1)
. Since λ n /n → 0 as n tends to infinity, and | βunpen j

| γ P → |β * j | γ = 0, so c n,j ( 
u) converges in probability to 0. Combining [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms I[END_REF] with all these convergences, the convergence in probability of ( 9) is proved. Using first theorem 2.7 (vi) of [START_REF] Van Der | Asymptotic statistics[END_REF] and then that convergence in probability is stronger than convergence in distribution (theorem 2.7 (ii) of [START_REF] Van Der | Asymptotic statistics[END_REF]), we get that convergence in probability implies finite-dimensional convergence in [START_REF] Ghosh | Adaptive elastic net: An improvement of elastic net to achieve oracle properties[END_REF]. Theorem 5 of [START_REF] Knight | Epi-convergence in distribution and stochastic equi-semicontinuity[END_REF] implies that (9) holds since the limit function u → u 2 p+2 C(u p+2 ) is finite.

Step 2. Next, we treat the sum of terms P n,j for j > p 0 , and first show that

(P n,p 0 +1 , • • • , P n,p ) → e-d I B p 0 +1 , • • • , I Bp , (15) 
where B j = {(u 1:p , u p+2 ) ∈ R p+1 , u j = 0} and for a set A, I A denotes the indicator function of A (i.e.

I A (x) = 0 if x ∈ A and I A (x) = +∞ otherwise). Let us put q n,j (u) = P n,j (u) -λ n u p+2 | βunpen j | γ . ( 16 
)
Since βunpen is a √ n-consistent estimator and j ∈ [p 0 + 1, p], n γ/2 | βunpen j | γ is a tight sequence. Moreover, we have λ n /n γ → 0 as n tends to infinity, thus

∀u p+2 ∈ R, √ λ n u p+2 | βunpen j | γ = u p+2 √ λ n n -γ ( √ n| βunpen j |) γ P → 0.
Using first theorem 2.7 (vi) of [START_REF] Van Der | Asymptotic statistics[END_REF], we get that convergence in probability implies finite-dimensional convergence:

√ λ n u p+2 | βunpen j | γ → f -d 0.
Since the involved limit function is finite and by convexity, theorem 5 of [START_REF] Knight | Epi-convergence in distribution and stochastic equi-semicontinuity[END_REF] ensures that we have the epiconvergence in distribution. Moreover, B L (x) ≥ |x| and B L (0) = 0, Lemma 3 with q(x) = B L (x) leads to

d(q n,j , I B j ) ≤ 2 -[τ * √ λn]+1 + 2 √ n| βunpen j | γ λ n ,
where d is defined as in [START_REF] Mclinden | Preservation of convergence of convex sets and functions in finite dimensions[END_REF]. We have λ n → +∞ as n tends to infinity and 2 -[τ * √ λn]+1 → 0 as n tends to infinity since τ * > 0. Furthemore 2

√ n| βunpen j | γ /λ n = 2( √ n| βunpen j |) γ /λ n /n (γ-1)/2
and since βunpen is a √ n-consistent estimator and j ∈ [p 0 + 1, p], the numerator is a tight sequence and the denominator tends to +∞ as n tends to infinity. Consequently, 2 √ n| βj | γ /λ n P → 0 and d(q n,j , I B j ) P → 0. Finally, using part (ii) of lemma 1.10.2 page 57 of [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF], we have q n,j → e-d I B j . The notion of epi-convergence in distribution of convex lower semicontinuous random variables is a particular case of weak convergence of a net as stated in definition 1.33 of [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF]. Consequently, we can use Slutsky's theorem page 32, example 1.4.7 of [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF] to ensure that

λ n u p+2 | βj | γ , q n,j (u 1:p , u p+2 ) → e-d (0, I B j ) ( 17 
)
since 0 is deterministic. Moreover, we have

√ λ n u p+2 | βunpen j | γ → u-d 0 since
we have shown the finite dimensional convergence in distribution and since √ λ n u p+2 | βj | γ and 0 are finite convex functions ( [START_REF] Arcones | Weak convergence of convex stochastic processes[END_REF] and [START_REF] Knight | Epi-convergence in distribution and stochastic equi-semicontinuity[END_REF]). We are now in position to use part (b) of theorem 4 of [START_REF] Knight | Epi-convergence in distribution and stochastic equi-semicontinuity[END_REF]: gathering [START_REF] Knight | Asymptotics for Lasso-type estimators In[END_REF], √ λ n u p+2 | βunpen j | γ → u-d 0, continuity of 0 and ( 16), it ensures that P n,j → e-d I B j holds. Since I B j is deterministic, theorem 18.10 (ii) of [START_REF] Van Der | Asymptotic statistics[END_REF] ensures that the convergence in probability holds. Now, theorem 18.10 (vi) of [START_REF] Van Der | Asymptotic statistics[END_REF] leads to the convergence in probability in [START_REF] Huber | Robust Statistics[END_REF]. Moreover, convergence in probability is stronger than convergence in distribution thus [START_REF] Huber | Robust Statistics[END_REF] is proved.

For all

I ⊂ [p 0 + 1, p], dom i∈I I B i = {(u 1:p , u p+2 ) ∈ R p+1 , u i = 0, ∀ i ∈ I}. Thus, for all I ⊂ [p 0 + 1, p] and J ⊂ [p 0 + 1, p] satisfying I ∩ J = ∅, 0 ∈ int dom i∈I I B i -dom j∈J I B j ,
where for f , a function defined on R p+1 , dom(f ) = {x ∈ R p+1 /f (x) < +∞} and A-B = {a-b, a ∈ A, b ∈ B}. Using successively this fact, [START_REF] Huber | Robust Statistics[END_REF], Theorem 5 of [START_REF] Mclinden | Preservation of convergence of convex sets and functions in finite dimensions[END_REF] and theorem 18.10 (iii) (v) (vi) and 18.11 of [START_REF] Van Der | Asymptotic statistics[END_REF], we get

p j=p 0 +1 P n,j → e-d p j=p 0 +1 I B j (18) 
As previously, we can use Slutsky's theorem page 32, example 1.4.7 of [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF] to ensure that ( 18) and ( 9) imply that p j=p 0 +1

P n,j (u),

p 0 j=1 P n,j (u) → e-d p j=p 0 +1 I B j , u 2 p+2 C(u p+2 ) (19) 
since u 2 p+2 C(u p+2 ) is deterministic. Moreover, we have p 0 j=1 P n,j (u) → u-d u 2 p+2 C(u p+2 ) since we have shown the finite dimensional convergence in distribution and p 0 j=1 P n,j (u) and u 2 p+2 C(u p+2 ) are finite (for n sufficiently large) convex functions ( [START_REF] Arcones | Weak convergence of convex stochastic processes[END_REF] and [START_REF] Knight | Epi-convergence in distribution and stochastic equi-semicontinuity[END_REF]). Using part (b) of theorem 4 of [START_REF] Knight | Epi-convergence in distribution and stochastic equi-semicontinuity[END_REF]: gathering (19), p 0 j=1 P n,j (u 1:p , u p+2 ) → u-d u p+2 2 C(u p+2 ) and continuity of u p+2 2 C(u p+2 ), it ensures that Lemma 1 holds. 

Proof of lemma 3

For f , a function defined on S, we note epi(f ), its epigraph given by epi(f ) = {(x, t) ∈ S ×R/f (x) ≤ t}.

Lemma 3. Let q be a function such that q(0) = 0 and ∀ x ∈ R, q(x) ≥ |x| . We use the notations of the proof of lemma 1. Let us recall that q n,j (u 1:p , u p+2 ) = P n,j (u

1:p , u p+2 ) - √ λ n u p+2 | βj | γ where P n,j (u) =              λ n u p+2 √ λn | βj | γ + 1 | βj | γ u p+2 √ λn + τ * q γ j √ n +β * j u p+2 √ λn +τ * -τ * | βj | γ q β * j τ * if u p+2 > - √ λ n τ * , -λ n τ * | βj | γ + 1 | βj | γ q β * j τ * if u p+2 = - √ λ n τ * , and γ j = - √ nβ * j , , +∞ otherwise . Then, ∀j ∈ [p 0 + 1, p], d(q n,j , I B j ) ≤ 2 -[τ * √ λn]+1 + 2 √ n| βj | γ λ n ,
where

d(q n,j , I B j ) = +∞ k=1 1 ∧ d k (epi(q n,j ), epi(I B j )) 2 k , ( 21 
)
d k is a semi-distance ("constrained Pompeiu-Haussdorf distance") d k (epi(q n,j ), epi(I B j )) = max x ≤k |d epi(q n,j ) (x) -d epi(I B j ) (x)| , (22) 
and d S (x) = min y∈S

x -y for a subset S of R p+1 .

Proof. Let us note that distance d caracterises the epi-convergence of lower semi-continuous functions: a sequence {f n } of extended-real-valued lower semi-continuous functions from R p+1 epiconverges to a extended-real-valued lower semi-continuous function f if and only if d(f n , f ) → 0 as n goes ton infinity. We recall that B j = {(u 1:p , u p+2 ) ∈ R p+1 , u j = 0} and for a set A, I A denotes the indicator function of A. Let us introduce the set D j = {(u 1:p , u p+2 ) ∈ R p+1 , u j = 0 and u p+2 ≥ -√ λ n τ * }. By using the triangular inequality,

d(q n,j , I B j ) ≤ d(q n,j , I D j ) + d(I D j , I B j ) . (23) 
To begin with, let us show that

d(I D j , I B j ) ≤ 2 -[τ * √ λn] . (24) 
Here we use a geometrical point of view. The epigraph of the indicator function I A of a set A is the "half-cylinder with cross-section A" i.e. A × R + . Consequently, the epigraph of I B j is an half-hyperplan supported by the u j axis and the epigraph of I D j is the part of this half-hyperplan where, moreover, u p+2 ≥ -√ λ n τ * . Note that this cut is perpendicular to the u p+2 -axis. So if we consider x ∈ R p+2 such that x p+1 ≥ -√ λ n τ * , the distance between x and epi(I D j ) is reached for a point in epi(I B j ). Thus

∀ x, x 2 ≤ k with k ≤ λ n τ * , d epi(I D j ) (x) = d epi(I B j ) (x), (25) 
and if k ≤ √ λ n τ * then d k (epi(I D j ), epi(I B j )) = 0. Now the definition (21) of the distance d implies that

d(I D j , I B j ) = k≥[ √ λnτ * ]+1 1 ∧ d k (epi(I D j ), epi(I B j )) 2 k ≤ k≥[ √ λnτ * ]+1 1 2 k ,
and ( 24) is proved.

Next, we show that

d(q n,j , I D j ) ≤ 2 √ n| βunpen j | γ λ n + 2 -[τ * √ λn] . (26) 
For j ∈ [p 0 + 1, p], q(0) = 0 implies that

q n,j (u 1:p , u p+2 ) = λ n | βunpen j | γ u p+2 √ λ n + τ * q   u j √ n u p+2 √ λn + τ *   + I E (27) 
where we set 0/0 = 0 and E = {(u 1:p , u p+2 ), u p+2 > -λ n τ * } ∪ {(u 1:p , u p+2 ), u p+2 = -λ n τ * and u j = 0}.

Consequently, q n,j (u 1:p , u p+2 ) ≤ I D j (u 1:p , u p+2 ). Indeed, it is clear if (u 1:p , u p+2 ) / ∈ D j . Moreover, if (u 1:p , u p+2 ) ∈ D j , q n,j (u 1:p , u p+2 ) = 0 since q(0) = 0. Consequently, epi I D j ⊂ epi (q n,j ), d epi(I D j ) (.) ≥ d epi(q n,j ) (.) and

d k (epi (q n,j ) , epi I D j ) = max x ≤k d epi(I D j ) (x) -d epi(q n,j ) (x) . Since ∀ t ∈ R, q(t) ≥ |t|, it holds that,∀ (t, τ ) ∈ R × R *
+ , τ q(t/τ ) ≥ |t| and expression ( 27) entails q n,j (u 1:p , u p+2 ) ≥ F n,j (u 1:p , u p+2 ) , where F n,j (u 1:p , u p+2 ) = λ n |u j || βunpen j | -γ / √ n+I E . Consequently, epi (q n,j ) ⊂ epi (F n,j ), d epi(q n,j ) (.) ≥ d epi(F n,j ) (.) and

d k (epi (q n,j ) , epi I D j ) ≤ max x ≤k d epi(I D j ) (x) -d epi(F n,j ) (x) . (28) 
Now, epi(F n,j ) = S 1 ∪ S 2 where

S 1 = {(u 1:p , u p+2 , t) ∈ R p+2 , u p+2 > -λ n τ * and λ n |u j | √ n| βunpen j | γ ≤ t}, and 
S 2 = {(u 1:p , u p+2 , t) ∈ R p+2 , u p+2 = -λ n τ * , u j = 0, and t ≥ 0}. Thus, d epi(F n,j ) (x) = d S 1 (x) ∧ d S 2 (x) . (29) 
Easy calculations lead to, ∀ x ∈ R p+2 ,

d 2 S 2 (x) = inf z∈S 2 p+2 i=1 (x i -z i ) 2 = x 2 j + (x p+1 + λ n τ * ) 2 + x 2 p+2 1 1 x p+2 <0 , (30) 
and

d 2 S 1 (x) = inf z∈S 2 p+2 i=1 (x i -z i ) 2 = d 2 epi(f n,j ) (x 1 , • • • , x p , x p+2 ) + (x p+1 + λ n τ * ) 2 1 1 x p+1 <- √ λnτ * , where f n,j (u 1:p ) = λ n |u j || βunpen j | -γ / √ n. If we consider x ∈ R p+2 such that x 2 ≤ k with k ≤ √ λ n τ * , it satisfies that x p+1 ≥ - √ λ n τ * and thus d 2 S 1 (x) = d 2 epi(f n,j ) (x 1 , • • • , x p , x p+2 ) . Technical computations leads to d S 1 (x) =                x 2 j + x 2 p+2 if x p+2 ≤ - √ n| βunpen j | γ λn |x j |, |x j |-x p+2 √ n| βunpen j | γ λn 1+ n| βunpen j | 2γ λ 2 n if - √ n| βunpen j | γ λn |x j | < x p+2 ≤ λn √ n| βunpen j | γ |x j |, 0 if x p+2 > λn √ n| βunpen j | γ |x j |. (31) 
Using explicit expressions [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF] and [START_REF] Van Der | Asymptotic statistics[END_REF], we can show that for any x ∈ R p+2 such that

x 2 ≤ k with k ≤ √ λ n τ * , d S 1 (x) ≤ d S 2 (x). (32) 
Gathering ( 32) with (29), for any

x ∈ R p+2 such that x 2 ≤ k with k ≤ √ λ n τ * , d epi(F n,j ) (x) = d S 1 (x) = d epi(f n,j ) (x 1 , • • • , x p , x p+2 ). (33) 
Combining ( 28), ( 33) and ( 25), if k ≤ √ λ n τ * , we obtain

d k (epi (q n,j ) , epi I D j ) ≤ max x ≤k d epi(I B j ) (x 1 , • • • , x p , x p+2 ) -d epi(f n,j ) (x 1 , • • • , x p , x p+2 ) .
The involved objective function does not depend on x p+1 . Moreover, using the form of the constraints, if k ≤ √ λ n τ * , we get

d k (epi (q n,j ) , epi I D j ) ≤ max x 2 1 +•••+x 2 p +x 2 p+2 ≤k 2 d epi(I A j ) (x 1 , • • • , x p , x p+2 ) -d epi(f n,j ) (x 1 , • • • , x p , x p+2 ) . Moreover, since ∀u 1:p ∈ R p , I A j (u 1:p ) ≥ f n,j (u 1:p ), if k ≤ √ λ n τ * , d k (epi (q n,j ) , epi I D j ) ≤ d k (epi (f n,j ) , epi I A j ),
and technical computations leads to

d k (epi (f n,j ) , epi I A j ) = k √ n| βunpen j | γ λ n 1 + n| βunpen j | 2γ λ 2 n .
Finally, using the definition (21), we have

d q n,j , I D j ≤ k≤[ √ λnτ * ] d k (epi (q n,j ) , epi I D j ) 2 k + k≥[ √ λnτ * ]+1 1 2 k .
Gathering this inequality with the previous one and the fact that k≥1 k 26) is proved. Using equation ( 23) with ( 24) and ( 26), the bound involved in Lemma 3 holds. mean (std) 0.004(0.002) 0.002(0.001) 0.001(7.7e-04) 4.1e-04(2.9e-04) 1.7e-04(1.1e-04) q q q q q q q q q l r e lb hl hb 0.0 0.5 1.0 1.5 n=100 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q l r e lb hl hb 0.0 0.2 0.4 n=200 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q l r e lb hl hb 0.00 0.10 0.20 n=400

2 k ≤ 2, (

Tables and Figures

Figure 1: RPE for Model 1 and for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu (lb), Huber-ad-lasso (hl), and Huber-ad-BerHu (hb). The boxplots are obtained without extreme values given by, for n = 100, hl: q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q l r e lb hl hb 0.0 0.2 0.4 0.6 n=100 q q q q q q q q q q q q q q q q q l r e lb hl hb 0.00 0.10 0.20 0.30 n=200 q q q q q q q q q q q q q q q q q q q q q q q q q q q q l r e lb hl hb 0.00 0.10 n=400 Figure 2: RPE for Model 2 and for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu (lb), Huber-ad-lasso (hl), and Huber-ad-BerHu (hb). The boxplots are obtained without extreme values given by, for n = 100, hl: 2.94; n = 200, hb: 2.24, lb: 0.48; n = 400, hl: 0.29, 0.24.
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Figure 3: RPE for 3 and for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu (lb), Huber-ad-lasso (hl), and Huber-ad-BerHu (hb). The boxplots are obtained without extreme values given by, for n = 200, hl: 1.52. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q l r e lb hl hb -10 0 10 20 30
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  The function τ -→ a/τ + bτ + c with a ≥ 0 and b > 0 is decreasing on ]0, a/b[ and increasing on [ a/b, +∞[. So, its minimum on R * + is reached at a/b and is equal to 2 √ ab + c. The function f is a valley on R + since f is convex, f (τ ) -→ +∞ as τ -→ 0 + and f (τ ) -→ +∞ as τ -→ +∞. By convexity of f , among the intervals ]|β (m) |/L, |β (m-1) |/L] for m = 2, . . . , k(β) + 1, there is only one where f is a valley. Consequently, the minimum of f on R + is reached at τ

  that implies that P βHadb j = 0 → 0 as n tends to infinity.5.4 Technical lemma5.4.1 Proof of lemma 1

5. 4 . 2 Proof of lemma 2 Lemma 2 .

 4222 If β * = 0 then there exists a unique τ * > 0 satisfying equation (8Let us denote by I the following function of τ I(τ ) = τ p j=1 |β * j | γ + p 0 j=1 1 |β * j | γ B L β * j τ . This function is convex and I (•) is continuous, increasing with I (τ ) → p j=1 |β * j | γ as τ → +∞ and, if β * = 0, I (τ ) → -∞ as τ → 0. This leads to the existence of τ * > 0 by the intermediate value theorem. The minimum of I is unique since I is strictly increasing on each pieces ]0, |β * (1) /L|[ and [|β * (k |/L, |β * (k+1) |/L[ for 1 ≤ k ≤ p -1, continuous and increasing on R * + , strictly positive at |β * (p) |/L since I (|β * (p) |/L) = p j=1 |β * j | γ > 0. Note that I is constant on [|β * (p) |/L, +∞[. This concludes the proof.
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 5 Figure 5: Model 2: Estimation of the difference between first estimated and true coefficients, n = 200 for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu (lb), Huber-ad-lasso (hl), and Huber-ad-BerHu (hb).

Figure 6 :

 6 Figure 6: Model 3: Estimation of the difference between first estimated and true coefficients, n = 200 for ad-lasso (l), ridge (r), ad-Enet (e), l1-loss-ad-Berhu (lb), Huber-ad-lasso (hl), and Huber-ad-BerHu (hb). The boxplots are obtained without extreme values given by 61.55 for hl.

Figure 7 :

 7 Figure 7: Prostate cancer data: histogram associated with number of selection of each variables in the re-sampling study.

Table 1 :

 1 Selection model ability on Model 1 based on 100 replications. C (resp. O and U) is the number of well-chosen models (resp. number of overfitting models and underfitting models). Z is the average number of estimated zeros, CZ provides the average number of correctly estimated zeros, (TZ) recall the theoretical zeros number.

		C O	U	Z(std)	CZ(std) TZ λ n (std)
	n = 100			
	ad-lasso	0 0 100 35.38(1.87) 24.32(1.33) 25 λ n : 2683(1576)
	ad-Enet	0 0 100 27.72(5.65) 19.69(4.60) 25 λ 1,n : 1252(1197)
					λ 2,n : 1.4(3.1)
	l1-loss-ad-Berhu 0 35 65	5.16(4.06) 4.07(4.19) 25 λ n : 1.33(3.39)
	Huber-ad-lasso	0 3 97 20.9(12.10) 14.08(8.35) 25 λ n : 59.68(103.74)
	Huber-ad-BerHu	0 33 67	9.89(6.20) 8.57(6.91) 25 λ n : 9.57(12.44)
	n = 200			
	ad-lasso	0 0 100 35.15(1.45) 24.59(0.73) 25 λ n : 2718(1562)
	ad-Enet	0 2 98 27.71(5.92) 20.52(4.71) 25 λ 1,n : 1321(965)
					λ 2,n : 2.5(3.9)
	l1-loss-ad-Berhu 0 28 72 12.81(5.50) 11.54(6.01) 25 λ n : 7.59(6.96)
	Huber-ad-lasso	0 7 93 29.52(9.75) 19.85(6.76) 25 λ n : 135.26(169.02)
	Huber-ad-BerHu	0 48 52 16.77(4.65) 15.86(5.19) 25 λ n : 27.24(16.67)
	n = 400			
	ad-lasso	0 0 100 34.75(1.61) 24.74(0.70) 25 λ n : 3289(2136)
	ad-Enet	0 0 100 27.06(4.81) 21.17(3.52) 25 λ 1,n : 1260(777)
					λ 2,n : 6(4.74)
	l1-loss-ad-Berhu 0 38 62 16.27(4.69) 15.10(5.14) 25 λ n : 14.10(10.05)
	Huber-ad-lasso	0 9 91 29.67(11.90) 20.3(8.07) 25 λ n : 277.06(545.91)
	Huber-ad-BerHu	0 35 65 19.47(4.06) 18.42(4.19) 25 λ n : 41.78(18.75)

Table 2 :

 2 Selection model ability on Model 2 based on 100 replications. C (resp. O and U) is the number of well-chosen models (resp. number of overfitting models and underfitting models). Z is the average number of estimated zeros, CZ provides the average number of correctly estimated zeros, (TZ) recall the theoretical zeros number.

		C O	U	Z(std)	CZ(std) TZ λ n (std)
	n = 100			
	ad-lasso	0 0 100 35.03(2.15) 24.18(1.67) 25 λ n : 2727(2115)
	ad-Enet	0 0 100 28.66(5.85) 20.46(4.63) 25 λ 1,n : 1432(1374)
					λ 2,n : 1.6(3.2)
	l1-loss-ad-Berhu 3 23 74 23.30(3.50)	22(2.88) 25 λ n : 11.65(3.98)
	Huber-ad-lasso	0 22 78 10.79(8.18) 7.38(5.86) 25 λ n : 4.19(16.56)
	Huber-ad-BerHu	5 24 71 24.36(2.64) 23.12(2.30) 25 λ n : 28.90(8.52)
	n = 200			
	ad-lasso	0 0 100 35.25(1.53) 24.61(0.80) 25 λ n : 3151(1919)
	ad-Enet	0 0 100 28.21(5.16) 20.68(4.08) 25 λ 1,n : 1362(975)
					λ 2,n : 2.3(3.66)
	l1-loss-ad-Berhu 8 19 73 24.47(3.82) 23.14(3.54) 25 λ n : 14.45(5.16)
	Huber-ad-lasso	0 6 94 21.63(9.03) 16.77(6.94) 25 λ n : 14.09(16.25)
	Huber-ad-BerHu	4 11 85 25.36(2.91) 23.78(2.59) 25 λ n : 34.43(12.01)
	n = 400			
	ad-lasso	0 0 100 35.05(1.45) 24.69(0.66) 25 λ n : 3362(2142)
	ad-Enet	0 0 100 28.10(4.03) 21.69(3.30) 25 λ 1,n : 1471(898)
					λ 2,n : 5.8(4.69)
	l1-loss-ad-Berhu 16 7 77 25.65(1.67) 24.31(1.30) 25 λ n : 19.30(6.40)
	Huber-ad-lasso	0 14 86 21.30(9.61) 17.76(7.68) 25 λ n : 104.02(333.07)
	Huber-ad-BerHu	23 10 67 24.64(4.30) 23.59(4.08) 25 λ n : 37.91(16.07)

Table 3 :

 3 Selection model ability on Model 3 based on 100 replications. C (resp. O and U) is the number of well-chosen models (resp. number of overfitting models and underfitting models). Z is the average number of estimated zeros, CZ provides the average number of correctly estimated zeros, (TZ) recall the theoretical zeros number. .44)[START_REF] Sardy | Robust wavelet denoising[END_REF] λ 1,n : 3648(2052) λ 2,n : 65.9(45.8) l1-loss-ad-Berhu 0 0 100 39.46(1.21) 24.99(0.10) 25 λ n : 284(355) Huber-ad-lasso 0 7 93 24.93(11.20) 18.34(8.25) 25 λ n : 3357(3500) Huber-ad-BerHu 0 1 99 33.45(4.01) 24.62(0.90) 25 λ n : 969(333) (7.8) 25 λ 1,n : 2147(2266) λ 2,n : 47.9(46.5) l1-loss-ad-Berhu 0 0 100 38.54(2.72) 24.87(0.66) 25 λ n : 299(357) Huber-ad-lasso 0 14 86 27.97(12.14) 19.92(8.55) 25 λ n : 3886(3415) Huber-ad-BerHu 0 2 98 30.51(4.34) 23.70(1.32) 25 λ n : 1091(274) Berhu 0 0 100 37.69(4.49) 24.77(1.35) 25 λ n : 311(370) Huber-ad-lasso 0 23 77 25.83(14.31) 18.34(10.13) 25 λ n : 3373(3153) Huber-ad-BerHu 0 3 97 28.45(4.48) 22.70(2.28) 25 λ n : 1085(316)

		C O	U	Z(std)	CZ(std) TZ λ n (std)
	n = 100				
	ad-lasso	0 66 34	1.97(1.48)	1.51(1.32) 25 λ n : 3239(2999)
	ad-Enet 2.87(7n = 200 0 83 17 4.46(11.93)
	ad-lasso	0 64 36	2.19(5.55)	1.49(3.52) 25 λ n : 2516(3064)
	ad-Enet 2.94n = 400 0 84 16 4.64(12.5)
	ad-lasso	0 74 26	2.23(6.77)	1.50(4.26) 25 λ n : 2041(2869)
	ad-Enet	0 91	9	2.64(9.50)	1.71(5.94) 25 λ 1,n : 2451(2186)
					λ 2,n : 50.6(46.9)
	l1-loss-ad-				

Table 4 :

 4 Selection model ability and RPE on Model 4. C is the number of well-chosen models

	n	100	200	400	1000	2000
	C	42	46	69	93	95
	RPE					

  2.87; n = 200, hl: 2.48, 2.95, 12.79, 2.86, 2.54, 2.96, 2.95; n = 400, hl: 2.95, 2.49, 2.90, 2.95, 2.94, 2.95, 2.95, 0.61, 0.64, 2.93.

Table 5 :

 5 Prostate cancer data: comparing methods

	Methods	mean of 100 parameters (std)	mean of 100 RPE (std)
	OLS	none	0.6054(0.1397)
	ad-lasso	λ n : 2.4177(1.7368)	0.6357(0.1410)
	ridge	λ n : 2.6104(2.3111)	0.6145(0.1406)
	ad-Enet	λ 1,n : 1.1361(1.0048), λ 2,n : 2.5032(10.2605) 0.6231(0.1351)
	l1-loss-ad-Berhu λ n : 1.0173(0.8794)	0.6410(0.1440)
	Huber-ad-lasso	λ n : 26.2749(7.4369)	0.7765(0.1879)
	Huber-ad-BerHu	λ n : 2.7456(1.9015)	0.6322(0.1391)
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