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Introduction

PREFACE

This collective work originates from the workshop for young researchers Groups acting on manifolds held in Teresópolis, June 20-24 2016. The structure of the text respects the format of the event: Aaron Brown was lecturing about rigidity of smooth group actions, but other talks were given by young researchers and devoted to explain background notions. We thank all the participants, whose active presence contributed to a very pleasant scientific experience. The event was sponsored by the French-Brazilian Network in Mathematics, CNPq, UFF and EDAI.

Smooth ergodic theory takes a prominent rôle in the modern theory of differentiable dynamical systems. Typically one is interested in studying iterations of one single map, or a flow; this can be done under many different aspects, one of the most successful being the description of statistical behaviors, or the ergodic properties. That is, given a probability measure which is invariant for the dynamics, one wants to describe the distribution of the orbits, the typical rates of contraction/expansion, etc. One of the difficulties, or the richness, is that a given system usually admits different invariant measures, and for each measure the statistical descriptions may differ in a significant way. The book [2] was giving a good account of the state of the art about a decade ago.

The study of dynamical systems can be enlarged to include also general group actions on manifolds. This was historically motivated by geometry and foliation theory, but since the appearance of hyperbolicity, dynamicists found an own interest for it. A starting point for what will be discussed in this text, goes back to works of Hirsch, Pugh and Shub [16,26], where the notion of Anosov action first appeared. Not all isomorphism classes of groups are adapted to usual dynamical tools, and one usually is forced to restrict the attention to abelian groups, or at least to groups containing "large" abelian subgroups. Compared to the previous discussion, a first relevant difference for group actions is that invariant probability measures (for the full group!) in general do not abound. In the first part of this work, Aaron Brown presents a pioneering result by Katok and Spatzier [17,18] stating that, under suitable hypotheses, invariant ergodic probability measures for the action of a higher rank abelian group must be of algebraic nature; see Theorem 2.8. Indeed, the main source of examples of Anosov actions is given by Lie groups, notably by groups of diagonal matrices acting on homogeneous spaces. One usually refers to these kind of results as measure rigidity.

The term rigidity here will also refer to a different, but closely related setting: the so-called Zimmer program. Before explaining it, let us make a preliminary digression. Instead of discrete groups, we first focus on Lie groups. The celebrated Montgomery-Zippin theorem [23] tells that the topological structure is intimately connected to geometry; one can go even further:

Conjecture (Hilbert-Smith). If a locally compact topological group G acts faithfully on some connected n-manifold M , then G is a Lie group.

This conjecture has been validated only for dimension n ď 3 [24] (actually, the conjecture reduces to prove that a group of p-adic integers Z p admits no faithful actions on manifolds). Going further, given a Lie group G, what is the lowest dimension npGq such that G admits a faithful action on a manifold of dimension n? For example, the group PSLpn, Rq acts on the real projective space RP n´1 , which is of dimension n´1, but it cannot act on a lower dimensional space. In general, for a simple Lie group G, the optimal lower bound depends on the maximal compact subgroup of G [27], but a satisfactory bound can be given in terms of the so-called (real) rank of G, which is defined as the dimension of the maximal abelian Lie subalgebra of the Lie algebra LiepGq. Since the fundamental work of Margulis [22], it is natural to consider the same kind of questions for lattices (i.e. discrete, finite covolume subgroups) in simple Lie groups. The so-called Margulis's superrigidity states that every linear representation of a lattice of a simple Lie group of rank ě 2 extends to the ambient group, and moreover all linear representations of lattices are classified. Zimmer program is about the nonlinear analogue of superrigidity.

Conjecture (Zimmer). Let G be a simple Lie group with rankpGq ě 2 and Γ a lattice of G. Let M be a closed d-dimensional manifold, and ρ : Γ Ñ DiffpM q a homomorphism. If d ă rankpGq then ρ is trivial.

More generally, it is conjectured that a lattice Γ Ă G cannot act on a closed manifold whose dimension is lower than the least dimension npGq introduced above. For detailed discussions, we recommend the expository works by David Fisher [11,12]. Very recently, Aaron Brown, in collaboration with David Fisher and Sebastian Hurtado, solved Zimmer's conjecture [3,4] (some additional hypotheses are required, see Theorem 11.6). The third part of these notes discusses the main ingredients of their work. As for measure rigidity, the theory of nonuniformly hyperbolic dynamical systems takes the major part. The works by Ledrappier-Young [20,21] on the relationship between Lyapunov exponents and entropy are of notable relevance here. These are very deep works, but we hope the reader will find a suitable introduction here. The main notions and results are recalled throughout the text, especially in the second part and in the appendices by Bruno Santiago and myself, Davi Obata, Sébastien Alvarez and Mario Roldán. Another important ingredient of similar flavor is the work of Ratner on unipotent flows, but we do not discuss it in detail, as several very good introductions are available (in primis [29]).

One delicate aspect in Zimmer's conjecture is about regularity: in [3,4] the authors require the action to be by C 2 diffeomorphisms, that is ρpΓq Ă Diff 2 pM q. This is a very mild condition, at least compared to the previous approaches appearing in the literature, which had strong requirements such as invariant volume or geometric structures, or the action to be by real-analytic diffeomorphisms or on low dimensional manifolds [5, 6, 10, 13-15, 25, 28, 30]. We recommend the beautiful collection of contributions [9] for more detailed discussions on these works (and much more!).

As this text is more focused on smooth ergodic theory and applications to rigidity properties, we will shortly mention the other aspects of Zimmer's conjecture. These include the algebraic properties of Lie groups and their lattices, especially their rigidity properties. An essential ingredient of [3,4] is the strong property (T), introduced by V. Lafforgue [19] and studied by de Laat-de la Salle [7,8] which generalizes the more classical Kazhdan's property (T) [1] and is also enjoyed by lattices in higher-rank simple Lie groups. Very roughly, strong property (T) is a machine to produce invariant vectors for representations as operators of Banach spaces, and is used by Brown-Fisher-Hurtado to reduce the nonlinear problem to a linear one, and then applying superrigidity.

Finally, in the fourth and last part, Aaron Brown discusses further rigidity results that rely on tools of smooth ergodic theory.

Sections that are not required for the rest of the text or that may be skipped on first reading are marked by an asterisk ˚.
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INTRODUCTION: GROUPS ACTING ON MANIFOLDS AND RIGIDITY

PROGRAMS

In the classical theory dynamical systems, one typically studies actions of 1parameter groups: Given a compact manifold M , a diffeomorphism f : M Ñ M generates an action of the group Z; a smooth vector field X on M generates a flow φ t : M Ñ M or an action of the group R. However, one might consider groups more general than Z or R acting on a manifold M . Natural families of group actions arise naturally in many geometric and algebraic settings and the study of group actions connects many areas of mathematics including geometric group theory, representation theory, Lie theory, geometry, and dynamical systems.

This text focuses on various rigidity programs for group actions. Roughly, such rigidity results aim to classify all actions or all invariant geometric structures (such as closed subsets, probability measures, etc.) under (1) suitable algebraic hypotheses on the acting group, and/or (2) suitable dynamical hypotheses on the action. This text primarily take the first approach: under certain algebraic conditions on the acting group, we establish certain rigidity properties of the action. Specifically, we will consider actions of various higher-rank discrete groups: higher-rank, torsion-free abelian groups Z k for k ě 2 or lattices Γ in higher-rank simple Lie groups such as Γ " SLpn, Zq for n ě 3. At times we impose certain dynamical hypotheses as well. In particular, in Part 1 we consider certain families of algebraic Anosov actions and will discuss more general results on Anosov actions in this introduction.

Neither this introduction nor this text as a whole gives a comprehensive account of rigidity results for group actions on manifolds. (For instance, we do not discuss the vast literature and many recent result concerning group action on the circle S 1 . See however [149].) Our goal is rather to give detailed proofs (in simplified examples) of a small number of rigidity theorems coming from higher-rank dynamics and to present the necessary background and constructions in smooth ergodic theory required for these proofs. This introduction aims to give context to these results and give the reader some familiarity with broader rigidity programs in the literature.

1.1. Smooth group actions. Let M be a compact manifold without boundary and denote by Diff r pM q the group of C r diffeomorphisms f : M Ñ M . Recall that if r ě 1 is not an integer then, writing r " k `β for k P N and β P p0, 1q, we say that f : M Ñ M is C r or is C k`β if it is C k and if the kth derivatives of f are β-Hölder continuous.

For r ě 1, the set Diff r pM q has a group structure given by composition of maps. Given a (typically countably infinite, finitely generated) discrete group Γ, a C r action of Γ on M is a homomorphism α : Γ Ñ Diff r pM q from the group Γ into the group Diff r pM q; that is, for each γ P Γ the image αpγq is a C r diffeomorphism αpγq : M Ñ M and for x P M and γ 1 , γ 2 P Γ we have αpγ 1 γ 2 qpxq " αpγ 1 q `αpγ 2 qpxq ˘.

If the discrete group Γ is instead replaced by a Lie group G, we also require that the map G ˆM Ñ M given by pg, xq Þ Ñ αpgqpxq be C r . If vol is some fixed volume form on M we write Diff r vol pM q for the group of C rdiffeomorphisms preserving vol. A volume-preserving action is a homomorphism α : Γ Ñ Diff r vol pM q for some volume form vol. As discussed above, actions of the group of integers Z are generated by iteration of a single diffeomorphism f : M Ñ M and its inverse. For instance, given an integer n ą 1, the diffeomorphism αpnq : M Ñ M is defined as the nth iterate of f : for x P M αpnqpxq " f n pxq :" f ˝f ˝¨¨¨˝f looooooomooooooon n times pxq.

Given a manifold M , any pair of diffeomorphisms f, g P DiffpM q naturally induces an action of F 2 , the free group on two generators, by associating to every reduced word in tf, g, f ´1, g ´1u the diffeomorphism obtained by composing elements of the word. If a pair of diffeomorphisms f : M Ñ M and g : M Ñ M commute, we naturally obtain a Z 2 -action α : Z 2 Ñ DiffpM q given by αpn, mqpxq " f n ˝gm pxq.

1.2. Rigidity of Anosov diffeomorphisms. As a prototype for general rigidity results discussed below, we recall certain rigidity properties exhibited by Anosov diffeomorphisms f : M Ñ M . We first recall the definition of an Anosov diffeomorphism.

Definition 1.1. A C 1 diffeomorphism f : M Ñ M of a compact Riemannian manifold M is Anosov if there is a Df -invariant splitting of the tangent bundle T M " E s ' E u and constants 0 ă κ ă 1 and C ě 1 such that for every x P M and every n P N }D x f n pvq} ď Cκ n }v} for all v P E s pxq }D x f ´npwq} ď Cκ n }w} for all w P E u pxq.

As a primary example, consider a matrix A P GLpn, Zq with all eigenvalues of modulus different from 1. Then, with T n :" R n {Z n the n-torus, the induced toral automorphism L A : T n Ñ T n given by L A px `Zn q " Ax `Zn is Anosov. More generally, given v P T n we have f : T n Ñ T n given by f pxq " L A pxq `v is an affine Anosov map. In dimension 2, a standard example of an Anosov diffeomorphism is given by L A : T 2 Ñ T 2 where A is the matrix A " ˆ2 1 1 1

˙.

A prototype for local rigidity results, it is known (see [5,145], [108,Corollary 18.2.2]) that Anosov maps are structurally stable: if f is Anosov and g is C 1 close to f then g is also Anosov and there is a homeomorphism h : T n Ñ T n such that h ˝g " f ˝h.

(1.1) The map h is always Hölder continuous but in general need not be C 1 even when f and g are C 8 . The map h in (1.1) is called a topological conjugacy between f and g.

All known examples of Anosov diffeomorphisms occur on finite factors of tori and nilmanifolds. From [82,136] we have a complete classification-a prototype global rigidity result-of Anosov diffeomorphisms on tori (as well as nilmanifolds) up to a continuous change of coordinates: If f : T n Ñ T n is Anosov, then f is homotopic to L A for some A P GLpn, Zq with all eigenvalues of modulus different from 1; moreover there is a homeomorphism h : T n Ñ T n such that h ˝f " L A ˝h.

Again, the topological conjugacy h is Hölder continuous but need not be C 1 . Conjecturally, all Anosov diffeomorphisms are, up to finite covers, topologically conjugate to affine maps on tori and nilmanifolds. 1.3. Actions of higher-rank lattices and the Zimmer program. A principal family of discrete groups considered in this text are lattices Γ in (typically higherrank, see Section 10.2) simple Lie groups G. That is, we consider discrete subgroups Γ Ă G such that G{Γ has finite volume. Examples of such groups include Γ " SLpn, Zq where G " SLpn, Rq (which is higher-rank if n ě 3) and the free group F 2 on two generators where G " SLp2, Rq (which has rank 1.) See Section 10.1 for background and additional details. 1.3.1. Linear representations. To motivate the results and conjectures concerning smooth actions of such Γ, first consider the setting of linear representations ρ : Γ Ñ GLpd, Rq. A linear representation π : Z Ñ GLpd, Rq of the group of integers is determined by a choice of a matrix A P GLpd, Rq; similarly, a linear representation π : F 2 Ñ GLpd, Rq of the free group F 2 is determined by a choice of a pair of matrices A, B P GLpd, Rq. These representations may be perturbed to non-conjugate representations π.

In contrast, for groups such as Γ " SLpn, Zq for n ě 3 (and other lattices Γ in higher-rank simple Lie groups), linear representations π : Γ Ñ GLpd, Rq are very rigid as demonstrated by various classical results including [137,141,146,155,171,188]. For instance, local rigidity results in [171,188] establish that any representation π : Γ Ñ GLpd, Rq sufficiently close to π is conjugate to π. Margulis's superrigidity theorem (see Theorem 12.3 below and [141]) establishes that every linear representation π : Γ Ñ GLpd, Rq extends to a representation π : SLpn, Rq Ñ GLpd, Rq up to a "compact error;" this effectively classifies all representations Γ Ñ GLpd, Rq up to conjugacy. 1.3.2. Smooth actions of lattices. As in the case of linear representations, actions of Z or F 2 on a manifold M are determined by a choice of diffeomorphism f P Diff r pM q or pair of diffeomorphisms f, g P Diff r pM q. Such actions may be perturbed to create new actions that are inequivalent under change of coordinates. In particular, there is no possible classification of all actions of Z or F 2 on arbitrary manifolds M . The free group on two generators F 2 and the group SLp2, Zq are lattices in the Lie group SLp2, Rq. Both F 2 and SLp2, Zq admit actions that are "non-algebraic" (i.e. not built from modifications of algebraic constructions) and the algebraic actions of such groups often display less rigidity then actions of higher-rank groups. For instance, there exists a 1-parameter family of deformations (see Example 10.12) of the standard SLp2, Zq-action on the 2-torus T 2 (see Example 10.5) such that no continuous change of coordinates conjugates the deformed actions to the original affine action. See Examples 10.11 and 10.12 for further discussion.

However, as in the case of linear representations, the situation is expected to be very different for actions by lattices in SLpn, Rq for n ě 3 and other higherrank simple Lie groups. In particular, the Zimmer program refers to a collection of conjectures and questions which roughly aim to establish analogues of rigidity results for linear representations π : Γ Ñ GLpd, Rq in the context of smooth (often volume-preserving) actions α : Γ Ñ Diff 8 pM q or "nonlinear representations." In particular, it is expected that all nonlinear actions α : Γ Ñ Diff r pM q are, in some sense, of "an algebraic origin." We note that genuinely "non-algebraic" actions exist; see for instance the discussion in Example 10.10 and [74,Sections 9,10]. Thus, a complete a classification of all actions of higher-rank lattices up to smooth conjugacy is impossible. However, it seems plausible that certain families of actions (Anosov, volume-preserving, lowdimensional, actions on specific manifolds, actions preserving a geometric structure, etc.) are classifiable and that all such actions are constructed from modifications of standard algebraic actions. See Section 10. 3 for examples of standard algebraic actions. We refer to the surveys [72,74,75,122] for further discussion on various notions of "algebraic actions," the Zimmer program, and precise statements of related conjectures and results.

For volume-preserving actions, the primary evidence supporting conjectures in the Zimmer program is Zimmer's superrigidity theorem for cocycles, Theorem 12.2 below. This extension of Margulis's superrigidity theorem (for homomorphisms) shows that the derivative cocycle of any volume-preserving action α : Γ Ñ Diff r vol pM q is-up to a compact error and measurable coordinate change-given by a linear representation Γ Ñ GLpd, Rq. For instance, if the dimension of M is sufficiently small, Zimmer's conjecture states that all actions should have finite image (see Definition 10.4). See Conjectures 11.2 and 11.3 for statements of this conjecture. Early results establishing this conjecture in the setting of actions the circle appear in [39,89,191] and in the setting of volume-preserving (and more general measure-preserving) actions on surfaces in [83,84,154]. See also [88] and [70] for results on real-analytic actions and [41,43,44] for results on holomorphic and birational actions. There are also many results (usually in the C 0 setting) for actions of specific lattices on manifolds where there are topological obstructions to the group acting; a partial list of such results includes [27,28,151,189,190,194,195,204]. Part 3 of this text presents recent progress towards this conjecture made in [31]. 1.3.4. Local rigidity. Beyond the finiteness of actions in low dimensions, there are a number of local rigidity conjectures that aim to classify perturbations of nonfinite actions. We recall one common definition of local rigidity of a C 8 group action: Definition 1.2. An action α : Γ Ñ Diff 8 pM q of a finitely generated group Γ is said to be locally rigid if, for any action α : Γ Ñ Diff 8 pM q sufficiently C 1 -close to α, there exists a C 8 diffeomorphism h : M Ñ M such that h ˝αpγq ˝h´1 " αpγq for all γ P Γ.

(

In Definition 1.2, using that Γ is finitely generated, we define the C 1 distance between α and α to be maxtd C 1 pαpγq, αpγqq | γ P F u where F Ă Γ is a finite, symmetric generating subset.

Local rigidity results have been established for actions of higher-rank lattices in many settings. For instance, local rigidity is known to hold for isometric actions by [17,79]. In the non-isometric setting, local rigidity has been established for affine Anosov actions. Definition 1.3. We say an action α : Γ Ñ DiffpM q is Anosov if αpγq is an Anosov diffeomorphism for some γ P Γ. See Example 10.5 and Remark 10. 6 for examples of affine Anosov actions of lattices on tori.

For Anosov actions, note that while structural stability (1.1) holds for individual Anosov elements of an action, local rigidity requires that map h in (1.2) intertwines the action of the entire group Γ; moreover, unlike in the case of a single Anosov map where h is typically only Hölder continuous, we ask that the map h in (1.2) be smooth.

There are a number of results establishing local rigidity of affine Anosov actions on tori and nilmanifolds including [90,94,110,112,156,159]. The full result on local rigidity of Anosov actions by higher-rank lattices was obtained in [115,Theorem 15]. See also related rigidity results including [94] for results on deformation rigidity and [94,96,130,157] for various infinitesimal rigidity results. Additionally, see [80,143] for local rigidity of closely related actions and [106] and [115,Theorem 17] for results on the local rigidity of projective actions by cocompact lattices. 1.3.5. Global rigidity. Beyond the study of perturbations there are a number of conjectures and results on the global rigidity of smooth actions of higher-rank lattices. Most global rigidity results in the literature focus on various families of Anosov actions. (Though, see Conjecture 11.5 for a global rigidity conjecture that is not about Anosov actions.) Such conjectures and results aim to classify all (typically volume-preserving) Anosov actions by showing they are smoothly conjugate to affine actions on (infra-)tori and nilmanifolds. See for instance [71,81,90,94,111,112,143,158] for a various global rigidity results for Anosov actions.

Recently, [38] gave a new mechanism to study rigidity of Anosov actions on tori; in particular, it is shown in [38] that all Anosov actions (satisfying a certain lifting condition which holds, for instance, when the lattice is cocompact) of higher-rank lattices are smoothly conjugate to affine actions, even when the action is not assumed to preserve a measure. This provides the most general global rigidity result for Anosov actions on tori and nilmanifolds.

1.4. Actions of higher-rank abelian groups. In Part 1, the discrete groups we consider are higher-rank abelian groups of the form Z k for k ě 2. We focus on certain affine Anosov actions and aim to classify all invariant measures for such actions.

Recall that Anosov diffeomorphisms f : T d Ñ T d on tori are classified up to continuous changes of coordinates. Such maps f leave invariant many closed subsets and probability measures on T d of intermediate dimension. (See Proposition 2.1 and nearby discussion.) For Anosov actions (satisfying certain non-degeneracy conditions) of higher-rank abelian groups Z k , a number of rigidity results show that properties of higher-rank actions are strikingly different from actions of a single Anosov diffeomorphism. We outline some of these results known to hold in this setting:

(1) Local rigidity results-in which a perturbations of affine Anosov actions are smoothly conjugate to the original actions-have been established in [110,113,115] with the most general results appearing in [58]. A partial list of related local rigidity results in the setting of partially hyperbolic actions include [47,48,180,181,185,186]. (2) Global rigidity results-in which all Anosov actions on tori and nilmanifolds are shown to be smoothly conjugate to affine actions-have been establish in [49,76,77,[103][104][105]165] with the most complete result being [166]. Under strong dynamical hypotheses, a number of these results including [49,103,104] establish global rigidity results without any assumption on the underlying manifold. (3) Results classifying all invariant sets (such as showing all closed invariant sets are finite or all of M ) including Furstenberg's theorem ( [85], Appendix A, and Theorem 2.2 below) and [19].

(4) Measure rigidity results-in which all ergodic, invariant Borel probability measures with positive entropy are shown to be algebraic or smoothhave been established in a number of settings including Theorems 2.5 and 2.8 discussed below and in [62,114,168]. See also [100,102] for versions of these results in non-linear and non-uniformly hyperbolic settings (discussed in Section 20) and [59][60][61]63] for related results for diagonal actions on homogeneous spaces (discussed in Section 21.)

1.5. Rigidity and classification of orbit closures and invariant measures. A direction which is not pursued in this text concerns actions of groups Γ with much less structure than those considered above. As a prototype, one should consider Γ " F 2 , the free group on two generators. Instead of studying all actions of such groups, one might consider families of actions arising from geometric or algebraic constructions or actions satisfying certain dynamical properties. The aim is then to classify certain dynamically defined objects, such as orbit closures and invariant (or stationary) measures, by showing that such objects are smooth or homogeneous. Consider a discrete group Γ and an action α : Γ Ñ Diff r pM q on a compact manifold M . Given x P M the orbit of x is O x :" tαpγqpxq : γ P Γu and the orbit closure of x is O x , the closure of O x in M . A probability measure µ on M is Γ-invariant if for all γ P Γ and Borel measurable B Ă M we have µpBq " µ `αpγ ´1qpBq ˘.

Given a probability measure ν on the acting group Γ, we say that a probability measure µ on M is ν-stationary if for all Borel measurable B Ă M we have µpBq "

ż Γ µ `αpγ ´1qpBq ˘dνpγq.
That is, µ is ν-stationary if it is "invariant on average." While an action might not admit invariant measures (for instance if the group Γ is non-amenable), for any measure ν on Γ there always exists at least one ν-stationary measure (assuming M is compact and the action is C 0 .) For a diffeomorphism f : M Ñ M exhibiting strong hyperbolicity properties, there always exist orbit closures that are Cantor sets (of intermediate Hausdorff dimension) and singular invariant probability measures supported on these Cantor sets. This holds, for instance, if f is Anosov or preserves an invariant measure with no Lyapunov exponent equal to zero; see Proposition 2.1 and nearby discussion as well as [24,107]. Similarly, singular orbit closures and invariant or stationary measures may appear for actions of free groups.

However, there are a number of extremely influential results establishing homogeneity of orbit closures and invariant measures in certain homogeneous or affine settings. An extremely important setting in which such a program was carried out is Raghunathan's conjecture (see [51, pg. 358]) on the homogeneity of orbit closures for unipotent flows on homogeneous spaces. Important special cases of this conjecture were established in many papers including [25, 50-52, 55, 86, 177].

Classification of orbit closures was central to Margulis's proof of the Oppenheim conjecture [139,140] and later results of Dani and Margulis [53,54]. The full conjecture on the homogeneity of all orbit closures and invariant measures for unipotent flows was established by Ratner in a series of papers [161][162][163][164]. Similar results in more general homogeneous spaces and using different techniques were obtained in [144].

More recently, there have been a number of breakthroughs in homogeneous dynamics and Teichmüller dynamics where new techniques are developed to classify orbit closures and invariant and stationary measures for certain families of group actions. In these settings, a number of common rigidity properties of an action α : Γ Ñ DiffpM q are established:

(1) Stiffness of stationary measures: all ν-stationary measures are Γ-invariant (for a finitely supported measure ν whose support generates Γ).

(2) Rigidity of invariant measures: all ergodic, Γ-invariant measures are a volume on a 'nice' (e.g. homogeneous, affine, or smooth) submanifold. (3) Rigidity of orbit closures: all orbit closures are 'nice' submanifolds.

In homogeneous settings, one may consider the natural action (see Example 10.5) of a subgroup Γ of SLpn, Zq on the torus T n . In [91,92,148] closed invariant sets were classified under various hypotheses on the acting group. Assuming certain algebraic properties of the group Γ, in [23] and [13] all stationary measures are shown to be either supported on a finite set or are the Lebesgue volume on T n and hence are Γ-invariant; moreover, every orbit is either finite or dense. Similar results appear in [13] for groups of translations on homogeneous spaces and under weaker hypotheses (which allow for orbit closures to be finite unions of proper homogeneous submanifolds) in [14,15]. See also [170] for an application of the method from [14] to a certain non-volume-preserving homogeneous action and the recent preprint [66] that extends many of the above results with fewer algebraic conditions.

In Teichmüller dynamics, an affine but non-homogeneous action of SLp2, Rq (the natural SLp2, Rq-action on a strata Hpκq in the moduli space of abelian differentials on a surface) is studied in the breakthrough work [67]. For the action of the upper-triangular subgroup P Ă SLp2, Rq and for certain measures ν on SLp2, Rq, the P -invariant and ν-stationary measures are shown in [67] to be SLp2, Rq-invariant and to coincide with natural volume forms on affine submanifolds. This classification of P -invariant measures is used in [68] to show that Pand SLp2, Rq-orbit closures are affine submanifolds.

In inhomogeneous settings, there are a number of families of actions for which a classification of orbit closures and invariant measures is both expected and desired. Such a classification was attained for nonlinear group actions on surfaces (satisfying certain dynamical hypotheses) in [35]. Analogous results are expected to hold in higher-dimension.

1.6. Common themes. We end this introduction by outlining two common themes that recur throughout this text. 1.6.1. Entropy, exponents, and the geometry of conditional measures. The first major theme that runs throughout this text is the relationship between metric entropy, Lyapunov exponents, and then geometry of measures along foliations and orbits. The most basic relationship between these quantities is expressed in Lemmas 3.6 and 8.4 which, for C 2 (or C 1`β ) diffeomorphisms, characterizes measures with zero metric entropy precisely as those measures whose conditional measures along unstable Pesin manifolds are purely atomic.

For measures with positive entropy but failing to attain equality in the Margulis-Ruelle inequality (Theorem 8.6(1) below), the Ledrappier-Young entropy formula (Theorem 8.7 below) gives a very general relationship between the geometry of conditional measures on unstable manifolds (specifically, the transverse dimension relative to the stratification into fast unstable manifolds), Lyapunov exponents, and metric entropy.

Our principal interest is in measures which attain equality in the Margulis-Ruelle inequality. (At times we will also be interested in measures that attain the maximal value for entropy conditioned along some expanding foliation or orbit of a group; see Definition 8.3 and (9.3), page 52.) For such measures, Ledrappier and Ledrappier-Young showed (see Theorem 9.3,and (8.3), page 46) that conditional measures along unstable manifolds are absolutely continuous with respect to the Riemannian volume. Moreover, Ledrappier explicitly computes the density function of the conditional measures; in the case that the foliation and its dynamics are homogeneous, this yields invariance of the measure along the foliation. See Proposition 5.8 and Theorem 9.5.

Deriving invariance of a measure from entropy considerations underlies the "invariance principle" for linear cocycles in [125] and its extension to C 1 -cocycles in [6]. It is one of key ideas in the classification theorem of Margulis and Tomanov [144] extending and giving some alternative arguments to Ratner's measure classification theorem. See for example discussion in [192,Section 5.6]. Related entropy arguments are used in [67]. The relationship between entropy and the geometry conditional measures also plays a key role in [60,61].

In this text, we use the relationship between entropy and geometry conditional measures in our proofs of Theorem 2.8 and Theorem 15.1 (and its extension in Proposition 15.5.) In our proof of Theorem 2.8, we use Proposition 5.8 (as well as the fact that all foliations considered are one-dimensional) to simplify certain arguments from [114]. In the proofs of Theorem 15.1 and Proposition 15.5, we use Theorem 9.5 to obtain invariance of certain measures under a group action by studying the entropy conditioned along the orbits of the group. 1.6.2. Linear functionals and higher-rank dynamics. In the proofs of the rigidity results considered in this text, we always reduce part of the proof to studying dynamics of higher-rank groups of the form R k for k ě 2. The proofs of Theorems 2.8, 11.4, 11.6, and 15.1 all use similar tricks that rely on the fact that R k is higher-rank when k ě 2. To each action of R k , we will associate certain dynamically defined linear functionals. In the proof of Theorem 2.8, these are the Lyapunov exponents.

In the proofs of Theorems 11.4,11.6,15.1 these are the fiberwise Lyapunov exponents and the roots of the Lie algebra (where R k » A is the maximal split Cartan subgroup of diagonal matrices).

The higher-rank tricks we employ are all variations on the following trivial fact: if λ : R k Ñ R is a non-zero linear functional and if k ě 2, then there exists s 0 P R k with s 0 P kerpλq and s 0 ‰ 0. In the proof of Theorem 2.8, the selection of such a s 0 ensures there exists nontrivial dynamics acting isometrically along a dynamical foliation (see Lemma 6.2.) In the proofs of Theorem 11.4 and Theorem 15.1, the higher-rank assumption and the low-dimensionality of the fiber ensures we may find a nontrivial s 0 for which all fiberwise Lyapunov exponents vanish (see (15.1), page 75.) In the proof of Theorem 11.6, we use that if λ, β : R k Ñ R are non-proportional, non-zero linear functionals then we may select s 0 P R k such that s 0 P ker β and λps 0 q ą 0. When λ is a fiberwise Lyapunov exponent (for some R k -invariant measure) and β is a root, this implies that s 0 is centralized by a unipotent root subgroup and we can average (the measure) over this subgroup to obtain a new fiberwise Lyapunov exponent (for a new measure) λ 1 : R k Ñ R with λ 1 ps 0 q ą 0. See Claim 18.1 and the proof of Proposition 17.2 in Section 18.4.
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M k : x Þ Ñ kx mod 1
is an expanding map of S 1 . The following properties of M k are well-known. For instance, using that M k is uniformly expanding for k ě 2, one may pass to a symbolic extension and derive such properties using symbolic dynamics of the full k-shift.

Proposition 2.1. For k P t2, 3, 4, . . . u there exist

(1) uncountably many mutually disjoint, closed, invariant subsets Λ Ă S 1 ;

(2) uncountably many ergodic, M k -invariant Borel probability measures µ with positive metric entropy h µ pM k q.

Analogous results hold for Anosov diffeomorphisms and Axiom A systems [24] and for any C 1`β -diffeomorphism of a surface with positive topological entropy [107].

Note that each map M k generates an action of the semigroup N 0 on S 1 . In [85] Furstenberg considered the action of the semigroup N 2 0 generated by

x Þ Ñ 2x mod 1, x Þ Ñ 3x mod 1.
Theorem 2.2 ( [85]. See Appendix A). The only closed subsets of S 1 that are invariant under both

x Þ Ñ 2x mod 1, x Þ Ñ 3x mod 1
are finite subsets (of rational numbers) or all of S 1 .

In [19], Berend extended Furstenberg's result to subsets of tori invariant under certain abelian groups of automorphisms. (See also [187] for further discussion on higher-rank abelian actions of toral automorphisms and [13-15, 23, 91, 92, 148] for results concerning actions by toral automorphisms of more general groups.)

Note that both generators x Þ Ñ 2x mod 1 and x Þ Ñ 3x mod 1 preserve the Lebesgue measure m on S 1 . Thus, m is invariant under the action of the semigroup N 2 0 generated by M 2 and M 3 . Also, for any rational point p{q mod 1 P Q{Z, the orbit of p{q under the action of N 2 0 is finite and there is an N 2 0 -invariant measure supported on this orbit.

From Theorem 2.2 and the above observations, it is natural to conjecture the following.

Conjecture 2.3 (Furstenberg's conjecture). The only ergodic, Borel probability measure on S 1 that is invariant under both

x Þ Ñ 2x mod 1, x Þ Ñ 3x mod 1
is either supported on a finite set (of rational numbers) or is the Lebesgue measure on S 1 . Remark 2.4. In Conjecture 2.3, the word ergodic means ergodic for the semigroup action generated by M 2 and M 3 . That is, if µ is an M 2 -and M 3 -invariant measure, then µ is ergodic if any measurable set D Ă T 3 satisfying M ´1 2 pDq " D M ´1 3 pDq " D has either µpDq " 1 or µpDq " 0. It is possible that µ is ergodic for the N 2 0 -action but not ergodic for either of the generators M 2 or M 3 .

2.2.

Rudolph's theorem. Conjecture 2.3 remains open. Building on previous results (specifically [135] and [98]), Rudolph obtained what is still the optimal partial resolution of Conjecture 2.3.

To state the result, we refer to the definition of metric entropy h µ pf q for a µpreserving transformation f defined in Section 8.1 below. If f : X Ñ X is a continuous transformation of a compact metric space and if µ is an f -invariant measure supported on a finite set then the metric entropy h µ pf q is zero. The converse need not hold; indeed using symbolic dynamics one can build measures µ on S 1 that are ergodic and invariant under M 2 , satisfy h µ pM 2 q " 0, and have no atoms and hence have infinite support. Explicit examples of such measures include measures supported on infinite minimal subshifts with zero topological entropy such as Sturmian subshifts and Morse-Thue (and more general substitution) subshifts; see [131, §13.7].

In [168], Rudolph resolved Conjecture 2.3 except, possibly, for zero entropy measures with infinite support.

Theorem 2.5 ([168]). The only ergodic Borel probability measure on S 1 that is invariant under both

M 2 : x Þ Ñ 2x mod 1 and M 3 : x Þ Ñ 3x mod 1
and satisfies h µ pM 2 q ą 0 or h µ pM 3 q ą 0 is the Lebesgue measure on S 1 .

Katok-Spatzier reformulation of Furstenberg and Rudolph.

A minor technical nuisance in studying Furstenberg's conjecture is that the action is noninvertible. That is, the maps

x Þ Ñ 2x mod 1, x Þ Ñ 3x mod 1
generate an action of the semigroup N 2 0 rather than the action of a group. By passing to the natural extension solenoid one can induce an action of the group Z 2 that contains the N 2 0 -action as a topological factor. One can view the natural extension solenoid as an analogue of 3-dimensional torus except that the solenoid has non-Archimedean directions. A. Katok proposed studying a related action on a more familiar space: the action of two commuting (hyperbolic) automorphisms of T 3 . One then naturally obtains a version of Furstenberg's conjecture for Z k -actions by automorphism of tori and solenoids of arbitrary dimension. A generalization of Rudolph's theorem under a number of hypotheses was established in this setting by Katok and Spatzier [114,116].

We will focus on the following concrete example which demonstrates many of the ideas in the paper [114].

Example 2.6. Let A " ¨3 2 1 2 2 1 1 1 1 ', B " ¨2 1 1 1 2 0 1 0 1 '. (2.1)
One verifies the following properties of A and B:

Claim 2.7.

(1) det A " det B " 1 so A and B preserve the orientation on R 3 and the integer lattice Z 3 ; (2) A has 3 distinct real eigenvalues

χ 1 A ą 1 ą χ 2 A ą χ 3 A ą 0;
(3) B has 3 distinct real eigenvalues

χ 1 B ą χ 3 B ą 1 ą χ 2 B ą 0; (4 
) A and B commute: AB " BA;

(5) A k B " Id only when k " " 0.

As A and B commute and are diagonalizable over R, they are jointly diagonalizable. The enumerations of the eigenvalues of A and B are chosen so that χ i A and χ i B correspond to the same joint eigenvector; see (3.1) below.

Since both A and B preserve the integer lattice

Z 3 Ă R 3 , they induce diffeo- morphisms L A : T 3 Ñ T 3 , L B : T 3 Ñ T 3 where T 3 is the quotient group T 3 " R 3 {Z 3 and L A : T 3 Ñ T 3 is the automor- phism L A : px `Z3 q Þ Ñ Ax `Z3 . Note that each of the diffeomorphisms L A : T 3 Ñ T 3 and L B : T 3 Ñ T 3 is an Anosov diffeomorphism.
The maps L A and L B generate a Z 2 -action α : Z 2 Ñ DiffpT 3 q on the 3-torus given by

α pn 1 , n 2 q pxq " L n 1 A pL n 2 B pxqq " L n 2 B pL n 1 A pxqq " L A n 1 B n 2 pxq.
Note that given any Z-action, any homomorphism ψ : Z 2 Ñ Z induces a "fake" Z 2 -action where the kernel of ψ acts trivially. Claim 2.7(5) ensures the action α is not of this form; that is, α is a "genuine" Z 2 -action.

In [114,116], Katok and Spatzier proved a generalization of Rudolph's theorem for Z k -actions on tori and solenoids generated by automorphisms under a number of technical hypotheses. These hypotheses are satisfied by the action in Example 2.6. We note that some of these hypotheses were later removed in [62]. The main result from [114] applies to the action constructed in Example 2.6 and yields the following natural analogue of Rudolph's Theorem, Theorem 2.5.

Theorem 2.8. Let L A , L B : T 3 Ñ T 3 be as in Example 2.6. Then, the only ergodic, Borel probability measure µ on T 3 that is invariant under both L A and L B and satisfies h µ pL A q ą 0 or h µ pL B q ą 0 is the Lebesgue measure on T 3 .

The rest of this part will be devoted to proving Theorem 2.8. For a more concise yet complete proof of this result, see [99, Section 2.2].

Remark 2.9. To generalize the action constructed from Example 2.6, let A P GLpd, Zq be a matrix whose characteristic polynomial is irreducible over Q and has d distinct real roots. It follows from Dirichlet's unit theorem (see [109,Proposition 3.7]) that the centralizer of A in GLpd, Zq contains Z d´1 as a subgroup of finite index. Let α : Z d´1 Ñ DiffpT d q be the induced action. See [109], where such actions of Z d´1 on T d are called Cartan actions, for further discussion.

The proof we present of Theorem 2.8 adapts to show the following.

Theorem 2.10 ( [114]). For d ě 3 and any Cartan action α : Z d´1 Ñ DiffpT d q as above, any ergodic, α-invariant Borel probability measure µ on T d with h µ pαpnqq ą 0 for some n P Z d´1 is the Lebesgue measure on T d . 

REDUCTIONS IN

Q ´1AQ " ¨χ1 A 0 0 0 χ 2 A 0 0 0 χ 3 A ', Q ´1BQ " ¨χ1 B 0 0 0 χ 2 B 0 0 0 χ 3 B '. (3.1)
For 1 ď j ď 3, let E j denote the jth joint eigenspace of A and B (corresponding to χ j A and χ j B .) As each A and B is irreducible over Q, the eigenspaces E j are totally irrational: if v P E i t0u has coordinates v " pv 1 , v 2 , v 3 q then v 1 , v 2 , and v 3 are linearly independent over Q.

It is more convenient at times to work with the logarithm of the eigenvalues of A and B. For j P t1, 2, 3u let λ j A " logpχ j A q, λ j B " logpχ j B q. Note that for any pn 1 , n 2 q P Z 2 we have

Q ´1A n 1 B n 2 Q " ¨pχ 1 A q n 1 pχ 1 B q n 2 0 0 0 pχ 2 A q n 1 pχ 2 B q n 2 0 0 0 pχ 3 A q n 1 pχ 3 B q n 2 ' " ¨en 1 λ 1 A `n2 λ 1 B 0 0 0 e n 1 λ 2 A `n2 λ 2 B 0 0 0 e n 1 λ 3 A `n2 λ 3 B '.
For any pn 1 , n 2 q P Z 2 , the subspace E j is an eigenspace for A n 1 B n 2 . Let χ j pn 1 , n 2 q be the eigenvalue of A n 1 B n 2 corresponding to the eigenspace E j . We have logpχ j pn 1 , n 2 qq " n 1 λ j A `n2 λ j B . Thus, the map λ j : Z 2 Ñ R given by λ j pn 1 , n 2 q " logpχ j pn 1 , n 2 qq " n 1 λ j A `n2 λ j B is additive. In particular, each λ j extends to a linear functional λ j : R 2 Ñ R.

Definition 3.1. The linear functionals λ j : R 2 Ñ R are called the Lyapunov exponent functionals for the action α.

3.2.

Stable, unstable, and Lyapunov foliations of T 3 . Note that R 3 acts by translation on T 3 as does any vector subspace V Ă R 3 . For 1 ď j ď 3 and any x P T 3 let W j pxq denote the orbit of x under translation by elements of the vector subspace E j : W j pxq " tx `v : v P E j u. The sets W j pxq form a foliation of T 3 by lines. We call W j pxq the jth Lyapunov manifold through x and call the corresponding foliation the jth Lyapunov foliation. Note that if x 1 P W j pxq with x 1 " x `v for some v P E j then for any pn 1 , n 2 q P Z 2 we have αpn 1 , n 2 qpx 1 q P W j pαpn 1 , n 2 qpxqq and

αpn 1 , n 2 qpx 1 q " αpn 1 , n 2 qpxq `eλ j pn 1 ,n 2 q v.
In particular, the action by αpn 1 , n 2 q dilates distances in W j -leaves by exactly e λ j pn 1 ,n 2 q .

Given p0, 0q ‰ pn 1 , n 2 q P Z 2 , let

E s pn 1 ,n 2 q " à λ j pn 1 ,n 2 qă0 E j and E u pn 1 ,n 2 q " à λ j pn 1 ,n 2 qą0
E j be the stable and unstable subspaces for the matrix A n 1 B n 2 . For x P T 3 we similarly define W s pn 1 ,n 2 q pxq and W u pn 1 ,n 2 q pxq to be the orbits of x under E s pn 1 ,n 2 q and E u pn 1 ,n 2 q , respectively. For pn 1 , n 2 q ‰ p0, 0q, the map

αpn 1 , n 2 q " L n 1 A L n 2 B : T 3 Ñ T 3 is Anosov and W s pn 1
,n 2 q pxq and W u pn 1 ,n 2 q pxq are the stable and unstable manifolds through x for the Anosov diffeomorphism αpn 1 , n 2 q. Observe Claim 3.2. For any pn 1 , n 2 q P Z 2 , any x P T 3 , and any p0, 0q ‰ pm 1 , m 2 q P Z 2 (1) αpn 1 , n 2 qpW j pxqq " W j pαpn 1 , n 2 qpxqq;

(2) αpn 1 , n 2 qpW u pm 1 ,m 2 q pxqq " W u pm 1 ,m 2 q pαpn 1 , n 2 qpxqq; (3) αpn 1 , n 2 qpW s pm 1 ,m 2 q pxqq " W s pm 1 ,m 2 q pαpn 1 , n 2 qpxqq; (4) E u pm 1 ,m 2 q and E s pm 1 ,m 2 q are positive-dimensional and have complementary dimension in R 3 ;

(5) the sets W u pm 1 ,m 2 q pxq and W s pm 1 ,m 2 q pxq are injectively immersed planes or lines that intersect transversally and have complementary dimension in T 3 . 2) and (3) follow from the commutativity of αpn 1 , n 2 q and αpm 1 , m 2 q. Property (4) follows as λ j pm 1 , m 2 q ‰ 0 for each p0, 0q ‰ pm 1 , m 2 q P Z 2 and λ 1 pm 1 , m 2 q `λ2 pm 1 , m 2 q `λ3 pm 1 , m 2 q " 0 for every pm 1 , m 2 q P Z 2 . Property (5) follows from (4) and that the spaces E i are totally irrational. Remark 3.3. If α : Z d´1 Ñ DiffpT d q is as in Theorem 2.10 then there are d Lyapunov exponent functionals λ i : Z d´1 Ñ R, 1 ď i ď d. Moreover, these are in general position. Analogous properties to those in Claim 3.2 hold in this case. For instance, we claim that for each 1 ď i ď d there is some n P Z d´1 with λ i pnq ą 0 and λ i pnq ă 0 for all j ‰ i; in particular, for such n, E u n is 1-dimensional and E s n is pd ´2q-dimensional. We actually claim a stronger fact as in Claim 3.2(4): for any non-trivial partition t1, . . . , du " A \ B, A ‰ H, B ‰ H there exists n P Z d´1 such that λ i pnq ă 0 for all i P A and λ i pnq ą 0 for all i P B. This can be seen by observing there are 2 d ´2 such partitions. Similarly, d hyperplanes in R d´1 in general position divide R d´1 into 2 d ´2 connected components each of which corresponds to a different collection of signs.

Property (1) is clear as E j pn 1 ,n 2 q is an eigenspace of A n 1 B n 2 . Properties (
Recall that the eigenspaces E j are totally irrational. In particular, from the unique ergodicity of totally irrational flows on tori we obtain the following. Lemma 3.4. A Borel probability measure µ on T 3 is the Lebesgue (Haar) measure if and only if there exists 1 ď j ď 3 such that the measure µ is invariant under the 1-parameter group of translations generated by E j . Thus, to prove Theorem 2.8, it is enough to verify that any ergodic, pL A , L B qinvariant measure with positive entropy is invariant under translation by E j for some 1 ď j ď 3.

3.3.

Conditional measures and leaf-wise measures. (See Appendix B, [45], Section 8.1.1, and [65, Section 5] for additional details and references.) Let µ be a Borel probability measure on T 3 . In general, the partition of pT 3 , µq into the jth Lyapunov manifolds W j is not a measurable partition. (See Lemma 3.6 below for precise statement as well as Appendix B.) Let ξ be a measurable partition (see Section 8.1.1 and Definition B.7 in Appendix B) of T 3 subordinate to W j (see Definition 8.2); that is (1) ξ is a measurable partition of the measure space (T 3 , µq;

(2) ξpxq Ă W j pxq for µ-a.e. x;

(3) ξpxq contains an open neighborhood of x (in the immersed topology) in W j pxq for µ-a.e. x; (4) ξpxq is precompact in the immersed topology of W j pxq for µ-a.e. x; x is a Borel probability measure on T 3 such that µ ξ x pξpxqq " 1;

Let tµ ξ x u
(2) if y P ξpxq then µ ξ y " µ ξ x ; (3) if D Ă T 3 is a Borel set then x Þ Ñ µ ξ
x pDq is measurable and (4) µpDq " ş µ ξ x pDq dµpxq. Such a family tµ ξ x u of probability measures exists and is unique modulo µ-null sets (see [167].) Rather than studying conditional probability measures tµ ξ x u discussed above that depend on the choice of partition ξ, it is more convenient to study a family of leaf-wise measures denoted by tµ j

x u along W j . Each measure µ j x in this family is a locally finite, Borel measure (with respect to the immersed topology) on W j pxq but is typically an infinite measure. We discuss the properties of these measures and then outline their construction.

Given x P T 3 , let I j x :" tx `v : v P E j , |v| ă 1u denote the unit ball (i.e. interval) in W j pxq centered at x. Given two locally finite, Borel measures η 1 and η 2 on W j pxq we say η 1 and η 2 are proportional, written η 1 9η 2 if there is c ą 0 with η 1 " c η 2 .

Proposition 3.5 (Leaf-wise measures). For almost every x P T 3 there is a locally finite, Borel (in the immersed topology) measure µ j x on W j pxq such that

(1) each µ j x is normalized so that µ j x pI j x q " 1;

(2) the family tµ j

x ae I j x u of probability measures on T 3 depends measurably on x;

(3) for x 1 P W j pxq we have µ j x 9µ j x 1 ; (4) for any pn 1 , n 2 q P Z 2 we have αpn 1 , n 2 q ˚pµ j x q9µ j αpn 1 ,n 2 qpxq ; (5) given any measurable partition ξ subordinate to W j , the conditional probability measure µ ξ x at x is given by

µ ξ x " 1 µ j x pξpxqq µ j x ae ξpxq .
Outline of construction. To construct the family tµ j x u of leaf-wise measures, consider a sequence tξ k u kPN of measurable partitions of T 3 such that (1) each ξ k is subordinate to W j , (2) for almost every x, we have ξ k pxq Ă ξ k`1 pxq, and (3) for almost every x, we have

Ť k ξ k pxq " W j pxq.
From the uniqueness of conditional measures, for almost every x we have that µ ξ k x and µ ξ x coincide on ξ k pxq X ξ pxq up to normalization: if ě k then

µ ξ k x " 1 µ ξ x pξ k pxqq µ ξ x ae ξ k pxq .
For each x and every k sufficiently large so that

I j x Ă ξ k pxq, let μξ k x " 1 µ ξ k x pI j x q µ ξ k x .
Then, given any compact (in the immersed topology) subset K Ă W j pxq, we have for any k and such that K Ă ξ k pxq and K Ă ξ pxq that μξ k x pKq " μξ x pKq.

(3.

2)

The measure µ j x on W j pxq is then defined to be the locally finite Borel measure defined by (3.2) for each compact K Ă W j pxq. Properties (1), (2), and (5) follow from construction and the properties of the families of conditional measures tµ ξ k x u. Property (4) follows from the invariance of µ.

For Property (3), note that if x 1 P W j pxq then both µ j x and µ j x 1 are locally finite Borel measures on the same space W j pxq " W j px 1 q. Moreover, there is some such that x 1 P ξ pxq. Since the conditional measures µ ξ

x " µ ξ x 1 coincide, it follows that the leaf-wise measures µ j

x and µ j x 1 are proportional; however, due to the choice of normalization we typically have µ j

x ‰ µ j x 1 . See also Section 6 of [64], especially Theorem 6.3, where the construction of the family of leaf-wise measures is presented in a more general setting. We emphasize that the topology for which µ j

x is Borelian is the immersed topology on the submanifold W j pxq rather than the topology inherited as a subset of T 3 ; as measures on T 3 , the measures µ j

x are rather pathological whenever they are non-atomic (see Lemma 3.6 below.)

For p0, 0q ‰ pn 1 , n 2 q P Z 2 and for a.e. x P T 3 we similarly construct locally finite, leaf-wise measures µ s pn 1 ,n 2 q,x and µ u pn 1 ,n 2 q,x on the leaf of the corresponding stable or unstable foliation through x.

Recall that an atom of a locally finite measure µ on a space X is a point x P X with µptxuq ą 0. A probability measure µ on X is an atom supported at x if µpX txuq " 0 and µptxuq " 1 in which case we write µ " δ x . We have the following equivalences. (See Lemma 8.4 below for a proof of a more general statement.) Lemma 3.6. Let pn 1 , n 2 q P Z 2 tp0, 0qu and let µ be an ergodic, αpn 1 , n 2 qinvariant measure on T 3 . The following are equivalent:

(1) h µ pαpn 1 , n 2 qq " 0;

(2) for µ-a.e. x, the measure µ u pn 1 ,n 2 q,x has at least one atom; (3) for µ-a.e. x the measure µ u pn 1 ,n 2 q,x " δ x is a single atom supported at x; (4) the partition of pT 3 , µq into full W u pn 1 ,n 2 q -leaves is a measurable partition. For every x P T 3 , the subspace E j Ă R 3 gives a coordinate system (inducing the immersed topology) on the embedded line W j pxq. It is convenient to make these coordinates explicit: for x P T 3 , define an identification Φ x between the vector space E j and the immersed manifold W j pxq Ă T 3 by

Φ x : E j Ñ W j pxq, Φ x pvq " x `v.
Let ν j x denote the locally finite Borel measure on E j given by pull-back under Φ x ; that is (see also Figure 2, page 32), let ν j

x " pΦ ´1 x q ˚pµ j x q.

Remark 3.7. The map Φ x describes W j pxq as an immersed copy of E j with x as the origin. Thus, for x 1 P W j pxq with x ‰ x 1 we have Φ x ‰ Φ x 1 . However, writing x 1 " x `v for some v P E j we have

Φ x ptq " Φ x 1 pt ´vq.
What is the difference between µ j x and ν j x ? For each x P T 3 , the measure µ j

x is a locally finite measure on the immersed curve W j pxq Ă T 3 . For x 1 R W j pxq it is difficult to compare the measures µ j x and µ j x 1 . On the other hand, for each x P T 3 , the measure ν j

x is a locally finite measure on the vector space E j » R; in particular, it is much more convenient to work with the collection tν j

x u as we can easily compare ν j

x and ν j x 1 for x ‰ x 1 P T 3 . For x 1 P W j pxq, recall that µ j x 9µ j x 1 as W j pxq " W j px 1 q. However, for x 1 P W j pxq we do not necessarily have that ν j x 9ν j x 1 . The key step in the proof of Theorem 2.8 is to establish that ν j x 9ν j x 1 for (typical) x 1 P W j pxq. The following lemma characterizes measures on T 3 that are invariant under translations by E j . Together with Lemma 3.4, this reduces the proof of Theorem 2.8 to studying the geometry of the family of measures tν j x u. Lemma 3.8. A probability measure µ on T 3 is invariant under translations by E j if and only if for µ-a.e. x the measure ν j

x is proportional to the Lebesgue (Haar) measure on E j » R.

INTERLUDE: TOOLS FROM SMOOTH ERGODIC THEORY

To complete the proof of Theorem 2.8, a number of additional tools from smooth ergodic theory are needed. These tools and facts as well as many additional facts that will be used in Part 3 are collected in Part 2 below. For the proof of Theorem 2.8 we encourage the reader to first read (1) Section 8.6, especially Propositions 8.12 and 8.13 (used in Section 6.4), and (2) Section 9.1, especially Theorems 9.3 and 9.5 (used in Section 5.1 and Section 6.3.) To understand these statements, the reader should refer to Section 7.1, Section 7.4 (especially 7.4.1), Section 8.1, Section 8.3, and Definition 8.5.

ENTROPY, TRANSLATION, AND GEOMETRY OF LEAF-WISE MEASURES

In this section, we present two key propositions, Proposition 5.6 and Proposition 5.8 below, that will be used in the proof of Theorem 2.8. To motivate these results, in the setting of Theorem 2.8, let µ be an ergodic, α-invariant probability measure with positive entropy (for some element of the action). By Lemmas 3.4 and 3.8, the proof of the theorem reduces to showing that for almost every x, the measure ν j

x is proportional to the Lebesgue (Haar) measure m on E j » R for some j P t1, 2, 3u. This is equivalent to showing that the measure µ j

x is the Lebesgue (Haar) measure along the manifold W j pxq " x `Ej .

We present here two key propositions that will give us such properties of the measures µ j

x and ν j x . First, under suitable geometric hypotheses on a measure ν on R, we show in Proposition 5.6 that ν is of the form ν " ρ m where m denotes the Lebesgue measure on R and ρ : R Ñ R is a density function with 0 ă ρpxq ă 8 for m-a.e. x. In Section 6, we then show for some j P t1, 2, 3u that these geometric hypotheses hold for the measure ν j

x for µ-a.e. x. Second, using an entropy computation due to Ledrappier (see Theorem 9.3 below), we show in Proposition 5.8 that the density function ρ above is constant and, specifically, that µ j

x is the Lebesgue measure on W j pxq for almost every x. 5.1. Shearing measures on R. Consider a locally finite Borel measure ν on R. For t P R, denote by T t : R Ñ R the translation

T t pxq " x `t
and let pT t q ˚ν denote the measure defined by pT t q ˚νpBq " νpT ´tpBqq " νpB ´tq.

Recall that two locally finite Borel measures ν 1 and ν 2 on R are proportional, written ν 1 9ν 2 , if there is a constant c ą 0 with

ν 1 " c ν 2 .
Two locally finite measures ν 1 and ν 2 on R are equivalent if there is a measurable function ρ with 0 ă ρpxq ă 8 for all x such that ν 1 " ρ ν 2 where ρ ν 2 indicates the measure defined as pρ ν 2 qpEq " ż E ρpxq dν 2 pxq for any Borel E.

Given a locally finite Borel measure ν on R, let Gpνq Ă R denote the subgroup of translations satisfying Gpνq " tt P R : pT t q ˚ν9νu. Example 5.1. Consider the Lebesgue measure m on R. Then Gpmq " R; in fact for every t P R we have pT t q ˚m " m.

Example 5.2. Consider ν to be the measure on R given by the density e x ; that is dνpxq " e x dmpxq.

For t P R we have dppT t q ˚νqpxq " e x´t dmpx ´tq " e x´t dmpxq " e ´te x dmpxq so pT t q ˚ν " e ´tν9ν. Again we have Gpνq " R.

Note that for a generic density function ρ : R Ñ p0, 8q, we expect Gpρ mq to be the trivial subgroup Gpρ mq " t0u.

Although not needed in our proof of Theorem 2.8, one can show the following. Claim 5.3. If ν is a locally finite Borel measure on R with Gpνq " R then there exist C ą 0 and α P R such that ν " ρ m where ρpxq " Ce αt . Indeed, we show in the proof Proposition 5.6 below that, if Gpνq " R, then ν is equivalent to m. The density function ρ is then a measurable function ρ : R Ñ p0, 8q such that for each t P R, the function x Þ Ñ ρpxq ρpx ´tq is a constant (in x) function c t . As c s`t " c s c t and as t Þ Ñ c t is measurable, the claim follows. For t P R we have ppT t q ˚νqpBq " νptx ´t : x P Buq " ÿ nPZ e n δ n`t pBq " e ´t ÿ nPZ e n`t δ n`t pBq.

Thus

(1) pT t q ˚ν is mutually singular with ν if t R Z, and (2) if t P Z then pT t q ˚ν " e ´tν9ν. We thus have that Gpνq " Z is a discrete subgroup of R.

We have the following elementary claim. Claim 5.5. Gpνq is a closed subgroup of R.

Recall the support of a measure ν, written supppνq, is the smallest closed subset of full measure. Note that Gpνq restricts to a continuous action on supppνq. In particular, as Gpνq is a closed subgroup, if Gpνq has a dense orbit in supppνq then Gpνq acts transitively on supppνq.

We state our first key proposition of this section.

Proposition 5.6. Suppose Gpνq acts transitively on the support of ν. Then either (1) the support of ν is a countable set and Gpνq is discrete, or (2) ν is equivalent to the Lebesgue measure m and G " R.

The assumption that Gpνq acts transitively on the support of ν in Proposition 5.6 is a very strong hypothesis; for a typical measure on R, we expect Gpνq " t0u.

To prove Proposition 5.6, we recall the Lebesgue differentiation and decomposition theorems: Proposition 5.7. Let ν 1 and ν 2 be two locally finite Borel measures on R. Let ρpxq :" lim rÑ0 ν 1 pBpx, rqq ν 2 pBpx, rqq .

Then

(1) the limit ρpxq exists ν 2 -a.e. and defines a ν 2 -measurable function ρ : R Ñ r0, 8q;

(2) the set S " tx : ρpxq " 8u is ν 1 -measurable and ν 2 -null;

(3) ν 1 decomposes as ν 1 " ρ ν 2 `ν1 ae S .

Proof of Proposition 5.6. Since Gpνq Ă R is a closed subgroup, there are only two options: either (1) Gpνq is discrete in which case Proposition 5.6(1) follows, or (2) Gpνq " R. We show that if Gpνq " R then ν is equivalent to the Lebesgue measure m.

We first consider the assertion that ν ! m. Let ρ and S be as in Proposition 5.7 with ν 1 " ν and ν 2 " m. If ν is not absolutely continuous with respect to m then the singular set S has positive ν-measure. Fix x P S. Then ρpxq " 8.

Consider any y P R. Let t " y ´x. By the definition of Gpνq we have pT t q ˚ν " cν for some c ą 0 so lim rÑ0 νpBpy, rqq mpBpy, rqq " lim rÑ0 `c´1 pT t q ˚ν˘p Bpy, rqq mpBpy, rqq " lim rÑ0 c ´1 νpBpx, rqq mpBpx, rqq " 8.

It follows that ρpyq " 8 for every y P R. This contradicts that S is a m-null set. It follows that ν ! m.

The reverse absolute continuity ν " m follows in the same manner and is left to the reader. 5.2. Invariance from entropy considerations. We return to the setting and notation of Theorem 2.8.

For each x P T 3 , recall that I i x denotes the unit ball (i.e. interval) in W i pxq centered at x. Let m i

x denote the locally finite Lebesgue measure on the leaf W i pxq normalized so that m i x pI x q " 1. Note that for

x 1 P W i pxq we have m i x " m i x 1
since m i x is invariant under translations by E i . Our second key proposition of this section shows that if the leaf-wise measures µ i

x are absolutely continuous with respect to m i x , then µ is automatically invariant under translations by E i . Proposition 5.8. For any i P t1, 2, 3u, fix n P Z 2 such that (1) λ i pnq ą 0, and (2) λ j pnq ă 0 for both j ‰ i. Then, the following are equivalent: (a) h µ pαpnqq " λ i ; (b) for µ-a.e. x, the measure µ i

x is absolutely continuous with respect to m i x ; (c) for µ-a.e. x, the measure µ i x is equivalent to m i x ; (d) for µ-a.e. x, we have equality of measures µ i

x " m i x ; (e) ν i

x is the Lebesgue (Haar) measure on E i for µ-a.e. x. Remark 5.9. We only prove the implication (a) ùñ (d) of the proposition. Given (a) ùñ (d), the only other non-trivial implication is (b) ùñ (a). This implication follows, for instance, from [126] (see Theorem 8.6(3) below) and can be shown using calculations similar to those in the following proof.

Our proof essentially follows [124,128] though we make certain simplifications using that dynamics along W i -manifolds is affine.

Proof that (a) ùñ (d). We introduce some notation. Fix f " αpnq. Then f is a linear Anosov diffeomorphism of T 3 such that for every x P T 3 , the unstable manifold through x is W i pxq.

We may assume µ is ergodic for f . Indeed, from the Margulis-Ruelle inequality (see Theorem 8.6(1) below) we have that h µ 1 pf q ď λ i pnq for any f -invariant probability measure µ 1 . As entropy is convex (see (8.1), page 44), it follows that h µ 1 pf q " λ i pnq for almost every ergodic component µ 1 of µ (see Definition 6.5 and Appendix B.4).

Given a measurable partition ξ of T n , write f ´1ξ for the partition

f ´1ξ :" tf ´1pCq | C P ξu.
Then the atom of the partition f ´1ξ containing x is

f ´1ξpxq " f ´1pξpf pxqqq.
Recall that the W i -manifolds are the unstable manifolds for f . Let J u pxq " ˇˇˇB f BE i pxq ˇˇb e the unstable Jacobian of f : for any precompact, m i x -measurable subset C Ă W i pxq we have

m i f pxq pf pCqq " ż C J u pxq dm i x .
As the dynamics of f is affine along W i -leaves, we have that J u pxq is constant in x. Explicitly, we have J u pxq " χ i pnq " e λ i pnq . For the remainder, fix ξ to be a measurable partition of pT 3 , µq such that (1) ξ is subordinate to the partition into W i -manifolds (see Section 3.3 and Definition 8.2 below), and (2) ξ is increasing under f : for a.e. x we have f ´1ξpxq Ă ξpxq. Using that there exists n P Z 2 such that the W j leaves are the unstable manifolds for the Anosov diffeomorphism αpnq : T 3 Ñ T 3 , a partition ξ with the above properties can be constructed, for instance, by taking ξ to be the unstable plaques of a Markov partition (see [24,108,174]). See also the construction in [126] which holds for general C 1`β diffeomorphisms.

Let tµ ξ x u be a family of conditional measures for this partition. Also let

m ξ x " 1 m i
x pξpxqq m i x ae ξpxq denote the normalized restriction of the Lebesgue measure m i x to the atom ξpxq of this partition. Note that we have m i

x pξpxqq ą 0 for µ-a.e. x since each atom ξpxq contains a neighborhood of x in W i pxq; in particular, the measure m ξ

x is well-defined for µ-a.e. x.

We have 

log ˜ż m ξ x pf ´1ξpxqq µ ξ x pf ´1ξpxqq dµpxq ¸ď 0. ( 5 
m i f pxq pξpf pxqqq m i x pξpxqq ě m i f pxq pξpf pxqqq m i x pf ´1pξpf pxqqqq " 1 χ i pnq .
It follows that the function log q ˝f q is L 8 pµq (in particular L 1 pµq); from [126, Proposition 2.2] we have that ż log q ˝f q dµ " 0.

We then have that ż log ´mξ x pf ´1ξpxqq ¯dµpxq "

ż log ˆmi x pf ´1ξpxqq m i x pξpxqq ˙dµpxq " ż log ˜1 χ i pnq m i f pxq pξpf pxqqq m i x pξpxqq
¸dµpxq " ż ´log χ i pnq `log q ˝f q dµ " ´λi pnq and (5.3) follows.

As we assumed h µ pf q " λpnq, equation (5.2) follows. From the strict concavity of log we have

ż log ˜mξ x pf ´1ξpxqq µ ξ x pf ´1ξpxqq ¸dµpxq ď log ˜ż m ξ x pf ´1ξpxqq µ ξ
x pf ´1ξpxqq dµpxq with equality if and only if the function

x Þ Ñ m ξ x pf ´1ξpxqq µ ξ
x pf ´1ξpxqq is constant off a µ-null set. From (5.1) and (5.2), it thus follows that µ ξ

x pf ´1ξpxqq " m ξ x pf ´1ξpxqq for µ-almost every x. In particular, if C Ă ξpxq is a union of elements of f ´1ξ, then µ ξ

x pCq " m ξ x pCq. We may repeat the above calculations with f replaced by f n for n ě 1 and obtain that µ ξ x pf ´nξpxqq " m ξ x pf ´nξpxqq for µ-a.e. x. As the partitions tf ´nξpx 1 q | x 1 P ξpxqu generate the point partition on each ξpxq, it follows for µ-a.e. x that µ ξ x " m ξ x . Replacing ξ with f n pξq for each n ě 1, we obtain µ

f n pξq x " m f n pξq x
and the equality µ i

x " m i x for µ-a.e. x follows. Remark 5.10. When f : M Ñ M is an Anosov diffeomorphism or, more generally, a non-uniformly hyperbolic C 1`β diffeomorphism we still have equivalence of (a), (b), and (c) in Proposition 5.8 when the right-hand side of (a) is replaced by the sum of all positive Lyapunov exponents counted with multiplicity and the measures are conditional measures along unstable manifolds. See Theorem 9.3 below and Appendix D, especially Section D.2.4, for details. The proof is nearly identical to the above except for the analogue of computation (5.3). Multiplying the measures m ξ

x with an appropriate dynamically defined density (see (D.6) in Appendix D), a computation analogous to (5.3) still holds. See [128,Lemma 6.1.2].

The extra conclusion (d) in Proposition 5.8 follows in our setting from the fact that the W i -manifolds are orbits of a group action (namely translation by E i on T 3 ) and that f acts homogeneously between orbits. The density function guaranteed by (c) is then constant and equality in (d) holds by choice of normalization. See Theorem 9.5 below for a more general framework in which the extra invariance in (d) follows.

Remark 5.11. In our proof of Theorem 2.8 below, we will apply Proposition 5.6 above to conclude for some j P t1, 2, 3u that the leaf-wise measures µ j

x along leaves of the W j -foliation are absolutely continuous by showing the group Gpν j x q is not discrete and hence Gpν j x q " R for a.e. x. We will then apply Proposition 5.8 to conclude that the measures µ j

x are Lebesgue along the W j -foliation and conclude that µ is invariant under translation by E j . This approach heavily uses that the foliations W j are 1-dimensional.

Alternatively, one may follow [114] (and many related arguments including those in [35,100,102]) any apply dynamical arguments to show that the density function in Claim 5.3 is constant. For instance, using that the dynamics expands unstable manifolds, one may show the curvature α 2 of the density function ρ in Claim 5.3 decreases and obtain a contradiction by Poincaré recurrence unless α " 0 and ρ is constant. This approach can be adapted when leaves of W j -foliations are higher dimensional. In this case, the group Gpν j

x q is a closed subgroup of isometries (of some R n ) that preserve the ν j

x up to proportionality. By classifying orbits of subgroups of the isometry group of R n and using the dynamics along W j -leaves, one then argues that Gpν j

x q consists of translations that preserve ν j x .

6. PROOF OF THEOREM 2.8 6.1. Inducing from a Z 2 -action to a R 2 -action. To prove Theorem 2.8, it is convenient to induce from the Z 2 -action on the 3-manifold T 3 to a R 2 -action on a certain 5-dimensional manifold which we denote by N . We first outline a general construction of N . (See Section 14.1 below for details of a related construction.) Let Ñ " R 2 ˆT3 and let Z 2 act on Ñ on the right by ps, xq ¨n " ps `n, αp´nqpxqq.

Let R 2 act on Ñ on the left by t ¨ps, xq " pt `s, xq.

Let N " Ñ {Z 2 be the quotient manifold under the right Z 2 -action. As the left R 2action and right Z 2 -action commute, we obtain a R 2 -action on N . The manifold N has a structure of a fiber-bundle with fibers diffeomorphic to T 3 . The R 2 -action on N permutes the 3-dimensional fibers and fibers over the natural R 2 -action on T 2 " R 2 {Z 2 by translations. For each j P t1, 2, 3u, there is a foliation W j of N by injectively immersed curves; each curve W j pxq is contained in the T 3 -fiber through x. Moreover, there is a Riemannian metric on N such that, if d j x p¨, ¨q denotes the induced distance in W j pxq, then for any y, z P W j pxq and s P R 2 d j s¨x ps ¨y, s ¨zq " e λ j psq d j x py, zq. Given any Riemannian metric on N and any R 2 -invariant probability measure μ on N we may define fiberwise Lyapunov exponents for the action of R 2 restricted to the fibers of N (see Section 7.3 and Section 14.2). For any R 2 -invariant measure μ, these exponents coincide with the exponents λ 1 , λ 2 , and λ 3 above.

The above construction of N works in full generality. However, in the context of Theorem 2.8, using that A and B are diagonalizable over R and have positive eigenvalues it is possible to give a more algebraic construction of the suspension manifold N . This construction has the advantage that the dynamical properties outlined above follow immediately from construction. We state the properties of this construction now and give its construction in Section 6.5.

Given s " ps 1 , s 2 q P R 2 define subspaces of R 3

E s ps 1 ,s 2 q " à λ j ps 1 ,s 2 qă0 E j and E u ps 1 ,s 2 q " à λ j ps 1 ,s 2 qą0 E j .
Note that if ps 1 , s 2 q P ker λ j t0u for some j P t1, 2, 3u then both E s ps 1 ,s 2 q and E u ps 1 ,s 2 q are 1-dimensional.

Proposition 6.1 (See Section 6.5). There is a 5-dimensional manifold N and an R 2 -action α : R 2 Ñ DiffpN q with the following properties:

(1) N is a fiber-bundle over T 2 with fibers diffeomorphic to T 3 ; moreover the action α permutes the fibers. (2) For every 1 ď j ď 3 the vector space E j acts by addition on N . For every x P N , the orbit W j pxq " tx `v : v P E i u is contained in the T 3 fiber containing x and the leaves W j pxq form a smooth foliation of N . The W j -leaves are permuted by the action α.

(3) For every 0 ‰ ps 1 , s 2 q P R 2 the vector spaces E s ps 1 ,s 2 q and E u ps 1 ,s 2 q similarly act by addition on N . The orbits W s pxq and W u pxq are contained in the fiber through x and correspond to the stable and unstable manifolds, respectively, for the partially hyperbolic diffeomorphism αps 1 , s 2 q : N Ñ N . (4) For all pt 1 , t 2 q P R 2 and x P N , the map αpt 1 , t 2 q : W j pxq Ñ W j pαpt 1 , t 2 qpxqq dilates distances in W j by exactly e λ j pt 1 ,t 2 q . That is, for y P W j pxq writing y " x `v for some v P E j , we have αpt 1 , t 2 qpyq P W j pαpt 1 , t 2 qpxqq and αpt 1 , t 2 qpyq " αpt 1 , t 2 qpxq `eλ j pt 1 ,t 2 q v.

Given s P R 2 let W u s pxq " E u s pxq be the unstable manifold through x P N for the 1-parameter flow αptsq. Similarly let W s s pxq " x `Es s pxq be the stable manifold through x P N for the 1-parameter flow αptsq. The stable and unstable manifolds W s s pxq and W u s pxq are contained in the T 3 -fiber of N through x. Note that for s ‰ p0, 0q, the leaves W u s pxq and W s s pxq are at least one-dimensional. Moreover, if s is not in a kernel of any λ j (see Figure 1) then W u s pxq and W s s pxq are of complementary dimension in the T 3 -fiber through x. If s ‰ p0, 0q is contained in the kernel of λ j then W u s pxq and W s s pxq are both 1-dimensional. To begin the proof of Theorem 2.8, fix an ergodic, α-invariant probability measure µ on T 3 with positive entropy h µ pαpn 1 , n 2 qq ą 0 for some pn 1 , n 2 q P Z 2 . Note that αpn 1 , n 2 q has either 2-dimensional unstable or 1-dimensional unstable manifolds. Replacing pn 1 , n 2 q with p´n 1 , ´n2 q if necessary and recalling that h µ pαpn 1 , n 2 qq " h µ pαpn 1 , n 2 q ´1q " h µ pαp´n 1 , ´n2 qq we can assume that αpn 1 , n 2 q has 1-dimensional unstable manifolds. Fix 1 ď i ď 3 for the remainder of the proof such that E i " E u pn 1 ,n 2 q . We will show that µ is invariant under translations by E i .

We write μ for the ergodic, α-invariant measure on N corresponding to µ. To construct the measure μ, first let m 2 denote the Lebesgue measure on R 2 . Then m 2 ˆµ is a locally finite Borel measure on Ñ " R 2 ˆT3 that is invariant under the actions of both R 2 and Z 2 . Let μ denote the image of m 2 ˆµ restricted to the fundamental domain r0, 1s 2 ˆT3 . From Lemma 3.6 the leaf-wise measures µ i x of µ along W i -leaves in T 3 are nonatomic. This holds if and only if the leaf-wise measures μi

x of μ along W i -manifolds in N are nonatomic. Moreover, ergodicity of µ for the Z 2 -action on T 3 implies that μ is ergodic for the R 2 -action on N .

For x P N we again parameterize W i pxq by E i via the map

Φ x : E i Ñ W i pxq, Φ x pvq " x `v
and let νi x given by νi x " pΦ ´1 x q ˚μ i x be the corresponding locally finite measure on E i » R. Recall we fix a normalization of each νi x so that each νi x gives mass 1 to the unit ball (i.e. interval) in E i . From the choice of E i , the measures νi

x are nonatomic for a.e. x P N . To prove Theorem 2.8, we will show that Gpν i x q " R for μ-almost every x P N . This will imply that Gpν i x q " R and thus ν i x is absolutely continuous with respect to Lebesgue for µ-almost every x P T 3 by Proposition 5.6. Applying Proposition 5.8 then implies that µ is invariant under translations by E i , showing that µ is the Lebesgue measure on T 3 . 6.2. Restriction to the kernel of λ i . We now heavily use that our acting group R 2 is higher-rank. Recall that λ 1 , λ 2 , λ 3 are linear functionals on R 2 ; moreover, none of the functionals λ 1 , λ 2 , λ 3 is the zero function and no pair is proportional. It follows that each functional λ 1 , λ 2 , λ 3 has a 1-dimensional kernel and that all kernels are distinct. See Figure 1.

kerpλ 2 q kerpλ 1 q kerpλ 3 q ``F IGURE 1
. Kernels of the Lyapunov exponent functionals in the acting group R 2 . Signs indicate the signs of the Lyapunov exponents in corresponding half-cones. For instance, ``´indicates the open half-cone of s P R 2 such that λ 1 psq ą 0, λ 2 psq ą 0, and λ 3 psq ă 0.

As the exponents λ i are not defined over Q, none of the kernels is defined over Q. In particular, there is no 0 ‰ n P Z 2 with n P ker λ j for any j P t1, 2, 3u. This is the primary reason why we induce to an R 2 -action on N rather than studying the Z 2 -action on T 3 .

Recall our fixed i P t1, 2, 3u above such that the leaf-wise measure μi x is nonatomic for almost every x P N . As the kernel ker λ i is 1-dimensional, we may fix s 0 " ps 1 , s 2 q P ker λ i t0u. For the remainder of the proof we will (almost) exclusively study the 1-parameter flow φ t inside ker λ i :

φ t : N Ñ N, φ t pxq " αpts 0 qpxq " αpts 1 , ts 2 qpxq.
From the fact that μ is α-invariant, the choice of s 0 P ker λ i , and the choice of normalization of the family of leaf-wise measures tμ i

x u, we immediately obtain the following. Lemma 6.2. For every t P R and almost every x P N (1) φ t : W i pxq Ñ W i pφ t pxqq is an isometry;

(2) pφ t q ˚μ i x " μi φtpxq ; (3) νi

x " νi φtpxq . Proof. Conclusion (1) follows from Proposition 6.1(4) and the choice of s 0 P ker λ i so that αps 0 q dilates distances in W i by e λ i ps 0 q " 1.

For Conclusion (2), from the invariance of μ we have pφ t q ˚μ i x " pαps 0 qq ˚μ i x 9μ i φtpxq . On the other hand, since φ t is an isometry along W i -leaves, we have φ t pI i

x q " I i φtpxq where I i x is the unit ball (i.e. interval) in W i pxq. It follows that pφ t q ˚μ i x pI i φtpxq q " μi x pI i x q " 1 and thus, from our choice of normalization,

pφ t q ˚μ i
x " μi φtpxq . Conclusion (3) then follows from ( 1), ( 2), and definition of Φ i x .

Recalling Remark 3.7, conclusion (3) of Lemma 6.2 is quite strong: the family of measures tν i x u on E i is constant along orbits of the flow φ t .

6.3. Conclusion of the proof assuming ergodicity of φ t . Note that while μ is assumed to be R 2 -ergodic, there is no reason that μ is ergodic for the 1-parameter flow φ t . We complete the proof of Theorem 2.8 assuming the measure μ is ergodic for the 1-parameter flow φ t . Although this assumption is not satisfied, we will explain how to correct this in the next section.

Recall the notation and conclusion of Proposition 5.6. The next lemma verifies that the measures νi

x satisfy the hypotheses of Proposition 5.6. Lemma 6.3. Assume the 1-parameter flow φ t acts ergodically on pN, μq. Then for µ-a.e. x P N , the group Gpν i

x q acts transitively on the support of νi x . Proof of Theorem 2.8 assuming that φ t is ergodic. Assuming Lemma 6.3 holds, from Proposition 5.6 we conclude that either νi

x is supported on a countable set (and thus the measure νi

x has atoms) or the measure νi x is absolutely continuous with respect to Lebesgue measure on E i » R. From our entropy assumptions (recall Lemma 3.6), the measures μi

x and thus νi x have no atoms for almost every x P N and thus from Proposition 5.6 we conclude that νi

x is absolutely continuous with respect to Lebesgue measure on E i .

It follows that the leaf-wise measures μi x are absolutely continuous with respect to Lebesgue measure on W i pxq for almost ever x P N . From the construction of μ, it follows that the leaf-wise measures µ i

x are absolutely continuous with respect to Lebesgue measure on W i pxq for almost every x P T 3 . (Alternatively, an analogue of (b) ùñ (a) in Proposition 5.8 implies that h μp αpn 1 , n 2 qq " λ i pn 1 , n 2 q which, from the structure of μ, implies h µ pαpn 1 , n 2 qq " λ i pn 1 , n 2 q and thus µ i

x is absolutely continuous for µ-almost every x.) From Proposition 5.8(d), it follows for a.e. x P T 3 that µ i x coincides with the Lebesgue measure on W i pxq normalized on I i

x . From Lemma 3.8, it follows that µ is invariant under translations by E i and is hence the Lebesgue measure on T 3 by Lemma 3.4.

We give the proof of Lemma 6.3 (still assuming that φ t is ergodic.)

Proof of Lemma 6.3 assuming ergodicity of φ t . Recall from Lemma 6.2(3) that the parameterized collection of measures x Þ Ñ νi

x forms an φ t -invariant, measurable function. 1 As we assume ergodicity of the flow φ t , it follows that the assignment x Þ Ñ νi

x is constant μ-a.s. In particular, for µ-almost every x P N and μi x -almost every x 1 P W i pxq we have νi x 1 " νi x . (6.1) Take such x and x 1 . Recall the parametrization Φ x : E i Ñ W i pxq. Let v P E i be such that x 1 " x `v. We observe (see Figures 2(a) and 2(b)) that

Φ ´1 x ˝Φx 1 : E i Ñ E i is the map Φ ´1 x ˝Φx 1 : t Þ Ñ t `v. Recall that νi x 1 , μi x 1 , μi x ,

and νi

x are canonically defined by our choice of normalization. Since x and x 1 are in the same unstable manifold, we have μi x 1 9μ i x so pΦ x 1 q ˚ν i x 1 " μi x 1 9µ i x " pΦ x q ˚ν i x . and pΦ ´1 x ˝Φx 1 q ˚ν i x 1 9ν i x .

It follows that

pT v q ˚ν i x " pT v q ˚ν i x 1 9ν i x . Thus v P Gpν i x q. Since x 1 was a μi x -typical point of W i pxq it follows that Gpν i x q has a dense orbit in the support of νi

x and thus acts transitively on the support of νi

x .

Remark 6.4. Above, we showed that νi

x 1 " νi x for x 1 " x `v with v P E i but only obtained pT v q ˚ν i x 9ν i x rather than pT v q ˚ν i x " νi x .
The coefficient of proportionality is due to the choice of normalization on νi

x which is chosen so that νi

x ´BE i 1 p0q
¯"

1 where B E i 1 p0q Ă E i is the unit ball in E i centered at 0. We have pT v q ˚ν i x ´BE i 1 p0q ¯" νi x ´BE i 1 pvq
1There is a minor technical point we ignored here. Namely, we are using that the space of locally finite Borel measure on R is a reasonable topological space (with the topology dual to compactly supported continuous functions) and that x Þ Ñ νi

x is a measurable function from pN, μq to the space of locally finite Borel measure on R.

E i , νi x E i , νi x 1 W i pxq " W i px 1 q μi x 9μ i x 1 0 v x x 1 ´v 0 Ò Φ x Ó Φ x 1 (a) Parametrizations Φ x and Φ x 1 E i E i W i pxq 0 v t ´v 0 t `v Ó Φ ´1 x Ó Φ x 1 (b) Φ ´1 x ˝Φx 1 : t Þ Ñ t `v FIGURE 2. Proof of Lemma 6.3 but do not (yet) know that νi x ´BE i 1 pvq ¯" 1.
However, we do know that

`pT v q ˚ν i x ˘´B E i 1 pvq ¯" `pΦ ´1 x ˝Φx 1 q ˚ν i x 1 ˘´B E i 1 pvq " νi x 1 ´Φ´1 x 1 pΦ x pB E i 1 pvqqq " νi x 1 ´BE i 1 p0q ¯" 1.
In particular, we have that pT v q ˚ν i x " pT v q ˚ν i x 1 " pΦ ´1 x ˝Φx 1 q ˚ν i x 1 9ν i x with explicit coefficient of proportionality: pT v q ˚ν i x "

νi

x pB E i 1 pvqq νi x .

6.4. Overcoming lack of ergodicity: the π-partition trick. The proof of Lemma 6.3 seems to fail if the measure μ is not φ t -ergodic. Indeed, we used that the assignment x Þ Ñ νi x was φ t -invariant to conclude that the assignment x Þ Ñ νi x was constant in order to conclude that νi

x " νi x 1 for μi x -typical x 1 P W i pxq in (6.1). We recall the following constructions and definitions. See also Theorem B.11 in Appendix B.4. Definition 6.5. Let f : X Ñ X be a Borel map of a metric space X preserving a Borel probability measure µ. Then, there exists a measurable partition E of pX, µq such that-writing tµ E

x u for a family of conditional measures of µ relative to E (see Definition 8.1)-for µ-a.e. x the measure µ E

x is an ergodic, f -invariant Borel probability measure. The partition E is called the ergodic decomposition or the partition into ergodic components of µ with respect to f . The measures tµ E

x u are called the ergodic components of µ.

To illustrate the most extreme defect when ergodicity fails, for a typical x, it could be that the conditional measure along W i pxq of the φ t -ergodic component μE

x of μ containing x is an atom at the point x. Then, the only point x 1 P W i pxq for which one could conclude that νi

x " νi x 1 would be x 1 " x. We now correct the proof of Lemma 6.3. This requires tools and notation discussed in Section 8.6 below which we encourage the reader to read first.

Examining the proof of Lemma 6.3, we did not fully use that the assignment x Þ Ñ νi

x was constant. Rather, we used that the assignment x Þ Ñ νi x was constant along the support of μi

x in W i pxq. From this we concluded that νi x " νi x 1 for μ-typical x and μi

x -typical x 1 in W i pxq. Recall that if f : N Ñ R is a φ t -invariant, measurable function then f is constant on almost every φ t -ergodic component of μ. Thus, the proof of Lemma 6.3 above works if we establish that almost every φ t -ergodic component of μ is saturated by full W i -manifolds. Note that if the W i -leaves were expanded (or contracted) by φ t , then Proposition 8.12 below would show that every φ t -ergodic component of μ contains full W i -manifolds. However, we chose φ t precisely so that it neither expands nor contracts W i -leaves.

The following lemma, known as the "π-partition trick," lets us conclude that φ tergodic components contain full W i -leaves. We refer to Section 8.6 and Appendix C for details of the π-partition and measurable hulls. From entropy considerations in Lemma 3.6, we have that the partition of N into full W i -leaves is not measurable. We let Ξ i denote the measurable hull of the partition of pN, μq into full W i -leaves (see Section 8.6.1).

To state the following key lemma, we refer to Section 8.3.2 for definition of the partial order on the space of partition. Lemma 6.6 (π-partition trick). Ξ i is finer than the partition of pN, μq into φ tergodic components.

It follows from Lemma 6.6 that almost every φ t -ergodic component contains full W i -leaves and hence the proof of Lemma 6.3 works by replacing μ with a φ t -ergodic component of μ.

We complete the proof of Theorem 2.8 by giving the proof of Lemma 6.6. For s P R 2 and x P N recall that W s s pxq and W u s pxq denote the stable and unstable manifolds, respectively, for the 1-parameter flow αptsq. We let Ξ u s denote the measurable hull (see 8.6.1 below) of the partition of pN, μq into full W u s -leaves. Similarly Ξ s s denotes the measurable hull of the partition of pN, μq into full W s sleaves.

Given s P R 2 , let E s denote the measurable partition of pN, μq into ergodic components of the 1-parameter flow αptsq. Similarly, let π s denote the Pinsker partition (see 8.6.2 below) for the 1-parameter flow αptsq on pN, μq. As stated in Proposition 8.12 below, for any s P R 2 we have E s ă Ξ s s . From Proposition 8.13 below, we have for any s P R 2 that Ξ u s " π s " Ξ s s . (See 8.3.2 for definition of the partial order on space of partitions.)

With the above notation, the conclusion of Lemma 6.6 states, for our fixed s 0 , that

E s 0 ă Ξ i .
Given the abstract ergodic theoretic facts above, the proof of Lemma 6.6 is remarkably straightforward.

λ i psq " 0 s 0 s 1 λ i psq ă 0 λ i psq ą 0 FIGURE 3. Choice of s 1
Proof of Lemma 6.6. Recall we chose s 0 ‰ p0, 0q so that λ i ps 0 q " 0 and λ j ps 0 q ‰ 0 for each j ‰ i. Pick s 1 P R 2 close to s 0 with the following properties (see Figure 3):

(1) λ j ps 1 q ‰ 0 for every 1 ď j ď 3;

(2) λ i ps 1 q ă 0;

(3) for each j ‰ i, the numbers λ j ps 1 q and λ j ps 0 q have the same sign. Since λ i ps 1 q ă 0, it follows that W i pxq Ă W s s 1 pxq for every x P N . This immediately implies Ξ s s 1 ă Ξ i . Also, note that W u s 1 pxq " W u s 0 pxq for all x P N whence Ξ u s 0 " Ξ u s 1 . We then obtain the following string of refinements and equalities:

E s 0 ă Ξ s s 0 " π s 0 " Ξ u s 0 " Ξ u s 1 " π s 1 " Ξ s s 1 ă Ξ i .
In symbols, this is exactly what we needed to prove. Lemma 6.6 completes the proof of Theorem 2.8. We end this section with some technical remarks on the proof of Lemma 6.6. Remark 6.7. In the proof of Lemma 6.6, to choose s 1 satisfying condition (3), we heavily used the fact that there is no λ j with λ j " ´cλ i for any c ą 0; that is, we are using that the action has no Lyapunov exponents that are negatively proportional to λ i . Indeed, if λ j " ´cλ i then, for any choice of s 1 such that λ i ps 1 q ă 0, the sign of λ j changes from zero at s 0 to positive at s 1 . On the other hand, if λ j and λ i were positively proportional, we can adapt the proof by grouping all exponents positively proportional to λ i together into a single coarse Lyapunov exponent (see Section 7.4.2) and then study the leaf-wise measures along higherdimensional coarse Lyapunov manifolds (see Section 7.4.3.)

For an explicit example of a higher-rank action where the proof of Lemma 6.6 (and consequently Theorem 2.8) fails, let

A " ˆ2 1 1 1 ˙and B " ˆ2 3 3 5 
˙.

We have eigenvalues

χ 1 A ą 1 ą χ 2 A , χ 1 B ą 1 ą χ 2 B ą 0 and both L A : T 2 Ñ T 2 and L B : T 2 Ñ T 2 are Anosov. Consider L A ˆId : T 4 Ñ T 4 , Id ˆLB : T 4 Ñ T 4 .
Clearly L A ˆId and Id ˆLB commute and so generate a Z 2 -action by automorphisms of T 4 . Note that while the generators L A ˆId and Id ˆLB are not Anosov, the Z 2 -action contains Anosov diffeomorphisms such as L A ˆLB . Let µ 1 be any ergodic, L A -invariant measure on T 2 and let µ 2 be any ergodic, L B -invariant measure on T 2 . Note that we can pick µ 1 different from Lebesgue with h µ 1 pL A q ą 0. Then µ 1 ˆµ2 is an ergodic, Z 2 -invariant measure on T 4 that is not Lebesgue and has h µ 1 ˆµ2 pL A ˆIdq ą 0. The conclusion of Theorem 2.8 thus fails for this Z 2 -action on T 4 . The proof degenerates in a number of places.

(1) The Z 2 -action on T 4 has four Lyapunov exponent functionals:

pn 1 , n 2 q Þ Ñ n 1 λ 1 A , n 1 λ 2 A , n 2 λ 1 B , n 2 λ 2 B .
We note that the functionals

pn 1 , n 2 q Þ Ñ n 1 λ 1 A , pn 1 , n 2 q Þ Ñ n 1 λ 2 A are negatively proportional. Similarly pn 1 , n 2 q Þ Ñ n 2 λ 1 B , pn 1 , n 2 q Þ Ñ n 2 λ 2 B
are negatively proportional. 2 The presence of negatively proportional Lyapunov exponents makes it impossible to choose s 1 in the proof of Lemma 6.6 above with the desired properties. In fact, the conclusion of 6.6 is false for this example. (2) Consider the map h : T 4 " T 2 ˆT2 Ñ T 2 given by hpx, yq " x. Then h semiconjugates the Z 2 -action generated by L A ˆId and Id ˆLB with the Z-action generated by L A . For any L A -invariant measure µ on T 2 , we can find a Z 2 -invariant measure on T 4 projecting to µ under h. In the language of [114], L A is a rank-1 factor. To state the general version ([114, Theorem 5.1]) of Theorem 2.8, Katok and Spatzier impose additional hypotheses on the Z 2 -action to rule out the defects discussed above. For the action in Example 2.6, neither of these defects occurs.

The primary obstruction to the rigidity in this example is the presence of rank-1 factors. For genuinely higher-rank actions with negatively proportional pairs, other tools developed in [62] can be used to overcome the failure of Lemma 6.6.

˚6.5. Algebraic construction of the suspension space N .

We outline the construction in Proposition 6.1. Recall our fixed commuting matrices A and B are 2 In the literature, negatively proportional exponents such as pn1, n2q Þ Ñ n1λ 1 A and pn1, n2q Þ Ñ n1λ 2

A are often referred to as a symplectic pair.

jointly diagonalizable: there is Q P GLp3, Rq with

Q ´1AQ " ¨eλ 1 A 0 0 0 e λ 2 A 0 0 0 e λ 3 A ', Q ´1BQ " ¨eλ 1 B 0 0 0 e λ 2 B 0 0 0 e λ 3 B '.
Also recall our Lyapunov exponent functionals λ j : R 2 Ñ R, given by

λ j pt 1 , t 2 q " t 1 λ j A `t2 λ j B . Given t " pt 1 , t 2 q P R 2 let M t P GLp3, Rq be the interpolation matrix M t " Q ¨eλ 1 pt 1 ,t 2 q 0 0 0 e λ 2 pt 1 ,t 2 q 0 0 0 e λ 3 pt 1 ,t 2 q 'Q ´1.
Note that for t " pn 1 , n 2 q P Z n , M t " A n 1 B n 2 P GLp3, Zq. However, for t R Z 3 , we expect M t R GLp3, Zq; in particular, M t does not define an action on the torus T 3 . For t P R 2 define the "twisted" lattice subgroup

Λ t Ă R 3 by Λ t " M t Z 3 .
Note that if m P Z 2 then Λ m is the standard integer lattice Z 3 . For t P R 2 define a "twisted torus" T t by T t " R 3 {Λ t . Note that if m P Z 2 then T m is the standard torus T 3 ; also if t 1 " t `m where m P Z 2 then Λ t " Λ t 1 whence T t " T t 1 .

Consider R 2 ˆR3 . Let Z 3 act on R 2 ˆR3 as follows: given pt, xq P R 2 ˆR3 and n P Z 3 define pt, xq ¨n " pt, x `M t nq. Let Ñ be the quotient of R 2 ˆR3 by this action. Note that Ñ is a fiber-bundle over R 2 whose fiber over t is exactly the twisted torus T t .

Consider the following Z 2 -action on Ñ : given m P Z 2 and pt, x `Λt q P Ñ pt, x `Λt q ¨m " pt `m, x `Λt q.

Also consider the following R 2 -action on Ñ : given s P R 2 and pt, x `Λt q P Ñ s ¨pt, x `Λt q " ps `t, M s x `Λt`s q.

Let N be the quotient manifold Ñ {Z 2 where the quotient is by the Z 2 -action described above. As the R 2 -and Z 2 -actions on Ñ commute, the R 2 -action on Ñ descends to an R 2 -action on N which we denote by α.

Note that N is 5-dimensional which fibers over the torus T 2 " R 2 {Z 2 and has 3-dimensional fibers where the fiber over t `Z2 P T 2 is T t . Also note that N inherits a Riemannian metric from R 2 ˆR3 . Given x P N the tangent space T x N decomposes as

T x N " R 2 ' E 1 ' E 2 ' E 3
where E i are the joint eigenspaces of A and B enumerated as before.

Each E i acts on N as follows: given p " pt `Z2 , x `Λt q P N and v P E i p `v " pt `Z2 , x `Λt q `v " pt `Z2 , x `v `Λt q.

Note that the orbit W i ppq " tp `v : v P E i u is contained in the fiber through p. Moreover, for any p " pt `Z2 , x `Λt q P N , any p 1 " p `v for v P E i , and any s " ps 1 , s 2 q P R 2 we have

αpsqpp 1 q " αpsqppq `es 1 λ i A `s2 λ i B v " αpsqppq `eλ i psq v.
Part 2. Primer: smooth ergodic theory for Z d -actions

We present background material and a number of tools from the theory of nonuniformly hyperbolic dynamics that will be used in Part 3 and explain a number of facts and constructions that were used in Part 1. We will be particularly interested in the relation between entropy, conditional measures, and Lyapunov exponents for single diffeomorphisms and for actions of higher-rank abelian groups.

LYAPUNOV EXPONENTS AND PESIN MANIFOLDS

7.1. Lyapunov exponents for diffeomorphisms. Let f : M Ñ M be a C 1 diffeomorphism of a compact manifold M . Let µ be an ergodic, f -invariant Borel probability measure. We recall Oseledec's Theorem [150]; see also [160,182].

Theorem 7.1 (Oseledec [150]). There are (1) a measurable set Λ with µpΛq " 1;

(2) numbers λ 1 ą λ 2 ą ¨¨¨ą λ p ;

(3) a µ-measurable, Df -invariant splitting T x M " À p i"1 E i pxq defined for x P Λ such that for every x P Λ (a) for every v P E i pxq t0u

lim nÑ˘8 1 n log }D x f n pvq} " λ i ; (b) if Jf denotes the Jacobian determinant of f then lim nÑ˘8 1 n log |Jf n | " p ÿ i"1 m i λ i
where m i " dim E i pxq; (c) for every i ‰ j we have

lim nÑ˘8 1 n log ´sin = ´Ei pf n pxqq, E j pf n pxqq ¯¯" 0.
The numbers λ i are called Lyapunov exponents of f with respect to µ and the subspaces E i pxq are called the Oseledec's subspaces. Above, m i denotes the almost-surely constant value of dim E i pxq, called the multiplicity of λ i .

Given any f -invariant measure µ on M (which may be nonergodic) the average top fiberwise Lyapunov exponent of f with respect to µ is

λ top pf, µq " inf nÑ8 1 n ż log }D x f n } dµpxq. (7.1)
Since µ is f -invariant, the subadditive ergodic theorem implies the infimum in (7.1) can be replaced by a limit (see [87,120] and [179,Chapter 3]).

If tµ E x u is the ergodic decomposition (see Definition 6.5) of µ and if

λ 1 x ą λ 2 x ą ¨¨¨ą λ ppxq x
denote the Lyapunov exponents of f with respect to the ergodic invariant measure µ E

x then we have

λ top pf, µq " ż λ 1 x dµpxq.
7.2. Lyapunov exponents and (sub)exponential growth of derivatives. Let M be a compact manifold and equip T M with a background Riemannian metric and associated norm. Let f : M Ñ M be a C 1 diffeomorphism. We say f : M Ñ M has uniform subexponential growth of derivatives if for all ą 0 there is a C ą 0 such that

}Df n } :" sup xPM }D x f n } ă C e |n| for all n P Z.
Note that we allow that C Ñ 8 as Ñ 0.

Proposition 7.2. A diffeomorphism f : M Ñ M has uniform subexponential growth of derivatives if and only if for any f -invariant Borel probability measure µ, all Lyapunov exponents of f with respect to µ are zero. That is, f : M Ñ M has uniform subexponential growth of derivatives if and only if λ top pf, µq " λ top pf ´1, µq " 0 for every f -invariant Borel probability measure µ.

Proof. We show that vanishing of all Lyapunov exponents for all f -invariant probability measures implies that f has uniform subexponential growth of derivatives; the converse is clear.

Suppose that f : M Ñ M fails to have uniform subexponential growth of derivatives. Then there is an ą 0 and sequences of iterates n j P Z with |n j | Ñ 8, base points x j P M , and unit vectors v j P T x j M such that

}D x j f n j v j } ě e |n j | . (7.2)
Replacing f with f ´1, we may assume without loss of generality that n j Ñ 8.

Let U M Ă T M denote the unit-sphere bundle. We represent an element of U M by a pair px, vq where v P T x M with }v} " 1. Note that U M is compact. Note also that Df : T M Ñ T M induces a map U f : U Ñ U given by the renormalized derivative:

U f px, vq :" ˆf pxq, D x f pvq }D x f pvq} ˙.
Define Φ : U M Ñ R as follows: given px, vq P U M , let Φpx, vq :" log }D x f pvq}.

By the chain rule, we have

log }D x f n pvq} " n´1 ÿ j"0 ΦpU f j px, vqq.
For each j, let ν j denote the empirical measure along the orbit segment px j , v j q, U f px j , v j q, . . . , U f n j ´1px j , v j q in U M given by

ν j " 1 n j n j ´1 ÿ k"0 δ U f k px j ,v j q .
From (7.2) we have for every j that ż Φ dν j ě .

Claim 7.3. Let ν be any weak-˚subsequential limit of tν j u.

Then (a) ν is U f -invariant; (b) ż Φ dν ě .
Proof. Conclusion (a) follows as in the proof of the Krylov-Bogolyubov theorem: if φ : M Ñ R is any (bounded) continuous function then

lim jÑ8 ˇˇˇż φ dν j ´ż φ ˝f dν j ˇˇˇď lim jÑ8 2}φ} C 0 n j " 0 (7.3)
showing that ν is f -invariant. Conclusion (b) follows from continuity of Φ and weak-˚convergence.

From Claim 7.3(b), we may replace ν with an ergodic component (see Definition 6.5) ν 1 of ν such that ş Φ dν 1 ě . Take µ to be the push-forward of ν 1 under the natural projection U M Ñ M . Then µ is an f -invariant, ergodic measure on M . Let tν 1

x u denote a family of conditional measures of ν 1 for the partition of U M into fibers over M . By the pointwise ergodic theorem, for µ-a.e. x P M and ν 1

x -a.e. v P U M pxq we have

lim nÑ8 1 n log }D x f n pvq} " lim nÑ8 1 n n´1 ÿ j"0 ΦpU f j px, vqq " ż Φ dν 1 ě .
On the other hand,

λ top pf, µq " lim nÑ8 1 n ż log }D x f n } dµpxq " lim nÑ8 1 n ż sup vPU M pxq n´1 ÿ j"0 ΦpU f j px, vqq dµpxq ě lim nÑ8 ż ż 1 n n´1 ÿ j"0 ΦpU f j px, vqq dν x pvq dµpxq " ż Φ dν 1 ě .
Above, the inequality follows from comparing the maximal growth with the average growth (averaged by ν 1

x .) It follows that the largest Lyapunov exponent of f with respect to µ is at least ą 0.

7.3.

Lyapunov exponents for nonuniformly hyperbolic Z d -actions. How does the theory of Lyapunov exponents change for actions of more general abelian groups? We state a version of Oseledec's theorem for actions of Z d which can easily be extended to actions of R ˆZk .

Let M be a compact manifold, let α : Z d Ñ Diff 1 pM q be a Z d -action, and let µ be an ergodic, α-invariant measure.

Theorem 7.4 (Higher-rank Oseledec's theorem (see [34])). There are (1) a measurable set Λ with µpΛq " 1;

(2) linear functionals λ 1 , λ 2 , . . . , λ p : R d Ñ R;

(3) a µ-measurable, Dα-invariant splitting T x M " À p i"1 E i pxq defined for x P Λ such that for every x P Λ (a) for every v P E i pxq t0u

lim |n|Ñ8 log }D x αpnqpvq} ´λi pnq |n| " 0; (b) if Jf denotes the Jacobian determinant of f then lim |n|Ñ8 log |Jαpnq| ´řp i"1 m i λ i pnq |n| ; (c) for every i ‰ j lim nÑ8 1 |n| log ´sin = ´Ei pαpnqpxqq, E j pαpnqpxqq ¯¯" 0.
In (b), m i is the almost-surely constant value of dim E i pxq, called the multiplicity of λ i . Note that (a) implies convergence along rays: for any n P Z d and v P E i pxq t0u

lim kÑ8 1 k log }D x αpknqpvq} " λ i pnq. (7.4)
The convergence in (a) is taken along any sequence n Ñ 8; this is stronger than (7.4) and is typically needed in applications.

7.4. Unstable manifolds and coarse Lyapunov manifolds.

7.4.1. Unstable subspaces and unstable manifolds for a single diffeomorphism.

Let f : M Ñ M be a C 1 diffeomorphisms of M and let µ be an ergodic, finvariant measure. Let λ i be the Lyapunov exponents for f with respect to µ. For x P Λ Ă M where Λ is as in Theorem 7.1, define

E u pxq :" à λ i ą0 E i pxq
to be the unstable subspace through x. We have that

E u pxq :" tv P T x M : lim sup nÑ8 1 n log }D x f ´npvq} ă 0u.
We may similarly define stable and neutral (or center) subspaces through x, respectively, by E s pxq :" à

λ i ă0 E i pxq and E c pxq :" à λ i "0 E i pxq.
We now assume that f :

M Ñ M is C 1`β for β ą 0. Through µ-almost every point x the set W u pxq :" " y : lim sup nÑ8 1 n logpdpf ´npxq, f ´npyqqq ă 0 * is a connected C 1`
β injectively immersed manifold with T x W u pxq " E u pxq (see [152]) called the (global) unstable Pesin manifold of f through x. The collection of all W u pxq forms a partition of (a full measure subset of) M ; in general, this partition does not have the structure of a nice foliation. However, restricted to sets of large measure the partition into local unstable manifolds has the structure of a continuous lamination. That is, for almost every x P M and any ą 0 there is a neighborhood U of x such that, on a set Ω of relative measure p1´ q in U , the local leaves of W u -manifolds form a partition of Ω by embedded dimpE u q-dimensional balls that vary continuously in the C 1`β -topology. Given the Lyapunov exponents λ 1 ą λ 2 ą ¨¨¨ą λ p of µ fix j P t1, ¨¨¨, pu such that λ j ą 0. Then for almost every x the set W j pxq :"

" y : lim sup nÑ8 1 n logpdpf ´npxq, f ´npyqqq ď ´λj * is again a connected C 1`β injectively immersed manifold with T x W j pxq " à λ i ěλ j E i pxq
called the (global) jth unstable manifold through x.

7.4.2.

Coarse Lyapunov exponents and subspaces. Let α : Z d Ñ Diff 1 pM q be an action and let µ be an ergodic, α-invariant probability measure. We introduce objects that play the role of unstable subspaces and unstable manifolds for the Z daction α.

Given Lyapunov exponents λ 1 , λ 2 , . . . , λ p : R d Ñ R we say λ i and λ j are positively proportional if there is a c ą 0 with

λ i " cλ j .
Note that this defines an equivalence relation on the linear functionals

λ 1 , λ 2 , . . . , λ p : R d Ñ R.
The positive proportionality classes are called coarse Lyapunov exponents. For a Z-action generated by a single diffeomorphism f , the coarse Lyapunov exponents are simply the collections of positive, zero, and negative Lyapunov exponents.

Let χ " tλ i u be a coarse Lyapunov exponent. While the size of χpnq is not well defined, the sign of χ is well defined. Write E χ pxq " ' λ i Pχ E i pxq called the corresponding coarse Lyapunov subspace.

7.4.3.

Coarse Lyapunov manifolds for Z d -actions. Analogous to the existence and properties of unstable Pesin manifolds for nonuniformly hyperbolic diffeomorphisms we have the following for actions of higher-rank abelian groups.

Let α : Z d Ñ Diff 1`β pM q be an action and let µ be an ergodic, α-invariant probability measure. Let Λ be as in Theorem 7.4. Proposition 7.5. For almost every x P Λ and for every coarse Lyapunov exponent χ there is a connected, C 1`β , injectively immersed manifold W χ pxq satisfying the following:

(1) T x W χ pxq " E χ pxq;

(2) αpnqW χ pxq " W χ pαpnqpxqq for all n P Z d ;

(3) W χ pxq is the set of all y P M satisfying lim sup kÑ8 1 k log dpαp´knqpyq, αp´knqpxqq ă 0 for all n P Z d with χpnq ą 0.

To construct W χ -manifolds, given n P Z d with χpnq ą 0 let W u αpnq pxq denote the unstable manifold for the diffeomorphism αpnq : M Ñ M through x. Then, for almost every x P M the manifold W χ pxq is the path component of the intersection č

nPZ d ,χpnqą0
W u αpnq pxq containing x. For more discussion and other characterizations of measurability see [45], [167], and Appendices B and C.

A key property of measurable partitions is the existence and uniqueness of a family of conditional measures (or a disintegration) of µ relative to this partition. Given a partition ξ of X, for x P X we write ξpxq for the element of ξ containing x.

Definition 8.1. Let ξ be a measurable partition of pX, µq. Then there is family of Borel probability measure tµ ξ x u xPX , called a family of conditional measures of µ relative to ξ, with the following properties: For almost every x (1) µ ξ

x is a Borel probability measure on X with µ ξ x pξpxqq " 1;

(2) if y P ξpxq then µ ξ y " µ ξ x . Moreover, if D Ă X is a Borel subset then (3) x Þ Ñ µ ξ x pDq is measurable and (4) µpDq " ş µ ξ x pDq dµpxq.
Such a family is unique modulo µ-null sets.

For construction and properties of tµ ξ x u see for instance [167]. See also Appendix B.2 for further discussion. 8.1.2. Conditional information and conditional entropy. Given a measurable partition η of a standard probability space pX, µq, write tµ ξ x u for a family of conditional measures of µ with respect to the partition ξ. Given two measurable partitions η, ξ of pX, µq the mean conditional information of η relative to ξ is

I µ pη | ξqpxq " ´logpµ ξ
x pηpxqqq and the mean conditional entropy of η relative to ξ is

H µ pη | ξq " ż I µ pη | ξqpxq dµpxq.
The join η _ ξ of two partitions η and ξ is

η _ ξ " tA X B | A P η, B P ξu.
The entropy of η is H µ pηq " H µ pη | tH, Xuq. Note that if H µ pηq ă 8 then η is necessarily countable.

8.1.3. Metric entropy of a transformation. Let f : pX, µq Ñ pX, µq be an invertible, measurable, measure-preserving transformation. Let η be an arbitrary measurable partition of pX, µq. We define

η `:" 8 ł i"0 f i η, η f :" 8 ł iPZ f i η.
We define the entropy of f given the partition η to be

h µ pf, ηq :" H µ pη | f η `q " H µ pη `| f η `q " H µ pf ´1η `| η `q.
We define the µ-metric entropy of f to be h µ pf q " supth µ pf, ηqu where the supremum is taken over all measurable partitions of pX, µq. If

µ " αµ 1 `βµ 2
where α, β P r0, 1s satisfy α `β " 1 and µ 1 and µ 2 are f -invariant Borel probability measures then h µ pf q " αh µ 1 pf q `βh µ 2 pf q. (8.1) 8.2. Entropy under factor maps. Let pX, µq and pY, νq be standard probability spaces. Let f : X Ñ X and g : Y Ñ Y be measure-preserving transformations. Suppose there is a measurable map ψ : X Ñ Y with ψ ˚µ " ν and ψ ˝f " g ˝ψ. In this case, we say that g : pY, νq Ñ pY, νq is a measurable factor of f : pX, µq Ñ pX, µq.

We note that entropy only decreases under measurable factors: if g : pY, νq Ñ pY, νq is a measurable factor of f : pX, µq Ñ pX, µq then h ν pgq ď h µ pf q.

The difference between the entropies h ν pgq and h µ pf q is captured by the Abramov-Rokhlin theorem. Let ζ be the measurable partition of pX, µq into level sets of ψ :

X Ñ Y . Note that ζ is an f -invariant partition: ζ " ζ f . Define the conditional entropy h µ pf | ζq of f relative to ζ to be h µ pf | ζq " sup ξ h µ pf, ξ _ ζq
where, as usual, the supremum is over all measurable partitions ξ of pX, µq. We call h µ pf | ζq the fiberwise entropy of f . The Abramov-Rokhlin theorem (see [1,20,127]) states the following:

h µ pf q " h ν pgq `hµ pf | ζq. (8.2)
8.3. Unstable entropy of a diffeomorphism. Let f : M Ñ M be a C 1`β diffeomorphism and let µ be an ergodic, f -invariant measure.

8.3.1. Partitions subordinate to a foliation. For the following discussion and in most applications considered in this text, we may take F to be an f -invariant foliation of M with C 1`β leaves. More generally, we may take F to be, in the terminology introduced in [34], an f -invariant, tame measurable foliation; that is, F a partition of a full measure set by C 1`β manifolds with the property that locally, restricting to sets of large measure, F has the structure of a continuous family of C (3) ξpxq is precompact in (the immersed topology of) Fpxq for µ-a.e. x; 8.3.2. Partial ordering on the set of partitions. We recall the partial order on partitions of pM, µq. Let ξ and η be partitions of the probability space pM, µq. We write η ă ξ and say that ξ is finer than η (or that η is coarser than ξ) if there is a subset X Ă M with µpXq " 1 such that for almost every x, ξpxq X X Ă ηpxq X X.

We say η " ξ if η ă ξ and ξ ă η. 8.3.3. Entropy conditioned on a foliation. We say that a partition ξ is increasing if f ξ ă ξ where f ξ denotes the partition f ξ " tf pCq | C P ξu. Definition 8.3. Given an expanding, f -invariant foliation F we define the entropy of f conditioned on F to be

h µ pf | Fq " h µ pf, ξq
where ξ is any increasing, measurable partition subordinate to F.

There are two small claim in Definition 8.3: First we have that h µ pf, ξ 1 q " h µ pf, ξ 2 q for any two increasing partitions ξ 1 and ξ 2 subordinate to F; see for example [128,Lemma 3.1.2]. Second, such a partition ξ always exists. This was shown when F " F u is the partition into global unstable Pesin manifolds for a C 1`β diffeomorphism in [126] (see also discussion in [128, (3.1)]) extending a construction due to Sinai for uniformly hyperbolic dynamics [173,174]; the proof in [126] can be adapted for general invariant expanding F.

When F " F u is the partition into full unstable manifolds, define the unstable metric entropy of f to be h u µ pf q :" h µ pf | F u q. The principal result (Corollary 5.3) of [128] shows that for C 2 diffeomorphisms we have equality of the metric entropy of f and the unstable metric entropy of f :

h µ pf q " h u µ pf q. (8.3)
For C 1`β -diffeomorphism without zero Lyapunov exponents equality (8.3) was shown by Ledrappier in [124]; for the general case of C 1`β -diffeomorphisms, (8.3) holds from [29].

8.4. Entropy, exponents, and geometry of conditional measures. (See Appendix D for further details). In this section, we consider the relationships between metric entropy h µ pf q, Lyapunov exponents, and the geometry of conditional measures along unstable manifolds.

Let f : M Ñ M be a C 1`β diffeomorphism and let µ be an ergodic, f -invariant measure. At one extreme we have the following generalization of Lemma 3.6 characterizing invariant measures with zero entropy. Lemma 8.4. Let µ be an ergodic, f -invariant measure on M and let ξ be a measurable partition of pM, µq subordinate to the partition into unstable manifolds. The following are equivalent:

(1) h µ pf q " 0;

(2) for µ-a.e. x, the conditional measure µ ξ

x has at least one atom; (3) for µ-a.e. x, the conditional measure µ ξ

x is a single atom supported at x; (4) the partition of pM, µq into full W u -manifolds is a measurable partition.

Proof sketch. The implications (1) ùñ (4) and ( 1) ùñ (3) are a consequence of [128, Theorem B] (see also [29] for C 1`β setting.) Indeed, if h µ pf q " 0, then the Pinsker partition (see Section 8.6.2 below) is the point partition. From [128,Theorem B] we have that the Pinsker partition is the measurable hull of (and in particular is coarser than) the partition into full unstable manifolds. As the point partition is the finest partition, it follows that the partition into full unstable manifolds is measurably equivalent to the point partition and ( 3) and ( 4) follow.

The implications (4) ùñ (3) and ( 2) ùñ (3) follow from the dynamics on unstable manifolds and ergodicity of the measure. For instance, to see ( 4) ùñ (3), assume the partition of pM, µq into full W u -manifolds is measurable and let tµ u

x u denote a family of conditional probability measures for this partition. As µ is f -invariant and as the partition into full unstable leaves is f -invariant, we have f ˚µu

x " µ u f pxq for almost every x. Given x P M , let W u px, Rq denote the metric ball of radius R centered at x in the internal metric of W u pxq. Given δ ą 0 and R ą 0, define the set G δ,R of pδ, Rq-good points to be

G δ,R :" tx P M | µ u x pW u px, Rqq ě 1 ´δu.
Fix R ą 0 such that µpG δ,R q ą 0. Take a subset G 1 Ă G δ,R with µpG 1 q ą 0 such that the function x 1 Þ Ñ diam u f ´npx 1 q pf ´npW u px 1 , Rqq converges to 0 uniformly on G 1 as n Ñ 8 where diam u

x pBq denotes the diameter of B Ă W u pxq with respect to the internal metric on W u pxq. For almost every x, we have f n pxq P G 1 for infinitely many n P N. For such x and any ą 0, there is n 0 P N such that for all n ě n 0 with f n pxq P G 1 we have

f ´npW u pf n pxq, Rqq Ă W u px, q whence µ u
x pW u px, qq ě µ u f pxq pW u pf pxq, Rqq ě 1 ´δ. Taking Ñ 0 we have µ u

x ptxuq ě 1 ´δ and, as δ was arbitrary, (3) follows. Finally, the implication (3) ùñ (1) follows from Corollary 5.3 of [128] (see (8.3) below) and the computation of unstable entropy in Definition 8.3.

At the other extreme we have the following definition. Definition 8.5. We say µ is an SRB measure (or satisfies the SRB property) if, for any measurable partition ξ of pM, µq subordinate to the partition into unstable manifolds, for almost every x the conditional measure µ ξ

x is absolutely continuous with respect to Riemannian volume on W u pxq.

We have the following summary of a number of important results. Theorem 8.6. Let f : M Ñ M be a C 1`β diffeomorphism and let µ be an ergodic, f -invariant measure. Then (1) h µ pf q ď ř λ i ą0 m i λ i ; (2) if µ is absolutely continuous with respect to volume then 1), known as the Margulis-Ruelle inequality, is proven in [169]. Theorem 8.6(2), known as the Pesin entropy formula, is shown in [153]. Theorem 8.6(3) was established by Ledrappier and Strelcyn in [126]. In the next section, we will complete Theorem 8.6 with Ledrappier's Theorem, Theorem 9.3, which provides a converse to Theorem 8.6(3).

h µ pf q " ÿ λ i ą0 m i λ i ; (3) if µ is SRB then h µ pf q " ř λ i ą0 m i λ i . Theorem 8.6(
For general measures invariant under a C 2 -diffeomorphism (for the case of C 1`β -diffeomorphisms, see [29]), Ledrappier and Young explain explicitly the defect from equality in Theorem 8.6(1). This captures the intermediate geometry of measures with positive entropy (and hence non-atomic unstable conditional measures) but entropy strictly smaller than the sum of positive exponents.

Let δ i denote the (almost-surely constant value of the) pointwise dimension of µ along the ith unstable manifolds. With δ 0 " 0, let

γ i " δ i ´δi´1 .
The coefficients γ i reflect the transverse geometry (in particular the transverse dimension) of the measure µ inside of the ith unstable manifold transverse to the collection of pi ´1qth unstable manifolds. In particular, we have γ i ď m i (see [129,Proposition 7.3.2].) Theorem 8.7 ( [129]). Let f : M Ñ M be a C 1`β diffeomorphism and let µ be an ergodic, f -invariant measure. Then

h µ pf q " ÿ λ i ą0 γ i λ i .
(Note that the proof in [129] required f to be C 2 ; following [29] and [7, Appendix], the theorem holds when f P C 1`β .q ˚8.5. Coarse-Lyapunov entropy and entropy product structure. Consider now α : Z d Ñ Diff 1`β pM q a smooth Z d -action on a compact manifold M . Let µ be an ergodic, α-invariant measure. Recall that a coarse Lyapunov exponent χ is a positive-proportionality class of Lyapunov exponents of α. For almost every x P M there is a coarse Lyapunov subspace E χ pxq Ă T x M and a coarse Lyapunov manifold W χ pxq tangent to E χ pxq at x.

Let F χ denote the partition of M into full W χ -manifolds. Given n P Z d with χpnq ą 0, following the construction from [126] we can find a measurable partition ξ of pM, µq that is subordinate to F χ and increasing for αpnq. We then define the χ-entropy of αpnq to be h χ µ pαpnqq " h µ pαpnq | χq :" h µ pαpnq | F χ q " h µ pαpnq, ξq. The main result of [37] is the following "product structure of entropy" for Z dactions.

Theorem 8.8 ([37, Corollary 13.2]). Let α : Z d Ñ Diff 1`β pM q be a smooth Z daction on a compact manifold M and let µ be an ergodic, α-invariant measure. Then for any n P Z d h µ pαpnqq "

ÿ χpnqą0 h µ pαpnq | χq.
Fix n P Z d and let f " αpnq. The formulas in Theorem 8.7 and Theorem 8.8 then look quite similar. However, the contribution of each Lyapunov exponent λ i to the total entropy in Theorem 8.7 is a "transverse entropy" (the coefficient γ i is a measure of "transverse dimension"). In Theorem 8.8, the entropy of each coarse Lyapunov exponent χ is a "tangential entropy" h µ pαpnq | χq obtained by conditioning along W χ -manifolds. Thus, Theorem 8.7 does not immediately imply Theorem 8.8. To show Theorem 8.8, one first shows that the total "transverse entropy" Theorem 8.7 contributed by all λ i P χ is equal to the total conditional entropy h µ pαpnq | χq. This is done in [37]. The idea is to first establish and analogue of Theorem 8.7 for the conditional entropy h µ pf | χq; this is done in [30] where a formula of the form

h µ pf | χq " h µ pαpnq | χq " ÿ λ i Pχ γ χ,i n λ i pnq
(full) unstable manifolds. Then ξ u is measurable if and only if h µ pf q " 0. In particular, if h µ pf q ą 0 then the measurable hull of ξ u is strictly coarser than ξ u .

In general, given a C 1`β diffeomorphism f : M Ñ M and an ergodic, finvariant probability measure µ we let Ξ u and Ξ s denote, respectively, the measurable hulls of the partition of pM, µq into full unstable and stable manifolds.

We state the first relationship between the above objects in the following Proposition whose proof follows immediately from the pointwise ergodic theorem. (See Theorem C.4, Appendix C.) Proposition 8.12. Let f : M Ñ M be a C 1`β diffeomorphism and let µ be any f -invariant probability measure. Then E ă Ξ s and E ă Ξ u .

Proof. Let σpEq and σpΞ s q denote the σ-algebras of E-saturated and Ξ s -saturated sets, respectively.

Consider any continuous function φ : M Ñ R. Then φ `: M Ñ R defined by

φ `pxq :" lim sup nÑ8 1 n n´1 ÿ k"0 φpf k pxqq is an f -invariant function that is constant along W s -leaves.
In particular, the function φ `is measurable with respect to σpEq and σpΞ s q. Moreover, as C 0 pM q is separable and dense in L 1 pµq, the σ-algebra σpEq is the minimal σ-algebra for which φ `is measurable for all continuous φ : M Ñ R. It follows that σpEq Ă σpΞ s q whence E ă Ξ s . 8.6.2. The Pinsker partition. Let f : pX, µq Ñ pX, µq be a measure-preserving transformation of a standard probability space pX, µq. The Pinsker partition π of f : pX, µq Ñ pX, µq is the finest measurable partition pX, µq with the following property: for any measurable partition ξ ă π, we have

h µ pf, ξq " 0.
Another characterization of π is the following: π is the unique f -invariant partition such that, if pg, Y, νq is a measurable factor of pf, X, µq with zero entropy, then pg, Y, νq is also a factor of the factor system pf, X, µq{π.

Our second relationship, stated as [128, Theorem B], characterizes the Pinsker partition in smooth dynamics. Proposition 8.13 ([128, Theorem B]). Let f : M Ñ M be a C 1`β diffeomorphism and let µ be any f -invariant Borel probability measure. Then we have equality of partitions Ξ u " π " Ξ s .

Remark 8.14. We say that a measure-preserving transformation f : pX, µq Ñ pX, µq has the K-property or (the Kolmogorov property) if the Pinsker partition π is the trivial partition π " tH, Xu. For such systems, every non-trivial factor has positive entropy. Let f : M Ñ M be a C 1`β volume-preserving Anosov diffeomorphism. Anosov first showed that such maps are ergodic in [5]. In this setting, the analogue of Proposition 8.13 is established in [173]; that is any set A P π is equal modulo 0 to a set fully saturated by stable manifolds and also equal modulo 0 to a (possibly different set) that is fully saturated by unstable manifolds. Using the absolute continuity of the stable and unstable foliations established by Anosov in his proof of ergodicity, one may show that any A P π is equal modulo 0 to a set that is both fully saturated by stable manifolds and unstable manifolds. It follows that any A P π is null or conull. In particular, this shows that volume-preserving Anosov diffeomorphisms have the K-property. This explains the conclusion in Example 8.10 that Ξ u is the trivial partition. See, for example, [40] for modern discussion of absolute continuity and the K-property in uniformly (partially) hyperbolic settings.

ENTROPY, INVARIANCE, AND THE SRB PROPERTY

In dissipative dynamical systems, ergodic SRB measures µ without zero Lyapunov exponents provide examples of physical measures: there is a set B of positive Lebesgue measure such that for any continuous function φ, the forwards time average of φ along the orbit of points in B converges to ş φ dµ. In applications and specific examples, a recurring problem is to establish the existence of physical and SRB measures. We pose a related question that arises naturally in the settings considered in this text: Question 9.1. Given a diffeomorphism f : M Ñ M and an f -invariant measure µ, how do you verify that µ is an SRB measure? Seemingly unrelated, consider a group G acting smoothly on a manifold M . We pose the following: Question 9.2. Given a Borel probability measure µ on M and a subgroup H Ă G, is it is possible to verify that µ is H-invariant?

One method to answer both of these questions is given in Theorem 9.3 and Theorem 9.5 below. 9.1. Ledrappier's theorem. (See Appendix D for further details.) We outline one approach that solves both Question 9.1 and 9.2 in a number of settings. We discuss other approaches towards verifying the existence of SRB measures below.

We recall Section 8.3 where the notion of unstable entropy was introduced. The main result (Corollary 5.3) of [128] shows for a C 2 (see [29] for the C 1`β case) diffeomorphism f : M Ñ M preserving an ergodic probability measure µ that the metric entropy of f and the unstable metric entropy of f coincide: h µ pf q " h u µ pf q. Using this fact, Ledrappier gave a geometric characterization of all measures satisfying equality h µ pf q " ř λ i ą0 m i λ i in the Margulis-Ruelle inequality, giving a converse of Theorem 8.6(3). Theorem 9.3 (Ledrappier's Theorem [124]). Let f be a C 1`β diffeomorphism and let µ be an ergodic, f -invariant, Borel probability measure. Then µ is SRB if and only if

h u µ pf q " ÿ λ i ą0 m i λ i . (9.1)
In the proof of Theorem 9.3, Ledrappier actually proves something much stronger than the SRB property: if h u µ pf q " ř λ i ą0 m i λ i then the leaf-wise measures µ u x of µ along unstable manifolds are equivalent to the Riemannian volume with a Hölder continuous density. That is, if m u

x the Riemannian volume along W u pxq then for a.e. x there is a Hölder continuous, nowhere vanishing function ρ : W u pxq Ñ p0, 8q with µ u

x " ρ m u x .

(9.2) In particular, the leaf-wise measure µ u

x has full support in W u pxq. Moreover, Ledrappier explicitly computes the density function ρ; see (D.6) in Appendix D and [128,Corollary 6.1.4].

We make use of the explicit formula for the density ρ in the following setup. Consider a Lie group G and a smooth, locally free, action of G on a manifold M . We denote the action by g ¨x for g P G and x P M . Consider a Lie subgroup H Ă G and s P G that normalizes H. Let f : M Ñ M be the diffeomorphism given by s; that is f pxq " s ¨x. Let µ be an ergodic, f -invariant Borel probability measure and suppose that the orbit H ¨x is contained in the unstable manifold W u pxq for µ-almost every x.

Since s normalizes H, the partition of M into H-orbits is preserved by f ; in particular, the partition into H-orbits is a subfoliation of the partition into unstable manifolds. Given a Borel probability measure µ on M and a measurable partition ξ subordinate to the partition into H-orbits we can define conditional measures µ ξ x of µ. Given x P M (using that the action is locally free) we can push forward the left-Haar measure on H onto the orbit H ¨x via the parametrization H ¨x " th ¨x : h P Hu.

Lemma 9.4. µ is H-invariant if and only if for any measurable partition ξ subordinate to the partition into H-orbits and µ-a.e. x the conditional measure µ ξ x coincides-up to normalization-with the restriction of the left-Haar measure on H ¨x to ξpxq.

Similar to the definition of metric entropy of f conditioned on unstable manifolds, we can define the metric entropy of f conditioned on H-orbits, written h µ pf | Hq, by h µ pf | Hq :" h µ pf, ξq where ξ is any increasing, measurable partition ξ subordinate to H-orbits. Let λ i , E i pxq, and m i be as in 7.1 for the dynamics of f and the measure µ. We define the multiplicity of λ i relative to H to be (the almost surely constant value of)

m i,H " dimpE i pxq X T x pH ¨xqq.
Generalizing Theorem 8.6(1) we have (see for instance [30])

h µ pf | Hq ď ÿ λ i ą0 λ i m i,H . (9.3)
From the proof of Theorem 9.3, (in particular, the explicit formula for the density function ρ in (9.2); see (D.6) in Appendix D and proof of Proposition 5.8) we have the following.

Theorem 9.5. With the above setup, the following are equivalent:

(1) h µ pf | Hq " ř λ i ą0 λ i m i,H ; (2) for any measurable partition ξ subordinate to the partition into H-orbits and almost every x, µ ξ x is absolutely continuous with respect to the Riemannian volume on the H-orbit H ¨x;

(3) µ is H-invariant.
The proof is only a slightly more complicated version of the proof of Proposition 5.8. Note that as Theorem 9.5 only concerns the entropy and dynamics inside H-orbits, the result holds for C 1 or even C 0 actions since the dynamics permuting H-orbits is affine and hence C 8 . See for instance [60] where related entropy results are shown for C 0 actions of Lie groups.

A possible critique of Theorem 9.3 is that in examples it seems nearly impossible to verify equality in (9.1) without first knowing that the measure is SRB. However, in a number of settings of group actions on manifolds, it turns out one can in fact verify equality in (9.1) (or typically, equality in Theorem 9.5(1)) and thus derive the SRB property or gain additional invariance of the measure only from entropy considerations. This is one key idea in this text, the papers [31,36], and also appears as a main tool in [67,144].

Remark 9.6. The statement and proof of Theorem 9.3, especially the reformulation in Theorem 9.5, is very similar to the invariance principle for fiberwise disintegrations of measures invariant under skew products. The earliest version of this invariance principle is due to Ledrappier [125] for projectivized linear cocycles. Avila-Viana extended this to cocycles taking values in the group of C 1 diffeomorphisms in [6]. See Proposition 15.5 for a related invariance principle in the setting of actions of lattices on manifolds. 9.2. Approaches to Questions 9.1 and 9.2. Although not the main focus of this text, we summarize a number of alternative approaches towards approaching Questions 9.1 and 9.2 that arise in various dynamical settings.

SRB property from dynamical hypotheses. In the setting of uniformly hyperbolic dynamics, SRB measures are known to exist for Anosov diffeomorphisms, Anosov flows, and Axiom A attractors. See [24,26]. In the setting of partially hyperbolic diffeomorphisms, under suitable conditions on the central dynamics SRB measures are known to exist; related results hold for dynamics with a dominated splitting. See for example [2][3][4]21].

SRB measures via detailed analysis. For specific families of examples exhibiting nonuniform hyperbolicity, tools of parameter exclusion, normal forms, and detailed analysis can be used to show the existence of an SRB measure. See for example, [8-11, 97, 133, 176, 184]. General hypotheses that can be verified in a number of examples are given in [183,196] which guarantee the existence of SRB measures. See the survey article [197] for more background.

Verifying equality in the entropy formula. As discussed above, the culmination of the results of [124,126,128] characterizes SRB measures exactly as those for which the equality h µ pf q " ř λ i ą0 m i λ i holds. Similarly, equality in Theorem 9.5 (1) in holds if and only if the measure µ is invariant under the action of the subgroup H. This approach-verifying equality in the entropy formula to obtain invariance of a measure-has been exploited in particular in [31,36,67,144].

Shearing and translation invariance in a homogeneous structure. A common tool to obtain invariance or absolute continuity properties of leaf-wise measures is to manufacture a shear of leaf-wise measures along leaves of a foliation. That is, given an invariant measure µ and an affine foliation F with family of normalized leave-wise measures tµ F

x u, for a µ-typical x one may be able to use the dynamics to construct approximations of translations along the support of µ F

x in the leaf Fpxq that preserve the measure µ F

x up to normalization. Taking a limit, one has that µ F

x is preserved up to normalization under some translations which gives strong information (see Proposition 5.6) on the geometry of µ F

x . Additional dynamical arguments can then often establish translation invariance of the leaf-wise measures µ F

x . Manufacturing translation invariance of leaf-wise measures along their support in an affine foliation F is a main tool used to established Ratner's measure classification results in [162,164] and [144]. This was also one of the main steps (see Lemma 6.3) in the proof of Theorem 2.8.

In a setting similar to that of Theorem 2.8, for higher-rank diagonal actions on semisimple homogeneous spaces (see Section 13.2), the high entropy method [59,60] and low entropy method [63,132] provide mechanisms to obtain translation invariance of leaf-wise measures, culminating in the landmark paper [61]. Another mechanism to obtain translation invariance of leaf-wise measures appears in [13,14] and is used to establish measure rigidity results for stationary measure for affine random walks. In [67], a mechanism inspired by [13] is used to obtain invariance for certain affine actions of SLp2, Rq.

This approach, and specifically the method presented in Part 1 from [114], has been adapted to establish measure rigidity in a number of nonlinear settings including [100] and [102]. In non-linear settings, unstable manifolds W u pxq are C 2 injectively immersed copies of R k for some k. Although there might be no natural notion of translation, relative to certain coordinate systems H x : R k Ñ W u pxq obtained from normal forms of the dynamics along unstable manifolds, leaf-wise measures µ u

x are absolutely continuous if and only if their images pH ´1 x q ˚µu x in these coordinates are translation invariant in R k . In a number of non-linear settings including [35,100,102] absolute continuity properties of a measure µ along unstable foliations is shown by establishing translation invariance of the leaf-wise measures pH ´1

x q ˚µu x in these coordinates.

Part 3. Smooth lattice actions and new results in the Zimmer program

The main goal of the part will be to understand properties and to classify smooth actions of certain countable groups Γ on compact manifolds. The main results of this section are Theorem 11.4 and Theorem 11.6. We give their proofs after introducing some terminology and motivation.

SMOOTH LATTICE ACTIONS

We give some background on lattices in semisimple Lie groups and a number of examples of smooth actions of lattices on manifolds. References with additional details for this and the next section include [12,74,121,122,141,193]. 10.1. Lattices in semisimple Lie groups. Recall that a Lie algebra g is simple if it is non-abelian and has no non-trivial ideal. A Lie algebra g is semisimple if it is the direct sum g " ' i"1 g i of simple Lie algebras g i ; this is equivalent to the fact that rg, gs " g. We say a Lie group G is simple (resp. semisimple) if its Lie algebra g is simple (resp. semisimple). The main example for this text is the simple Lie group G " SLpn, Rq.

Let G be a connected semisimple Lie group with finite center. Semisimple Lie groups are unimodular and hence admit a bi-invariant measure, called the Haar measure, which is unique up to normalization. A lattice in G is a discrete subgroup Γ Ă G with finite co-volume. That is, if D is a measurable fundamental domain for the right-action of Γ on G then D has finite volume. If the quotient G{Γ is compact, we say that Γ is a cocompact lattice. If G{Γ has finite volume but is not compact we say that Γ is nonuniform. The quotient manifold G{Γ by the right action of Γ admits a left-action by G and the Haar measure on G descends to a finite, G-invariant measure on G{Γ which we normalize to be a probability measure.

Example 10.1. The standard example of a lattice in G " SLpn, Rq is Γ " SLpn, Zq. Note that SLpn, Zq is not cocompact in SLpn, Rq. However, SLpn, Rq and more general simple and semisimple Lie groups possess both nonuniform and cocompact lattices. (See for example [193,Sections 6.7,6.8] for examples and constructions.) Example 10.2. In the case G " SLp2, Rq, the fundamental group of any finite area hyperbolic surface is a lattice in G. In particular, the fundamental group of a compact hyperbolic surface is a cocompact lattice in G. This can be seen by identifying the fundamental group of S with the deck group of the hyperbolic plane H " SOp2, RqzSLp2, Rq. For instance, the free group Γ " F 2 on two generators is a lattice in G as can be seen by giving the punctured torus S " T 2 tptu a hyperbolic metric.

See [193] for further details on constructions and properties of lattices in Lie groups. 10.2. Rank of G. Every semisimple Lie group admits an Iwasawa decomposition G " KAN where K is compact, A is a simply connected free abelian group of Rdiagonalizable elements, and N is unipotent. See [121] for details. The dimension of A is the rank of G. We call such a group A a maximal split Cartan subgroup.

In the case of G " SLpn, Rq, the standard choice of K, A, and N are K " SOpn, Rq, A " tdiagpe t 1 , e t 2 , . . . , e tn q : t 1 `¨¨¨`t n " 0u,

and N the group of upper-triangular matrices with all diagonal entries equal to 1.

Note that, as elements in SLpn, Rq have determinant 1, we have diagpe t 1 , e t 2 , . . . , e tn q P SLpn, Rq if and only if t 1 `¨¨¨`t n " 0. Thus A » R n´1 and the rank of SLpn, Rq is n ´1.

We say that a simple Lie group G is higher-rank if its rank is at least 2. We will say that a lattice Γ in a higher-rank simple Lie group G is a higher-rank lattice.

In particular, G " SLpn, Rq and its lattices are higher-rank when n ě 3.

In Example 10.9 below, we present an example of a cocompact lattice Γ in the group G " SOpn, nq when n ě 4. The group SOpn, nq has rank n and thus Γ is a higher-rank, cocompact lattice.

For further examples, see Table 1 for calculations of rank for various matrix groups and [121,VI.4] for examples of Iwasawa decompositions for various matrix groups.

10.3. Standard actions of lattices in Lie groups. We present a number of standard examples of "algebraic" actions of lattices in Lie groups. We also discuss in Example 10.10 some modifications of algebraic actions and constructions of more exotic actions.

Example 10.3 (Finite actions). Let Γ 1 be a finite-index normal subgroup of Γ. Then F " Γ{Γ 1 is finite. Suppose the finite group F acts on a manifold M . Since F is a quotient of Γ we naturally obtain a Γ-action on M .

Note that an action of a finite group preserves a volume simply by averaging any volume form by the action. Definition 10.4. An action α : Γ Ñ DiffpM q is finite or almost trivial if it factors through the action of a finite group. That is, α is finite if there is a finite-index normal subgroup Γ 1 Ă Γ such that αae Γ 1 is the identity.

We remark that by a theorem of Margulis [138], if Γ is a lattice in a higher-rank, simple Lie group then all normal subgroups of Γ are either finite or of finite-index.

Example 10.5 (Affine actions). Let Γ " SLpn, Zq (or any finite-index subgroup of SLpn, Zq). Let M " T n " R n {Z n be the n-dimensional torus. We have a natural action α : Γ Ñ DiffpT n q given by αpγqpx `Zn q " γ ¨x `Zn for any matrix γ P SLpn, Zq.

To generalize this example to other lattices, let Γ Ă SLpn, Rq be any lattice and let ρ : Γ Ñ SLpd, Zq be any representation. Then we have a natural action α : Γ Ñ DiffpT d q given by αpγqpx `Zd q " ρpγq ¨x `Zd .

Note that these examples preserve a volume form, namely, the Lebesgue measure on T d . Also note that these actions are non-isometric.

Remark 10.6. Both constructions in Example 10.5 give actions α : Γ Ñ DiffpT d q that have global fixed points. That is, the coset of 0 in T d is a fixed point of αpγq for every γ P Γ.

The construction can be modified further to obtain genuinely affine actions without global fixed points. Given a lattice Γ Ă SLpn, Rq and a representation ρ : Γ Ñ SLpd, Zq, there may exist non-trivial elements c P H 1 ρ pΓ, T d q; that is, c : Γ Ñ T d is a function with cpγ 1 γ 2 q " ρpγ 1 qcpγ 2 q `cpγ 1 q (10.1)

and such that there does not exist any η P T d with cpγq " ρpγqη ´η (10.2) for all γ P Γ. (Equation (10.1) says that c is a cocycle with coefficients in the Γ-module T d ; (10.2) says c is not a coboundary.) We may then define α : Γ Ñ DiffpT d q by αpγqpx `Zd q " ρpγq ¨x `cpγq `Zd . Equation (10.1) ensures that α is an action and (10.2) ensures that α is not conjugate to the action α.

In the above construction, any cocycle c : Γ Ñ T d is necessarily cohomologous to a torsion-valued (that is, Q d {Z d -valued) cocycle. This follows from Margulis's result (see [141,Theorem 3 (iii)]) on the vanishing of H 1 ρ pΓ, R d q. In particular, α and α are conjugate when restricted to a finite-index subgroup of Γ. See [95] for more details.

Example 10.7 (Projective actions). Let Γ Ă SLpn, Rq be any lattice. Then Γ has a natural linear action on R n . The linear action of Γ on R n induces an action of Γ on the sphere S n´1 thought of as the set of unit vectors in R n : we have α : Γ Ñ DiffpS n q given by αpγqpxq " γ ¨x }γ ¨x} .

Alternatively we could act on the space of lines in R n and obtain an action of Γ on the pn ´1q-dimensional real projective space RP n´1 . This action does not preserve a volume; in fact there is no invariant probability measure for this action. Additionally, these actions are not isometric for any Riemannian metric.

Remark 10.8 (Actions on boundaries). Example 10.7 generalizes to actions of lattices Γ in G acting on boundaries of G. Given a semisimple Lie group G with Iwasawa decomposition G " KAN , let M " K X C G pAq be the centralizer of

A in K. A closed subgroup Q Ă G is parabolic if it is
conjugate to a group containing M AN . When G " SLpn, Rq we have that M is a finite group and any parabolic subgroup Q is conjugate to a group containing all upper triangular matrices. See [121,Section VII.7] for further discussion on structure of parabolic subgroups.

Given a semisimple Lie group G, a (finite-index subgroup of a) proper parabolic subgroup Q Ă G, and a lattice Γ Ă G, the coset space M " G{Q is compact and Γ acts on M naturally as αpγqpxQq " γxQ. These actions never preserve a volume form or any Borel probability measure and are not isometric.

In Example 10.7, the action on the projective space RP n´1 can be seen as the action on SLpn, Rq{Q where Q is the parabolic subgroup Then Γ is a cocompact lattice in G. (See for example [193], Proposition 5.5.8 and Corollary 5.5.10.) Let τ : K Ñ K be the nontrivial Galois automorphism and let τ act coordinatewise on matrices with entries in K. Given γ P Γ we have τ pγq " Id if and only if γ " Id. Moreover, as τ 2 " Id we have τ pγq P SOpτ pQqq :" tg P SLp2n, Rq | g T τ pBqg " τ pBqu » SOp2nq.

Q " $ ' ' ' & ' '
In particular, the map γ Ñ τ pγq gives a representation Γ Ñ SOp2nq with infinite image into the compact group SOp2nq.

As SOp2nq is the isometry group of the sphere S 2n´1 " SOp2nq{SOp2n ´1q we obtain an action of Γ by isometries on a manifold of dimension 2n ´1.

Isometric actions of cocompact lattices in SLpn, Rq. A more complicated construction can be used to build cocompact lattices Γ Ă SLpn, Rq that possess infinite-image representations π : Γ Ñ SUpnq (see discussion in [193,Sections 6.7,6.8] as well as [193,Warning 16.4.3].) In this case, one obtains isometric actions of certain cocompact lattices Γ in SLpn, Rq on the p2n ´2q-dimensional homogeneous space SUpnq{SpUp1q ˆUpn ´1qq.

Example 10.10 (Modifications of standard examples and exotic actions). Beyond the "algebraic actions" discussed in Examples 10.5-10.9, it is possible to modify certain algebraic constructions to construct genuinely new actions; these actions might not be conjugate to algebraic actions and may exhibit much weaker rigidity properties. One such construction starts with the standard action of (finiteindex subgroups of) SLpn, Zq on T n and creates a non-volume-preserving action by blowing-up fixed points or finite orbits of the action. In [111, Section 4], Katok and Lewis showed this example can be modified to obtain volume-preserving, realanalytic actions of SLpn, Zq that are not C 0 conjugate to an affine action; moreover, these actions are not locally rigid. In [16,18,73], constructions of non-locally rigid, ergodic, volume-preserving actions of any lattice in a simple Lie group are constructed by more general blow-up constructions.

Another example due to Stuck [175] demonstrates that it is impossible to fully classifying all lattice actions. Let P Ă SLpn, Rq be the group of upper triangular matrices. There is a non-trivial homomorphism ρ : P Ñ R. Now consider any flow (i.e. R-action) on a manifold M and view the flow as a P -action via the image of ρ. Then G acts on the induced space N " pG ˆM q{P and the restriction induces a non-volume-preserving, non-finite action of Γ. This example shows-particularly in the non-volume-preserving-case-that care is needed in order to formulate any precise conjectures that assert that every action should be "of an algebraic origin." Note however, that we obtain a natural map N Ñ G{P that intertwines Γ-actions; in particular, this action has an "algebraic action" as a factor.

We refer to [74, Sections 9 and 10] for more detailed discussion and references to modifications of algebraic actions and exotic actions. 10.4. Actions of lattices in rank-1 groups. Actions by lattices in higher-rank Lie groups are expected to be rather constrained. Although Example 10.10 shows there exists exotic, genuinely "non-algebraic" actions of such groups, these actions are build from modifying algebraic constructions or factor over algebraic actions. For lattices in rank-one Lie groups such as SLp2, Rq, the situation is very different. There exist natural actions that have no algebraic origin and the algebraic actions of such groups seem to exhibit far less rigidity (for example Example 10.12 which is not locally rigid) than those above.

Example 10.11 (Actions of free groups). Let G " SLp2, Rq. The free group Γ " F 2 is a lattice in G. (For instance, F 2 is the fundamental group of the punctured torus; more explicitly, SLp2, Zq contains a copy of F 2 as an index 12 subgroup.) Let M be any manifold and let f, g P DiffpM q. Then f and g generate an action of Γ on M that is clearly not of an algebraic origin. In particular, there is no expectation that any rigidity phenomena should hold in general for actions by all lattices in SLp2, Rq.

For the next example, recall Definitions 1.1 and 1.3 of an Anosov actions.

Example 10.12 (Non-standard Anosov actions of SLp2, Zq). Consider the standard action α 0 of SLp2, Zq on the 2 torus T 2 as constructed in Example 10.5. In [94, Example 7.21], Hurder presents an example of a 1-parameter family of deformations α t : SLp2, Zq Ñ DiffpT 2 q of α 0 with the following properties:

(1) Each α t is a real-analytic, volume-preserving action;

(2) For t ą 0, α t is not topologically conjugate to α 0 , (even when restricted to a finite-index subgroup of SLp2, Zq.) Moreover, since α 0 is an Anosov action and since the Anosov property is an open property we have that (3) each α t is an Anosov action. This shows that even affine Anosov actions of SLp2, Zq fail to exhibit local rigidity properties and that there exist genuinely exotic Anosov actions of SLp2, Zq. This is in stark contrast to the affine Anosov actions of higher-rank lattices which are known to be locally rigid by [115,Theorem 15].

In contrast, it is expected that all Anosov actions of higher-rank lattices are smoothly conjugate to affine actions as in Example 10.5 or Remark 10.6 (or analogous constructions in infra-nilmanifolds). See Question 11.1(6) below. Recent progress towards this conjecture appears in [38].

Remark 10.13. There are a number of rank-1 Lie groups whose lattices are known to exhibit some rigidity properties relative to linear representations. For instance, Corlette established superrigidity and arithmeticity of lattices in certain rank-1 simple Lie groups in [46]. In particular, Corlette establishes superrigidity for lattices in Sppn, 1q and F ´20

4

, the isometry groups of quaternionic hyperbolic space and the Cayley plane. It seems plausible that lattices in certain rank-1 Lie groups would exhibit some rigidity properties for actions by diffeomorphisms; currently, there do not seem to be any results in this direction.

ACTIONS IN LOW DIMENSION AND ZIMMER'S CONJECTURE

11.1. Motivating questions. For actions by lattices in rank-1 groups, we have seen that it is easy to construct exotic actions of free groups and Example 10.12 shows there are exotic Anosov actions of SLp2, Zq on tori.

However, for actions of lattices in higher-rank, simple Lie groups, the situation is expected to be far more rigid. In particular, the examples from the previous section lead to a number of more precise questions and conjectures. For concreteness, fix n ě 3 and let G " SLpn, Rq. Let Γ Ă G be a lattice. Recall the action of Γ on S n´1 and the volume-preserving Anosov action of Γ " SLpn, Zq on T n . Questions 11.1. Consider the following questions:

(1) Is there a non-finite action of Γ on a manifold of dimension at most n ´2?

(2) If the answer to (1) is unknown, does every action of Γ on a manifold of dimension at most n ´2 preserve a volume form? (3) Is there a non-finite, volume-preserving action of Γ on a manifold of dimension at most n ´1? (4) Is every non-finite action of Γ on an n-torus of the type considered in Example 10.5? What about volume-preserving actions? That is, if α : Γ Ñ DiffpT n q is a non-finite action is α smoothly conjugate to an affine action as in Example 10.5 (or as in Remark 10.6)? ( 5) Are the only non-finite actions of Γ on a connected pn ´1q-manifold those considered in Example 10.7? That is, if α : Γ Ñ Diff 8 pM q is a non-finite action is M either S n´1 or RP n´1 and is α smoothly conjugate to the projective action. Motivated by various conjectures on the classification of Anosov diffeomorphisms and Question 11.1(4), we also pose the following. (1) If dimpM q ă n ´1 then any homomorphism Γ Ñ DiffpM q has finite image. (2) In addition, if vol is a volume form on M and if dimpM q " n ´1 then any homomorphism Γ Ñ Diff vol pM q has finite image.

We are intentionally vague about the regularity in Conjecture 11.2 (and Conjecture 11.3 below). Zimmer's original conjecture considered the case of C 8 volumepreserving actions. See [198,201,202]. Most evidence for the conjecture requires the action to be at least C 1 . It is possible the conjecture holds for actions by homeomorphisms; see for instance [27,190,191] for a partial list of results in this directions. The results we discuss below require the action to be at least C 1`β as we use tools nonuniformly hyperbolic dynamics though some of our results still hold for actions by C 1 diffeomorphisms (see Theorem 11.7 below.) ˚11.3. Zimmer's conjecture for actions by lattices in other Lie groups. To formulate Zimmer's conjecture for lattices general Lie groups, to each simple, noncompact Lie group G we associate 3 positive integers d 0 pGq, d rep pGq, d cmt pGq defined roughly as follows:

(1) d 0 pGq is the minimal dimension of G{H as H varies over proper closed subgroups H Ă G. (We remark that H is necessarily a parabolic subgroup in this case.) (2) d rep pGq is the minimal dimension of a non-trivial linear representation of (the Lie algebra) of G.

(3) d cmt pGq is the minimal dimension of a non-trivial homogeneous space of a compact real form of G.

See Table 1 where we compute the above numbers for a number of matrix groups, (split) real forms of exceptional Lie algebras, and complex matrix groups. We also include another number rpGq which is defined in [31,36] and arises from certain dynamical arguments 4 ; this number gives the bounds appearing in the most general result, Theorem 19.2 below, towards solving Conjecture 11.3. For complete tables of values of d rep pGq, d cmt pGq, and d 0 pGq, we refer to [42].

Given the examples in Section 10.3 and the integers d rep pGq, d cmt pGq, d 0 pGq defined above, is it natural to conjecture the following full conjecture.

Conjecture 11.3 (Zimmer's Conjecture). Let G be a connected, simple Lie group with finite center. Let Γ Ă G be a lattice. Let M be a compact manifold and vol a volume form on M . Then (1) if dimpM q ă mintd rep pGq, d cmt pGq, d 0 pGqu then any homomorphism α : Γ Ñ DiffpM q has finite image; (2) if dimpM q ă mintd rep pGq, d cmt pGqu then any homomorphism α : Γ Ñ Diff vol pM q has finite image; (3) if dimpM q ă mintd 0 pGq, d rep pGqu then for any homomorphism α : Γ Ñ DiffpM q, the image αpΓq preserves a Riemannian metric; (4) if dimpM q ă d rep pGq then for any homomorphism α : Γ Ñ Diff vol pM q, the image αpΓq preserves a Riemannian metric.

Two recent results in the Zimmer program.

The following two recent results address Questions 11.1(1)-(3) above. In the remainder of this part, we outline their proofs (at times, specializing to the case of C 8 actions and the case of G " SLp3, Rq.) We also refer the reader to the excellent article by Serge Cantat [42] that presents (in French) a complete proof of Theorem 11.6. p ă q B p p p `q p `q ´1 p `q ´2 2p ´1 TABLE 1. Numerology in appearing in Zimmer's conjecture for various groups. See also [42] for more complete tables. See Theorem 19.2 where the number rpGq appears and [31,36] or Footnote 4 for definition.
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Before an answer to Questions 11.1(1) and (3) were known, the author together with Federico Rodriguez Hertz and Zhiren Wang studied Question 11.1(2) and were able to show that all such actions preserve some probability measure.

Theorem 11.4 ([36, Theorem 1.6]). For n ě 3, let Γ Ă SLpn, Rq be a lattice. Let M be a manifold with dimpM q ă n ´1. Then, for any C 1`β action α : Γ Ñ Diff 1`β pM q, there exists an α-invariant Borel probability measure.

For actions on the circle, an analogue of Theorem 11.4 is shown in [89, Theorem 3.1] for actions by homeomorphisms.

In the critical dimension dimpM q " n ´1, the projective action on RP n´1 discussed in Example 10.7 gives an example of an action that does not preserve any Borel probability measure. If α is an action of Γ on a space X, we say that a Borel probability measure µ is nonsingular for α if the measure class of µ is preserved by the action. In particular, any smooth volume on RP n´1 is nonsingular for the projective action. In [36,Theorem 1.7], it is shown that all non-measure-preserving actions on manifolds of the critical dimension pn ´1q have the projective action on RP n´1 equipped with a smooth volume as a measurable factor. Precisely, for any action α : Γ Ñ Diff 1`β pM q where dimpM q " n ´1 it is shown that either (1) there exists an α-invariant Borel probability measure µ on M ; or (2) there exists a Borel probability measure µ on M that is nonsingular for the action α; moreover the action α on pM, µq is measurably isomorphic to a finite extension of the projective action in Example 10.7 and the image of µ factors to a smooth volume form on RP n´1 . This gives strong evidence for a positive answer to Question 11.1(5) which we pose as a formal conjecture.

Conjecture 11.5. For n ě 3, let Γ Ă SLpn, Rq be a lattice, let M be a closed pn´1q-dimensional manifold, and let α : Γ Ñ Diff 8 pM q be an action with infinite image. Then, either M " S n´1 or M " RP n´1 and the action α is C 8 conjugate to the projective action on either S n´1 or RP n´1 in Example 10.7.

Returning to actions on manifolds below the critical dimensions in Zimmer's conjecture, the author with David Fisher and Sebastian Hurtado recently answered Questions 11.1(1) and (3) for actions by cocompact lattices in SLpn, Rq in [31]. They also announced the result for actions by SLpn, Zq in [32] and for actions by general lattices in joint work [33] with Dave Witte Morris. This solves Conjecture 11.2 for actions by C 2 (or even C 1`β diffeomorphisms). See Remarks below for discussion of actions by C 1 diffeomorphisms. Theorem 11.6 ([31, Theorem 1.1]). For n ě 3, let Γ Ă SLpn, Rq be a cocompact lattice. Let M be a compact manifold.

(1) If dimpM q ă n ´1 then any homomorphism Γ Ñ Diff 2 pM q has finite image. (2) In addition, if vol is a volume form on M and if dimpM q " n ´1 then any homomorphism Γ Ñ Diff 2 vol pM q has finite image. The proof of Theorem 11.6 uses ideas and results from [36], particularly the proof of Theorem 11.4, as ingredients. Thus, while Theorem 11.4 follows trivially from Theorem 11.6, we include the proof of Theorem 11.4 below as key ideas (namely, Theorem 15.1, Theorem 15.1 1 , and Proposition 15.5) will be needed in the proof of Theorem 11.6.

Remarks on Theorem 11.6. We give a number of remarks on extensions of Theorem 11.6. See also the discussion in Section 19.

(1) Recently, the authors announced in [32] that the conclusion of Theorem 11.6 holds for actions of SLpn, Zq for n ě 3. The result for general lattices in SLpn, Zq as well as analogous results for lattices in other higherrank simple Lie groups, has been announced [33] (a) If dimpM q ă rankpGq then any homomorphism Γ Ñ Diff 1 pM q has finite image. (b) In addition, if vol is a volume form on M and if dimpM q " rankpGq then any homomorphism Γ Ñ Diff 1 vol pM q has finite image. For actions by lattices in other higher-rank groups there is a gap between what is known for C 1 versus C 1`β -actions. Indeed, our number rpGq in Theorem 19.2 always satisfies rpGq ě rankpGq and is a strict inequality unless G has restricted root system of type A n . 2) is that the strongest evidence for the conjecture-Zimmer's cocycle superrigidity theorem-requires that the action preserve some Borel probability measure. Zimmer's cocycle superrigidity theorem also provides strong evidence for local and global rigidity conjectures related to Questions 11.1(4)-( 6) and is typically used in proofs of results towards solving such conjectures.

In this section we state a version of Zimmer's cocycle superrigidity theorem and some consequences. We also state a version of Margulis's superrigidity theorem (for linear representations). We also give some heuristics for Zimmer's conjecture that follow from the superrigidity theorems. General references for this section include [141,193,199].

12.1. Cocycles over group actions. Consider a standard probability space pX, µq. Let G be a locally compact topological group and let α : G ˆX Ñ X be a measurable action of G by µ-preserving transformations. In particular, αpgq is a µpreserving, measurable transformation of X for each g P G. A d-dimensional measurable linear cocycle over α is a measurable map 

A : G ˆX Ñ GLpd,
G ˆX Ñ GLpd, Rq is constant if Apg, xq is independent of x, that is, if A : G ˆX Ñ GLpd,
Rq coincides with a representation π : G Ñ GLpd, Rq on a set of full measures.

As a primary example, let α : G Ñ Diff 1 µ pM q be an action of G by C 1 diffeomorphisms of a compact manifold M preserving some Borel probability measure µ. Although the tangent bundle T M may not be a trivial bundle, we may choose a Borel measurable trivialization Ψ : T M Ñ M ˆRd of the vector-bundle T M where d " dimpM q. We have that Ψ factors over the identity map on M and, writing Ψ x : T x Ñ R d for the identification of the fiber over x with R d , we moreover assume that }Ψ x } and }Ψ ´1 x } are uniformly bounded in x.

Fix such an trivialization Ψ and define A to be the derivative cocycle relative to this trivialization:

Apg, xq " D x αpgq where, we view D x αpgq as an element of GLpd, Rq transferring the fiber txu ˆRd to tαpgqpxquˆR d via the measurable trivialization Ψ. To be precise, if Ψ : T M Ñ M ˆRd is the measurable vector-bundle trivialization then Apg, xq :" ΨpαpgqpxqqD x αpgqΨpxq ´1.

In this case, the cocycle relation (12.1) is simply the chain rule. Note that if we choose another Borel measurable trivialization Ψ 1 : T M Ñ M ˆRd then we obtain a cohomologous cocycle A 1 . Indeed, we have A 1 pg, xq " Ψ 1 pαpgqpxqqΨpαpgqpxqq ´1Apg, xqΨpxqΨ 1 pxq ´1 so we may take Φpxq " ΨpxqΨ 1 pxq ´1 in (12.2).

We have the following elementary fact which we frequently use in the case of volume-preserving actions.

Claim 12.1. Let α : G Ñ Diff 1 vol pM q be an action by volume-preserving diffeomorphisms. Then, for any α-invariant measure µ, the derivative cocycle A is cohomologous to a SL ˘pd, Rq-valued cocycle.

Above, SL ˘pd, Rq is the subgroup of GLpd, Rq defined by detpAq " ˘1.

12.2. Cocycle superrigidity. We formulate the statement of Zimmer's cocycle superrigidity theorem when G is either SLpn, Rq or a lattice subgroup of SLpn, Rq for n ě 3. Note that the version formulated by Zimmer (see [199]) had a slightly weaker conclusion. We state the stronger version formulated and proved in [78].

Theorem 12.2 (Cocycle superrigidity [78,199]). For n ě 3, let G be either G " SLpn, Rq or let G be a lattice in SLpn, Rq. Let α : G Ñ AutpX, µq be a measurable action of G by µ-preserving transformations of a standard probability space pX, µq. Let A : G ˆX Ñ GLpd, Rq be a bounded, 5 measurable linear cocycle over α.

Then there exist (1) a linear representation ρ : SLpn, Rq Ñ SLpd, Rq;

(2) a compact subgroup K Ă GLpd, Rq that commutes with the image of ρ;

(3) a K-valued cocycle C : G ˆX Ñ K;

(4) and a measurable function Φ : X Ñ GLpd, Rq such that for a.e. x P X and every g P G Apg, xq " Φpαpgqpxqq ´1ρpgqCpg, xqΦpxq.

(12.3)

In particular, Theorem 12.2 states that any bounded measurable linear cocycle A : G ˆX Ñ GLpd, Rq over the action α is cohomologous to the product of constant cocycle ρ : G Ñ SLpd, Rq and a compact-valued cocycle C : G ˆX Ñ K Ă GLpd, Rq.

12.3. Superrigidity for linear representations. Zimmer's cocycle superrigidity theorem is an extension of Margulis's superrigidity theorem for linear representations. We formulate a version of this theorem for linear representations of lattices in SLpn, Rq.

Theorem 12.3 (Margulis superrigidity [141]). For n ě 3, let Γ be a lattice in SLpn, Rq. Given a representation ρ : Γ Ñ GLpd, Rq there are (1) a linear representation ρ : SLpn, Rq Ñ SLpd, Rq;

(2) a compact subgroup K Ă GLpd, Rq that commutes with the image of ρ such that ρpγqρpγq ´1 P K for all γ P Γ.

That is, ρ " ρ ¨c is the product of the restriction of a representation ρ : SLpn, Rq Ñ SLpd, Rq to Γ and a compact-valued representation c : Γ Ñ K. Moreover the image of ρ and c commute.

In the case that Γ is nonuniform, one can show that all compact-valued representations c : Γ Ñ K have finite image. Indeed, a nonuniform lattice necessarily contains non-trivial unipotent elements (see [22,147] and [193,Proposition 5.3.1,Theorem 5.3.3].) If c had infinite image, the image cpΓq would contain a unipotent element with infinite orbit; however, compact groups never contain such unipotent elements. See also [193,Corollary 16.4.1] for more general criteria which guarantees that the image of c is finite.

For certain cocompact Γ Ă SLpn, Rq, there exists compact-valued representations c : Γ Ñ SUpnq with infinite image. (See discussion Example 10.9.) The next theorem, characterizing all homomorphisms from lattices in SLpn, Rq into compact Lie groups, shows that representations into SUpnq are more-or-less the only such examples. The proof uses the p-adic version of Margulis's superrigidity theorem and some algebra. See [141, Theorem VII.6.5] and [193,Corollary 16.4.2].

Theorem 12.4. For n ě 3, let Γ Ă SLpn, Rq be a lattice. Let K be a compact Lie group and π : Γ Ñ K a homomorphism.

(1) If Γ is nonuniform then πpΓq is finite.

(2) If Γ is cocompact and πpΓq is infinite then there is a closed subgroup K 1 Ă K with πpΓq Ă K 1 Ă K and the Lie algebra of K 1 is of the form LiepK 1 q " supnq ˆ¨¨¨ˆsupnq.

The appearance of supnq in (2) of Theorem 12.4 is due to the fact that supnq is the compact real form of slpn, Rq, the Lie algebra of SLpn, Rq. For a cocompact lattice Γ in SOpn, nq as in Example 10.9, the analogue of Theorem 12.4 states that LiepK 1 q " sop2nq ˆ¨¨¨ˆsop2nq.

12.4. Heuristic evidence for Conjecture 11.2. We present a number of heuristics that motivate the conclusions of Conjectures 11.2 and 11.3. 12.4.1. Analogy with linear representations. Note that if d ă n, there is no nontrivial representation ρ : SLpn, Rq Ñ SLpd, Rq; moreover, by a dimension count, there is no embedding of supnq in slpd, Rq. We thus immediately obtain as corollaries of Theorems 12.3 and 12.4 the following.

Corollary 12.5. For n ě 3, let Γ be a lattice in G " SLpn, Rq. Then, for d ă n, the image of any representation ρ : Γ Ñ GLpd, Rq is finite.

Conjecture 11.2 can be seen as a "nonlinear" analogue of this corollary. That is, we aim to prove the same result when the linear group GLpd, Rq is replaced by certain diffeomorphism groups DiffpM q.

12.4.2. Invariant measurable metrics. For n ě 3, let Γ be a lattice in G " SLpn, Rq and consider a measure-preserving action α : Γ Ñ Diff 1 µ pM q where M is a compact manifold of dimension at most d ď n ´1 and µ is an arbitrary Borel probability measure on M preserved by α. The derivative cocycle of the action α is then GLpd, Rq-valued. Since there are no representations ρ : SLpn, Rq Ñ SLpd, Rq for d ă n, Theorem 12.2 implies that the derivative cocycle is cohomologous to a compact-valued cocycle. In particular, we have the following:

Corollary 12.6. For Γ, M, µ and α : Γ Ñ Diff 1 µ pM q as above (1) α preserves a 'µ-measurable Riemannian metric,' i.e. there is a µ-measurable, α-invariant, positive-definite symmetric two-form on T M ; (2) for any ą 0 and γ P Γ, the set of x P M such that lim inf nÑ8 1 n log }D x αpγ n q} ě has zero µ-measure.

For (1), suppose the derivative cocycle is cohomologous to a K-valued cocycle for some compact group K Ă GLpd, Rq. One may then pull-back any Kinvariant inner product on R d to T x M via the map Φpxq in Theorem 12.2 to an αpΓq-invariant inner product. Conclusion (2) follows from Poincaré recurrence to sets on which the function Φ : M Ñ GLpd, Rq in Theorem 12.2 has bounded norm and conorm. Note from (2) that all Lyapunov exponents for individual elements of the action must vanish.

From Corollary 12.6, given n ě 3 and a lattice Γ in G " SLpn, Rq, we have that every action α : Γ Ñ Diff 1 vol pM q preserves a Lebesgue-measurable Riemannian metric g whenever M is a compact manifold of dimension at most n ´1. Suppose one could show that g was continuous or C . As we discuss in Step 3 of Section 16 below, this combined with Theorem 12.4 implies the image αpΓq is finite. Thus, Conjecture 11.2(2) follows if one can promote the measurable invariant metric g guaranteed by Corollary 12.6 of Theorem 12.2 to a continuous Riemannian metric.

The discussion in the previous paragraphs suggests the following variant of Conjecture 11.2(2) might hold:

For n ě 3, if Γ Ă SLpn, Rq is a lattice and if µ is any fully supported Borel probability measure on a compact manifold M of dimension at most pn ´1q then any homomorphism Γ Ñ Diff µ pM q has finite image.

Our method of proof of Conjecture 11.2(2) does not establish this conjecture. However, the conjecture would follow (even allowing for µ to have partial support) if the global rigidity result in Conjecture 11.5 holds. 12.4.3. Actions with discrete spectrum. Upgrading the measurable invariant Riemannian metric in Corollary 12.6 to a continuous Riemannian metric in the above heuristic seems quite difficult and is not the approach we take in the proof of Theorem 11.6. In [200], Zimmer was able to upgrade the measurable metric to a continuous metric for volume-preserving actions that are very close to isometries. This result now follows from the local rigidity of isometric actions in [17,79].

Zimmer later established a much stronger result in [203] which provides very strong evidence for the volume-preserving cases in Conjecture 11.3. Using the invariant, measurable metric discussed above and that higher-rank lattices have Property (T), Zimmer showed that any volume-preserving action appearing in Conjecture 11.3 has discrete spectrum. In particular, this result implies that (the ergodic components of) all volume-preserving actions appearing in Conjecture 11.3 are measurably isomorphic to isometric actions. 13. STRUCTURE THEORY OF SLpn, Rq AND CARTAN FLOWS ON SLpn, Rq{Γ Let G " SLpn, Rq and let Γ Ă G be a lattice. Recall we write G " KAN for the Iwasawa decomposition where K " SOpn, Rq,

A " tdiagpe t 1 , e t 2 , . . . , e tn q : t 1 `¨¨¨`t n " 0u, and N is the group of upper triangular matrices with 1s on the diagonal. We will be interested in certain subgroups of G and how they capture dynamical information of the action of the Cartan subgroup A on the homogeneous space G{Γ.

13.1. Roots and root subgroups. We consider the following linear functionals β i,j : A Ñ R given as follows: for i ‰ j, β i,j `diagpe t 1 , e t 2 , . . . , e tn q ˘" t i ´tj .

The linear functionals β i,j are the roots of G.

Associated to each root β i,j is a 1-parameter unipotent subgroup U i,j Ă G. For instance, in G " SLp3, Rq we have the following 1-parameter flows u 1,2 ptq "

¨1 t 0 0 1 0 0 0 1 ', u 1,3 ptq " ¨1 0 t 0 1 0 0 0 1 ', u 2,3 ptq " ¨1 0 0 0 1 t 0 0 1 ', u 2,1 ptq " ¨1 0 0 t 1 0 0 0 1 ', u 3,1 ptq " ¨1 0 0 0 1 0 t 0 1 ', u 3,2 ptq " ¨1 0 0 0 1 0 0 t 1 '.
We let U i,j denote the associated 1-parameter unipotent subgroups of G: U i,j :" tu i,j ptq : t P Ru.

The groups U i,j have the property that conjugation by s P A dilates their parametrization by e β i,j psq : su i,j ptqs ´1 " u i,j pe β i,j psq tq. (13.2) In particular, if g 1 " u i,j ptq ¨g is in the U i,j -orbit of g and s P A then s ¨g1 " u i,j pe β i,j psq tq ¨s ¨g.

13.2. Cartan flows. For concreteness, consider G " SLp3, Rq and let Γ be a lattice in SLp3, Rq such as SLp3, Zq. Let X denote the coset space X " G{Γ. This is an 8 dimensional manifold (which is noncompact when Γ is a nonuniform lattice such as SLp3, Zq.) G acts on X on the left: given g P G and x " g 1 Γ P X we have g ¨x " gg 1 Γ P X.

The Cartan subgroup A Ă G is the subgroup of diagonal matrices with positive entries

A :" $ & % ¨et 1 0 0 0 e t 2 0 0 0 e t 3 ': t 1 `t2 `t3 " 0 , .
-.

The group A is isomorphic to R 2 , for instance, via the embedding ps, tq Þ Ñ diagpe s , e t , e ´s´t q.

We consider the action α : A ˆX Ñ X of A on X given by αpsqpxq " sx.

For x P X let W i,j pxq be the orbit of x under the 1-parameter group U i,j : W i,j pxq " tu i,j ptqx : t P Ruu.

For s P A, we claim that the s-action on X dilates the natural parametrization of each W i,j pxq by exactly β i,j psq. Indeed, if x P X and if x 1 " u i,j pvq ¨x P W i,j pxq then for s P A we have αpsqpx 1 q " su i,j pvqx " su i,j pvqs ´1sx " u i,j pv 1 qαpsqpxq where, using (13.2), we have that have v 1 " e β i,j psq v.

In particular, we interpret the functionals β i,j as the (non-zero) Lyapunov exponents for the A-action on X (with respect to any A-invariant measure). Note that the zero functional is a Lyapunov exponent of multiplicity two corresponding to the A-orbits. The tangent spaces to each W i,j pxq as well as the tangent space to the orbit A ¨x gives the A-invariant splitting guaranteed by Theorem 7.4. Note that no two roots β i,j are positively proportional and hence are their own coarse Lyapunov exponents for the action (see Section 7.4.2).

SUSPENSION SPACE AND FIBERWISE EXPONENTS

We now begin the proofs of Theorem 11.4 and Theorem 11.6 with a technical but crucial construction. Here, we induce from an action α of a lattice Γ on a manifold M to an action of G " SLpn, Rq on an auxiliary manifold denoted by M α . The properties of the G-action on M α mimic the properties of the Γ-action on M . However, for a number of reasons it is much more convenient to study the G-action on M α . The construction is parallel to the construction described in Section 6.1.

14.1. Suspension space and induced G-action. Fix G " SLpn, Rq and let Γ Ă G be a lattice. Let M be a compact manifold and let α : Γ Ñ DiffpM q be an action.

On the product G ˆM consider the right Γ-action pg, xq ¨γ " pgγ, αpγ ´1qpxqq and the left G-action a ¨pg, xq " pag, xq. Define the quotient manifold M α :" pG ˆM q{Γ. As the G-action on G ˆM commutes with the Γ-action, we have an induced left G-action on M α . For g P G and x P M α we denote this action by g ¨x and denote the derivative of the diffeomorphism x Þ Ñ g ¨x by a x P M α by D x g :

T x M α Ñ T g¨x M α .
We write π : M α Ñ SLpn, Rq{Γ for the natural projection map. Note that M α has the structure of a fiber-bundle over SLpn, Rq{Γ induced by the map π with fibers diffeomorphic to M . The Gaction permutes the M -fibers of M α . We let F " kerpDπq be the fiberwise tangent bundle: for x P M α , F pxq Ă T x M α is the dimpM q-dimensional subspace tangent to the fiber through x.

Equip M α with a continuous Riemannian metric. For convenience, we moreover assume the restriction of the metric to G-orbits coincides under push-forward by the projection π : M α Ñ SLpn, Rq{Γ with the metric on SLpn, Rq{Γ induced by a right-invariant (and left K-invariant) metric on G. (We note that if Γ is cocompact, M α is compact and all metrics are equivalent. In the case that Γ is not cocompact, some additional care is needed to ensure the metric is well behaved in the fibers. We will not discuss the technicalities of this case here.)

To construct such a metric, first fix a C 8 Riemannian metric x¨, ¨y on T M . Let t ψi , i " 1, . . . , mu be a finite C 8 partition of unity on the symmetric space KzG{Γ subordinate to finitely many coordinate charts. Lift each ψi to a Kinvariant function defined on G{Γ and then select a lift ψ i : G Ñ r0, 1s of each ψi whose support intersects some fixed compact fundamental domain containing the identity. Write ψ i,γ : G Ñ r0, 1s for the function ψ i,γ pgq " ψ i pgγ ´1q.

The supports satisfy supppψ i,γ q X supppψ i,γ 1 q " H whenever γ ‰ γ 1 and the collection tψ i,γ | i P t1, . . . , mu, γ P Γu is a partition of 1 on G. Given v, w P tgu ˆTx M set xv, wy g,x :"

m ÿ i"1 ÿ γPΓ φ i,γ pgqxD x αpγqpvq, D x αpγqpwqy x .
Equip T pg,xq pG ˆM q " T g G ˆTx M with the product of the left K-invariant, right Γ-invariant metric on G and xv, wy g,x . Note that this metric is β-Hölder continuous if α is an action by C 1`β diffeomorphisms. We then verify that Γ acts by isometries and thus the metric descends to a metric on M α . Indeed, writing } ¨}g,x for the norm associated to x¨, ¨yg,x , for v P tgγu ˆTx M we have

}v} 2 gγ,x " m ÿ i"1 ÿ γPΓ φ i,γ pgγq}D x αpγqpvq} 2 0 " m ÿ i"1 ÿ γPΓ φ i,γγ ´1 pgq}D x αpγqpvq} 2 0 " m ÿ i"1 ÿ γPΓ φ i,γγ ´1 pgq}D x αpγγ ´1 γqpvq} 2 0 " m ÿ i"1 ÿ γPΓ φ i,γγ ´1 pgq}D αpγqpxq αpγγ ´1, αpγqpxqqD x αpγ, xqpvq} 2 0 " }D x αpγqv} 2 g,αpγqpxq .
14.2. Fiberwise Lyapunov exponents. Recall that A Ă G is the subgroup A " tdiagpe t 1 , e t 2 , . . . , e tn qu » R n´1 .

The G-action on M α restricts to an A-action on M α . Let µ be any ergodic, Ainvariant Borel probability measure on M α . The G-action (and hence the A-action) permutes the fibers of M α and hence the derivatives of the Gand A-actions preserve the fiberwise tangent subbundle F Ă T M α . We equip A » R n´1 with a norm | ¨|. We may restrict Theorem 7.4 to the A-invariant subbundle F Ă T M α and obtain Lyapunov exponent functionals for the fiberwise derivative cocycle. We thus obtain (1) an A-invariant set Λ Ă M α with µpΛq " 1;

(2) linear functionals λ F 1,µ , λ F 2,µ , . . . , λ F p,µ : A Ñ R; and (3) a µ-measurable, A-invariant splitting F pxq " À p i"1 E F i pxq defined for x P Λ such that for every x P Λ and v P E F i pxq t0u

lim |a|Ñ8 log }D x apvq} ´λF i,µ paq |a| " 0.
In particular, for any a P A and v P F pxq t0u we have

lim kÑ8 1 k log }D x a k pvq} " λ F i,µ paq.
A coarse fiberwise Lyapunov exponent χ F µ is a positive proportionality class of fiberwise Lyapunov exponents. THEOREM 11.4 15.1. Proof of Theorem 11.4. Given the constructions in Section 14 and Ledrappier's theorem as formulated in Theorem 9.5 (see also Proposition 5.8), we are now in a position to prove Theorem 11.4. In fact, we prove the following invariance principle: Theorem 15.1. Let Γ Ă SLpn, Rq be a lattice. Let α : Γ Ñ Diff 1`β pM q be an action and let M α denote the suspension space with induced G-action. Let µ be an ergodic, A-invariant Borel probability measure on M α whose projection to SLpn, Rq{Γ is the Haar measure.

INVARIANCE PRINCIPLE AND PROOF OF

Then, if dimpM q ď n´2 the measure µ is G-invariant. Moreover, if α preserves a volume form vol and if dimpM q ď n ´1 then the measure µ is G-invariant.

Note that Theorem 15.1 does not require that Γ be cocompact. 6 Theorem 11.4 follows immediately from Theorem 15.1: since A is abelian (in particular amenable) and the space of probability measures on M α projecting to the Haar measure on SLpn, Rq{Γ is nonempty, A-invariant, and weak-˚compact, the Krylov-Bogolyubov theorem implies there is an A-invariant Borel probability measure µ on M α projecting to the Haar measure on SLpn, Rq{Γ. Theorem 15.1 implies µ is G-invariant and Theorem 11.4 then follows from the following elementary claim.

Claim 15.2. The Γ-action α on M preserves a Borel probability measure if and only if the induced G-action on M α preserves a Borel probability measure (which necessarily projects to the Haar measure on G{Γ).

Indeed, if µ is a G-invariant measure on M α then conditioning on the fiber of M α over eΓ P G{Γ gives an α-invariant measure on M viewed as the fiber of M α over eΓ. On the other hand, if μ is an α-invariant measure on M then, writing m G for the Haar measure on G, we have m G ˆμ is a (right) Γ-invariant and (left) Ginvariant measure on G ˆM and hence descends to a (finite) G-invariant measure on M α . Remark 15.3. For more general semisimple Lie groups G we have the following theorem which follows from the proof of Theorem 15.1. In this setting, we take A to be a maximal split Cartan subgroup; that is, A is a maximal, connected, abelian subgroup of R-diagonalizable elements.

Theorem 15.1 1 . Let G be a simple Lie group and let Γ Ă G be any lattice. Let α : Γ Ñ Diff 1`β pM q be an action and let M α denote the suspension space with induced G-action. Let µ be an ergodic, A-invariant Borel probability measure on M α whose projection to G{Γ is the Haar measure.

Then, if dimpM q ă rankpGq then the measure µ is G-invariant. Moreover, if α preserves a volume form vol and if dimpM q ď rankpGq then the measure µ is G-invariant.

Remark 15.4. In fact, Theorem 15.1 and 15.1 1 hold for actions by C 1 -diffeomorphisms. This can be shown by the invariance principle of Avila and Viana [6] (generalizing a result of Ledrappier [125].) We present below a proof that uses (mildly) the C 1`β hypotheses as this motivates the proof of Proposition 15.5 (which allows us to establish Theorem 15.1 1 for manifolds of higher critical dimension) in the next section which requires the higher-regularity of the action. 6 However, in the case that Γ is nonuniform, the space M α is not compact and some care is needed to define Lyapunov exponents; in particular, we must specify a Riemannian metric on M α . A Riemannian metric on M α adapted to this setting is constructed in [36].

We proceed with the proof of Theorem 15.1, adapted from [42], which is somewhat simpler than the arguments in [31,36].

Proof of Theorem 15.1. Let µ be an ergodic, A-invariant Borel probability measure on M α whose projection to SLpn, Rq{Γ is the Haar measure.

Recall that A » R n´1 . In the non-volume-preserving case, since dimpM q ď n ´2 there are at most n ´2 fiberwise Lyapunov exponents. In particular, the intersection of the kernels of the fiberwise Lyapunov exponents is a subspace of A whose dimension is at least 1. In the volume-preserving case, there are at most pn ´1q fiberwise Lyapunov exponents; however, these satisfy the linear relation they necessarily sum to zero since the cocycle is cohomologous to an SL ˘pn 1, Rq-valued cocycle (recall Claim 12.1) whence for every g P G,

0 " ż log | detpDgae F q| dµ " ÿ λ F i,µ .
Thus, if dimpM q ď n ´1 and if α is a volume-preserving action, then the intersection of the kernels of all fiberwise Lyapunov exponents again has dimension at least 1. In particular, in either case we may find a nonzero s 0 P A such that λ F i,µ ps 0 q " 0 for every fiberwise Lyapunov exponent λ F i,µ . (

Recall that entropy can only decrease under a factor. Thus h µ ps 0 q ě h Haar ps 0 q where h Haar ps 0 q denotes the entropy of translating by s 0 on SLpn, Rq{Γ with respect to the Haar measure.

Recall we interpret the roots β of SLpn, Rq as the (non-zero) Lyapunov exponents for the A-action on SLpn, Rq{Γ with respect to any A-invariant measures and hence also as Lyapunov exponents for the A-action on the fiber bundle M α transverse to the fibers and tangential to the local G-orbits. See discussion in Section 13.2. Let N `Ă G be the subgroup generated by all root subgroups U β with βps 0 q ą 0. Similarly, let N ´Ă G be the subgroup generate by all root subgroups U β with βps 0 q ă 0. The orbits of N `and N ´in SLpn, Rq{Γ correspond, respectively, to the unstable and stable manifolds for the action of translation by s 0 on G{Γ. Since s 0 is in the kernel of all fiberwise Lyapunov exponents, each tangent space F pxq to the fibers of M α is contained in the neutral Lyapunov subspace E c s 0 pxq for the action of s 0 on pM α , µq for almost every x. Thus, the orbits or N ànd N ´in M α also correspond, respectively, to the unstable and stable manifolds for the action of s 0 on M α .

We have that h Haar ps 0 q " ÿ βps 0 qą0 βps 0 q " h Haar ps ´1 0 q " ÿ βps 0 qă0 p´βps 0 qq.

In particular, from the choice of s 0 , the Margulis-Ruelle inequality (Theorem 8.6(1)), and the Ledrappier-Young Theorem (8.3) (page 46) ÿ βps 0 qą0 βps 0 q " h Haar ps 0 q ď h µ ps 0 q " h µ ps 0 | N `q ď ÿ βps 0 qą0 βps 0 q.

It follows that h µ ps 0 | N `q " ÿ βps 0 qą0 βps 0 q.

By Theorem 9.5, it follows that µ is N `-invariant. Similarly we have that µ is N ´-invariant.

In particular, µ is invariant by the subgroups N ´, N `, and A of G. To end the proof, we claim the following standard fact: the subgroups N ´and N `generate all of SLpn, Rq. It follows from the claim that the measure µ is G-invariant.

To prove the claim, it is best to work with Lie algebras. Let n `, n ´, and a be the Lie algebras of N ´and N `, and A, respectively. Let h be the Lie algebra generated by n `and n ´. For any X P a we have rX, hs " h since a normalizes each root space g β . For roots β, β with βps 0 q ‰ 0 and βps 0 q ‰ 0 we have rg β , g β s Ă h by definition. For roots β, β with βps 0 q ą 0 and βps 0 q " 0 we have rg β , g β s " g β`β Ă h since either g β`β " 0 (if β `β is not a root) or p β `βqps 0 q " βps 0 q ą 0 (if β `β is a root). Similarly, for roots β, β with βps 0 q ă 0 and βps 0 q " 0 we have

rg β , g β s Ă h.
It follows that h is an ideal of the Lie algebra g " slpn, Rq of SLpn, Rq. But slpn, Rq is simple (i.e. has no nontrivial ideals). Since h ‰ t0u, it follows that h " slpn, Rq and the claim follows.

˚15.2. Advanced invariance principle: nonresonance implies invariance. Theorem 15.1 gives the optimal dimension count in Theorem 11.4 for actions by lattices Γ in SLpn, Rq. However, for lattices in other simple Lie groups, the critical dimension in Theorem 15.1 1 falls below the critical dimension expected for the analogous versions of Theorem 11.4 and Theorem 11.6. For instance, the group G " Spp2n, Rq, the group of p2nq ˆp2nq symplectic matrices over R, has rank n. Theorem 15.1 1 implies that for any lattice Γ Ă G and any compact manifold M with dimpM q ď n ´1, any action α : Γ Ñ Diff 1`β pM q preserves a Borel probability measure. However, the main result of [36] shows for a lattice Γ in Spp2n, Rq that any action α : Γ Ñ Diff 2 pM q preserves a Borel probability measure when dimpM q ď 2n ´2. To obtain the optimal critical dimensions, it is necessary to use a more advanced invariance principle developed in [36] and based on key ideas from [37].

Recall that we interpret roots β i,j : A Ñ R as the nonzero Lyapunov exponents for the action of A » R n´1 on SLpn, Rq{Γ (for any A-invariant measure on G{Γ.) Each root β i,j has a corresponding root subgroup U i,j Ă SLpn, Rq. Given an ergodic, A-invariant measure µ on M α we also have fiberwise Lyapunov exponents λ F 1,µ , λ F 2,µ , . . . , λ F p,µ : A Ñ R for the restriction of the derivative of the A-action on pM α , µq to the fiberwise tangent bundle F Ă T M α in M α . Then, the roots β i,j and fiberwise Lyapunov exponents λ F i,µ are linear functions on the common vector space A » R n´1 . We say that a root β i,j is resonant with a fiberwise Lyapunov exponent λ F i,µ of µ if they are positively proportional; that is β i,j is resonant with λ F i,µ if there is a c ą 0 with β i,j " cλ F i,µ . Otherwise we say that β i,j is not resonant with λ F i,µ . We say that a root β i,j of G is nonresonant if it is not resonant with any fiberwise Lyapunov exponent λ F i,µ for the ergodic, A-invariant measure µ.

The following is the key proposition from [36].

Proposition 15.5 ([36, Proposition 5.1]). Suppose µ is an ergodic, A-invariant measure on M α projecting to the Haar measure on SLpn, Rq{Γ under the projection π : M α Ñ SLpn, Rq{Γ.

Then, for every nonresonant root β i,j , the measure µ is U i,j -invariant.

Remark 15.6. Since each root β i,j is a nonzero functional on A, if a fiberwise exponent λ F i,µ is zero, then every root β i,j is not resonant with λ F i,µ . Since no roots of SLpn, Rq are positively proportional, if there are p fiberwise Lyapunov exponents tλ F i,µ , 1 ď i ď pu or, more generally, p 1 ď p coarse fiberwise Lyapunov exponents tχ F i,µ , 1 ď i ď p 1 u then Proposition 15.5 implies that µ is invariant under all-but-p 1 root subgroups U i,j . Moreover, if every fiberwise Lyapunov exponent λ F i,µ is in general position with respect to every root β i,j then from Proposition 15.5, µ is automatically G-invariant. 2), page 44) for entropies subordinated to coarse-Lyapunov foliations. We outline these ideas and the proof of Proposition 15.5 in this section. Each root β i,j of SLpn, Rq is a Lyapunov exponent for the A-action on pM α , µq (corresponding to vectors tangent to U i,j orbits in M α .) Let χ i,j denote the coarse Lyapunov exponent for the A-action on pM α , µq containing β i,j ; that is, χ i,j is the equivalence class of all Lyapunov exponents for the A-action on pM α , µq that are positively proportional to β i,j . Let tλ F i,µ , 1 ď i ď pu denote the collection of fiberwise Lyapunov exponents. We have that χ i,j " tβ i,j u if β i,j is not resonant with any λ F i,µ . Otherwise, χ i,j contains β i,j and all fiberwise Lyapunov exponents λ F i,µ : A Ñ R that are positively proportional to β i,j .

For µ-a.e. x P M α there is a coarse Lyapunov manifold W χ i,j pxq through x (see Section 7.4.3). If χ i,j " tβ i,j u then for x P M α , W χ i,j pxq is simply the U i,j -orbit of x. Otherwise, W χ i,j pxq is a higher-dimensional manifold which intersects the fibers of M α nontrivially. The partition of pM α , µq into W χ i,j -manifolds forms an A-invariant partition F χ i,j with C 1`β -leaves. If β i,j is resonant with some fiberwise Lyapunov exponent, let χ i,j,F denote the corresponding coarse fiberwise Lyapunov exponent; that is, χ i,j,F is the equivalence class of fiberwise Lyapunov exponents that are positively proportional to β i,j . If β i,j is not resonant with any fiberwise Lyapunov exponent, let χ i,j,F denote the zero functional. If χ i,j,F is nonzero, for µ-a.e. x P M α there is a coarse fiberwise Lyapunov manifold W χ i,j,F pxq through x. (To construct fiberwise coarse Lyapunov manifolds W χ i,j,F pxq, recall that the fibers of M α are permuted by the dynamics of A; all constructions in Section 7 may be carried out fiberwise in the setting of a skew-product of diffeomorphisms over a measurable base if the C 1`β norms of the fibers are uniformly bounded.) If χ i,j,F is zero, we simply define W χ i,j,F pxq " txu. We have that W χ i,j,F pxq is contained in the fiber through x and that W χ i,j pxq is the U i,j -orbit of W χ i,j,F pxq. For each χ i,j and a P A with β i,j paq ą 0 we define a conditional entropy of a conditioned on χ i,j -manifolds, denoted by h µ pa | χ i,j q as in Section 8.5. Similarly, we can define a conditional entropy of a conditioned on the fiberwise coarse Lyapunov manifolds associated to χ i,j,F , denoted by h µ pa | χ i,j,F q. In this setting, we have the following "coarse-Lyapunov Abramov-Rokhlin formula." Theorem 15.7. Let µ be an ergodic, A-invariant measure on M α that projects to the Haar measure on SLpn, Rq{Γ. For any a P A with β i,j paq ą 0. h µ pa | χ i,j q " h Haar pa | β i,j q `hµ pa | χ i,j,F q.

(15.2)

Above, h Haar pa | β i,j q denotes the conditional entropy of translation by a in SLpn, Rq{Γ conditioned along U i,j -orbits in SLpn, Rq{Γ.

Proof of Theorem 15.7. We first show the upper bound h µ pa | χ i,j q ď h Haar pa | β i,j q `hµ pa | χ i,j,F q.

(15.3) This is a standard estimate in abstract ergodic theory whose proof we include for completeness. Fix a P A with β i,j paq ą 0. Let η be an increasing measurable partition of G{Γ subordinate to the partition into U i,j -orbits. Let π : M α Ñ G{Γ be the natural projection and let η " π ´1 η. Let ξ ą η be an increasing measurable partition of pM α , µq subordinate to the partition into W χ i,j -manifolds. Let ζ be the partition of pM α , µq into the level sets of π : M α Ñ G{Γ; that is, ζ is the partition of M α into fibers of the fibration π : M α Ñ G{Γ. Let ξ F :" ξ _ ζ be the join of ξ and ζ. The partitions η, ξ, and ξ F satisfy (1) h µ pa, ηq " h Haar pa, ηq " h Haar pa | β i,j q, (2) h µ pa, ξq " h µ pa | χ i,j q, and (3) h µ pa, ξ F q " h µ pa | χ i,j,F q.

We have the following computation (see for example [118,Lemma 6.1]):

h µ pa | χ i,j q :" h µ pa, ξq " h µ pa, η _ ξq ď h µ pa, ηq `hµ ˜a, ξ _ ł nPZ a n pηq "
h Haar pa, ηq `hµ pa, ξ _ ζq " h Haar pa | β i,j q `hµ pa | χ i,j,F q and (15.3) follows.

On the other hand, summing over all roots β with βpaq ą 0 we have from the classical Abramov-Rokhlin theorem (8.2), the product structure of entropy in Theorem 8.8, and an analogous version of Theorem 8.8 for the fiberwise entropy h µ pa | ζq appearing in (8.2) that

h µ paq " ÿ χpaqą0 h µ pa | χq " ÿ β i,j paqą0 h µ pa | χ i,j q `ÿ χ F nonres. χ F paqą0 h µ pa | χ F q ď ÿ β i,j paqą0 `hHaar pa | β i,j q `hµ pa | χ i,j,F q ˘`ÿ χ F nonres. χ F paqą0 h µ pa | χ F q " ÿ β i,j paqą0 h Haar pa | β i,j q `ÿ χ F paqą0 h µ pa | χ F q " h Haar paq `hµ pa | ζq " h µ paq.
In the second and third lines, the second sum is over all fiberwise coarse Lyapunov exponents that are not resonant with any root β of G. Since entropies are nonnegative quantities, it follows that h µ pa | χ i,j q " h Haar pa | β i,j q `hµ pa | χ i,j,F q for all β i,j with β i,j paq ą 0.

Remark 15.8. A more general version of Theorem 15.7 appears in [37,Theorem 13.6] where the factor map π is allowed to be measurable and the measure π ˚pµq on the factor system is an arbitrary ergodic, A-invariant measure.

The proof of Proposition 15.5 is a straightforward consequence of Theorem 15.7.

Proof of Proposition 15.5. Given a root β i,j and a P A such that β i,j paq ą 0 we have defined the a conditional entropy h µ pa | β i,j q for the entropy of translation by a conditioned on U i,j -orbits in M α . From an appropriate version of the Margulis-Ruelle inequality (see Theorem 8.6(1) and (9.3)), for a P A with β i,j paq ą 0 we have that h µ pa | β i,j q ď β i,j paq. (15.4) On the other hand, if β i,j is nonresonant then χ i,j,F is the zero functional whence the coarse Lyapunov manifold W χ i,j pxq associated to χ i,j is simply the U i,j -orbit of x for every x P M α and the term h µ pa | χ i,j,F q in (15.2) of Theorem 15.7 vanishes. Hence, by Theorem 15.7, h µ pa | β i,j q " h µ pa | χ i,j q " h Haar pa | β i,j q `0 " β i,j paq.

(15.5)

From (15.4) and (15.5), we have that the conditional entropy h µ pa | β i,j q attains is maximal possible value. In particular, from the invariance principle in Theorem 9.5(3), it follows that µ is U i,j -invariant.

˚15.4. Proof of Theorem 11.4 using the advanced invariance principle. We outline another proof of Theorem 11.4 based on Proposition 15.5.

Proof of Theorem 11.4 using Proposition 15.5. From Claim 15.2, it is sufficient to construct a G-invariant probability measure on M α . Note that A » R n´1 is abelian (and in particular amenable, see Remark 18.2) and that the space of probability measures on M α projecting to the Haar measure on SLpn, Rq{Γ is nonempty, A-invariant, and weak-˚compact. The Krylov-Bogolyubov theorem thus gives an A-invariant probability measure µ on M α projecting to the Haar measure on SLpn, Rq{Γ. Moreover, since the Haar measure on SLpn, Rq{Γ is A-ergodic, we may assume µ is A-ergodic.

Let dimpM q " d ď n ´2. The fiberwise tangent bundle F of M α is ddimensional and therefore there are at most d Fiberwise Lyapunov exponents

λ F 1,µ , ¨¨¨, λ F k,µ , k ď d.
As no pair of roots of SLpn, Rq is positively proportional, there are at most d roots that are resonant with the fiberwise Lyapunov exponent λ F j,µ . All other roots β i,j are nonresonant. By Proposition 15.5, if β i,j is not resonant with any λ F j,µ , then µ is U i,j -invariant.

Let H Ă SLpn, Rq be the subgroup that preserves µ. We claim H " G completing the proof. As d ď n ´2, µ is invariant under A and all-but-at-most-pn ´2q root subgroups U i,j . Then H has codimension at most pn ´2q. From [ [121] for discussion on the structure of parabolic subgroups.) As H has codimension at most n ´2, it thus follows that H " G as there are no proper parabolic subgroups of G with codimension less than pn ´1q.

Remark 15.9. The above proof has the advantage that it generalizes to give invariance of measures in the optimal critical dimension for actions by lattices in other Lie groups including Spp2n, Rq, SOpn, nq, or SOpn, n `1q on manifolds of the optimal dimension. As discussed in Section 15.2 for a lattice Γ in a group such as G " Spp2n, Rq, the proof in Section 15.1 yields that any C 1`β action of Γ on a manifold of dimension at most rankpGq ´1, any A-invariant measure on M α that projects to Haar on G{Γ is G-invariant. However, the above proof establishes this result for manifolds M where the critical dimension is rpGq, the number in the last column of Table 1 (page 63) defined in [31,36] (see also Footnote 4.) For R-split groups G we have rpGq " d 0 pGq. In particular, the above proof can be adapted to show the following:

Theorem 15.10. Let G be a higher-rank simple Lie group G with finite center, let Γ be a lattice in G, let M be a closed manifold, and let α : Γ Ñ Diff 1`β pM q be an action. Then (1) if dimpM q ď rpGq´1, every A-invariant probability measure on M α that projects to the Haar measure on G{Γ is G-invariant; (2) if dimpM q ď rpGq and α is volume-preserving, every A-invariant probability measure on M α that projects to the Haar measure on G{Γ is Ginvariant. In particular, if dimpM q ď rpGq ´1, every action α : Γ Ñ Diff 1`β pM q preserves a Borel probability measure. THEOREM 11.6 We outline the proof of Theorem 11.6 for the case of C 8 actions of cocompact lattice in SLpn, Rq. That is, for n ě 3, we consider a cocompact lattice Γ in SLpn, Rq and show that every homomorphism α : Γ Ñ Diff 8 pM q has finite image when

PROOF OUTLINE OF

(1) M is a compact manifold of dimension at most pn ´2q, or (2) M is a compact manifold of dimension at most pn ´1q and α preserves a volume form vol. The broad outline of the proof consists of 3 steps.

16.1.

Step 1: Subexponential growth. In the case that Γ Ă SLpn, Rq is cocompact, using its action on SLpn, Rq and that SLpn, Rq is a proper length space one may show that Γ is finitely generated (see for example [69,Theorem 8.2]). More generally, it is a classical fact that all lattices Γ in semisimple Lie groups are finitely generated.

Fix a finite symmetric generating set S for Γ. Given γ P Γ, let |γ| " |γ| S denote the word-length of γ relative to this generating set; that is, |γ| " mintk : γ " s k ¨¨¨s 1 , s i P Su.

Note that if we replace the finite generating set S another finite generating set S 1 , there is a uniform constant C such that the word-lengths are uniformly distorted:

|γ| S 1 ď C|γ| S .
Thus all definitions below will be independent of the choice of S.

Equip T M with a Riemannian metric and corresponding norm.

Definition 16.1. We say that an action α : Γ Ñ Diff 1 pM q has uniform subexponential growth of derivatives if for every ą 0 there is a C " C such that for every γ P Γ, sup

xPM }D x αpγq} ď Ce |γ| .
Note that if α : Γ Ñ Diff 1 pM q has uniform subexponential growth of derivatives it follows for every ą 0 that there is a C " C such that for every γ P Γ,

sup xPM }D x αpγq} ě Ce ´ |γ| .
The following is the main result of [31] in the case of cocompact lattices in SLpn, Rq.

Theorem 16.2 ([31, Theorem 2.8]). For n ě 3, let Γ Ă SLpn, Rq be a cocompact lattice. Let α : Γ Ñ Diff 2 pM q be an action. Suppose that either

(1) dimpM q ď n ´2, or (2) dimpM q " n ´1 and α preserves a smooth volume. Then α has uniform subexponential growth of derivatives.

Remark 16.3. The proof of Theorem 16.2 is the only place in the proof of Theorem 11.6 where cocompactness of Γ is used. It is not required for Steps 2 or 3 below. For Γ " SLpm, Zq, the analogue of Theorem 16.2 is established in [32] and has been announced for general lattices [33].

16.2.

Step 2: Strong property (T) and averaging Riemannian metrics. Assume α : Γ Ñ Diff 8 pM q is an action by C 8 diffeomorphisms. 7 The action α of Γ on M induces an action α # of Γ on tensor powers of the cotangent bundle of M by pull-back: Given ω P pT ˚M q bk write α # pγqω " αpγ ´1q ˚ω;

that is, if v 1 , . . . v k P T x M then α # pγqωpxqpv 1 , . . . , v k q " ωpxqpD x αpγ ´1qv 1 , . . . , D x αpγ ´1qv k q.
In particular, we obtain an action of Γ on the set of Riemannian metrics which naturally sits as a half-cone inside S 2 pT ˚M q, the vector space of all symmetric 2-forms on M . Note that α # preserves C pS 2 pT ˚pM qqq, the subspace of all C sections of S 2 pT ˚M q for any P N. 7 For C 2 actions, one replaces the Hilbert Sobolev spaces W 2,k pS 2 pT ˚M qqq below with appropriate Banach Sobolev spaces W p,1 pS 2 pT ˚M qqq and verifies such spaces are of the type E10 considered in [57].

Fix a volume form vol on M . The norm on T M induced by the background Riemannian metric induces a norm on each fiber of S 2 pT ˚M q. We then obtain a natural notion of measurable and integrable sections of S 2 pT ˚M q with respect to vol. Let H k " W 2,k pS 2 pT ˚M qq be the Sobolev space of symmetric 2-forms whose weak derivatives of order are bounded with respect to the L 2 pvolq-norm for 0 ď ď k. Then H k is a Hilbert space. Let } ¨}H k denote the corresponding Sobolev norm on H k as well as the induced operator norm on the space BpH k q of bounded operators on H k . Working in local coordinates, the Sobolev embedding theorem implies that H k Ă C pS 2 pT ˚pM qqq as long as ă k ´dimpM q{2. In particular, for k sufficiently large, an element ω of H k is a C section of S 2 pT ˚M q which will be a C Riemannian metric on M if it is positive definite.

The action α # is a representation of Γ by bounded operators on H k . From Theorem 16.2, we obtain strong control on the norm growth of the induced representation α # . In particular, we obtain that the representation α # : Γ Ñ BpH k q has subexponential norm growth: Lemma 16.4. Let α : Γ Ñ Diff 8 pM q have uniform subexponential growth of derivatives. Then, for all 1 ą 0 there is C ą 0 such that

}α # pγq} H k ď Ce 1 |γ|
for all γ P Γ.

The proof of Lemma 16.4 follows from the chain rule, Leibniz rule, and computations that bound the growth of higher-order derivatives by polynomial functions in the growth of the first derivative. See [79,Lemma 6.4] and discussion in [31,Section 6.3].

We use the main result from [57,123]: cocompact lattices Γ in higher-rank simple Lie groups (such as SLpn, Rq for n ě 3) satisfy Lafforgue's strong Banach property (T) first introduced in [123]. The result for SLpn, Rq and its cocompact lattices (as well as most other higher-rank simple Lie groups) is established by Lafforgue in Corollary 4.1 and Proposition 4.3 of [123]; for cocompact lattices in certain other higher-rank Lie groups, the results of [57] are needed. See also [56] for the case of nonuniform lattices. Strong Banach property (T) considers representations π of Γ by bounded operators on certain Banach spaces E (of type E 10 ). If such representations have sufficiently slow exponential norm growth, then there exists sequence of averaging operators p n converging to a projection p 8 such that for any vector v P E, the limit p 8 pvq is π-invariant. In the case that E is a Hilbert space (which we may assume when α is an action by C 8 diffeomorphisms) we have the following formulation. Note that Lemma 16.4 (which follows from Theorem 16.2) ensures our representation α # satisfies the hypotheses of the theorem.

Theorem 16.5 ([56, 57, 123]). Let H be a Hilbert space and for n ě 3, let Γ be a lattice in SLpn, Rq.

There exists ą 0 such that for any representation π : Γ Ñ BpHq, if there exists C ą 0 such that }πpγq} ď C e |γ| for all γ P Γ then there exists a sequence of averaging operators p n " ř w i πpγ i q in BpHq-where w i ě 0, ř w i " 1, and w i " 0 for every γ i P Γ of word-length larger than n-such that for any vector v P H, the sequence v n " p n pvq P H converges to an invariant vector v ˚" p 8 pvq.

Moreover the convergence is exponentially fast: there exist 0 ă λ ă 1 and C " C λ such that }v n ´v˚} ď Cλ n }v}.

Theorem 16.5 as stated in [57,123] requires that Γ be cocompact. The extension to nonuniform lattices is announced in [56]. The exponential convergence in Theorem 16.5 is often not explicitly stated in the definition of strong property (T) or in statements of theorems establishing that the property holds for lattices in higherrank simple Lie groups; however, the exponential convergence follows from the proofs.

We complete Step 2 with the following computation.

Proposition 16.6. For n ě 3, let Γ Ă SLpn, Rq be a lattice and let α : Γ Ñ Diff 8 pM q be an action with uniform subexponential growth of derivatives. Then for any , there is a C Riemannian metric g on M such that αpΓq Ă Isom g pM q.

Proof. Consider an arbitrary C 8 Riemannian metric g. For any k, we have g P H k . We apply Theorem 16.5 and its notation to the representation α # : Γ Ñ BpH k q with the g the initial vector v. As averages of finitely many Riemannian metrics are still Riemannian metrics we have that g n :" p n pgq is positive definite for every n. In particular, the limit g 8 " p 8 pgq is in the closed cone of positive (possibly indefinite) symmetric 2-tensors in H k . Having taken k sufficiently large we have that g 8 is C ; in particular, g 8 is continuous, everywhere defined, and positive everywhere. We need only confirm that g 8 is non-degenerate, i.e. is positive definite on T x M for every x P M . Given any x P M and unit vector ξ P T x M , for any ą 0 we have from Definition 16.1 that there is a C ą 0 such that

p n pgqpξ, ξq " ´ÿ w i α # pγ i qg ¯pξ, ξq " ÿ w i gpD x αpγ ´1 i qξ, D x αpγ ´1 i qξq ě 1 C 2 e
´2 n where we use that w i ą 0 only when γ i has word-length at most n.

On the other hand, from the exponential convergence in Theorem 16.5 we have

|p n pgqpξ, ξq ´p8 pgqpξ, ξq| ď C λ λ n .
Thus p 8 pgqpξ, ξq ě 1 C 2 e ´2 n ´Cλ λ n for all n ě 0. Taking ą 0 sufficiently small we can ensure that

C 2 e 2 n ă 1 C λ λ
´n for all sufficiently large n. Then, for all sufficiently large n we have

1 C 2 e ´2 n ą C λ λ n
and thus p 8 pgqpξ, ξq ą 0.

16.3.

Step 3: Margulis superrigidity with compact codomain. From Steps 1 and 2 we have that any action α : Γ Ñ Diff 8 pM q as in Theorem 11.6 preserves a C Riemannian metric g. In the general case of C 2 -actions (or even C 1`β -actions), we have that any action α : Γ Ñ Diff 2 pM q preserves a continuous Riemannian metric g. See [31,Theorem 2.7]. We thus have α : Γ Ñ Isom 2 g pM q Ă Diff 2 pM q. Let dimpM q " m. The group Isom g pM q of isometries of a continuous Riemannian metric is a compact Lie group with

dimpIsom g pM qq ď mpm `1q 2 . ( 16.1) 
Indeed, the orbit of any point p P M under Isom g pM q has dimension at most m and the dimension of the stabilizer of a point is at most mpm´1q

2

, the dimension of SOpmq; thus dimpIsom g pM qq ď m `mpm ´1q 2 .

With K " Isom 2 g pM q Ă Diff 2 pM q we thus obtain a compact-valued representation α : Γ Ñ K. By equation (16.1), if m ă 1 2 ?

8n 2 ´7 ´1 2 then dimpsupnqq " n 2 ´1 ą dimpKq; by conclusion (2) of Theorem 12.4, αpΓq is thus contained in a 0-dimensional subgroup of K. This holds in particular if m ď n ´1. We thus conclude that the image αpΓq Ă K " Isom 2 g pM q Ă Diff 2 pM q is finite.

Summarizing the arguments from Steps (2) and (3), we obtain the following.

Theorem 16.7. For n ě 3, let Γ Ă SLpn, Rq be a lattice. Let α : Γ Ñ Diff 2 pM q be an action with uniform subexponential growth of derivatives. Then, if

dimpM q ă 1 2 a 8n 2 ´7 ´1 2 ,
the image αpΓq is finite.

PROOF OUTLINE OF THEOREM 16.2

To establish Theorem 11.6, from the discussion in Section 16 it is enough to establish Theorem 16.2: the action α has uniform subexponential growth of derivatives. We outline the proof of Theorem 16.2. 17.1. Setup for proof. For n ě 3, let Γ Ă SLpn, Rq be a cocompact lattice. Let M be a compact manifold and let α : Γ Ñ Diff 2 pM q an action. As assume either that dimpM q ď n ´2 or that dimpM q ď n ´1 and that α preserves a volume form. We recall the following constructions from the proof of Theorem 11.4:

(1) The manifold M α " pSLpn, Rq ˆM q{Γ is the suspension space introduced in Section 14.1. M α is fiber bundle over SLpn, Rq{Γ with fibers diffeomorphic to M . Moreover, M α and SLpn, Rq{Γ have natural (left) SLpn, Rq-actions and the projection π : M α Ñ SLpn, Rq{Γ intertwines these G-actions. (2) A Ă SLpn, Rq denotes the subgroup of diagonal matrices with positive entries. We have A » R n´1 which is a higher-rank, free abelian group if n ě 3.

(3) Given an ergodic, A-invariant Borel probability measure µ on M α we have fiberwise Lyapunov exponents λ F 1,µ , . . . , λ F p,µ : A Ñ R for the restriction of the derivative of the A-action on M α to the fibers of M α introduced in Section 14.2. (4) β i,j : A Ñ R are the roots of SLpn, Rq and U i,j are the corresponding root subgroups introduced in Section 13.1. 17.2. Two key propositions. The proof of Theorem 16.2 is by contradiction and follows from the following two propositions. Our first key proposition is an analogue of Proposition 7.2.

Proposition 17.1. Suppose that α : Γ Ñ Diff 1 pM q fails to have uniform subexponential growth of derivatives. Then there exists a Borel probability measure µ 1 on M α such that (1) µ 1 is A-invariant and ergodic;

(2) there exists a nonzero fiberwise Lyapunov exponent λ F j,µ 1 : A Ñ R.

The proof of Proposition 17.1 is very similar to the proof of Proposition 7.2 with some minor modifications and notational differences. We include an outline of the proof in Section 18.3; see also [31,Section 4] for complete details.

The measure µ 1 in Proposition 17.1 projects to an ergodic, A-invariant measure on SLpn, Rq{Γ. If µ 1 projected to the Haar measure on SLpn, Rq{Γ then, from Theorem 15.1 and the bounds on the dimension M , the measure µ 1 would be Ginvariant and, as explained below, the proof of Theorem 16.2 would be complete.

However, there may exist ergodic A-invariant measures on SLpn, Rq{Γ that are not the Haar measure. 8By carefully averaging the measure µ 1 along root subgroups U i,j and applying Ratner's measure classification theorem [164] to the projected measure on SLpn, Rq{Γ we obtain the following. Proposition 17.2. Let α : Γ Ñ Diff 1 pM q be an action. Suppose there exists an ergodic, A-invariant measure µ 1 on the suspension space M α with a nonzero fiberwise Lyapunov exponent λ F j 1 ,µ 1 : A Ñ R. Then there exists a Borel probability measure µ on M α such that (1) µ is A-invariant and ergodic;

(2) there exists a nonzero fiberwise Lyapunov exponent λ F j,µ : A Ñ R;

(3) µ projects to the Haar measure on SLpn, Rq{Γ.

Remark 17.3.

(1) Propositions 17.1 and 17.2 hold in full generality; they do not depend on the comparison between the dimension of M and the rank of SLpn, Rq.

The constraint on the dimension of M is used to obtain a contradiction in the proof of Theorem 16.2 by applying Theorem 15.1 and Zimmer's cocycle superrigidity to the fiberwise derivative cocycle. (2) Propositions 17.1 and 17.2 heavily use the fact that Γ is cocompact in SLpn, Rq so that the manifold M α is compact. For instance, if M α is not compact then the proof of Proposition 17.1 (compare with proof of Proposition 7.2) fails as there may be escape of mass into the cusp of G{Γ. Thus, more subtle arguments are required to establish the analogue of Theorem 16.2 in the case that Γ is nonuniform. In the case that Γ " SLpn, Zq, such arguments appear in [32]. (3) Both Proposition 17.1 and Proposition 17.2 holds for C 1 actions. The C 1`β hypotheses is later used (along with the dimension bounds) to conclude that the A-invariant measure µ obtained in Proposition 17. Proof of Theorem 16.2 . Let α : Γ Ñ Diff 2 pM q be as in Theorem 16.2. For the sake of contradiction, assume that α : Γ Ñ Diff 2 pM q fails to have uniform subexponential growth of derivatives. Let µ 1 be the measure guaranteed by Proposition 17.1. We then apply Proposition 17.2 to obtain an ergodic, A-invariant Borel probability measure µ on M α that projects to the Haar measure on G{Γ and has a non-zero fiberwise Lyapunov exponent. In either case considered in Theorem 16.2, it follows from Theorem 15.1 that µ is G-invariant.

Recall that we write π : M α Ñ SLpn, Rq{Γ for the natural projection and let F be the fiberwise tangent bundle; that is, F is sub-vector-bundle of T M α given by F " ker Dπ. As F is G-invariant, we may apply Zimmer's cocycle superrigidity theorem, Theorem 12.2, to the fiberwise derivative cocycle Apg, xq " D x gae F pxq of the µ-preserving SLpn, Rq-action on M α . Since the fibers have dimension at most n ´1 and since there are no non-trivial representations ρ : SLpn, Rq Ñ SLpd, Rq for d ă n, it follows from Theorem 12.2 that the fiberwise derivative cocycle Apg, xq " D x gae F pxq is cohomologous to a compact-valued cocycle: there is a compact group K Ă SLpd, Rq and measurable Φ : M α Ñ GLpd, Rq such that Φpg ¨xqD x gae F pxq Φpxq ´1 P K.

By Poincaré recurrence to sets on which the norm and conorm of Φ are bounded, it follow for any g P G and ą 0 that the set of x P M α such that

lim inf nÑ8 1 n log }D x g n ae F pxq } ě
has µ-measure zero. This contradicts the existence of nonzero fiberwise Lyapunov exponent for µ. This contradiction completes the proof of Theorem 16.2.

18. DISCUSSION OF THE PROOF OF PROPOSITIONS 17.1 AND 17.2

We outline the main steps in the proof of Propositions 17.1 and 17.2.

18.1. Averaging measures on M α . Let H " th t : t P Ru be a 1-parameter root subgroup of SLpn, Rq. Given a measure µ on M α and T ě 0 we define

H T ˚µ :" 1 T ż T 0 ph t q ˚µ dt
to be the measure obtained by averaging the translates of µ over the interval r0, T s. Let s P A. Given any s-invariant measure µ on M α , the average top fiberwise Lyapunov exponent of s with respect to µ is

λ F top ps, µq " inf nÑ8 1 n ż log }D x ps n qae F } dµpxq. (18.1) 
Note that if µ is moreover A-invariant and A-ergodic with fiberwise Lyapunov

exponents λ F 1,µ , . . . , λ F p,µ : A Ñ R then λ F top ps, µq " max 1ďiďp λ F i,µ psq.
We have the following facts which we invoke throughout our averaging procedures.

Claim 18.1. Let s P A and let µ be an s-invariant measure on M α . Let H " th t , t P Ru be a one-parameter group contained in the centralizer of s in SLpn, Rq.

(1) The measure H T ˚µ is s-invariant for every T ě 0.

(2) Any weak-˚limit point of tH T ˚µu as T Ñ 8 is s-invariant.

(3) Any weak-˚limit point of tH T ˚µu as T Ñ 8 is H-invariant.

(4) λ F top ps, H T ˚µq " λ F top ps, µq for every T ě 0.

(5) If µ 1 is a weak-˚limit point of tH T ˚µu as T Ñ 8 then λ F top ps, µ 1 q ě λ F top ps, µq.

(1) is clear from definition and (2) follows since the set of s-invariant measures is closed. (3) follows from (the proof of) the Krylov-Bogolyubov theorem (see Claim 7.3). ( 4) is a standard computation which follows from the compactness of M α and hence boundedness of the cocycle. Indeed we have

λ F top ps, H T ˚µq " inf nÑ8 1 n ż log }D x ps n qae F } dpH T ˚µqpxq " inf nÑ8 1 n 1 T ż ż T t"0 log }D h t ¨xps n qae F } dt dµpxq " inf nÑ8 1 n 1 T ż ż T t"0 log }D h t ¨xph t s n h ´tqae F } dt dµpxq ď inf nÑ8 1 n 1 T ż ż T t"0 log }D h t ¨xph ´tqae F } `log }D x ps n qae F } `log }D s¨x ph t qae F } dt dµpxq ď inf nÑ8 1 n ˆż log }D x ps n qae F } dµpxq `2K ẇhere 
K " sup log }D x ph t qae F } : x P M, t P r´T, T s ( . (5) follows from the well-known fact that the average top Lyapunov exponent is upper-semicontinuous on the set of s-invariant measures (see for example [179] or [31, Lemma 3.2(b)]). Indeed, in the weak-˚topology, for each n the function

µ Þ Ñ 1 n ż log }D x ps n qae F } dµpxq
is continuous. The pointwise infimum of a family of continuous functions is uppersemicontinuous.

Remark 18.2. Recall that a Følner sequence in a Lie group H equipped with a left-Haar measure m H is a sequence tF n u of compact subsets F n Ă H such that for every h P H,

lim nÑ8 m H ph ¨Fn F n q m H pF n q " 0.
If H admits a Følner sequence, H is said to be amenable. When H " R, a Følner sequence is given by F n " r0, ns. Examples of amenable groups include abelian groups, nilpotent groups, solvable groups, and compact groups. Consider H to be an amenable Lie subgroup of G " SLpn, Rq. Given a Borel probability measure µ on M α and Følner sequence tF n u in H we define

F n ˚µ :" 1 m H pF n q ż Fn h ˚µ dm H phq.
By a computation analogous to (7.3) in the proof of Claim 7.3, any weak-˚limit point μ of the sequence tF n ˚µu as n Ñ 8 is an H-invariant measure on M α . Moreover, properties analogous to those in Claim 18.1 hold when averaging an sinvariant measure µ against a Følner sequence tF n u in an amenable subgroup H contained in the centralizer C G psq of s. See [31,Lemma 3.2] for precise formulations.

18.2. Averaging measures on SLpn, Rq{Γ. When averaging probability measures on SLpn, Rq{Γ along 1-parameter unipotent subgroups we obtain additional properties of the limiting measures. The results stated in the following proposition are consequences of Ratner's measure classification and equidistribution theorems for unipotent flows [161,162,164]. See also [192]. We do not formulate Ratner's theorems here but only the consequences we use in the remainder.

Proposition 18.3. Let μ be a Borel probability measure on SLpn, Rq{Γ. For each 1-parameter root subgroup U i,j

(1) the weak-˚limit

U i,j ˚μ :" lim T Ñ8 tpU i,j q T ˚μ : T ě 0u exists; (2) if μ is A-invariant, so is U i,j ˚μ; (3) if μ is A-invariant and A-ergodic, the measure U i,j ˚μ is A-ergodic; (4) if μ is A-invariant and U i,j -invariant then μ is U j,i -invariant.
Proposition 18.3(1) follows from Ratner's measure classification and equidistribution theorems for unipotent flows. When U is higher-dimensional, we use an analogue of Proposition 18.3(1) due to Shah [172,Corollary 1.3]. Proposition 18.3(2) follows from the fact that A normalizes U i,j and that the limit in Proposition 18.3(1) exists and is hence unique. Proposition 18.3(4) is a consequence of Theorem 9 in [164] or Proposition 2.1 in [161].

Proposition 18.3(3) is a short argument that uses the A-invariance of μ and the pointwise ergodic theorem: Since there is s P A such that U i,j -orbits are contracted by s, by the pointwise ergodic theorem, the measurable hull of the partition into U i,j -orbits refines the ergodic decomposition for A. (See Proposition 8.12 and Theorem C.4 in Appendix C.) Let η be the measurable hull of the partition into U i,j -orbits and let tμ η

x u be a family of conditional measures of μ for this partition. (Note that from Ratner's equidistribution theorem, we have that μη

x is a homogeneous measure on a closed homogeneous submanifold.) If φ is a bounded, A-invariant measurable function then for μ-a.e. x, φ is constant μη

x -almost surely; in particular, φpxq "

ż φ dμ η x for μ-a.e. x. But x Þ Ñ ş φ dμ η
x is a µ-almost everywhere defined, A-invariant function. In particular, x Þ Ñ ş φ dμ η x is constant µ a.s. by ergodicity of µ. It follows that φ is constant μ-a.s. and ergodicity follows. 18.3. Proof of Proposition 17.1. We outline the proof of Proposition 17.1. Recall the notation introduced in Section 14.1. In particular, π : M α Ñ G{Γ is the canonical the projection and F " kerpDπq is the fiberwise tangent bundle of M α . We write the derivative of translation by g in M α as Dg and the restriction to the fiber of F through x P M α by D x gae F pxq . Equip M α with any Riemannian metric and write }Dgae F } " sup

xPM α }D x gae F pxq }.
Let K " SOpnq. We equip G with a right-invariant, left-K-invariant metric and induced distance function dp¨, ¨q. We have the following elementary claim which allows us to transfer exponential growth properties between the Γ-action on M and the G-action on the fibers of M α . Claim 18.4. If Γ Ă SLpn, Rq is cocompact and if M is compact, then any action α : Γ Ñ Diff 1 pM q has uniform subexponential growth of derivatives if and only if for every ą 0 there is a C such that for all g P SLpn, Rq, }Dgae F } ď Ce dpe,gq .

With the above claim, we outline to main steps in the proof of Proposition 17.1.

Proof of Proposition 17.1. We assume α : Γ Ñ Diff 1 pM q fails to have uniform subexponential growth of derivatives. Then, by Claim 18.4, there exist ą 0, integers m n P N with m n Ñ 8, elements g mn P G with dpg mn , eq " m n , points x mn P M α , and unit vectors v mn P T xm n M α such that }D xm n g mn pv mn q} ě e mn .

Let U F denote the unit sphere bundle in F and, given g P G, let U Dg denote the induced action on U F : given x P M α and v P U F pxq write U D x gpvq " D x gpvq }D x gpvq} and U Dgpx, vq " pg ¨x, U D x gpvqq . By the singular value decomposition of matrices, the group G " SLpn, Rq can be written as G " KAK where K " SOpnq. (For general simple Lie groups G we use the Cartan decomposition). We can thus write each g mn P G as

g mn " k n a n k 1 n
where k n , k 1 n P K and a n P A. Write

x 1 n " k 1 n ¨xmn , x 2 n " a n k 1 n ¨xmn , v 1 n " U D xm n k 1 n pv mn q, v 2 n " U D xm n pa n k 1 n qpv mn q. Then }D xm n g mn pv mn q} " }D x 2 n k n pv 2 n q} ¨}D x 1 n a n pv 1 n q} ¨}D xm n k 1 n pv mn q}
and so

ď lim nÑ8 1 m n log }D xm n g mn pv mn q} " lim nÑ8 1 m n log }D x 1 n a n pv 1 n q}
as }D x kae F } is uniformly bounded over all k P K and x P M α . Note that |m n ´dpa n , eq| " |dpg mn , eq ´dpa n , eq| ď dpk n , eq `dpk 1 n , eq is uniformly bounded in n. Thus m n ´1dpa n , eq Ñ 1. As A » R n´1 , for each n there is a unique ãn with a n " pã n q mn ; moreover, as A is geodesically embedded in G, we have dpã n , eq Ñ 1.

For each n, let ν n be the empirical measure on U F given by

ν n " 1 m n mn´1 ÿ j"0 pã n q j ˚δpx 1 n ,v 1 n q .
Taking a subsequence tn j u, we may assume that ν n j converges to some ν 8 and that ãn j converges to some s P A. Note that dps, eq " 1. Let µ denote the image of ν under the natural projection U F Ñ M α . Adapting the proofs of Claim 7.3 and Proposition 7.2 one can show that (1) ν 8 is U Ds-invariant whence µ is s-invariant;

(2) λ F top ps, µq ě ą 0. Take a Følner sequence tF n u in A and let μ be any weak-˚limit point of tF n ˚µu as n Ñ 8. Then, from analogues of the properties in Claim 18.1 for averaging over Følner sequences, we have that (1) μ is A-invariant;

(2) λ F top ps, μq ě ą 0. We take µ 1 to be an A-ergodic component of μ with λ F top ps, µ 1 q ě ą 0.

18.4. Proof of Proposition 17.2 for SLp3, Rq. To simplify ideas, we outline the proof of Proposition 17.2 assuming Γ is a cocompact lattice in SLp3, Rq. We perform two averaging procedures on the measure µ 1 from the hypotheses of Proposition 17.2 to obtain the measure µ in the conclusion of Proposition 17.2.

Proof of Proposition 17.2 for Γ Ă SLp3, Rq. Take µ 0 " µ 1 to be the ergodic, Ainvariant probability measure in the hypotheses of Proposition 17.2 with nonzero fiberwise exponent λ F j,µ 0 : A Ñ R, λ F j,µ 0 ‰ 0.

First averaging. Consider the elements s " diagp 1 4 , 2, 2q and s " diagp2, 2, 1 4 q of A Ă SLp3, Rq. Note that s and s are linearly independent and hence form a basis for A » R 2 . As the linear functional λ F j,µ 0 is nonzero, either λ F j,µ 0 psq ‰ 0 or λ F j,µ 0 psq ‰ 0.

Without loss of generality we may assume that λ F j,µ 0 psq ‰ 0. Take s 0 to be either s or s ´1 so that λ F j,µ 0 ps 0 q ą 0. Consider the 1-parameter subgroup

U 2,3 " $ & % ¨1 0 0 0 1 t 0 0 1 ': t P R , .
-

.
Note that U 2,3 commutes with s 0 . Let µ 1 be any weak-˚limit point of tpU 2,3 q T ˚µu as T Ñ 8. From Claim 18.1, µ 1 is s 0 -invariant and λ F top ps 0 , µ 1 q ě λ F top ps 0 , µ 0 q. We now average µ 1 over a Følner sequence in A: identifying A with R 2 let A T " r0, T s ˆr0, T s define a Følner sequence tA T u in A. Then

A T ˚µ1 :" 1 T 2 ż T 0 ż T 0 pt 1 , t 2 q ˚µ1 dpt 1 , t 2 q.
Let µ 2 be any weak-˚limit point of tA T ˚µ1 u as T Ñ 8. Then, from facts analogous to those in Claim 18.1, µ 2 is A-invariant and λ F top ps 0 , µ 2 q ě λ F top ps 0 , µ 1 q ą 0. Note that µ 2 might no longer be U 2,3 -invariant.

We investigate properties of the projection of each measure µ 0 , µ 1 , and µ 2 to SLp3, Rq{Γ. For each j, we denote by μj " π ˚pµ j q the image of µ j under the projection π : M α Ñ SLp3, Rq{Γ.

Observe that μ1 " U 2,3 ˚μ 0 is U 2,3 -invariant. Since μ0 was A-invariant, from Proposition 18.3 (2) we have that μ1 is A-invariant and it follows that μ1 " μ2 so μ2 is U 2,3 -invariant and A-invariant. From Proposition 18.3(4), μ2 is invariant under the subgroup

$ & % ¨˚0 0 0 ˚0 ˚˚', . - Ă SLp3, Rq
generated by A, U 2,3 and U 3,2 in SLp3, Rq. Moreover, since μ0 was A-ergodic, from Proposition 18.3(3) the measure μ1 " μ2 is A-ergodic.

Returning to M α , as λ F top ps 0 , µ 2 q ą 0 and as μ2 is A-ergodic, we may replace µ 2 with an A-ergodic component µ 1 2 of µ 2 such that (1) λ F top ps 0 , µ 1 2 q ą 0, and (2) the projection of µ 1 2 to SLp3, Rq{Γ is μ2 .

Let λ F 1,µ 1 2 , . . . , λ F p 1 ,µ 1 2 
: A Ñ R denote the fiberwise Lyapunov exponents for the

A-invariant, A-ergodic measure µ 1 2 . Then 0 ă λ F j 1 ,µ 1 2 ps 0 q " λ F top ps 0 , µ 1 2 q for some 1 ď j 1 ď p 1 whence some fiberwise Lyapunov exponent λ F j 1 ,µ 1 2 : A Ñ R is a nonzero linear functional.
Second averaging. Consider now the elements s " p2, 2, 1 4 q and s " p2, 1 4 , 2q in A. Again, either

λ F j 1 ,µ 1 2 psq ‰ 0 or λ F j 1 ,µ 1 2 psq ‰ 0.
Case 1: λ F j 1 ,µ 1 2 psq ‰ 0. Take s 1 " s or s 1 " s ´1 so that λ F j 1 ,µ 1 2 ps 1 q ą 0. Consider the one-parameter group U 1,2 which commutes with s 1 . As above, any weak-l imit point µ 3 of tpU 1,2 q T ˚µ1 2 u as T Ñ 8 is s 1 -invariant, with λ F top ps 1 , µ 3 q " λ F top ps 1 , µ 3 q ě λ F top ps 1 , µ 1 2 q ą 0. Let µ 4 be any weak-˚limit point of tA T ˚µ3 u as T Ñ 8 (where A T ˚µ3 is as in the first averaging). Then µ 4 is A-invariant and λ F top ps 1 , µ 4 q ě λ F top ps 1 , µ 3 q ą 0. We claim that the projection μ4 of µ 4 to SLp3, Rq{Γ is the Haar measure. Since the groups U 1,2 and U 3,2 commute and since μ2 was U 3,2 -invariant, it follows that μ3 " U 1,2 ˚μ 2 is U 3,2 -invariant. Also, since μ2 was A-invariant, Proposition 18.3 (2) shows that μ3 is A-invariant. Thus μ3 " μ4 and μ4 is also invariant under the actions of A, U 1,2 , and U 3,2 . By Proposition 18.3(4) it follows that μ4 is invariant under the groups U 2,1 and U 2,3 ; in particular μ4 is invariant under the following subgroups of SLp3, Rq:

$ & % ¨˚0 0 0 ˚0 ˚˚', . - , $ & % ¨˚˚0 ˚˚0 0 0 ˚' , .
-.

These two groups generate all of SLp3, Rq, and hence μ4 is the Haar measures.

Case 2: λ F j 1 ,µ 1 2 psq ‰ 0. Take s 1 " s or s 1 " s ´1 so that λ F j 1 ,µ 1 2 ps 1 q ą 0. Consider the one-parameter group U 1,3 which commutes with s 1 . As above, any weak-l imit point µ 3 of tpU 1,3 q T ˚µ1 2 u as T Ñ 8 is s 1 -invariant, with λ F top ps 1 , µ 3 q ě λ F top ps 1 , µ 1 2 q ą 0. Let µ 4 be any weak-˚limit point of tA T ˚µ3 u as T Ñ 8. Then µ 4 is A-invariant and λ F top ps 1 , µ 4 q ě λ F top ps 1 , µ 3 q ą 0. Again, we claim that μ4 " U 1,3 ˚μ 2 is the Haar measure. Since the groups U 1,3 and U 2,3 commute, it follows that μ3 is U 2,3 -invariant. Also, since μ2 was A-invariant, Proposition 18.3 (2) shows that μ3 is A-invariant. Thus μ3 " μ4 and μ4 is also invariant under the actions of A, U 1,3 and U 2,3 . By Proposition 18.3(4) it follows that μ4 is invariant under the following subgroups of SLp3, Rq:

$ & % ¨˚0 0 0 ˚0 ˚˚', . - , $ & % ¨˚0 0 ˚0 ˚0 ˚' , .
-.

Again, these two groups generate all of SLp3, Rq, and hence μ4 is the Haar measure.

(2) In addition, if vol is a volume form on M and if dimpM q ď rankpGq then any homomorphism Γ Ñ Diff 2 vol pM q has finite image. As mentioned in Section 11.4 1 for values of rpGq in various examples of G. For actions of lattices in a general Lie group G, the main result of [31] as well as the announced extension gives finiteness of the action up to the critical dimension rpGq.

Theorem 19.2 ([31] cocompact case; [33] nonuniform case). Let Γ Ă G be a lattice in a higher-rank simple Lie group G with finite center. Let M be a compact manifold.

(1) If dimpM q ă rpGq then any homomorphism Γ Ñ Diff 1`β pM q has finite image. (2) In addition, if vol is a volume form on M and if dimpM q " rpGq then any homomorphism Γ Ñ Diff 1`β vol pM q has finite image. When G is exceptional or not a split real form, our number rpGq is lower than the conjectured critical dimension in Conjecture 11.3(1) and (2). However, for lattices in all Lie groups that are non-exceptional, split real forms Theorem 19.2 confirms Conjecture 11.3(1) and (2). For instance, for actions by lattices in symplectic groups we have the following.

Theorem 19.3 ([31, Theorem 1.3] cocompact case; [33] nonuniform case). For n ě 2, if M is a compact manifold with dimpM q ă 2n´1 and if Γ Ă Spp2n, Rq is a lattice then any homomorphism α : Γ Ñ Diff 2 pM q has finite image. In addition, if dimpM q " 2n ´1 then any homomorphism α : Γ Ñ Diff 2 vol pM q has finite image.

Similarly, for actions by lattices in split orthogonal groups we have the following.

Theorem 19.4 ([31, Theorem 1.4] cocompact case; [33] nonuniform case). Let M be a compact manifold.

(1) For n ě 4, if Γ Ă SOpn, nq is a lattice and if dimpM q ă 2n ´2 then any homomorphism α : Γ Ñ Diff 2 pM q has finite image. If dimpM q " 2n ´2 then any homomorphism α : Γ Ñ Diff 2 vol pM q has finite image. (2) For n ě 3, if Γ Ă SOpn, n `1q is a lattice and if dimpM q ă 2n ´1 then any homomorphism α : Γ Ñ Diff 2 pM q has finite image. If dimpM q " 2n ´1 then any homomorphism α : Γ Ñ Diff 2 vol pM q has finite image.

For actions by lattices Γ in simple Lie groups that are not split real forms such as G " SLpn, Cq, SOpn, mq for m ě n `2, or SUpn, mq, Theorem 19.2 above (the main result of [31] for cocompact case, [33] in general) gives finiteness of all actions on manifolds whose dimension is below a certain critical dimension. However, this critical dimension may be below the dimension conjectured by the analogue of Conjecture 11.3 for these groups. See Table 1. Recall that for any homeomorphism f : T 3 Ñ T 3 there exists a unique M P GLp3, Zq so that any lift f : R 3 Ñ R 3 of f is of the form f pxq " M x `ψpxq where ψ : R 3 Ñ R 3 is Z 3 -periodic. The linear map M can also be seen as the induced action of f on first homology of T 3 . We call M the linear data of f . By a theorem of Franks [82], if M has no eigenvalues of modulus 1 then there is a continuous, surjective h : T d Ñ T d , homotopic to the identity, such that

h ˝f " L M ˝h (20.1)
where L M : T 3 Ñ T 3 is the induced automorphism of the torus. If f, g : T 3 Ñ T 3 are commuting homeomorphisms with linear data A and B, respectively, one can verify that A and B commute. Indeed if f pxq " Ax `ψpxq and gpxq " Bx `φpxq are lifts of f and g, respectively, then f ˝gpxq " ABx `Aφpxq `ψpxq and g ˝f pxq " BAx `Bψpxq `φpxq are both lifts of f ˝g " g ˝f whence AB " BA.

If A has no eigenvalues of modulus 1, we may take a map h :

T 3 Ñ T 3 with h ˝f " L A ˝h
as in (20.1). Following [101, Lemma 1] (correcting [100, Lemma 1.2]) the map h conjugates the Z 2 -action generated by f and g to an affine action on T 3 whose linear part is generated by L A and L B . That is, if α : Z 2 Ñ DiffpT 3 q is the nonlinear action αpn 1 , n 2 q " f n 1 g n 2 then there is an affine action α 0 : Z 2 Ñ DiffpT 3 q of the form α 0 pn 1 , n 2 qpxq " L n 1 A L n 2 B pxq `vpn 1 ,n 2 q for some v pn 1 ,n 2 q P T 3 such that for all pn 1 , n 2 q P Z 2 h ˝αpn 1 , n 2 q " α 0 pn 1 , n 2 q ˝h. (20.2)

We note that the translation term pn 1 , n 2 q Þ Ñ v pn 1 ,n 2 q is a cocycle:

v pn 1 ,n 2 q`pm 1 ,m 2 q " L n 1 A L n 2 B v pm 1 ,m 2 q
`vpn 1 ,n 2 q . Moreover, the action α 0 has a fixed point if and only if v pn 1 ,n 2 q is a coboundary:

v pn 1 ,n 2 q " L n 1 A L n 2 B η ´η
for some η P T 3 . The presence of the translation term v pn 1 ,n 2 q is due to the nonuniqueness of the map h satisfying (20.1). However, all maps h satisfying (20.1) differ by a translation by an element of the finite set of fixed points for L A . Thus, the translation terms v pn 1 ,n 2 q take only finitely many possible values. See discussion in [101] for more details. We note that it is possible to construct genuinely affine Anosov actions α 0 without fixed points as in Remark 10.6. See for example [95,Theorem 2]. In particular, it may be that the action α is not semiconjugate to any action by automorphisms. However, restricting to a subgroup Σ Ă Z 2 of finite index, one has that α 0 ae Σ : Σ Ñ DiffpT 3 q is an action by automorphisms:

α 0 pn 1 , n 2 qpxq " L n 1 A L n 2
B pxq for all pn 1 , n 2 q P Σ.

If f is Anosov then its linear data A is known to have no eigenvalues of modulus 1 and the map h in (20.1) is a homeomorphism. Suppose further that f and g generate a "genuine" Z 2 -action so that the group of matrices generated by their linear data A and B is not virtually cyclic. This implies the linear action generated by L A and L B satisfies Theorem 2.8. Restricted to a finite-index subgroup, the map h conjugates the action α to a linear action of the type of action considered in Example 2.6. Since invertible maps preserve entropy, Theorem 2.8 classifies all positive entropy measures that are jointly f -and g-invariant. We remark also that under the above assumptions, from [165], we know in this setting that the conjugating map h satisfying (20.2) is smooth. Note that the assumption that the group of matrices generated by A and B is not virtually cyclic is essential; for instance, if g is a power of f we expect no rigidity of jointly invariant measures or smoothness of the conjugacy h.

If neither f nor g is Anosov, the map h in (20.2) may be non-invertible. In particular, there may exist ergodic, α-invariant measures µ on T 3 with h µ pf q ą 0 such that the push-forward measure h ˚pµq has zero entropy for α 0 pnq for every n P Z 2 . Note however that if h h˚pµq pα 0 pnqq ą 0 for some n P Z 2 then h ˚pµq is necessarily Haar by Theorem 2.8.

When the map h in (20.2) is non-invertible, analysis of measures invariant under the affine action α 0 gives little information about measures jointly invariant under f and g. However, the method of proof of Theorem 2.8 can be adapted to study measures jointly invariant under f and g; in particular, one can show the following theorem which is a simplified version of the main results of [100,117]. Theorem 20.1 ([100,117]). Suppose f, g : T 3 Ñ T 3 are commuting C 1`β diffeomorphisms. Suppose the linear data of f and g are, respectively, the matrices A and B in Example 2.6. Then any ergodic probability measure µ that is invariant under both f and g and such that h ˚pµq is Haar is absolutely continuous with respect to the Riemannian volume on T 3 . Such a measure always exists and is, moreover, unique.

For actions on more general manifolds, there may be no a priori semiconjugacy between the nonlinear action and an affine Anosov action. However, under certain dynamical hypotheses on the action, the structure of the algebraic toral action can be reconstructed. Consider a Z 2 -action α on a 3-manifold M generated by two commuting diffeomorphisms f, g : M Ñ M . Given an ergodic, Z 2 -invariant probability measure µ, one can define Lyapunov exponent functionals for the Z 2action as in Theorem 7.4. These extend to linear functionals on R 2 . Note that there are at most 3 (the dimension of M ) Lyapunov exponent functionals. Under some genericity assumptions on the Lyapunov exponent functionals, an analogue of Theorem 2.8 and Theorem 20.1 were obtained in [102]. Theorem 20.2 ([102]). Let α be a Z 2 -action by C 1`β -diffeomorphisms of a 3manifold and let µ be an ergodic, α-invariant measure. Assume there are 3 nonzero, Lyapunov exponent functionals λ 1 µ , λ 2 µ , λ 3 µ and that no pair of exponents is proportional.

If some element αpn 1 , n 2 q has positive entropy with respect to µ, then µ is absolutely continuous with respect to the Riemannian volume on M .

In [119], it is shown in the setting of Theorem 20.2 that one can reconstruct an action by (infra-)toral automorphism and a measurable semiconjugacy h between the non-linear action α (restricted to a finite-index subgroup of Z 2 ) and the algebraic action. Moreover the semiconjugacy h takes (an ergodic component of) µ to the Lebesgue measure on the (infra-)torus, is differentiable along stable manifolds, and is differentiable (in the Whitney sense) off sets of arbitrarily small measure. This, in particular, implies that the exponents λ i µ pnq are logarithms of algebraic numbers for every n P Z 2 .

INVARIANT MEASURES FOR CARTAN FLOWS

In Section 13.2, we introduced an important example of a higher-rank, continuoustime algebraic Anosov action, namely, the diagonal action (or Cartan flow) on a higher-rank semisimple homogeneous spaces. We review its properties, referring back to Section 13 for details.

Example 21.1. Let G " SLp3, Rq and let Γ " SLpn, Zq or any lattice in G. Let X denote the coset space X " G{Γ. This is an 8 dimensional manifold (which is noncompact for Γ " SLpn, Zq.) G acts on X by left translation.

The group A Ă G of diagonal matrices with positive entries is isomorphic to R 2 . The action α : A ˆX Ñ X of A on X is given by αpsqpxq " sx. There are 6 roots β i,j : A Ñ R given by β i,j pdiagpe t 1 , e t 1 , e t 3 qq " t i ´tj each with an associated root subgroup U i,j Ă G. For x P X, W i,j pxq is the orbit of x under the 1-parameter group U i,j : W i,j pxq " tU i,j ¨x : t P Ruu.

For s P A, the action αpsq dilates distances in W i,j pxq by exactly e β i,j psq .

One might ask whether an analogue of Theorem 2.8 holds in Example 21.1. That is, if µ is an ergodic, A-invariant probability measure on X such that there is some s P A with h µ pαpsqq ą 0, is µ necessarily the Haar measure on X or on a homogeneous submanifold of X?

The answer is no. The extension of the proof of Theorem 2.8 breaks down in this setting as the trick in Lemma 6.6 fails. Indeed, for every root β i,j , we have that β i,j " ´βj,i are negatively proportional roots. Moreover, explicit examples of diagonally invariant measures with positive entropy (for some element of the diagonal) were constructed by Mary Rees in an unpublished manuscript (see [59] for detailed constructions) on spaces of the form SLp3, Rq{Γ for certain (cocompact) lattices Γ.

However, in the case that Γ " SLp3, Zq, the Margulis conjecture asserts that all ergodic A-invariant measures µ on X should be algebraic. See [61,Conjecture 1.1] and discussion in [142, §1.2]. For measures with positive entropy, this conjecture was solved in [61] (see Theorem 21.5 below). We outline the main results used in [61], namely the high and low entropy methods.

To discuss the high and low entropy methods, first note that there are some key differences in the structure of the foliations in this setting versus the setting of Example 2.6. First note that any two transverse foliations W i , W j of the torus T 3 by lines are jointly integrable; that is there is a foliation of T 3 by planes W i,j with W i pxq Ă W i,j pxq and W j pxq Ă W i,j pxq for all x. This follows as T 3 has an abelian group structure. In X " SLp3, Rq{Γ, Lyapunov foliations do not jointly integrate as the corresponding subgroups may not commute. For instance, the subgroups U 1,2 and U 2,3 do not commute and thus the foliations W 1,2 pxq and W 2,3 pxq do not jointly integrate. This is the key idea behind the high entropy method. Moreover, translations along Lyapunov directions E i are isometries in the torus T 3 . In X " G{Γ, translation by an element of a 1-parameter subgroup U i,j is not isometric; there is some polynomial shearing. This is a key step in the proof Ratner's measure classification theorem for unipotent flows (see [164]) and is also a key idea in the low entropy method.

We state the versions of the high entropy and low entropy methods for Example 21.1. Given a measure µ on X, for i ‰ j let µ i,j

x denote the locally finite leaf-wise measures obtained by conditioning µ along W i,j -manifolds.

Theorem 21.2 (High entropy method [59]). Let µ be an ergodic, A-invariant measure on X. Let i, j, and k be distinct elements of t1, 2, 3u. If µ i,j

x and µ j,k x are nonatomic for a positive measure set of x then µ is U i,k -invariant.

Note that the subgroups U i,j and U j,k do not commute; precisely, we have rU i,j , U j,k s " U i,k . Theorem 21.2 states that if both Lyapunov exponents β i,j and β j,k contribute entropy (so that µ i,j

x and µ j,k x are nonatomic) then the measure µ is invariant under their bracket U i,k " rU i,j , U j,k s. The noncommutativity of U i,j and U j,k is essential in the proof the theorem.

From Theorem 21.2 one can derive the following corollary. ). Let Γ Ă SLpn, Rq be a lattice and let µ be an ergodic, A-invariant measure on X " SLpn, Rq{Γ such that for every nontrivial s P A, h µ pαpsqq ą 0. Then µ is the Haar measure on X.

We note that the statements of Theorems 21.2 and 21.3 are specific for the group SLpn, Rq. More general high entropy methods appear in [60].

The low entropy method is a bit more difficult to state. We state a version for X " SLp3, Rq{Γ. For each i ‰ j, let A 1 i,j denote the kernel of β i,j and let CpA 1 i,j q denote the centralizer of A 1 i,j in G " SLp3, Rq. Theorem 21.4 (Low entropy method, [61,Theorem 2.3.]). Let µ be an ergodic, A-invariant measure on X " SLp3, Rq{Γ. If µ i,j

x and µ j,i x are nonatomic for some i, j and µ i 1 ,j 1

x is atomic for all other pairs i 1 , j 1 then either (1) µ is U i,j -invariant, or (2) there is x 0 P X and s P A 1 i,j with αpsqpx 0 q " x 0 such that µ is supported on the orbit CpA 1 i,j qx 0 . 2) is specific for the case that X is of the form X " SLpn, Rq{Γ for n " 3. For n ą 3, the appropriate version of ( 2) is slightly more complicated.

Conclusion (

To show that Theorem 21.2 and Theorem 21.4 cover all cases it is shown [61,Corollary 3.4] for any ergodic, A-invariant measure µ and every pair i, j, the measure µ i,j

x is nonatomic if and only if µ j,i x is nonatomic. Thus every A-invariant measure µ with positive entropy is considered in either Theorem 21.2 and Theorem 21.4.

To apply the low entropy method, one typically does additional work to rule out conclusion (2). Note that conclusion (2) occurs in Rees's examples so it can not be ruled out in full generality. However, for certain lattices, it can be shown that (2) of Theorem 21.4 does not happen. In particular, this is verified for Γ " SLpn, Zq in [61]. In particular the high and low entropy method combine to give the following. Theorem 21.5 ([61, Theorem 1.3, Corollary 1.4]). Let µ be an ergodic, A-invariant measure on X " SLp3, Rq{SLp3, Zq. Assume µ has positive entropy for some nontrivial element of A. Then µ is the Haar measure on X.

Note the conclusion that µ is the Haar measure above follows as we assume n " 3 which is prime. For the general result on SLpn, Rq{SLpn, Zq, the conclusion is that µ is algebraic.

The study of invariant measures and subsets for actions of various subgroups H Ă SLpn, Rq on X " SLpn, Rq{SLpn, Zq is related to various important problems in number theory. See for instance the proof of Margulis's proof [139,140] of the Oppenheim conjecture which reduces to the study of H " SOp2, 1q-orbit closures in SLp3, Rq{SLp3, Zq. See [192,Section 1.2] for further discussion. One motivation for studying A-invariant measures on SLpn, Rq{SLpn, Zq is its relationship to Littlewood's conjecture. An important consequence of Theorem 21.5 is that the set of values for which Littlewood's conjecture fails has Hausdorff dimension zero. See [61] as well as [142, §1.2] and [178] for details.

Part 5. Appendices

We discuss some classical notions and result that may help reading the main text, without browsing through the literature on the subject.

APPENDIX A. FURSTENBERG'S THEOREM (BY DOMINIQUE MALICET)

Here we give a self-contained proof of Furstenberg's Theorem (Theorem 2.2), mainly following the original proof in [1].

A.1. Notations and statement. Let S 1 be the 1-dimensional torus R{Z. For α in S 1 we denote by T α : S 1 Ñ S 1 the translation operator defined by T α pxq " x `α mod 1. For n in N we denote by M n : S 1 Ñ S 1 the multiplication operator defined by M n pxq " nx mod 1.

Theorem A.1 (Furstenberg). Let a and b be two positive integers which are not powers of a same integer, and let F be a closed subset of S 1 invariant by M a and M b . Then either F is finite or F " S 1 .

Remark A.2.

(1) In the case where F is an invariant finite set, it is actually a set of rational numbers. (Indeed if |F | " and x is a point of F then there exists n ď with a n x " x modulo 1.) (2) The conclusion does not hold if the closed set is invariant by only one transformation M a . For example the triadic Cantor set is invariant by M 3 . (3) We can reformulate the theorem as follows: if a, b are integers which are not powers of a same integer, then for any irrational number x the set ta m b n x, pm, nq P N 2 u is dense modulo 1.

A.2. Proof of the theorem. We follow the proof of Furstenberg (except that we try to avoid the unnecessary use of the existence of minimal invariant closed subsets). For the whole proof, we fix integers a and b which are not powers of a same integer. It is equivalent to say that log a and log b are independent over Q. Let F be a closed subset of S 1 invariant by M a and M b . If F is infinite, it means that it has some accumulation point, and we want to deduce that actually F " S 1 . We divide the proof into two parts:

(1) The first part treats the particular case where the accumulation point of F is a rational number. "Spreading" points of F close to this rational number by using M a and M b , we manage to prove that F " S 1 , mainly by combinatorial techniques. (2) The second part treats the general case where the accumulation point can be irrational. The idea here is to use translations T α commuting with M a and M b , and to prove that there is "some T α -invariance" in F . The first treated case will help at some key points. The following fact can be checked by a simple computation:

Lemma A.3. A translation T α commutes with M a and M b if and only if pa ´1qα " pb ´1qα " 0 mod 1, or equivalently that α is a rational number (modulo 1) whose denominator divides a ´1 and b ´1.

This condition on α is too much restrictive to be useful (there is only a finite numbers of solutions, and even no solution at all if a´1 and b´1 are coprime!). That is why we will actually use translations commuting with some large powers of M a and M b .

A.2.1. The particular case. In this part we prove the following weak version of the theorem: Proposition A.4. If F is closed, invariant by M a and M b and has some rational number p q as an accumulation point, then F " S 1 .

The proof relies on the following combinatorial lemma, which is actually the only step where we use that we have two transformations M a and M b instead of one.

Lemma A.5. Let us enumerate the set S " ta m b n , pm, nq P N 2 u Ă N by an increasing sequence of integers ps k q kPN . Then lim kÑ`8 s k`1 s k " 1 Proof. Let ε be any positive number. The additive group generated by log a and log b is dense in R (since log a and log b are independent over Q) hence one can find a finite set A Ă Z 2 such that tm log a `n log b, pm, nq P Au is ε-dense in r0, 1s. Then, if p 0 is large enough, we have that the set tpm `pq log a `pn pq log b, pm, nq P A, p ě p 0 u is a subset of tlog s, s P Su, and it is ε-dense in rM, `8q where M " p 0 log a `p0 log b. Thus if log s k ě M , then log s k`1 ď log s k `ε. We conclude that lim kÑ`8 log s k`1 ´log s k " 0 and hence that lim kÑ`8

s k`1 s k " 1.
Proof of Proposition A.4. Take the set S of Lemma A.5 and enumerate it by the increasing sequence ps k q. We denote by x Þ Ñ x the canonical projection of R onto S 1 .

Let us treat first the case where the accumulation point of F is 0 (modulo 1). Then, up to replacing F by ´F we assume that for any ε ą 0, there exists x ε in p0, εq such that x ε belongs to F . Given ε ą 0 and x P pε, 1q, let k ε be such that s kε x ε ď x ă s kε`1 x ε . We have

dpx, F q ď |x´s kε x ε | ď s kε`1 x ε ´skε x ε " ˆskε`1 s kε ´1˙s kε x ε ď ˆskε`1 s kε ´1˙x .
Letting ε going to 0 (so that x can be arbitrary in p0, 1q), we have that k ε Ñ `8 hence the last term tends to 0 by the lemma, and we conclude that x belongs to F . Thus F " S 1 .

In the general case where the accumulation point of F is a rational number p q , then the point p " 0 mod 1 is an accumulation point of M q pF q, and since M q commutes with M a and M b , the set M q pF q is also invariant by M a and M b , and we deduce by the first case that M q pF q " S 1 . As a consequence, we also have that M ´1 q pM q pF qq " S 1 , that is:

F Y T 1 q pF q Y ¨¨¨Y T q´1 q pF q " S 1 .
Since a finite union of closed sets with empty interiors has empty interior, we conclude that F contains some non trivial interval I. But for sufficiently large n, M n a pIq " S 1 , hence F " S 1 by M a -invariance of F .

A.2.2. The general case. We establish some lemmas relating F with the dynamics of the translations T α .

Lemma A.6. Let F be a closed infinite set which is invariant by M a and M b , and let T α be any translation. Then T α pF q X F " H.

Proof. Note that T α pF q X F " H ô α P F ´F, where F ´F " tx ´y, px, yq P F ˆF u. The set F ´F is closed and invariant by M a and M b . Moreover, if F is infinite, then F has some accumulation point x and hence 0 " x ´x is an accumulation point of F ´F . By Proposition A.4, F ´F " S 1 and hence T α pF q X F " H.

Lemma A.7. Let F be a closed infinite set which is invariant by M a and M b , and let T α be a translation commuting with M a and M b . Then there exists a nonempty closed set F Ă F invariant by M a , M b and T α .

Proof. Since F is infinite, the set F 1 of the accumulation points of F is non empty. Let us define by induction F 0 " F 1 and F n`1 " F n X T α pF n q "

Ş n k"0 T k α pF 1 q, and let F " Ş 8 k"0 T k α pF 1 q be the intersection of all the F n 's. The sequence pF n q nPN is a nested sequence of closed sets, all of them invariant by M a and M b (because T α commutes with M a and M b ). The intersection F is obviously a closed subset of F invariant by M a , M b . It verifies T α p F q Ą F hence, as T α is a translation, F is also invariant by T α . What remains to prove is that all the F n are non empty, in order to conclude by compactness that F is non empty.

Let us assume by contradiction that F n " H for some n ą 0. Choosing n minimal we can assume that F n´1 " H, and we have T α pF n´1 q X F n´1 " F n " H. By Lemma A.6, F n´1 is a finite set, and in particular it contains only rational numbers (see the first observation in Remark A.2). Since F n´1 " H and F n´1 Ă F 0 " F 1 , this means that we can find a rational number in F 1 , so that by Proposition A.4, F 1 " S 1 and hence F n " S 1 , which gives a contradiction and concludes the proof.

Remark A.8. We will use the previous lemma with rational translations T α , and in this case one easily checks that the set F defined in the proof is actually the finite intersection F " F 1 X T α pF 1 q X ¨¨¨T k´1 α pF 1 q where k is the denominator of α when written in reduced terms.

We are now ready to prove Theorem A.1:

Proof. Let F be a closed set invariant by M a and M b that we assume infinite. Let k a large number coprime with a and b, and let n " ϕpkq be the cardinal of pZ{kZq ˆso that a n " b n " 1 mod k. Then, F is invariant by M a n " M . In particular F is 1 k -dense, and hence so is F . Since k can be chosen arbitrarily large, F " S 1 .

APPENDIX B. MEASURABLE PARTITIONS, DISINTEGRATION AND

CONDITIONAL MEASURES (BY BRUNO SANTIAGO AND MICHELE TRIESTINO)

Here we discuss more extensively the notion of conditional measures (Section 3.3) and review Rokhlin Desintegration Theorem. We also give some applications, mainly in relation to unstable partitions. For a more detailed reference, the reader may consult [3,13] (or [14] as historical reference). 9 B.1. Introduction. Consider a measure space pX, B, µq. Suppose that we partition X in an arbitrary way. Is it possible to recover the measure µ from its restriction to the elements of the partition? We shall address this question, defining the "restriction" via a classical theorem of Rokhlin, giving some affirmative answer and applying this idea to obtain interesting results.

Let us start with a simple (positive) example.

Example B.1 (Figure 4). Consider the 2-torus T 2 " S 1 ˆS1 , endowed with the Lebesgue measure m. The torus is partitioned into the vertical sets tyu ˆS1 . Denote by m y the Lebesgue measure over the circle tyu ˆS1 , and m the Lebesgue m y pEqd mpyq. (B.1) 9 The author thanks Aaron Brown for helpful conversations and the organizing committee of the conference "Workshop for young researchers: groups acting on manifolds" for the opportunity of participating in this wonderful meeting.

E ⊂ T 2 S 1 y S 1 with m = Leb
As we shall see later, for some simple, dynamically defined, partitions no disintegration like this exists. In the next sections we shall define formally the notion of a disintegration and try to explore a little bit this concept. B.2. Disintegration and Conditional Probability Measures. Let Q Ă S 1 be a measurable subset with mpQq " 0. Notice that if in (B.1) we choose to calculate the integral over S 1 zQ only, equality is not affected. Thus, it is natural to consider partitions only modulo null sets (sets of measure zero).

More formally, let pX, B, µq be a probability space. Let P be a partition of X into measurable sets. Let π : X Ñ P be the natural projection:

πpxq is the unique element of P such that x P πpxq.

We can turn P into a measure space pP, B, μq, by saying

Q P B ðñ π ´1pQq P B,
and μpQq " µpπ ´1pQqq. This clearly makes the projection π measurable. Definition B.2 (See Definition 8.1). A disintegration of µ with respect to P is a family of probability measures tµ P ; P P Pu Ă M 1 pXq such that for every E P B one has

(1) µ P pP q " 1 for μ-almost every P P P.

(2) the assignment P P P Þ Ñ µ P pEq P R is B-measurable.

(3) µpEq " ş P µ P pEqdμpP q. Each measure µ P is called a conditional probability measure.

Observe that property (3) in Definition B.2 can be reformulated in functional terms: for every µ-integrable Borel function f : X Ñ R one has the Fubini property ż

X f dµ " ż P ż X f dµ P dμpP q.
As the lemma below states, in reasonable cases disintegrations are essentially unique.

Lemma B.3. Assume that the σ-algebra B is countably generated. If tµ P ; P P Pu and tµ P ; P P Pu are disintegrations then µ P " µ P for μ almost every P P P.

Sketch of proof.

Let G Ă B be a countable generating family. Using the properties of disintegrations, one proves that for any E P G, the subset P E :" tP P P | µ P pEq ‰ µ P pEqu has μ-measure zero. Hence the countable union Q " Ť EPG P E has μ-measure zero. So if P R Q, the measures µ P and µ P coincide on generators of B and thus on B.

From this lemma, we deduce the following dynamical property.

Lemma B.4. Let pX, dq be a separable metric space, endowed with the Borel σalgebra B and a probability measure µ. Let pf, X, B, µq be a measure preserving system. Assume that there exists a partition P of X into measurable invariant subsets, such that µ admits a disintegration with respect to P. Then for μ almost every P P P the conditional measure µ P is f -invariant.

Proof. We want to prove that the family tf ˚µP ; P P Pu is also a disintegration, so that Lemma B.3 gives f ˚µP " µ P for almost every P P P.

As P P P is f -invariant, one has f ˚µP pP q " µ P pf ´1pP qq " µ P pP q " 1, so (1) in Definition B.2 is verified. Fix E P B. Clearly the assignment P P P Þ Ñ f ˚µP pEq is B-measurable, thus (2) is verified. For (3), invariance of µ gives µpEq " µpf ´1pEqq and thus µpEq " µpf ´1pEqq " ż P µ P pf ´1pEqqd μpP q " ż P f ˚µP pEqdμpP q.

Example B.5. Let P " tP 1 , . . . , P n u be a finite partition of pX, B, µq. Assume that no element of this partition has zero measure. Define probability measures supported µ i supported on P i by the expression µ i pEq " µpE X P i q µpP i q , for every E P B, i " 1, . . . , n.

This defines the conditional probability measures. Indeed, we have μptP i uq " µpP i q and µpEq " n ÿ i"1 µpP i q µpE X P i q µpP i q " n ÿ i"1 μptP i uqµ i pEq.

In the same way, we can show that every countable partition admits a disintegration.

There are very natural examples of partitions for which no disintegration exists at all. Example B.6 (cf. Example 8.9). Let θ P RzQ be an irrational number, m be the normalised Lebesgue measure on the unit circle S 1 , equipped with the Borel σalgebra. We consider R θ : S 1 Ñ S 1 , defined as the circle rotation by an angle 2πθ. Let O " tR n θ pxqu nPZ ; x P S 1 ( be the partition into R θ -orbits, with induced measure m. We claim that this partition admits no disintegration. Indeed, assume that there exists tµ P ; P P Ou, a disintegration of the Lebesgue measure with respect to this partition. By Lemma B.4, μ almost every measure µ P is R θ -invariant. Moreover µ P pP q " 1, but this is a contradiction because no invariant probability measure can give positive mass to a countable infinite set (orbits are countable).

More generally, given any ergodic system pf, X, B, µq, where pX, dq is a separable metric space and B the Borel σ-algebra, one has that the partition into orbits O admits no disintegration. B.3. Measurable Partitions. In this section we shall define a class of partitions for which we can always find a disintegration. Recall from Section 8.3.2 that a partition P is finer than a partition Q, which we denote by Q ă P, if every P P P is (measurably) contained in some Q P Q. Given two partitions P and Q, we

J(i, n) FIGURE 5. A measurable partition of T 2 .
denote by P _ Q the smallest partition that refines both P and Q (this is the join introduced in Section 8.1.2). Definition B.7 (cf. Section 8.1.1). Let pX, B, µq be a probability space. A partition P is measurable if there exists X 0 Ă X with µpX 0 q " 1 and a nested sequence of countable partitions P 1 ă P 2 ă ¨¨¨ă P n ă ¨¨¨of X 0 such that P| X 0 " Ž 8

n"1 P n . In other words, for every P P P there exists a sequence P n , with P n P P n such that P X X 0 " Ş 8 n"1 P n . Thus a measurable partition can be described as the joining of a nested sequence of countable partitions. Recall from Example B.5 that countable partitions always admit a disintegration.

From this fact and from a suitable martingale argument, one can prove the following fundamental theorem.

Theorem B.8 (Rokhlin Disintegration Theorem). Let pX, dq be a complete and separable metric space, endowed with the Borel σ-algebra B. Let µ be any probability measure on pX, Bq and P be a measurable partition. Then, there exists tµ P ; p P Pu, a disintegration of µ.

Let us see some examples of partitions which are, and which are not, measurable.

Example B.9 (Figure 5). In the two torus T 2 " S 1 ˆS1 , consider for each pair i, n, with n a positive integer and i P t1, 2, 3, . . . , 2 n u, the interval Jpi, nq " r i´1 2 n , i 2 n s.

Then, the partition P n " tS 1 ˆJpi, nqu is a measurable partition. Let P " tW u pxq; x P T 2 u be the partition into unstable manifolds. We claim that P is not measurable. Indeed, if P were measurable, as it is the partition into orbits of an irrational flow, P " Ž 8 n"1 P n would imply that for each n there exists P n P P n , with mpP n q " 1. Thus, the set P " X 8

n"1 P n belongs to the partition P, and mpP q " 1, which is absurd. (This is the continuous-time version of Example B.6.) B.4. Ergodic Decomposition of Invariant Measures. We proceed to give an important application of the disintegration theorem, namely the decomposition of invariant measures into ergodic measures.

Let pX, B, µq be a probability space and f : X Ñ X be a measurable map such that f ˚µ " µ. We say that the measure preserving system pf, X, B, µq is ergodic if every measurable f -invariant set has either zero or full µ-measure.

The goal of this section is to prove the following military principle: divide the space to conquer the ergodic decomposition.

Theorem B.11 (Ergodic Decomposition; see Definition 6.5). Let pX, dq be a complete and separable metric space, endowed with the Borel σ-algebra B and a probability measure µ. Let pf, X, B, µq be a measure preserving system. Then there exists a measurable partition pE, B, μq, with f -invariant atoms, whose disintegration tµ P ; P P Eu satisfies that μ-almost every µ P is f -invariant and ergodic.

Furthermore, one can prove by measure theoretical arguments that the ergodic decomposition E given by the theorem is essentially unique, in the sense that any other ergodic decomposition pE 1 , B1 , μ1 q is measurably isomorphic to pE, B, μq (the isomorphism is even Borel in restriction to conull subsets, see for example [15]).

The idea for Theorem B.11 is that an ergodic system is dynamically indecomposable, since its orbits spread uniformly over the configuration space, and thus it is possible to split X into the indecomposable components of the dynamics (see Example B.6). Let us see this more closely by recalling a fundamental result in ergodic theory. B.4.1. The Birkhoff's ergodic theorem. Consider the following statistical question: given a point p P X and a certain positive measure set A Ă X, how often does the forward f -orbit of x visit A?

From a more formal point of view this means to study the behavior of the sequence

1 n n´1 ÿ j"0 χ A pf j pxqq.
So, it is natural to ask: does this sequence converges? If so, to what limit?

Theorem B.12. Let pf, X, B, µq be a measure preserving system. Then for every measurable set A Ă X the limit

1 n n´1 ÿ j"0 χ A pf j pxqq
exists for µ-almost every x P X.

It is not hard to show (though we will not do this here) that the ergodic theorem implies the following.

Corollary B.13. A measure preserving system pf, X, B, µq is ergodic if and only if

lim nÑ8 1 n n´1 ÿ j"0 χ A pf j pxqq " µpAq,
for µ-almost every x P X, and every measurable set A. B.4.2. Proof of Theorem B.11. As we said before, we need to divide the space to conquer the ergodic decomposition. So, our first task is to choose a suitable partition of X. Let U Ă B be a countable basis for the topology of X, and A Ă B the algebra generated by U. Notice that A is countable and generates B.

Then the ergodic theorem implies that for each A P A there exists X A Ă X with µpX A q " 1 and such that

τ pA, xq " lim nÑ8 1 n n´1 ÿ j"0 χ A pf j pxqq exists. Take X 0 " Ş APA X A .
Then µpX 0 q " 1. We insert the following equivalence relation in X 0 : x " y if, and only if, τ pA, xq " τ pA, yq, for every A P A.

Lemma B.14. The partition E " trxs; x P X 0 u of X 0 into "-equivalence classes is measurable.

We shall first finish the proof of Theorem B.11 assuming Lemma B.14.

Proof of Theorem B.11. Let E be the measurable partition from Lemma B.14 and tµ P ; P P Eu be the associated disintegration. Observe that τ pA, xq " τ pA, f pxqq for every x P X, A P A, thus the every atom of the partition E is f -invariant. By Lemma B.4, almost every µ P is f -invariant. It remains to prove that almost every µ P is ergodic. Fix P P E and consider C " tE P B | τ pE, xq is defined and constant for every x P X 0 X P u.

Notice that A Ă C, by definition of E. Moreover, if E 2 Ă E 1 are elements of C then τ pE 1 zE 2 , xq " τ pE 1 , xq ´τ pE 2 , xq is well-defined and constant over X 0 X P . If tE i u are pairwise disjoint sets then τ ˜8 ď i"1 E i , x ¸" 8 ÿ i"1 τ pE i , xq
is well-defined and constant over X 0 X P . We conclude that C is a monotone class (it is stable under increasing unions and decreasing intersections). By the monotone class theorem we conclude that C " B. By Corollary B.13 we deduce that µ P is ergodic.

Proof of Lemma B.14. Let A " tA k u be an enumeration of A and tq k u " Q be an enumeration of the rational numbers. Fix n P N. We define a partition P n in the following way: we mark the points q 1 , . . . , q n on the line and consider the partition of R into intervals induced by these points. We declare x " n y if and [10,11]. Since then, it appears as a standard tool in many important measure rigidity results, as we have seen for Theorem 2.8 [7,8], but one also finds it in [1,2,5,6,12], just to cite a few. The idea described in Section 3.3 consists into considering an exhaustion of the unstable partition W u by a sequence of subordinate measurable partitions ξ k of µ conditioned on ξ k . This gives conditional measures tµ pkq P | P P ξ k u that one chooses to renormalize so that the unit ball at x (with respect to the intrinsic metric of W u pxq), has measure 1 as soon as this ball is contained in ξ k pxq. Then one is able to take a limit of these conditional measures.

R q 1 q 2 q 3 q n τ (A i , x) τ (A i ,
Although the construction is somehow delicate, rigorous treatments appear rarely in the literature. A very abstract approach can be found in [1, Section 4.1] (in French), carefully explained in [4]. As conditional measures take a central place in these notes, we recall the construction as it appears in these cited works.

For this, we start with a second countable locally compact group R (in practice, this will be a closed subgroup of R d , see Sections 6 and 7) with an action on a standard Borel space pZ, Zq with discrete stabilizers (i.e. the stabilizer of any point z P Z is a discrete subgroup of R). We also fix a probability measure µ on pZ, Zq.

We denote by MpRq the space of (positive) Radon measures on R and by PMpRq the space of projective measures, that is, of classes of Radon measures with respect to the equivalence relation that declares two measures σ 1 and σ 2 equivalent if and only if they are (positively) proportional (one writes σ 1 9σ 2 ).

There is a natural map π : MpRq Ñ PMpRq taking a given measure to its class. Given an exhaustion R " Ť nPN X n of R defined by an increasing union of compact subsets X n Ă R, we define a section PMpRq Ñ MpRq by assigning to a given projective measure rσs the unique measure σ determined by the condition σpX n q " 1, where n is the least k P N such that rσspX k q ą 0.

In practice, when R Ă R d , one may choose X n " R X r´n, ns d . Definition B.15. A Borel subset Σ Ă Z is a discrete section for the action of R if for any z P Z, the set tr P R | r ¨z P Σu is a closed and discrete subset of R. (This is called a lacunary section in [4].)

A result by Kechris [9] states that any such action admits a complete discrete section, that is, with the additional property that R ¨Σ " Z. Now, given a complete discrete section Σ Ă Z, we consider the surjective map a : R ˆΣ Ñ Z pr, zq Þ Ñ r ¨z with countable fibers, so that the measure defined by pa ˚µqpEq " ż Z ¨ÿ pr,z 1 qPa ´1pzq χ E pr, z 1 q 'dµpzq, for E Ă R ˆΣ Borel subset, is a σ-finite measure on R ˆΣ. (Observe that this is a pull-back of a measure, so it comes from an exceptional construction.)

Let π Σ : R ˆΣ Ñ Σ denote the projection onto the second factor, and µ Σ the push-forward by π Σ of some finite measure equivalent to a ˚µ (recall that two measures are equivalent if they share the same zero and full measure sets). By construction, µ Σ is a finite measure on Σ.

The horizontal partition P " tR ˆtzu; z P Σu is a measurable partition of the Borel space R ˆΣ thus (a refinement of) Rokhlin disintegration theorem (Theorem B.8) ensures the existence of a disintegration of the measure a ˚µ: for µ Σalmost every z P Σ, there exits a conditional measure µ Σ,z P MpRq (not necessarily finite, but σ-finite) such that

a ˚µpA ˆBq " ż B µ Σ,z pAq dµ Σ pzq, for A Ă R, B Ă Σ Borel sets.
Given r P R, we denote by ρ r the right multiplication by r on elements of R. The following lemma [1, Lemma 4.1] tells that the class of the conditional measure does not change as we move along one orbit: Lemma B.16. For µ Σ -almost every z P Σ, for any r P R such that r ¨z P Σ, one has µ Σ,z 9pρ r q ˚µΣ,r¨z .

Proof. The hypothesis of discrete stabilizers implies that the set tpr, zq P R ˆΣ | r ¨z P Σu is a countable union of graphs of partially defined, Borel injective functions r i : Σ i Ñ R. Therefore it is enough to check the equality for graphs of injective functions only.

Finally, we have [1, Prop. 4.2]:

Proposition B.17 (Definition of conditional measures). There exists (an essentially unique) Borel map σ : Z Ñ PMpRq, a Borel set E Ă Z of full µ-measure such that:

(1) for every discrete section Σ, for µ Σ -almost every z 0 P Σ and for any r P R such that r ¨z0 P E one has rµ Σ,z 0 s " pρ r q ˚σpr ¨z0 q;

(2) for any r P R, z P E such that r ¨z P E, one has σpzq " pρ r q ˚σpr ¨zq.

Proof. Fix a complete discrete section Σ 0 . We define, for z " rz 0 P R ¨Σ0 " Z, σpzq :" " pρ ´1 r q ˚µΣ 0 ,z 0 ‰ P PMpRq.

The previous lemma guarantees that σpzq is well defined. Here we treat more extensively some of the notions appearing in Section 8.6. We define the Pinsker partition and describe its relation with the unstable and stable partitions, given by Theorem B of [4]. Now we recall a few things from measure theory, for a better discussion on these points see [2]. Let pX, B, µq be a measure space. Given a partition ξ of X define Bpξq to be the σ-algebra generated by the measurable sets C P B that are union of elements of ξ. Given two partitions ξ and η, we say that ξ refines η if every element of η can be obtained by union of elements of ξ, we denote it by η ă ξ, we also say that η coarsens ξ. We say that two partitions η and ξ are equal mod zero if they are the same on a set of full µ-measure, and we denote it by η " ξ (cf. Section 8.3.2).

Let f : X Ñ X be a measurable function that preserves µ; recall that given any finite measurable partition ξ we can define the metric entropy with respect to this partition, denoted by h µ pf, ξq (see Section 8.1).

Definition C.1 (cf. Section 8.6.2). The Pinsker partition πpf q is defined as the finest measurable partition such that if η is any finite partition with η ă πpf q then h µ pf, ηq " 0. We can also define the Pinsker σ-algebra as the biggest sub-σ-algebra of B, which we will denote by P such that every A P P satisfies h µ pf, tA, A c uq " 0.

Given a partition ξ we define its measurable hull Ξpξq as the finest measurable partition which coarsens ξ. In other words Ξpξq ă ξ and if η is a measurable partition such that η ă ξ then η ă Ξpξq (cf. Section 8.6.1).

Example C.2 (cf. Example 8.9). Let pX, dq be a complete and separable metric space, B is Borel σ-algebra, pf, X, B, µq a measure preserving system and E the ergodic decomposition (Theorem B.11). Then the measurable hull ΞpOq of the partition by f -orbits O is the ergodic decomposition E. To see this, notice the fact that atoms of the ergodic decomposition E are f -invariant implies that E coarsens O. Thus it remains to prove that E is the finest measurable partition enjoying this property. For this, we remark that, replacing X with an ergodic component P P E and µ with µ P , we can assume that the measure µ is ergodic. Now, ergodic measures admit no nontrivial disintegration with respect to a measurable partition into invariant subsets (we use Lemma B.4), so any finer measurable partition ξ, E ă ξ ă O, must coincide with E.

From now on let us suppose that X " M is a manifold, B is the Borel σ-algebra and f : M Ñ M is a C 1`β -diffeomorphism. By Oseledec's theorem (Theorem 7.1) we know that for µ-almost every point x the Lyapunov exponents are defined. By Pesin's theory (see Section 7.4.1) we know that for µ-almost every point x P M there are stable/unstable manifolds W s pxq, W u pxq tangent to the directions of the In the case all the exponents are zero, those manifolds are just the points. Thus we obtain two partitions, the stable and unstable partitions which we denote them by W s and W u , respectively. (Their measurable hulls are denoted by Ξ s and Ξ u , respectively, in Section 8.6.)

In [4] Ledrappier and Young proved the following theorem (cf. Proposition 8.13).

Theorem C.3 (Theorem B of [4]). Let f : M Ñ M be a C 1`β -diffeormorphism preserving a probability measure µ. Then we have equality of partitions ΞpW s q " πpf q " ΞpW u q.

Leddrapier and Young actually state the theorem in terms of σ-algebras, the result is the same, up to replace the partitions by the σ-algebras they generate. C.2. The Hopf Argument. The Hopf argument was introduced by Hopf [3] to prove that the geodesic flow on compact surfaces with constant negative curvature is ergodic for the Liouville measure. Later Anosov proved, in [1], that every C 2 -Anosov diffeomorphism volume preserving is ergodic. The Hopf argument can be divided in two parts, the first part is that every ergodic component is saturated, up to a set of measure zero, by stable or unstable manifolds, the second part is that under an additional hypothesis called accessibility one can obtain that the system is ergodic for the Anosov case. Since then the ideas from Hopf argument have been the main tool to prove ergodicity for partial hyperbolic systems, see [7] for a survey on conservative partially hyperbolic dynamics.

In our scenario we can state the Hopf argument in the following way (cf. Proposition 8.12).

Theorem C.4 (The Hopf Argument). Let f : M Ñ M be a C 1`β -diffeormorphism preserving a probability measure µ. The ergodic decomposition is refined by the measurable hull of the stable partition, in other words ΞpOq ă ΞpW s q.

The same result holds if we change the measurable hull of the stable partition by the measurable hull of the unstable partition.

Proof. Let ν be an invariant ergodic measure in the ergodic decomposition of µ. By Birkhoff's ergodic theorem (see Theorem B.12) for every continuous function ϕ P C 0 pM q there is a measurable set Λ ϕ of full ν-measure such that if x P Λ ϕ then the limit ϕ `pxq :" lim nÑ`8 

1 n n´1 ÿ j"0 ϕpf j pyqq " lim nÑ`8 1 n n´1 ÿ j"0 ϕpf j pxqq " ż X ϕ dν.
Since our system f is invertible the same statement is also true for the measurable hull of the unstable partition. We remark that analogous results hold for flows.

Example C.5. We now give an example of application of this result. Consider the group G " PSLp2, Rq and the subgroups

A " ˆ˚0 0 ˚˙, L " ˆ1 0 ˚1˙a nd U " ˆ1 0 1 ˙.
It is easy to see that the subgroups A, L and U generate G. Suppose that G acts on the left on a compact manifold M , by C 1`β diffeomorphisms. Assume that it preserves a probability measure µ. We say that the measure µ is G-ergodic if every measurable set B that is G-invariant has zero or full µ-measure.

Of course if the measure µ is ergodic for any of the subgroups then it is ergodic for G. We will prove now that if the measure µ is ergodic for G than it is ergodic for D. We can parametrize the subgroups by

A t " ˜e t 2 0 0 e ´t 2 ¸, L r " ˆ1 0 r 1 ˙and U s " ˆ1 s 0 1 ˙.
Observe that A t generates a flow and µ is an invariant measure for this flow. First we obtain that

U s ˝At " A t ˝pA ´t ˝Us ˝At q " A t ˝ˆ1 se ´t 0 1 ˙" A t ˝Use ´t . (C.2)
Observe that from (C.2), we obtain U se t ˝At " A t ˝Us .

Now for any x P M and s P R, we have dpA t pxq, A t pU s pxqqq " dpA t pxq, U se t pA t pxqqq Ý ÝÝÝ Ñ tÑ´8 0.

Indeed, this convergence is exponentially fast. This implies that U s pxq P W u pxq for every s P R, where W u pxq is the unstable manifold of x with respect to the flow A t . Similarly, we can check that L re ´t ˝At " A t ˝Lr , thus L r pxq P W s pxq.

Let ϕ P C 0 pM q be a continuous function and let ϕ `p¨q P L 1 pM, µq be the forward Birkhoff average with respect to the flow A t . By Birkhoff's theorem this function is A-invariant and is defined on a set of full µ-measure. By Theorem C.4, for µ-almost every point x P M and for any y P W s pxq it holds that ϕ `pxq " ϕ `pyq. By the previous calculation we know that for any r P R, we have L r pxq P W s pxq. Thus, the function ϕ `is also L-invariant. Similarly, we conclude that ϕ `is U -invariant. Notice that A, L and U generate G, hence ϕ `is G-invariant and since µ is G-ergodic, the only G-invariant functions in L 1 pM, µq are the constants. We conclude that ϕ `is constant µ-almost everywhere. This is true for any continuous function, therefore µ is A-ergodic. This is a simple case of a larger class of results called the "Mautner phenomenon" (first appearing in [5], see also [6]).
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The baker transformation for smooth measures), the proof of the "if" part is due to F. Ledrappier and J-M.

Strelcyn in [11].

The proof of the "only if" part is the most difficult one and was first achieved by F. Ledrappier in [10] under the hypothesis that µ is hyperbolic (i.e. has no zero Lyapunov exponent) (see Section 7.1). Later, together with L.-S. Young in [12], they were able to treat the difficulties that emerge when one allows the presence of zero Lyapunov exponents.

Let us say a word about the regularity of the dynamics in Theorem D.1. F. Ledrappier and L.-S. Young proved that Theorem for C 2 diffeomorphisms. As we will see later on there is a crucial step in which the C 2 hypothesis rather than the C 1`β hypothesis on the dynamics was used in [12]: obtaining the lipschitzness of the unstable holonomies inside center-unstable sets. A. Brown recently showed in [4], that this lipschitzness actually holds for C 1`β dynamics. Finally let us note that the regularity can't be lowered. It comes from [2,17] that a C 1 diffeomorphism can have many hyperbolic ergodic probability measures (i.e. without zero Lyapunov exponents) such that the points on their supports have no unstable nor stable manifolds [2,17].

Example D.2 (Baker vs. horseshoe). Before entering in the details let us borrow to L.-S. Young (see [23,Example 4.1.3.]) an enlightening illustration of the results above.

Consider first the well known baker transformation. This is a piecewise affine map of the unit square C of R 2 defined as follows. We set T px, yq " p2x, y{2q if x ă 1{2 and T px, yq " p2x ´1, y{2 `1{2q if x ě 1{2. (See Figure 7.) It is possible to prove that the Lebesgue measure µ is T -invariant and ergodic and that T is then isomorphic to the p 1 2 , 1 2 q-Bernoulli shift. It is clear that h µ pT q " log 2 " λ `, where λ `is the largest Lyapunov exponent.

The second transformation is a piecewise affine map defined on a subset of C that may be extended to Smale's horseshoe. (See Figure 8.) It has a hyperbolic invariant set Λ of measure zero (this is a product of two Cantor set) and we endow it with its measure of maximal entropy (which is singular since it is supported on It is also isomorphic to the p 1 2 , 1 2 q-Bernoulli shift. Now we have h µ pT q " log 2 ă λ `.

The first transformation satisfies the entropy formula, while the second one does not. One may interpret this fact as follows (see [23]). In a conservative system, all the expansion goes back to the system and contributes to the entropy, whence the entropy formula. In a dissipative system, some of the entropy is wasted along the way (in the second case, it is wasted to "bend" the horseshoe) and the entropy is concentrated in some region of smaller dimension (we will see how in the second part of Ledrappier-Young's theory). D.1. Entropy along the unstable direction. We will focus on the second half of Ledrappier-Young's theorem (Theorem D.1) i.e. we want to prove µ satisfies the entropy formula ùñ µ is SRB.

The principal idea of this theorem is that the entropy is created by the expansion along unstable manifolds. We show below how to formalize this idea and we sketch the proof given in [12]. D.1.1. Partitions subordinate to the unstable foliation. Let f be a C 1`β diffeomorphism of a compact Riemannian manifold M and x P M be a regular point, meaning that Lyapunov exponents λ 1 pxq, λ 2 pxq, . . . , λ rpxq pxq and Oseledec's splitting T x M " E 1 pxq ' E 2 pxq ' . . . ' E rpxq pxq exist at x. By Oseledec's Theorem (Theorem 7.1) the set of such points is full for every f -invariant probability measure. The unstable manifold at x is defined by W u pxq " " y P M ; lim By Pesin's (un)stable manifold theorem (see [7,15,19]) W u pxq is a monotone union of discs tangent to E u pxq at x, so it is an injectively immersed Euclidean space tangent to E u pxq at x where E u pxq " à λ j ą0 E j pxq.

We will refer to the partition W u " tW u pxq; x regularu as the unstable foliation.

The ambient Riemannian structure induces a Riemannian structure on W u pxq. This provides W u pxq with a topology that we call the internal topology. Note that it differs from the topology induced by M on W u pxq.

In general unstable leaves form a non-measurable partition of M and we can't disintegrate µ in unstable leaves so we will need the following definition.

Say a measurable partition ξ is pµ-)subordinate to the unstable foliation W u if (cf. Section 8.3):

(1) for µ-almost every x P M , ξpxq is a subset of W u pxq with diameter bounded by a constant 0 independent of x;

(2) for µ-almost every x P M , ξpxq contains an open neighbourhood of x inside W u pxq; (3) ξ is increasing, i.e. f ξ ă ξ; (4) ξ is generating, i.e. Ž 8 n"0 f ´nξ is the partition into points of M . Note that unstable manifolds W u pxq are well defined for every regular point, and that every f -invariant probability measure gives total mass to the set of regular points. Hence the hypothesis of ergodicity of µ is not needed in the above definition.

The existence of measurable partitions subordinate to the unstable foliation is due to F. Ledrappier and J-M. Strelcyn [11].

Proposition D. 3 ([11]). Let f be a C 1`β diffeomorphism of a compact manifold M and W u be the partition into Pesin unstable manifolds of f . Then there exists a measurable partition ξ subordinate to W u .

Let us sketch a proof of Proposition D.3 when W u is uniformly expanding, building on recent work of J. Yang [21]. This last hypothesis means that W u is an f -invariant continuous foliation, tangent to a Df -invariant continuous plane field E u , such that there exists a uniform λ ă 1 such that

||Df ´1| E u || ă λ.
Note that in the proof below, f needs only to be C 1 and µ does not need to be ergodic: this proof only uses the expansion property of f on W u and Borel-Cantelli's theorem.

Finite partitions and the Borel-Cantelli property. Fix a foliated atlas A u for W u . The proof consists in constructing first a finite partition P of M satisfying the two conditions below (1) atoms of P are included in foliated charts of A u ;

(2) the series of µ-masses of the λ j -neighbourhoods of the boundary of any atom of P converges.

This partition is constructed from a covering of M by finitely many small balls B k such that ř j µpN λ j pBB k qq ă 8 (in what follows N r pAq stands for the rneighbourhood of A). The construction of this covering does not require any hypothesis on µ and is essentially a consequence of the following Borel-Cantelli type ł j"0 f j ξ 0 .

The most complicated part is to prove that ξpxq contains a neighbourhood of x inside W u pxq for µ-almost every x. Denote by BP the union of boundaries of atoms of P. We first use that µpBPq " 0 and the f -invariance of µ to find a Borel set X full for µ such that f j pxq R BP for every x P X and j P Z. This implies that for every x P X, ξ k pxq contains an open neighbourhood of x inside of for every k P N where

ξ k " k ł j"0 f j ξ 0 .
The fact that ξpxq contains an open neighbourhood of x comes from the fact that ξpxq " ξ kpxq pxq for some kpxq P N. This kpxq is obtained from an argument à la Borel-Cantelli. Let us explain it. Using once more the f -invariance of µ as well as the second property characterizing P, we see that 8 ÿ j"0 µ " f j pN λ j pBPqq ‰ ă 8.

By Borel-Cantelli's theorem there exists a Borel set X of full µ-measure such that for every x P X we have dpf ´kpxq, BPq ą λ k for every k greater than some kpxq.

One easily shows that when k ě kpxq we have ξ k pxq " ξ k`1 pxq, for the contrary would imply that f k`1 pBPq X ξ k pxq ‰ H. Using that plaques of A u have uniform diameters (say smaller than 1) we find that dpx, f k`1 pBPqq ď 1. Using the uniform expansion of f along W u , one would find that dpf ´pk`1q pxq, Pqq ď λ k`1 , which is absurd by the definition of kpxq.

Remark D.5. In order to treat the general case one has to use Pesin's theory in order to get uniform expansion in sets of positive measure. This is done by defining Pesin's sets and analysing the first return maps to these Pesin's sets. Pesin's sets Λ (we use Katok-Mendoza's terminology [9]) are sets of positive measure (but which are not invariant) enjoying the following properties ' the size of local unstable manifolds of elements of Λ is uniformly bounded from below; more precisely, there exists δ ą 0 such that for every x P Λ, the preimage of W u loc pxq under the exponential map at x contains the graph of a C 1 -map from the δ-neighbourhood of 0 in E u pxq to E c pxq ' E s pxq; ' the dynamics is uniformly expanding along local unstable manifolds inside Λ; more precisely there exist constants 0 ă ă λ{100 and C ą 0 such that for for every x P Λ every n ě 1 and m P Z ˇˇˇˇD x f ´n| E u pf m pxqq ˇˇˇˇď Ce pλ´ qn e ´|m| .

where λ ą 0 is the smallest positive Lyapunov exponent of f for µ.

Of course, if one wants to increase the measure Pesin set, one looses control on the constants C and . Nevertheless the argument sketched in the case of uniformly expanded foliations can be adapted even if one only guarantees the uniformity of the expansion in positive measure sets. This analysis is essentially an argument given by Mañé in [14]. We won't enter here into the details and suggest the reader to consult the classical references: [11,12,14,23]. D.1.2. Entropy along the unstable direction. The next step of the proof of Ledrappier and Young is to define the entropy along the unstable direction. Recall (Section 8.1.2) that when η 1 and η 2 are measurable partitions of M , H µ pη 1 | η 2 q denotes the mean conditional entropy of η 1 given η 2 and that when η is an increasing partition we have h µ pf, ηq " H µ pη | f ηq. The next proposition allows us to define the entropy along the unstable direction (cf. Definition 8.3).

Proposition D.6. Let f : M Ñ M be a C 1`β diffeomorphism of a compact manifold. Let ξ 1 and ξ 2 be two measurable partitions subordinate to the unstable foliation W u of f . Then h µ pf, ξ 1 q " h µ pf, ξ 2 q.

Proof. Let us detail the argument proving this proposition. Let ξ 1 and ξ 2 be two measurable partitions subordinate to W u . It is enough to prove that h µ pf, ξ 1 q " h µ pf, ξ 1 _ ξ 2 q. The great idea of the proof is to note that since f ξ i ă ξ i we have for every n ě 0

f n ξ 1 _ f n ξ 2 ă ξ 1 _ f n ξ 2 ă ξ 1 _ ξ 2 .
By f -invariance of µ, the entropies of f conditional to the first and last partitions coincide so we deduce that h µ pf, ξ 1 _ ξ 2 q " h µ pf, ξ 1 _ f n ξ 2 q " H µ `ξ1 _ f n ξ 2 | f ξ 1 _ f n`1 ξ 2 ˘, (D.1) the last equality coming from the definition of conditonal entropy. Before carrying on with the proof, observe that f expands the unstable foliation, so eventually the atoms of ξ 1 should be included in atoms of f n ξ 2 , for n large enough. This gives a good hint that the entropy conditional to ξ 1 _ f n ξ 2 should tend to the entropy conditional to ξ 1 . Let us give a formal explanation of this intuition.

We will use a formula of conditional mean entropy proving in Rokhlin's classical paper [18, §5.9]. For measurable partitions A, B and C we have that H µ pA _ B|Cq " H µ pA|Cq `Hµ pB|A _ Cq.

(D.2) Applying (D.2) with A " ξ 1 , B " f n ξ 2 and C " f ξ 1 _ f n`1 ξ 2 and having in mind that ξ 1 _ f ξ 1 " ξ 1 we find

H µ `ξ1 _ f n ξ 2 | f ξ 1 _ f n`1 ξ 2 ˘" H µ `ξ1 ˇˇf ξ 1 _ f n`1 ξ 2 Hµ `f n ξ 2 | ξ 1 _ f ξ 1 _ f n`1 ξ 2 " H µ `ξ1 ˇˇf ξ 1 _ f n`1 ξ 2 ˘`H µ `ξ2 ˇˇf ´nξ 1 _ f ξ 2 ˘.
Let us recapitulate. We just prove that the following equality holds for every n ě 0 h µ pf, ξ 1 _ ξ 2 q " H µ `ξ1 ˇˇf ξ 1 _ f n`1 ξ 2 ˘`H µ `ξ2 ˇˇf ´nξ 1 _ f ξ 2 ˘.

(D.3)

Observe that f ´nξ 1 generates (by Item 4. of the definition) so the second term tends to 0 as n Ñ 8. We must now prove that the first term converges to H µ pξ 1 |f ξ 1 q " h µ pf, ξ 1 q. We clearly have H µ pξ 1 |f ξ 1 _ f n`1 ξ 2 q ď H µ pξ 1 |f ξ 1 q (see [18, §5.10]).

We will now use that f expands the unstable manifold so that for most points x P M , the atom f ξ 1 pxq is contained in an atom of f n`1 ξ 2 . Consider the Borel set D n of such x. On the one hand f ξ 1 " f ξ 1 _ f n`1 ξ 2 in restriction to D n . On the other hand, since f ´1 contracts unstable manifolds we have µpD n q Ñ 1 as n Ñ 8. This yields lim nÑ8 Hpξ 1 |f ξ 1 _ f n`1 ξ 2 q ě Hpξ 1 |f ξ 1 q, thus concluding the proof. This allows us to give sense to the following definition (see Section 8.3). Definition D.7 (Entropy along the unstable direction). The µ-entropy of f along the unstable direction is the value h u µ pf q " h µ pf, ξq, where ξ is any measurable partition subordinate to the unstable foliation W u . D.1.3. Local entropy. It is often convenient to work with a local version of entropy which is due to M. Brin and A. Katok see [3]. The construction is quite general, but for the sake of clarity we will state their results in our context.

Let us first define dynamical balls. Given x P M , n P N and r ą 0 we define B n px, rq " y P M ; dpf i pxq, f i pyqq ă r, @ i " 0, . . . , n ´1( .

Let µ be an ergodic f -invariant measure. Given x P M , set Following this classical work, F. Ledrappier and L.-S. Young adopted a pointwise approach for defining the entropy along the unstable direction, which works well in the ergodic case.

We will let d u denote the Riemannian distance on unstable manifolds induced by the ambient Riemannian structure. Given x P M , n P N and r ą 0 we define B u n px, rq " y P W u pxq; d u pf i pxq, f i pyqq ă r, @ i " 0, . . . , n ´1( . (D.4)

We will now consider a partition ξ subordinate to W u and a system pµ u x q xPM of conditional measures of µ associated with ξ, uniquely defined up to a µ-negligible set by Rokhlin's theorem (see Appendix B). We will define Let µ be an ergodic f -invariant probability measure and µ u y , a system of conditional measures of µ along unstable plaques of a chart D s ˆDu containing B n px, rq. Using (D.5) and the fact that B s n px, rq is independent of n we find a constant Cprq ą 0 such that Cprq ess inf " µ u y pB u n py, K ´1rqq ‰ ď µpB n px, rqq ď Cprq ess sup " µ u y pB u n py, Krqq ‰ .

Using the pointwise versions of measure entropy one deduces h µ pf q " h u µ pf q. D.2.3. Some words about the general case. The general case is much more complicated and actually the authors of [12] don't follow such a naive pointwise approach. The most immediate difficulty is that the hyperbolicity is not uniform and we must work inside Lyapunov's charts, which leads to important technicalities. But the true difficulty of the paper is to understand and analyse the role of zero Lyapunov exponents.

Let us explain some of the difficulties. For a regular point x P M one may consider a Lyapunov chart at x. We won't enter into the details of the definition here, let us just say that this is an open set U x which is foliated by local unstable manifolds W u loc pyq (which are well defined for µ-a.e. y). The size of these unstable manifolds depends on x and is not uniform a priori.

The situation is similar to what we saw in the uniformly hyperbolic setting. One has a system of coordinates T ˆDu around the point x, D u being a small unstable disc and T being a small transversal to the unstable foliation. This time T is not uniformly contracted and one may think of T as a center stable set. And we must analyse how f acts on such sets. The most important difficulty here is the following.

There is no canonical choice of a transverse distance on T .

More precisely we want to show that the separation of unstable plaques is less than the expansion along unstable manifolds. We know that this is the case for the expansion along a central transversal. But this apparent weaker expansion could be a lure and be caused by the effect of "sliding along unstable plaques". And the information that unstable holonomies are Hölder continuous, is not enough a priori to rule out the possibility that the actual separation of unstable plaques (the dynamics in the quotient by unstable plaques) is stronger than the expansion along unstable manifolds. The authors treat this difficulty by proving that unstable holonomies inside center-unstable manifolds are Lipschitz We don't enter here into the technical details of the statement and refer to [12, §4.2]). Before we carry on with Ledrappier-Young's theory let us mention that a similar difficulty appears in Hirsch-Pugh-Shub's theory of normally hyperbolic laminations. In [8, §7] the authors consider a diffeomorphism f with an invariant normally hyperbolic lamination and study the neighbouring diffeomorphisms. It is not quite true that close to f , a diffeomorphism g has an invariant lamination (leaf)-conjugated to that of f . When one applies the graph transform to such a g, the leaves of the lamination can merge: the phenomenon of "sliding along plaques" could lead to a branched invariant lamination (see [5] for the definition and [6] for more information). This phenomenon can be avoided by requiring a technical condition, called plaque expansivity, under which M. Hirsch, C. Pugh and M. Shub prove that the branched lamination is a true lamination. This plaque expansiveness is satisfied for Lipschitz foliations (see [8,Theorem 7.2.]). We don't know examples of partially hyperbolic diffeomorphisms with a foliation tangent to the central bundle that does not satisfy plaque expansiveness, and we don't know how to prove plaque expansiveness for all such foliations.

The argument provided by F. Ledrappier and L.-S. Young works for C 2 diffeomorphisms, and this is the only argument of the paper that needs this regularity assumption. A. Brown showed in [4] how this crucial step of Ledrappier-Young's proof can be carried on for C 1`β diffeomorphisms. The proof then consists in the precise analysis of how f expands the transverse distance and of dynamical balls. One may think of this part as the sophistication of the proof given in the uniformly hyperbolic setting. D.2.4. Idea of proof of Theorem D.1. Now that we know that h µ pf q " h u µ pf q we may follow an argument due to Ledrappier [10] and deduce that h µ pf q " ÿ λ j ą0 m j λ j ùñ µ is SRB.

Unstable jacobian. Let us define the unstable jacobian of f at x as the quantity J u pxq " ˇˇJacpD x f | E u pxq q ˇˇ. Using Oseledec's and Birkhoff's theorems we get that for µ-a.e. x P M ż M J u dµ " lim Dynamical prescription of densities. It is a well known fact that when an f -invariant measure µ is absolutely continuous along an expanding foliation, the densities along unstable manifolds are dynamically prescribed. Denote by m u x the Riemannian volume of W u pxq and assume that dµ u

x " ρ dm u x , where ρ is a positive and measurable function and µ u x is a system of conditional measures of µ with respect to a measurable partition ξ associated with W u that we will fix from now on. Then for µ u x -a.e. y, z P W u pxq ρpzq ρpyq "

8 ź i"1 J u pf ´ipyqq J u pf ´ipzqq . (D.6)
In order to derive the equation above we prove the following lemma.

Lemma D.11. For µ-almost every x P M we have ş ξpxq ρdm u x and the map given by gpyq " ρpyq ρpf ´1pyqq J u pf ´1pyqq (D.7)

(with δ 0 " 0). Then h µ pf q " ÿ λ j ą0 γ j λ j .

As for Theorem D.1, F. Ledrappier and L.-S. Young proved Theorem D.13 only for C 2 diffeomorphisms, but again, after the works of A. Brown [4] and of L. Barreira, Ya. Pesin and J. Schmeling [1,Appendix] establishing the required Lipschitz regularity of holonomies of intermediate foliations, it holds for C 1`β diffeomorphisms.

Before entering into the proof of Theorem D.13 we need to introduce some of the objects appearing in the statement. D.3.1. Nested foliations and Hausdorff dimension.

Unstable foliations. For a regular point x P M let λ 1 pxq ą λ 2 pxq ą ¨¨¨ą λ k u pxq pxq ą 0 be the positive Lyapunov exponents of x. They are associated with a splitting of the tangent space T x M " E 1 pxq ' E 2 pxq ' ¨¨¨' E k u pxq pxq.

We assume that µ is ergodic so k u pxq, m j pxq " dim E j pxq and λ j pxq are independent of the µ-typical x. The intermediate spaces E 2 pxq, . . . , E k u pxq need not to be integrable. But by Pesin's theory there exist C 2 -immersed manifolds at µ a.e. x denoted by W 1 pxq, W 2 pxq, . . . , W k u pxq, tangent at x to the spaces They form (a.e.) nested foliations W 1 , . . . , W k u , where W k u is the unstable foliation W u we have already worked with. The foliation W j will be referred to as the j-th unstable foliation.

Pointwise dimension of measures. Let X be a metric space and m be a probability measure on X. Recall the following classical fact. A proof may be found in [22].

Definition D.14. Say the dimension of m, denoted by dim m, is well defined and equal to α if for m-a.e. point x the following limit is well defined α " lim Ñ0 log mpBpx, qq log .

In that case the dimension of m coincides with its Hausdorff dimension, i.e.

dim m " HDpmq " inf mpY q"1 HDpY q.

We can adopt this viewpoint and study the dimension of an ergodic measure along unstable manifolds. Using Ledrappier-Strelcyn's argument (see Proposition D.3) one deduces for every j the existence of a measurable partition ξ j subordinate to the j-th unstable manifold W j . We can moreover ask ξ 1 ą ξ 2 ą . . . ą ξ k u .

For j P t1, . . . , k u u we denote by d j the distance in j-th unstable leaves for the induced Riemannian structure. The corresponding balls are denoted by B j px, rq and the dynamical balls (by analogy with (D.4) in Section D.1.3) are denoted by B j n px, rq, r ą 0 and n P N.

We can consider for every j a system pµ j x q xPM of conditional measures of µ associated with ξ j . We define for µ-a.e. x P M δ j px, ξ j q " lim Ñ0 log µpB j px, qq log , δ j px, ξ j q " lim Ñ0 log µpB j px, qq log . Proposition D.15. The numbers δ j " δ j px, ξ j q and δ j " δ j px, ξ j q don't depend on ξ j nor on the µ-typical x. Moreover δ j " δ j .

If δ j is the common value then for µ-a.e. x P M and every system of conditional measures pµ j x q xPM associated with a measurable partition ξ j subordinate to W j we have δ j " lim Ñ0 log µpB j px, qq log .

The number δ j is called the dimension of µ on the j-th unstable foliation.

Pointwise entropies. F. Ledrappier and L.-S. Young also define a pointwise version of the entropy along the j-th unstable foliation. Considering a partition ξ j subordinate to W j and a system of conditional measures pµ j x q xPM we define h j µ pf, x, ξ j q " lim rÑ0 lim nÑ8 ´1 n log µ j x pB j n px, rqq, and h µ pf, x, ξ j q " lim rÑ0 lim nÑ8 ´1 n log µ j x pB j n px, rqq. They proved a result analogue to Theorem D.9: h j µ pf, x, ξ j q " h j µ pf, x, ξ j q " lim rÑ0 lim nÑ8 ´1 n log µ j x pB j n px, rqq, and the common value is Hpξ j | f ξ j q " h j µ pf q. D.3.2. Idea of proof for Theorem D.13.

Conformal case. Before explaining the idea of the proof, let us mention the simplest case.

Theorem D.16 (The conformal case). Let f : M Ñ M be a C 2 mapping and µ an ergodic f -invariant probability measure. Assume that f has a unique Lyapunov exponent λ ą 0, µ-a.e. Then h µ pf q " λ dimpµq.

Proof. Let us give the main idea. The rigorous proof uses Pesin's theory and in particular, Mañé's argument.

Let n P N and ą 0. Locally, f "looks like" an expansion by e λ and the dynamical ball B n px, rq looks like a ball Bpx, re ´λn q (this affirmation is the one that needs Pesin's theory to be made rigorous). So if " re ´λn we have ´1 n log µpB n px, rqq " λ log µpBpx, qq log .

The formula follows.

Of course if f has various Lyapunov exponents, a dynamical ball looks like an ellipsoid whose eccentricity tends to infinity and the previous argument doesn't work as easily. The precise formula is then given by Ledrappier-Young. D.3.3. Global strategy. The proof of Theorem D.13 follows three steps.

(1) h 1 " λ 1 δ 1 ;

(2) h j ´hj´1 " λ j pδ j ´δj´1 q " λ j γ j ;

(3) h k u " h u " h µ pf q. The first case is analogous to the conformal case. In restriction to the first unstable manifolds, there is only one Lyapunov exponent and f looks like an expansion by e λ 1 . Here again one has to use Pesin's theory to make this idea rigorous.

In order to consider the second case, one has to collapse W j´1 inside W j and to consider "quotient dynamics" on the quotient space W j {W j´1 (one rather works with quotient partitions ξ j {ξ j´1 ). Once again one of the main technical issues is that there is no canonical "transverse distance" on the quotient, and one has to prove and use the fact that W j´1 -holonomies are Lipschitz inside W j . Once we manage to deal with these important technicalities, we see that the quotient dynamics induced by f on ξ j {ξ j´1 has a unique Lyapunov exponent (this is λ j ) and that the corresponding entropy and dimension are respectively h j ´hj´1 and δ j ´δj´1 . The situation is one more time analogous to the conformal case.

The third case is treated by Theorem D.10. Summing those equalities, the second Ledrappier-Young's theorem follows.

1. 3 . 3 .

 33 Low-dimensional actions. Precise conjectures in the Zimmer program are easiest to formulate for actions in low dimensions. See in particular Questions 11.1.

  denote a family of conditional measure of µ relative to the partition ξ. That is (see Definition 8.1 and Definition B.2 in Appendix B.2) (1) µ ξ

Example 5 . 4 .

 54 Consider the measure ν on R given by ν " ÿ nPZ e n δ n .

( 6 )

 6 Is every non-finite (volume-preserving) Anosov action of Γ of the type considered in Example 10.5? That is, if α : Γ Ñ DiffpM q is an Anosov action is M a (infra-)nilmanifold and is α smoothly conjugate to an affine action as in Example 10.5 (or as in Remark 10.6)? Questions 11.1(1) and (3) are referred to as Zimmer's conjecture, discussed in the next section. Question 11.1(2) is irrelevant given a negative answer to Question 11.1(1) but motivated the result stated in Theorem 11.4 below and was natural to conjecture before an answer to Question 11.1(1) was known. It may be that answering Question 11.1(2) is possible in dimension ranges where Conjecture 11.3(1) below is expected to hold but is not yet known. 11.2. Zimmer's conjecture for actions by lattices in SLpn, Rq. Recall Example 10.5 and Example 10.7. For lattices in SLpn, Rq, Zimmer's conjecture asserts that these are the minimal dimensions in which non-finite actions can occur. We have the following precise formulation. Conjecture 11.2. For n ě 3, let Γ Ă SLpn, Rq be a lattice. Let M be a compact manifold.

12 .

 12 SUPERRIGIDITY AND HEURISTICS FOR CONJECTURE 11.2 The original conjecture (for actions by lattices in SLpn, Rq) posed by Zimmer was Conjecture 11.2(2) (see for example [201, Conjecture II]). Conjecture 11.2(1) was formulated later and first appears in print in [70, Conjecture I]. The reason Zimmer posed his conjecture as Conjecture 11.2(

˚15. 3 .

 3 Coarse-Lyapunov Abramov-Rokhlin and Proof of Proposition 15.5. The proof of Proposition 15.5 follows from a version of the Abramov-Rokhlin Theorem (see equation (8.

Part 4 .

 4 A selection of other measure rigidity results20. NONUNIFORMLY HYPERBOLIC Z k -ACTIONSInstead of considering Z 2 -actions by automorphisms of T 3 as in Theorem 2.8, we might consider Z 2 -actions on the torus T 3 generated by two commuting diffeomorphisms f, g : T 3 Ñ T 3 .

Theorem 21 . 3 ([ 59 ,

 21359 Theorem 4.1]

  n a and M b n " M n b , and the translation T 1 k commutes with M a n and M b n by Lemma A.3. Applying Lemma A.7 with M a n and M b n instead of M a and M b , we find F Ă F non empty, invariant by T 1 k

FIGURE 4 measure over S 1 .
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Example B. 10 (

 10 cf.Example 8.10). Denote by m the Lebesgue measure on the two-dimensional torus T 2 . Let f A : T 2 Ñ T 2 be the Anosov diffeomorphism induced by the integer matrix A "

1 n 1 n

 11 Oseledec's splitting related to the negative/positive exponents: they are defined by W s pxq " " y P M : lim sup nÑ8 log d pf n pxq, f n pyqq ă 0 * , W u pxq " " y P M : lim sup nÑ8 log d `f ´npxq, f ´npyq ˘ă 0 * .

FIGURE 8 .

 8 FIGURE 8. Smale's horseshoe

nÑ8 1 n

 1 log dpf ´npxq, f ´npyqq ă 0 * .

h

  µ pf, xq " lim rÑ0 lim nÑ8 ´1 n log µpB n px, rqq, and h µ pf, xq " lim rÑ0 lim nÑ8 ´1 n log µpB n px, rqq. Theorem D.8 (Brin-Katok). Let f : M Ñ M be a C 1`β diffeomorphism of a compact manifold and µ an ergodic f -invariant measure. Then for µ-almost every x P M h µ pf q " h µ pf, xq " h µ pf, xq " lim rÑ0 lim nÑ8 ´1 n log µpB n px, rqq.

  h u µ pf, x, ξq " lim rÑ0 lim nÑ8 ´1 n log µ u x pB u n px, rqq, and h µ pf, x, ξq " lim rÑ0 lim nÑ8 ´1 n log µ u x pB u n px, rqq.

  J u pf i pxqq " ÿ λ j ą0 m j λ j .

E 1 pxqE 1 " y P M ; lim nÑ8 1 n

 111 pxq ' E 2 pxq . . .E 1 pxq ' E 2 pxq ' ¨¨¨' E k u pxq.These manifolds are dynamically determined as follows W j pxq " log dpf ´npxq, f ´npyqq ď ´λj * .

F.

  Ledrappier and L.-S. Young prove in [13, Proposition 7.3.1] the following.

Part 1 .

 1 Rudolph and Katok-Spatzier measure rigidity theorems 2. FURSTENBERG'S CONJECTURE; THEOREMS BY RUDOLPH

AND KATOK-SPATZIER 2.1. Furstenberg conjecture. Let S 1 " R{Z be the additive circle. Note that for k P t2, 3, 4, . . . u the map

  THE PROOF OF THEOREM 2.8 3.1. Lyapunov exponent functionals. Let A and B be as in Example 2.6. Since the eigenvalues of A and B are distinct real numbers, A and B are diagonalizable over R. Moreover, since A and B commute, they are jointly diagonalizable; that is there is a Q P GLp3, Rq such that

  Measurable partitions and conditional measures. Recall that a partition ξ of pX, µq is measurable if the quotient pY, μq :" pX, µq{ξ is a standard probability space. See also Definition B.7 in Appendix B.3. This is a technical but crucial condition.

8. METRIC ENTROPY

8.1. Metric entropy. Let pX, µq be a standard probability space. That is, pX, µq equipped with the σ-algebra of µ-measurable sets is measurably isomorphic to an interval equipped with the Lebesgue measure and a countable number of point masses.

8.1.1.

  1`β discs. The primary examples of such measurable foliations include the partition into global jth unstable Pesin manifolds and the partition into global coarse Lyapunov manifolds in the setting of Z d -actions. Note that the partition into leaves of measurable foliation is not necessarily a measurable partition; rather the transverse structure of the foliation is measurable.Write Fpxq for the leave of F through x. We say F is expanding (for f ) if Fpxq Ă W u pxq, i.e. if Fpxq is a subset of the global unstable manifold through x for f discussed in Section 7.4. As a key example, one should consider F u , the partition of M into full global unstable manifolds.

Definition 8.2. We say a measurable partition ξ is subordinate to F if (1) ξpxq Ă Fpxq for µ-a.e. x; (2) ξpxq contains an open (in the immersed topology) neighborhood of x in Fpxq for µ-a.e. x;

  We state Theorem 11.6 for actions by C 2 diffeomorphisms though the proof can be adapted for actions by C 1`β actions. Our proof below will assume the action is by C 8 diffeomorphisms to simplify certain Sobolev space arguments. (3) The result for actions by lattices in general Lie groups is stated in Theorem 19.2 below. In particular, by Theorem 19.2, Conjecture 11.3(1) and (2) hold for all C 1`β actions by lattices in all simple Lie groups that are non-exceptional, split real forms. For C 1`β actions by lattices in all simple Lie groups that are exceptional split real forms, Conjecture 11.3(1) is known to hold by Theorem 19.2. (4) D. Damjanovich and Z. Zhang observed that the proof of Theorem 11.6 can be adapted to the setting of actions by C 1 -diffeomorphisms. Together with the author, the have announced the following theorem.

	by the same authors in collaboration with D. Witte Morris. See Theorem 19.2. The results for actions of SLpn, Zq and of general nonuniform lattices use many of the ideas presented in this text but also require a number of new techniques (including the structure of arithmetic groups, reduction theory, and ideas from [134]) and will not be discussed. a lattice in a higher-rank simple Lie group G with finite center. Let M be (2) Theorem 11.7 (Brown-Damjanovich-Zhang, announced). Let Γ Ă G be a compact manifold.

  Rqsatisfying for a.e. x P X the cocycle condition: for all g 1 , g 2 P G Apg 1 g 2 , xq " A pg 1 , αpg 2 qpxqq Apg 2 , xq. Id for a.e. x We say two cocycles A, B : G ˆX Ñ GLpd, Rq are (measurably) cohomologous if there is a measurable map Φ : X Ñ GLpd, Rq such that for a.e. x and every g P G Bpg, xq " Φpαpgqpxqq ´1Apg, xqΦpxq.

	(12.1)
	If e is the identity element of G, then (12.1) implies that
	Ape, xq " Ape, xqApe, xq
	whence Ape, xq " (12.2)
	We say a cocycle A :

  31, Lemma 2.5], we have that H is parabolic; that is, H is conjugate to a group of blockupper-triangular matrices (see Remark 10.8). However, the proper closed parabolic subgroups of SLpn, Rq of maximal codimension are conjugate to the codimension

	pn ´1q subgroup							
	$	¨˚˚¨¨¨0					,	
	'						/	
	'						/	
	' & ' '	. .	˚¨¨¨. . . .	. . .	. . .	/ . ' / / ‹ ‹	.	(15.6)
	' %	0 ˚¨¨¨˚‹	/ -	

(See Section VII.7, especially Proposition 7.76 of

  , Theorem 19.1 holds for C 1 actions; see Theorem 11.7. Theorem 19.1 fails to give the optimal dimension bounds for the analogue of Conjecture 11.2 given in Conjecture 11.3 for actions by lattices in Lie groups other than SLpn, Rq. See Table 1 for various conjectured critical dimensions arising in Zimmer's conjecture for other Lie groups. To state the most general (as of 2018) result towards solving Conjecture 11.3, to any simple Lie group G, we associate a non-negative integer rpGq. See [31, Section 2.2] or Footnote 4 for equivalent definitions of rpGq and Table

  y) FIGURE 6. The partition P n .only if τ pA i , xq and τ pA i , yq belong to the same interval of this partition for every i " 1, . . . , n (see figure6). Clearly, τ pA i , xq " τ pA i , yq for every i if and only if x, y P Ş 8 n"1 P n , with P n P P n , and thus E " Non-measurable unstable partitions. Example 8.11 says that in general unstable partitions are not measurable. However, as we have seen in Section 3.3, it is possible to define conditional measures of a measure µ conditioned on the unstable (or stable) partition. The drawback is that the conditional measures are not likely to be probability measures, and moreover they are defined only up to a multiplicative constant. The construction is classical and goes back at least to

	Ž 8 n"1 P n .
	B.5.

  Let tϕ k u kPN be a sequence which is dense in C 0 pXq and consider the set Λ ν " č kPN Λ ϕ k ; this set has full ν-measure and has the property that if x P Λ ν and ϕ P C 0 pXq, the equality ϕ `pxq " ş X ϕ dν holds. In other words, we have that for any x P Λ ν Moreover, since the set Λ ν has full ν-measure, we can describe it as the set of all points whose forward Birkhoff's average converges to ν.We claim that if x P Λ ν then W s pxq Ă Λ ν . Indeed, if y P W s pxq, thendpf n pxq, f n pyqqWe know that δpx, nq converges to ν; to prove that δpy, nq also converges to ν we have to prove that for every ϕ P C 0 pXq one has ż

	exists and it is equal ϕ `pxq " X ϕ dν. δpx, nq :" ş n´1 1 j"0 n ÿ δ f j pxq nÑ`8 Ý ÝÝÝÝ Ñ ν, in the weak ˚-topology.
			nÑ`8 ÝÝÝÝÑ 0.
				ż
	ϕ dδpy, nq	nÑ`8 ÝÝÝÝÑ	ϕ dν.
	X			X
		1 n	n´1 j"0 ÿ	ϕpf j pxqq	(C.1)

By continuity, one has |ϕpf n pxqq ´ϕpf n pyqq| Ñ 0 as n goes to infinity, thus lim nÑ`8 ż X ϕ dδpy, nq " lim nÑ`8

For n " 1, SOp1, 1q is a one-parameter group and for n " 2, SOp2, 2q is not simple (it is double covered by SLp2, Rq ˆSLp2, Rq). For n " 3, SOp3, 3q is double covered by SLp4, Rq.

A precise definition that is equivalent to that in[31,36] is that rpGq is d0pG 1 q where G 1 is the largest R-split simple subgroup in G.

Here, bounded means that for every compact K Ă G, the map K ˆX Ñ GLpd, Rq given by pg, xq Þ Ñ Apg, xq is bounded. More generally, we may replace the boundedness hypothesis with the hypothesis that the function x Þ Ñ sup gPK log }Apg, xq} is L 1 pµq. See[78].

In fact, for certain lattices Γ there exist ergodic A-invariant measures on SLpn, Rq{Γ that have positive entropy for some element of A as shown by M. Rees; see[59, Section 8].

is shown. Then, (following [93]) one uses that n Þ Ñ h µ pαpnq | χq is linear on any half-cone where no coarse Lyapunov exponent χ 1 changes sign to show that the transverse dimensions γ χ,i n of each λ i P χ are independent of n and coincide with the transverse dimensions γ i appearing in Theorem 8.7 for f " αpnq. 8.6. Abstract ergodic theoretic constructions in smooth dynamics. (See Appendices B and C for further details.) Let f : M Ñ M be a C 1`β diffeomorphism and let µ be an f -invariant probability measure. We do not assume µ to be ergodic. We introduce here a number of measurable partitions of the measure space pM, µq associated with the dynamics f :

(1) E, the ergodic decomposition (see Definition 6.5 and Theorem B.11 in Appendix B.4); (2) π, the Pinsker partition;

(3) Ξ u , the measurable hull of the partition into unstable manifolds; (4) Ξ s , the measurable hull of the partition into stable manifolds. In this subsection, we will define objects (2)-( 4) above and explain the following two assertions:

(1) E ă Ξ s (2) Ξ s " π " Ξ u . The first assertion in is a standard fact in hyperbolic dynamics (which forms the first step in the Hopf argument for ergodicity) and is discussed in detail in Theorem C.4 in Appendix C. The second is [128,Theorem B]). 8.6.1. Measurable hull of a partition. Given a (possibly nonmeasurable) partition ξ of pM, µq we write Ξpξq for the measurable hull of ξ; that is, Ξpξq is the finest measurable partition with Ξpξq ă ξ. If ξ is measurable, then we have Ξpξq " ξ but in general Ξpξq is strictly coarser than ξ. We illustrate this concept with a few examples.

Example 8.9. Suppose that µ is f -invariant and ergodic. Let O be the partition into orbits of f . Then O is not measurable (see Example B.6 in Appendix B). The measurable hull of O is the trivial partition ΞpOq " tM, Hu. For example, given a totally irrational flow on the torus T 2 , the partition into flow lines is not measurable and the measurable hull is the trivial partition.

More generally, if µ is not ergodic then the measurable hull of O is ΞpOq " E, the ergodic decomposition pM, µq. (See Definition 6. Example 8.10. Let f be a C 1`β volume-preserving Anosov diffeomorphism of a connected manifold M . Let ξ u denote the partition of M into unstable manifolds. Then ξ u is not measurable (for the invariant volume). In fact, it is known that the measurable hull of ξ u is again the trivial partition Ξpξ u q " tM, Hu.

Example 8.11. Let f : M Ñ M be a C 1`β diffeomorphism and let µ be any ergodic, f -invariant probability measure. Let ξ u denote the partition of M into Completion of proof. In either Case 1 or Case 2, since the Haar measure μ4 is A-ergodic, we may take an A-ergodic component µ 1 4 of µ 4 projecting to the Haar measure with

This completes the proof of Proposition 17.2.

18.5. Modifications to proof of Proposition 17.2 in SLpn, Rq. When Γ is a cocompact lattice in SLpn, Rq we replace the first averaging step with a more complicated averaging.

First averaging. We again take µ 0 " µ 1 to be the A-invariant measure in Proposition 17.2 with nonzero fiberwise exponent λ F j,µ 0 : A Ñ R, λ F j,µ 0 ‰ 0. Without loss of generality (by conjugating by a permutation matrix) we may assume that for the element s " diagp 1 2 n´1 , 2, . . . , 2q of A Ă SLpn, Rq, we have λ F j,µ 0 psq ‰ 0. Take s 0 to be either s, or s ´1 so that λ F j,µ 0 ps 0 q ą 0. Consider the unipotent subgroup U Ă SLpn, Rq of matrices of the form

Let tF n u be a Følner sequence in U and let µ 1 be any weak-˚limit point of tF n ˚µ0 u as n Ñ 8 where

From facts analogous to those in Claim 18.1, we have that µ 1 is s 0 -invariant and λ F top ps 0 , µ 1 q ě λ F top ps 0 , µ 0 q ą 0. Moreover, as U is higher-dimensional, we use [172,Corollary 1.3] rather than Proposition 18.3(1) to conclude (as least for certain Følner sequences tF n u in U with nice geometry) that the projection μ1 of µ 1 to G{Γ is the limit μ1 " lim F n ˚μ 0 and is A-invariant, ergodic, and U -invariant.

We again average µ 1 over a Følner sequence for the form A T " r0, T s ˆ¨¨¨ˆr0, T s in A (identified with R n´1 ) and let µ 2 be any weak-˚limit point of tA T ˚µ1 u as T Ñ 8. Then µ 2 is A-invariant and λ F top ps 0 , µ 2 q ě λ F top ps 0 , µ 1 q ą 0. Again, we have equality of the projected measures μ1 " μ2 so μ2 is U -invariant and A-invariant. From Proposition 18.3(4), μ2 is also invariant under the subgroup

Second averaging. Consider now the roots β 1,2 and β 1,n of G. Since β 1,2 and β 1,n are not proportional, at most one of β 1,2 and β 1,n is proportional to λ F j 1 ,µ 1

2

. In particular, we may find either s or s in A such that (1)

The two cases in the second averaging step of in Section 18.4 are then identical to the above, where we either average over the 1-parameter group U 1,2 in the case λ F j 1 ,µ 1 2 psq ‰ 0 or U 1,n in the case λ F j,µ 1 2 psq ‰ 0. The structure theory of SLpn, Rq will then imply that the measure obtained after the second averaging projects to the Haar measure.

˚19. ZIMMER'S CONJECTURE FOR LATTICES IN OTHER LIE GROUPS

Consider a connected, simple Lie group G with finite center. Let Γ Ă G be a cocompact lattice. The proof of Theorem 11.6 discussed above, particularly the use of Theorem 15.1 in Section 17.3 can be adapted almost verbatim to show the following. See also [42] where Theorem 19.1 is stated and given a mostly selfcontained proof.

Theorem 19.1. Let G be a connected, simple Lie group G with finite center and rank at least 2. Let Γ Ă G be a cocompact lattice. Let M be a compact manifold.

(1) If dimpM q ă rankpGq then any homomorphism Γ Ñ Diff 2 pM q has finite image.

APPENDIX D. LEDRAPPIER-YOUNG'S THEORY (BY S ÉBASTIEN ALVAREZ AND MARIO ROLD ÁN)

Lyapunov exponents give a geometric way to measure the complexity of a map, and metric entropy gives a probabilistic way to do so. We are interested here in comparing these two notions. In these directions, the two basic results are (see Theorem 8.6):

Margulis-Ruelle's inequality proven in [20]: For every C 1 -mapping f (not necessarily invertible) of a compact Riemannian manifold M preserving a probability measure µ, the metric entropy is bounded above by the sum of positive Lyapunov exponents,

Pesin's Formula (also known as Entropy Formula) proven in [16] (see also [11,14]): For every C 1`β diffeomorphism f of a compact Riemannian manifold M preserving a probability measure µ equivalent to the Riemannian volume, we have

where, as usual, λ 1 pxq ą λ 2 pxq ¨¨¨ą λ rpxq pxq denote all distinct Lyapunov exponents of f at x, m j pxq is the multiplicity of λ j pxq, and h µ pf q denotes the metric entropy. Note that when µ is ergodic, the quantities λ j pxq, rpxq and m j pxq are independent of the choice of a µ-typical x P M and the integral sum in both formulas may be omitted.

The aim of Ledrappier-Young's theory is to further study relations of these types. In [12], F. Ledrappier and L.-S. Young characterize those measures which satisfy Pesin's entropy formula. In [13] they prove a formula which is valid for every invariant measure.

We state below the first result, i.e. the principal result of [12]. The statement of the general formula shall be postponed until Section D.3. Before stating the result, let us recall that an ergodic probability measure µ invariant by a C 1`β diffeomorphism of a compact manifold M is said to be an SRB measure if it has absolutely continuous conditional measures on unstable manifolds.

Theorem D.1 (Ledrappier-Young I). Let f be a C 1`β diffeomorphism of a compact Riemannian manifold M and µ be an ergodic, f -invariant probability measure. Then µ is SRB if and only if

The "if" direction is a generalization of Pesin's formula: it was proven in the conservative setting by Ya. Pesin. R. Mañé gave a proof in [14] without using the theory of stable manifold. In this generality (for SRB measures rather than lemma which allows us to find the radii of these balls. For the sake of completeness we include the proof, which is both elementary and elegant.

Lemma D.4. Let ν be a finite Borel measure on R supported on r0, r 0 s for some r 0 ą 0. Then for every λ P p0, 1q, for Lebesgue-almost every r P r0, r 0 s, 8 ÿ j"0 ν `"r ´λj , r `λj ‰˘ă 8.

Proof. For a fixed j ě 0 we will define the bad set as

The bad set may be covered by finitely many bad intervals rr i ´λj , r i `λj s for i " 1, . . . , l with r i P Y j , in such a way that any point of Y j belongs to at most two bad intervals. We can bound the number l of these bad intervals because

so l ď 2νpRqj 2 . We deduce that LebpY j q ď 4νpRqj 2 λ j so ř j LebpY j q ă 8. By Borel-Cantelli's theorem for Leb-almost every r P r0, r 0 s there exists j r such that r R Y j for every j ě j r , which implies that ř j νprr ´λj , r `λj sq ă 8. This lemma being established we can construct the desired finite partition P. We chose r 0 smaller than the Lebesgue number of the covering of A u . Given x P M we want to define the radius r x of a ball centered at x whose boundary satisfies the second condition stated above. To do so, we define a measure ν x on r0, r 0 s by ν x pra, bsq " µ pty P M ; a ď dpx, yq ď buq , and we apply Lemma D.4 to ν x . If ν x is the zero measure, we set r x " r 0 {2. If it is not, Lemma D.4 gives r x P pr 0 {2, r 0 q with 8 ÿ j"1 µ pN λ j pBBpx, r x qqq ă 8.

In particular µ gives zero measure to the boundary of the spheres Bpx, r x q. A compactness argument allows to cover M with finitely many such balls B k which are included in unstable charts (by the choice of r 0 ). The desired partition is now

Proof of Proposition D.3. Now consider the measurable partition ξ 0 whose atoms are the intersection of atoms of P and unstable plaques of A u . We claim that the following partition is subordinate to W u ξ "

In the second part of their work, F. Ledrappier and L.-S. Young prove the following theorem (see [13,Proposition 7.2

.1. and Corollary 7.2.2.]).

Theorem D.9. Let f : M Ñ M be a C 1`β diffeomorphism of a compact manifold and let µ be an ergodic f -invariant measure. Then for µ-a.e. x P M h u µ pf, x, ξq " h u µ pf, x, ξq " lim

and the common value is H µ pξ | f ξq " h u µ pf q. D.2. Measures satisfying the entropy formula. D.2.1. All the expansion occurs in the unstable direction. The principal accomplishment of Ledrappier-Young's first paper [12] is the proof of the following key result which says that all the expansion of f occurs in the unstable direction (cf. Section 9.1).

Theorem D.10. Let f : M Ñ M be a C 1`β diffeomorphism of a compact manifold and µ be an ergodic f -invariant probability measure. Then h µ pf q " h u µ pf q. In [10], Ledrappier had already proved a similar statement for measures without zero Lyapunov exponents, and, as we will see later on, knew how to deduce the conclusion of Theorem D.1 from the equality h u µ pf q " ÿ λ j ą0 m j λ j .

D.2.2.

The uniformly hyperbolic case. The case of uniformly hyperbolic dynamics is certainly an oversimplification of the general context. Nevertheless, we may find useful to understand the skeleton of the Ledrappier-Young's delicate argument and the difficulties therein.

Let us assume here that f is an Anosov diffeomorphism. This means that there is a Df -invariant splitting T M " E s ' E u where E s and E u are respectively uniformly contracted and expanded by Df .

Using the local product structure, every small enough ball is contained in a foliated chart for W u of the form D s ˆDu where D s and D u are small stable and unstable discs respectively. Moreover in such a chart the Riemannian distance is uniformly equivalent to the Lyapunov distance which we may define as the L 1distance of the product D s ˆDu .

Given x P M and small enough r ą 0, the dynamical ball B n px, rq (for the Lyapunov distance) is inside B s n px, rq ˆBu n px, rq. Since W s is uniformly contracted, the dynamical ball B s n px, rq is independent of n P N. Using the transverse continuity of the restriction of the induced Riemannian structure on leaves of W u we see that there exist r 1 ă r 2 converging to 0 with r such that ď yPB s n px,rq

is constant on ξpxq.

Proof. Note that ξ ă f ´1ξ so an atom of ξ is a countable union of atoms of f ´1pξq. We will consider the measurable function h, constant on atoms of f ´1pξq, by setting hpyq " µ u y pf ´1ξpyqq. The idea now is to write the family of conditional measures with respect to f ´1ξ in two ways. Firstly, using that ξ ă f ´1ξ we have that for every Borel set

Secondly, by f -invariance of µ we have

We get from (D.8), (D.9) and from a change of variable formula we get

ρpf pzqqJ u pzqdm u y pzq.

Consequently for µ-almost every y P M and m u y -almost every z P f ´1pyq we have 1 hpyq ρpzq " ρpf pzqqJ u pzq.

This proves that the function g ˝f " 1 h is constant on atoms of f ´1ξ. Finally we have that g is constant on atoms of ξ.

Reconstructing µ. Ledrappier's argument is an inductive one. Denote by Bpξq the σ-algebra whose elements are union of atoms of ξ. We can see it as a σ-algebra "transverse" to ξ. By Rokhlin's theorem (Theorem B.8), a measure ν on M is determined by its trace on Bpξq and by a system of conditional measures with respect to ξ.

We will consider a positive function ρ satisfying (D.6). It is proven in [10, Theorem 3.1. Item viii] that logpρq is Hölder continuous in every atom ξpxq. Hence on every atom ξpxq, the function ρ is uniformly bounded from 0 and 8, and in particular it is m u x -integrable. In order to prove the Hölder continuity of logpρq, one uses that on local unstable manifolds, z Ñ E u pzq is Lipschitz, that z Þ Ñ D z f is Hölder continuous, that f ´1 contracts unstable manifolds so we can apply the usual distortion controls. We will furthermore normalize ρ so that for µ-almost every x P M ż ξpxq ρpxqdm u x " 1, (D.10)

Define the probability measure ν on M satisfying both conditions

(1) µ and ν coincide on Bpξq;

(2) the disintegration pν x q of ν with respect to ξ satisfies dν x " ρ dm u x , where ρ satisfies (D.6) and (D.10).

We will prove by induction that µ and ν coincide on the σ-algebra Bpf ´nξq for every n P N. Since ξ is increasing and generating this implies that µ " ν. All this follows from the next lemma.

Lemma D.12. Assume that ş J u dµ " h µ pf, ξq. Then µ and ν coincide on Bpf ´1ξq.

Proof. Each element ξpxq contains countably many atoms of f ´1ξ and µ and ν coincide in Bpξq. Hence in order to show that µ and ν coincide in Bpf ´1ξq it is enough to prove that ν y pf ´1ξpyqq " µ y pf ´1ξpyqq almost everywhere. We consider the derivative qpyq " ν y `f ´1ξpyq μy pf ´1ξpyqq which is well-defined almost everywhere and positive. Furthermore we have ş q dµ " 1. Using Jensen's inequality and the concavity of the logarithm, one has: ż logpqq dµ ď log ˆż q dµ ˙" 0.

Moreover this inequality is an equality if and only if logpqq " 0 µ-almost everywhere, which as mentioned before, would imply that µ " ν on Bpf ´1ξq.

On the one hand, we have by definition ´ż log µ y `f ´1ξpyq ˘dµpyq " H µ pf ´1ξ | ξq " h µ pf, ξq.

On the other hand it is possible, thanks to the definition of ρ, to compute explicitly ´ż log ν y `f ´1ξpyq ˘dµpyq " ż log J u dµ.

By hypothesis these two quantities are equal. D.3. Ledrappier-Young II. The second part of Ledrappier-Young's work focuses on finding a general entropy formula for measures which are not SRB. The formula they find is similar, the role of the multiplicities being replaced by some quantities γ j representing roughly the dimension of the measure µ in the E jdirection. They prove the following theorem.

Theorem D.13 (Ledrappier-Young II). Let f be a C 1`β diffeomorphism of a compact Riemannian manifold M and µ be an ergodic, f -invariant probability measure. Let δ j denote the dimension of µ along the j-th dimensional unstable manifolds and γ j " δ j ´δj´1