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ABSTRACT

We introduced in [1] a new Monte Carlo estimator that relies
on determinantal point processes (DPPs). We were initially
motivated by peculiar properties of results from random ma-
trix theory. This motivation is absent from the original paper
[1], so we develop it here. Then, we give a non-technical
overview of the contents of [1], insisting on points that may
be of interest to the statistical signal processing audience.

Index Terms— Monte Carlo, random matrices, DPPs

1. A PECULIAR CENTRAL LIMIT THEOREM

Much of random matrix theory deals with the behaviour of the
eigenvalues of certain random matrices, as can be gathered
from the reference book [2]. These eigenvalues are highly
correlated random variables, and they can have surprising
properties to the scientist more used to independence. The
following example is due to Johansson [3].

Let UN ⊂ MN (C) be the group of N × N unitary ma-
trices, that is, A ∈ UN ⇔ AĀT = ĀTA = IN . There is a
unique probability measure µH on UN such that

µH(A) = µH({ga; a ∈ A}) (1)

for any g ∈ UN and any Borel set A ⊂ UN , and this measure
is called the Haar measure on UN , see for instance [2, Theo-
rem F.13]. In other words, the Haar measure µH plays on UN
the role of the Lebesgue measure on the additive group R, so
that µH is often thought of as the natural equivalent of the
uniform probability distribution. Now, let U ∼ µH , and since
the eigenvalues of a unitary matrix are complex numbers of
unit modulus, let us further denote the N eigenvalues of U by
their arguments (θi). Johansson [3] used a result called the
strong Szegő theorem to prove that for any g : [0, 2π] → R
such that g ∈ L1 and its Fourier coefficients satisfy

σ2 , 2

∞∑
k=1

k|ĝk|2 <∞, (2)

This project is funded by ANR grant BOB ANR-16-CE23-0003.

it holds

N∑
i=1

g(θi)−N
∫ 2π

0

g(θ)
dθ

2π
→ N (0, σ2), (3)

where the convergence is in distribution when N → ∞. The
central limit theorem (CLT) in Equation (3) is surprising by
its lack of normalization: the standard CLT for i.i.d. variables
would have a factor

√
N in the left-hand side. In other words,

if you think of IN , N−1
∑N
i=1 g(θi) as a Monte Carlo es-

timator of (2π)−1
∫
g(θ)dθ, then (3) implies that the mean

square error of IN is asymptotically equivalent to 1/N . This
contrasts with traditional Monte Carlo errors of order 1/

√
N .

Efficient cancellation happens in the variance of the left-
hand side of (3). One way to get intuition for the fast con-
vergence is as follows. The eigenvalues of U tend to be very
regularly spaced on the unit circle compared to uniform sam-
ples, as if they “repelled” each other, see Figure 1.
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Fig. 1. (a) N i.i.d. uniform samples on the unit circle. (b) A
sample of the eigenvalues of a Haar-distributed matrix in UN .

If we think of the eigenvalues as a random grid on which
the signal g is measured, repulsiveness is akin to the grid be-
ing rigid. Rigidity has two positive features. First, the number
of points that fall in any fixed Borel subset of [0, 2π] does not
vary much from one realization of U to the other, hence the
small variance of

∑
g(θi). Second, g essentially contains low

frequencies by assumption (2), so that repulsiveness ensures
both that

∑
g(θi) has small bias and that we make the most

of the smoothness of g by spreading out samples (θi).



1.1. The requirements for a good generalization

The starting point of our work [1] is an investigation whether
results such as Johansson’s can be generalized so as to be-
come useful tools for numerical integration. In other words,
we want to reverse-engineer (3) and assess whether repulsive
random variables as seen in random matrix theory can be a
general device for variance reduction in Monte Carlo com-
putation. There are two issues to consider: first, eigenval-
ues of random matrices are bound to be in R or C, while we
would like to integrate over Rd for arbitrary d ≥ 1. Sec-
ond, we would like to integrate against an arbitrary measure,
whereas random matrix results such as (3) implicitly choose
one measure (here, uniform over [0, 2π]). We add to these re-
quirements that we need to preserve both the fast convergence
compared to traditional Monte Carlo methods, and the inter-
pretability of the asymptotic variance (2) as a measure of the
decay of the Fourier coefficients of the integrand.

2. PROJECTION DPPS

The eigenvalues of a Haar-distributed unitary matrix are a
projection determinantal point process (DPP). DPPs are a
class of point processes that can encode repulsiveness, and
we will show that they satisfy the requirements of Section 1.1.

The study of DPPs was pioneered by Macchi in 1975 [4],
motivated by models for the spatial distribution of beams of
fermions [5]. Since then, they have received a lot of atten-
tion in probability [6, 7, 8, 9], mostly for their applications in
random matrix theory, and more recently in spatial statistics
[10], machine learning [11], and signal processing [12, 13].

2.1. Repulsiveness and volumes

In this paper, we only define a subfamily of DPPs called pro-
jection DPPs. Let µ be a positive Borel measure on [−1, 1]d

with finite mass, and density ω w.r.t. to Lebesgue. Consider
N orthonormal functions φ0, . . . , φN−1 in L2(µ) and let

KN (x, y) ,
N−1∑
k=0

φk(x)φk(y). (4)

The set X = {x1, . . . ,xN} ⊂ [−1, 1]d is said to be drawn
from a DPP with base measure µ and kernel KN , denoted by
X ∼ DPP(µ,KN ), if and only if the points x1, . . . ,xN have
joint probability distribution

1

N !
det
[
KN (xi, x`)

]N
i,`=1

N∏
i=1

µ(dxi). (5)

Note that (5) is invariant to permutations of the N labels, so
that we have unambiguously defined a probability measure
over sets. The fact that (5) is a probability density is a direct
consequence of the orthonormality of the φis and developing
the determinant in (5).

The potential to model repulsiveness for projection DPPs
is best understood when rewriting (4) as

N∏
i=1

1

N − i+ 1

∥∥∥PHi−1
KN (xi, ·)

∥∥∥2
L2(µ)

µ(dxi). (6)

where PH is the orthogonal projection onto H ⊂ L2,

H0 = Span(φ0, . . . , φN−1),

and Hi−1 is the orthocomplement in H0 of

Span (KN (x`, ·), 1 ≤ ` ≤ i− 1) .

Seeing (6) as a sequence of “base times height” formulas,
the pdf of a projection DPP is proportional to the square of
the volume of the parallelotope spanned by the N functions
K(xi, ·) in H0. The configurations X that have large pdf val-
ues are those that correspond to large volumes in H0, which
machine learners would call the feature space. These volumes
determine which configurations X are repulsive.

Figure 2 further illustrates this concept. Let the base mea-
sure have density ω(x) = (1− x)4(1 + x), and let N = 100.
Let (φk) be the orthonormal polynomials in L2(µ), that is,
deg(φk) = k for all k ≥ 0, the leading coefficient of φk is
positive, and

∫
φk(x)φ`(x)ω(x)dx = δk`. We show two of

the feature functions fk : x 7→ φk(x)
√
ω(x) for k = 2, 10.

For any choice of N points x1, . . . , xN , their pdf (6) is the
volume in RN of the parallelotope spanned by the N vectors
v(xi) = (f1(xi), . . . , fN (xi)) ⊂ RN . We know from the the-
ory of orthogonal polynomials [14] that the norm of v(x) is
roughly constant when x is bounded away from -1 and 1, say
x ∈ [−0.9, 0.9]. In that interval, pairs (x1, x2) that span large
parallelograms thus correspond to vectors v(x1) and v(x2)
with small inner product. Two equally-spaced pairs of ab-
scissa are highlighted in Figure 2, one in plain red, and one in
dashed red. We are now equipped to compare the chance of
the red pair to be included in sample of the DPP with kernel
(4), to that of the dashed red pair. For each abscissa x in these
pairs, the intersections of the red and blue, and red and green
lines give two coordinates of v(x).

Orthogonal polynomials “oscillate” faster [14] in regions
of high mass under the base measure µ(dx) = ω(x)dx. The
plain red pair lies in the bulk of ω, and the fast oscillations
of the fks make the inner product 〈v(x1), v(x2)〉 small com-
pared to the same inner product evaluated at the dashed red
pair. The plain red pair is thus more likely to co-occur in a
DPP sample than the dashed red pair. Otherly put, repulsive-
ness is “weaker” in the bulk of ω. Note that regions close to
the endpoints of [−1, 1] are exceptions: they correspond both
to large norms and small inner products, and we thus expect
some samples of this particular DPP to cluster there.

2.2. DPPs are kernel machines

DPPs are akin to support-vector machines (SVM, [15]) or
Gaussian processes [16], in that the statistical properties of
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Fig. 2. A so-called Jacobi base measure, and two orthonormal
eigenfunctions φ2
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the point configurations are given by geometric quantities in
high-dimensional feature space. In the same manner that the
predictors in SVM regression/classification depend on the
eigendecomposition of the SVM kernel, the repulsiveness in
a DPP is encoded by its eigendecomposition, which for a
projection DPP takes the simple form (4).

We further note that using the same normal equations as
in standard linear regression, it comes∥∥∥PHi−1

KN (xi, ·)
∥∥∥2
L2(µ)

=

{
KN (x1, x1) if i = 1,

KN (xi, xi)− ki−1(xi)
TK−1i−1ki−1(xi) else,

(7)

where ki−1(·) = (KN (x1, ·), . . . ,KN (xi−1, ·))T , and

Ki−1 =
[
KN (xk, x`)

]
1≤k,`≤i−1

.

Equation (7) will be familiar to users of Gaussian pro-
cesses (GPs; [16]): the unnormalized conditional densities
(7) are the incremental posterior variances in a GP model with
the same kernel, giving yet another intuition for repulsiveness.
Furthermore, in the absence of a connection to the eigenvalues
of a random matrix, the chain rule (6) and the explicit form
(7) are commonly used to sample projection DPPs, using re-
jection sampling [17] to sample each conditional in turn.

2.3. Multivariate orthogonal polynomial ensembles

When d = 1, letting φk in (4) be the orthonormal polynomials
w.r.t. µ results in a DPP called an orthogonal polynomial en-
semble (OPE, [18]). When d > 1, orthonormal polynomials
can still be uniquely defined by applying the Gram-Schmidt
procedure to a set of monomials, provided the base measure is
not pathological. However, unlike for d = 1, there is no nat-
ural order on multivariate monomials, so we need to pick an

order b : N→ Nd before we apply Gram-Schmidt to the first
N monomials. In [1] we pick the graded lexicographic order,
defined by ordering multi-indices (α1, . . . , αd) by their max-
imum degree maxαi, and for constant maximum degree, by
the usual lexicographic order. There is some limited freedom
to change the order in our proofs.

Denoting by Φk the corresponding multivariate orthonor-
mal polynomials, then by multivariate OPE we mean the DPP
with base measure µ(dx) = ω(x)dx and kernel KN (x, y) =∑

Φk(x)Φk(y), where the sum runs over multi-indices k
such that 0 ≤ b(k) ≤ N − 1. Note that for a separable base
measure, i.e. if

ω(x) = ω1(x1) . . . ωd(xd), (8)

where x = (x1, . . . , xd) ∈ Rd, multivariate orthonormal
polynomials are products of univariate ones. In that case,

KN (x, y) =

N−1∑
b(k)=0

d∏
j=1

φjkj (xj)φjkj (yj), (9)

where (φjk)k≥0 are the orthonormal polynomials w.r.t. ωj .

3. MONTE CARLO WITH DPPS

3.1. A stochastic Gaussian quadrature

Let µ be separable as in (8), and X ∼ DPP(µ,KN ) be a
multivariate OPE given by (9). If we integrate (5) N − 1
times, we obtain that any point in our DPP has marginal pdf
KN (x, x)ω(x). For g ∈ L1(dµ), we deduce that

ÎN ,
N∑
i=1

g(xi)

KN (xi,xi)
(10)

is an unbiased estimator of
∫
g(x)ω(x)dx. This estimator

is familiar to users of Gaussian quadrature. Gauss indeed
showed [19] that if you restrict to d = 1, and replace the
DPP samples in (10) by the zeros of φN , then ÎN is determin-
istic and has zero error when g is a polynomial of degree less
than 2N − 1. This is (or was) unexpected as φN has degree
N and thus only N zeros. These zeros are real and distinct
in non-pathological cases [14], but still, there are only N of
them and they allow integrating polynomials of degree twice
that. Remembering the intuition about the repulsiveness in
Section 2.1, we see that OPEs are a good candidate for the
natural stochastic version of Gaussian quadrature.

To further visualize similarity of OPEs with Gaussian
quadrature, we plot in Figure 3 three samples. The left plot
depicts an i.i.d. sample from a product measure with Jacobi
marginals. The marginals are plotted in green on each axis.
The middle plot contains the cartesian product of two Gaus-
sian quadratures, one on each axis with the corresponding
green marginal as target measure. Each node xi is depicted
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Fig. 3. Left: i.i.d. sample, middle: product Gaussian quadrature, right: bivariate OPE sample

with a circle, the area of which is proportional to the node’s
weight 1/KN (xi,xi) in (10). The right plot shows a sam-
ple from the corresponding multivariate OPE, with the same
weights. Well-spread points and large weights accumulate in
the bulk of ω in both the middle and right plots.

3.2. Our generalization of Johansson’s CLT

Theorem 1 ([1]). Let µ(dx) = ω(x)dx with ω separable,
C 1, positive on the open set (−1, 1)d, and satisfying a techni-
cal regularity assumption. If x1, . . . ,xN stands for the asso-
ciated multivariate OPE, then for every g C1 vanishing out-
side [−1 + ε, 1− ε]d for some ε > 0,√

N1+1/d

(
ÎN −

∫
g(x)µ(dx)

)
law−−−−→
N→∞

N
(
0,Ω2

g,ω

)
,

where

Ω2
g,ω =

1

2

∞∑
k1,...,kd=0

(k1 + · · ·+ kd)

(̂
gω

ω⊗deq

)
(k1, . . . , kd)

2,

(11)
and ωeq(x) = π−1(1− x2)−1/2.

If we take Johansson’s result (3), and project the eigen-
values orthogonally from the unit circle onto the x-axis, we
obtain a special case of our Theorem 1 where d = 1 and
µ = µeq . But for some additional assumptions on f , we have
thus generalized (3). Looking back at our requirements in
Section 1.1, we have extended (3) to an arbitrary dimension
d, and an arbitrary choice of target measure. We have pre-
served the fast convergence of (3), although the gain w.r.t.
the usual Monte Carlo rate decreases with dimension, and we
have preserved the interpretability of the asymptotic variance
as a measure of decay of the Fourier coefficients of the inte-
grand, including the target pdf. The additional ωeq term is re-
lated to the projection of the circle onto the x-axis: ωeq is the
“marginal” distribution of the uniform distribution on the cir-
cle. As a last comment, we have a CLT that only assumes that

the integrand is C1, while typical faster-than-Monte-Carlo al-
gorithms like quasi-Monte Carlo [20] require the smoothness
of the integrand to grow with d. To sum up, the fact that the
repulsiveness in our DPP is tailored to the integration prob-
lem at hand allows us weaker assumptions, and gives a fast
CLT with interpretable asymptotic variance.

3.3. An importance sampling version

One downside of Theorem 1 is that in practice, one rarely
knows the orthogonal polynomials w.r.t. µ. Indeed, this
would imply that we know all moments of µ, which is unre-
alistic in, say, Bayesian inference tasks where access to µ is
limited to pointwise evaluation up to a multiplicative constant
[17]. In [1, Theorem 2.9], we show that if x1, . . . ,xN is the
multivariate OPE associated to a pdf q that satisfies the as-
sumption of Theorem 1, then ĨN ,

∑N
i=1

g(xi)
KN (xi,xi)

ω(xi)
q(xi)

satisfies the same CLT as in Theorem 1, with the same
asymptotic variance. In other words, you do not incur any
cost, asymptotically, for having replaced ω by another base
distribution. This is highly unusual from a Monte Carlo per-
spective, where you would expect the asymptotic variance to
contain a term that measures the mismatch between q and ω.

4. CONCLUSION

We have taken a different view at the results in [1], highlight-
ing the motivation that stemmed from random matrix theory.
The results take us to a stochastic version of Gaussian quadra-
ture, and ask questions of harmonic analysis: if g is known
to be sparse in some basis of L2, say a given wavelet basis,
can we prove a CLT like Theorem 1 for a DPP that projects
onto the span of N of these wavelets? In that case, would the
asymptotic variance measure the decay of the coefficients of
g in that wavelet basis? The tools we used in [1] rely heavily
on the basis being polynomial, so new ideas are needed...
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sampling with determinantal processes,” in Proceedings
of EUSIPCO, 2017.

[14] V. Totik, “Orthogonal polynomials,” Surveys in Approx-
imation Theory, vol. 1, pp. 70–125, 2005.

[15] N. Cristianini and J. Shawe-Taylor, Kernel methods for
pattern recognition, Cambridge University Press, 2004.

[16] C. E. Rasmussen and C. K. I. Williams, Gaussian Pro-
cesses for Machine Learning, MIT Press, 2006.

[17] C. P. Robert and G. Casella, Monte Carlo Statistical
Methods, Springer-Verlag, New York, 2004.
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