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Abstract. Mediation is a process for resolving conflicts among several entities. In
argumentation debates, conflicting agents that may be organized as teams exchange
arguments to persuade each other. In this paper, we consider an automated medi-
ator, which assigns the speaking slots to agents so as to optimize some objectives
and ensure the fairness of the debate. We propose a general setting where the argu-
mentation strategies of the agents are probabilistically known and may evolve over
time. We show that the problem can be solved as a semi-Markov decision problem
with hidden modes.
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1. Introduction

Mediating debates is a longstanding issue in democracies. As early as 1876, Henry Mar-
tin Robert designed a set of rules, Robert’s Rule of Order [19], which prescribe how as-
sembly discussions should be conducted. For instance, a general guideline of the rules
is that “no member can speak twice on the same issue until everyone else wishing to
speak has spoken once”. But it also goes in much deeper details regarding the agenda of
a meeting, the amendments and the motions, the votes, and how the “floor” (the right to
speak) can be allocated in assembly discussions. Prakken and Gordon formalized (some
of) those rules and argue that they may be used in electronic debates [17]. But they also
discuss reasons why this may not be an obvious choice. In particular, they mention that
electronic debates are not synchronous discussions. Perhaps one further difference is that
rules of order are assumed to take place in settings where participants can be assumed
(to some extent) to have equal power and access to the floor.

We emphasize this point because it has some important consequences as to how
the fairness of mediation should be interpreted. Often, it is understood simply as strict
neutrality. Every party or speaker should be treated the same. In many debate contexts,
however, neutrality is not appropriate. For instance, by simply looking at the number of
speak turns, a mediator may be neutral. However, if a party always had the floor in a
situation where it could not utter any sensible argument, this may not be seen as fair. In
this paper we claim that some recent advances in the modeling of debates can provide
formal tools for an optimal mediation.
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In our setting, we suppose that agents are split into several teams, exchanging argu-
ments to persuade each other. The mediator should decide which agent of which team
will speak next. To solve this decision problem, our mediator exploits her knowledge
about the debating agents, i.e., about their argumentative strategies. One of the main is-
sues raised is the amount of information that the mediator has at her disposal. While it is
conceivable that the mediator knows which team each agent belongs to, it is difficult to
assume that she could assign a deterministic strategy to each agent, or that agents play
optimally. Instead, agents will be viewed as reasoning with probabilistic strategies [8].
This models both the fact that an agent can act non-deterministically and that the medi-
ator does not know perfectly the strategy of each agent. However, assuming that those
strategies are stationary (i.e., do not evolve during the debate) may also be too strong. In-
deed, under time pressure in particular, realizing that she could not satisfy her own goal,
an agent may use a more aggressive strategy in the hope of, at least, avoiding the other
party attaining its own. As the debate progresses, each agent may change her current
topic or her argumentative behavior representing her state-of-mind.

Following previous works on decision-making in non-stationary environments [6],
each possible stationary strategy of an agent will be referred to as an argumentative be-
havior. Transitions between behaviors will formalize the non-stationarity of the agents’
argumentative behaviors (each time an agent changes her strategy, she will move to an-
other argumentative behavior). Of course, the agents’ current behavior cannot be directly
observed by the mediator. Our work relates to a series of papers investigating how rea-
soning techniques can be exploited in the context of argumentation-based interaction.
Depending on the assumption made (see [21] for a survey), these techniques range from
heuristic-based approaches [11], game-theoretical analysis, or opponent modeling [4,18].
Frameworks optimizing the sequence of moves of a debating agent facing a stochastic
opponent have been developed in a setting with probabilistic strategies [9,5] or in a more
general setting [7]. This differs significantly from our perspective in the sense that a
mediator has to allocate turns to agents involved in a debate.

The problem of mediation has recently emerged as an important challenge for for-
mal argumentation. In [16] a persuasion dialogue game for two players is extended to
consider a neutral adjudicator. In [10], a dialectical system designed for mediation is
proposed. Such dialogue games look in detail at the types of moves that can be played in
this context, and prescribe what agents can play, but not how the mediator should play.
None of the work above takes the perspective of a mediating agent. In this paper, we pro-
pose a general formalization of the mediator’s decision problem (Section 2) and we ar-
gue that the problem can be modeled as a Markov Decision Problem with hidden modes
(Section 3). Finally, experiments demonstrate the relevance of our approach (Section 4).

2. Dynamic Mediation Problems

In order to elaborate a mediation strategy, there is a need to represent possible argumen-
tation strategies of debating agents. When it is not possible to assume full knowledge of
all agents’ strategies or when they act non-deterministically, one can use probabilities to
reflect the likelihood that an agent plays a given argument or attack. Following this idea,
the Argumentation problems with Probabilistic Strategies (APS) framework has been
proposed to model argumentation problems using probabilistic executable logic [9].
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Inspired by the APS formalization, we propose the Dynamic Mediation Problem
(DMP) framework to consider a strategic mediator managing turn-taking between agents
with non-stationary strategies. Our objective is to allow a mediator to decide for the best
turn-taking sequence by adapting to the changes of argumentative behaviors (i.e., due to
non-stationarity of the agents). A DMP is defined by a tuple 〈D, T , A, E , P , (Mi)i∈D,
((Rμ

i )μ∈Mi)i∈D, (Bi)i∈D, (gj)j=0...|T |, (Fi)i∈D〉 with D, a set of agents; T , a set of
teams (i.e., subset of agents) where T forms a partition of D; A, a set of arguments; E ,
a set of attacks e(x, y), meaning argument x attacks argument y; P a set of all possible
public states; Mi, the set of argumentative behaviors for agent i; Rμ

i , the set of rules of
agent i in mode μ ∈ Mi; Bi : Mi ×Mi → [0, 1] models the probability of agent i to
change from one behavior to another; gj , the goal of team Tj and g0, the mediator’s goal
and Fi : Mi × Mi × N → [0, 1] models the probability of agent i to move from one
behavior to another after a given number of steps in the first behavior.

A rule r ∈ Ri is of the form r : prem ⇒ Pr(Actsi) where premise prem is a
conjunction of predicates a(·), hi(·) and e(·, ·) (or their negations) applied to one or more
arguments. Pr(Actsi) is a probability distribution over a set Actsi of possible acts. An
act α ∈ Actsi is a set of modifications on predicates of the public space and private
state of agent i: �(p) (resp. �(p)) stands for adding (resp. removing) p to (resp. from)
the public space, where p is either a(x) or e(x, y), and ⊕(p) (resp. �(p)) corresponds
to adding (resp. removing) predicate p to (resp. from) the private state of agent i. Let
Pr(Actsi) = [p1/act1 ∨ p2/act2 ∨ . . . ∨ pk/actk] denote a distribution yielding actj
with probability pj . A rule can only be fired by agent i if its premise is fulfilled. Premises
formalize the conditions (i.e., arguments or attacks) that must hold in order to play a rule.

A goal (for a team or for the mediator) consists in having some arguments present
or absent from the grounded extension [3] of the arguments played in the public debate
space. We say that an agent plays a vacuous act when it does not change the state of the
debate. It is important that agents are able to skip the turn so that the debate can continue,
to avoid potential deadlock. When each team has played the skip act, the debate stops. It
then triggers the checking of acceptability of the goals of each team and of the mediator.

a c e g i

b d f h

Example 1. A government is discussing a bill to legalize communication surveillance.
Two teams debate at the legislative assembly: the pro- and the anti-bill. The modeling
contains 9 arguments (4 pros and 5 cons), e.g., (a) anonymization software should not
be seen as suspicious, (e) no judge is required to monitor a user, (g) the government can
possibly abuse control. We picture the attack graph between arguments. Assume the goal
of the second team is g2 = {in(d), in(h)}. Under the grounded semantics, a, c, h, and f
are acceptable, thus g2 is not fully satisfied.

We only give below examples of rules in one of the modes for two agents i and j from
two opposite teams: i (resp. j) belongs to team T1 (resp. T2). For conciseness, we remove
the attacks from the rules, though they are still used to determine which arguments are
attacked or defended. The goals are g1={in(c),in(i)}, g2={in(d),in(h)}.
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Ri : {∅ ⇒ [0.7/� a(a) ∨ 0.3/� a(e)]

a(b) ⇒ [0.55/� a(g) ∨ 0.45/� a(c)],

a(d) ⇒ [0.5/� a(i) ∨ 0.5/� a(c)],

a(f) ⇒ [0.9/� a(c) ∨ 0.1/� a(i)],

a(e) ∧ a(f) ⇒ [1.0/� a(i)]}

Rj : {∅ ⇒ [0.6/� a(d) ∨ 0.4/� a(h)],

a(a) ⇒ [0.7/� a(d) ∨ 0.3/� a(b)],

a(e) ⇒ [0.8/� a(f) ∨ 0.2/� a(f)],

a(g) ⇒ [0.5/� a(f) ∨ 0.5/� a(b)],

a(i) ⇒ [1.0/� a(h)]}
As the debate progresses, each agent may change her argumentative behavior. We

shall exploit the typology of constructive versus destructive behavior [13]. This consti-
tutes a basic case that has the advantage of being grounded in argumentation theory,
and which can be easily extended with mixtures of these extreme behaviors. In the con-
structive behavior, the agent will favor acts that build her goals, while in the destructive
behavior she seeks to destroy the arguments that are potential goals of the other team.
Probabilities over acts in the rules thus vary from one mode to another in order to reflect
this argumentative behavior. We also define the mean behavior, which takes the mean
probability per act. It will be used in the sequel as an evaluation basis. In our examples,
we consider only two behaviors but our approach allows for any number.

Example 2. Example 1 cont’d. Consider the following modes, capturing different atti-
tudes for an agent of team T2 when argument a holds on the public state (either to put
forward argument d or instead attack argument a by playing argument b).

constructive: a(a) ⇒ [0.7/� a(d) ∨ 0.3/� a(b)]
destructive: a(a) ⇒ [0.2/� a(d) ∨ 0.8/� a(b)]
mean: a(a) ⇒ [0.45/� a(d) ∨ 0.55/� a(b)]

Mediator’s Objectives. We distinguish different types of objectives of the mediator, and
classify these principles as belonging either to the efficiency or the fairness of the debate.

Debate Efficiency. An important feature to define the debate efficiency is the goal of the
debate. Strict neutrality would imply that the mediator holds an empty goal. However, it
is legitimate for the mediator to have an impartial goal i.e. not to favor any team a priori.
This could typically correspond to the goal of the interaction itself, which depends on
the type of interaction considered [22,15]. Indeed, the main objective of the mediator
is to lead the debate to its expected outcome. This is expressed by a goal (g0) that the
mediator pursues. Then the following principles can be considered. (1) At each turn, the
debate yields a public state where the goal of the mediator can be evaluated (Impact on
audience (Imp)). Sometimes it makes sense to do so at each step of the debate, e.g., for
debates broadcast on radio, where an audience might be convinced depending on how
long they were exposed to arguments. Sometimes only end state of the debate is relevant,
as in a trial, where only the ultimate state is considered by the judges. (2) Making regular
progress in the debate should be favored, i.e., circular arguments [12] or empty moves
should be discouraged, and the mediator is legitimate to intervene to avoid this (Progress
of the debate (Prog)). Finally, (3) short debates are preferred (Length of the debate (Len)).

Example 3. Example 1 cont’d. A possible impartial goal could be that both teams man-
age to reach a consensus at least on argument g, i.e., g0 = {in(g)}. Another type of
impartial goal would be g0 = {in(c) ∨ in(h)}. These goals are impartial in the sense
that this is a disjunction which does not discriminate between the goals of the teams.
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Debate Fairness. The following properties are crucial to ensure that the debate is con-
ducted in a way that is fair to all the participating agents. (1) One of the main guidelines
of Robert’s Rules of Order is Alternation between teams (Alt). [10] also note that fairness
is achieved in their system by balancing the agents’ positions. We reformulate this rule
in the context of several teams: “the turn should not be given to the same team again,
as long as all the other teams did not have the opportunity to speak”. (2) Priority should
be given to agents who have (supposedly) a move directly connected to the most recent
argument made in the debate (Fair opportunity to respond (Resp)). This captures a notion
of relevance, but not as stringent as the one used in [14,1], which asks the status of the
issue to be impacted by the move. Finally, (3) Full participation (Part)states that as long
as agents have something relevant to say, they must in principle be allowed to do so.

Clearly, all of these principles may not be satisfied simultaneously: they are even
sometimes contradictory. In the next section, we are going to see how all these principles
can be captured through some appropriate setting of states, goals and reward functions.

3. DMP as Sequential Decision-making

Dealing with Non-stationary Behaviors. The decision problem of the mediator can be
viewed as a sequential decision-making problem under uncertainty. As debating agents
may change their behaviors over time, traditional Markov decision models fail to rep-
resent such non-stationary problems. To remedy this, Hidden-Semi-Markov-Mode MDP
(HS3MDPs) [6] have been proposed to model problems where the non-stationarity of
the environment is modeled as a finite non-controlled Semi-Markov chain, whose states
called modes correspond to stationary MDPs. Formally, an HS3MDP is defined by a
tuple 〈M,C,H〉 with M a set of modes; C : M × M → [0, 1] a transition function
between modes and H : M ×M ×N → [0, 1] a duration function. Each mode mk ∈ M
corresponds to a stationary MDP, characterized by a tuple 〈S,A, Tk, Rk〉 where S is a
set of states; A a set of actions; Tk : S ×A× S → [0, 1] a transition function over states
and Rk : S ×A → R a reward function.

The duration function H sets the stochastic number of decision steps the environ-
ment will stay in the current mode before being allowed to change to another one. When
the number of steps remaining in the current mode reaches 0, the next mode is drawn
using the function C. In this model, the current state s ∈ S of the problem is directly
observable, while the current mode m ∈ M and duration h are not.

The following two observations suggest that HS3MDPs can handle DMP problems:
(1) there is a fixed and known number of possible environment dynamics, which cor-
respond to all combinations of the debating agents’ behaviors; (2) an environment dy-
namics mode prevails for several time steps since agents engage in a consistent behavior
and keep the same behavior over several time steps of the debate. Formally, the decision
problem of the mediator in a DMP can be modeled as an HS3MDP:

•M =
∏

i∈D Mi the set of all possible combinations (μ1, · · · , μ|D|) of modes such
as μi is a behavior of agent i in the DMP. The elements of M are numbered and denoted
mk. Each mode mk corresponds to an MDP 〈S,A, Tk, Rk〉 with S = P × {1, . . . , |T |},
all possible combinations of public states, plus the team of the agent who has just spoken,
A = D, as an action consists of allowing one agent to fire one rule and Tk and Rk (for
each mode mk ∈ M ), as specified below.
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• C : M × M → [0, 1] the transition function over modes induced by Bi of the
DMP, assuming independence between the changes of the agents’ behavior,

•H : M×M×N → [0, 1] the mode duration function derived from Fi of the DMP
with the independence assumption. There is a (HS3MDP) mode change if the duration
of at least one agent’s behavior is equal to zero.

Let Acts(r) be the set of acts for rule r, Rμi

i be the set of rules of agent i in her
current mode μi and Rμi

i [s] be the subset of rules of Rμi

i compatible with state s. The
transition function Tk in mode mk = (μ1, . . . , μ|D|) is defined as follows: ∀s ∈ S, ∀i ∈
A = D, ∀r ∈ Rμi

i [s], ∀l ∈ Acts(r), Tk(s, i, sr,l) = 1/|Rμi

i [s]| · pμi

r,l where sr,l is the
state resulting from the application of act l of rule r on state s and pμi

r,l is the probability
of act l of rule r when in mode μi (given by the DMP specification).

Capturing Efficiency and Fairness Principles. The reward function Rk formalizes the
objectives of the mediator and has to be defined in compliance with the problem. These
different objectives can generally be captured with a specifically designed reward func-
tion, and simultaneous objectives can be handled by combining several reward signals.
Some of them would require to augment the state space.

• for efficiency: (Prog) is captured by assigning negative rewards to vacuous act. A
less obvious situation to avoid are circular arguments: it would also be possible to penal-
ize with a negative reward, but one would need to augment the state space to represent
the history of the moves. For (Imp), recall that the mediator may have some impartial
goals specific to the debate. This is simply handled by giving a positive reward when
(parts of) those goals hold. We distinguish final v. step-wise reward: in the latter case, the
reward for a fulfilled goal is given at each step as the goal holds. In the former approach,
a reward is only given at the end of the debate if the goal of the mediator holds. For (Len),
it suffices to penalize every time-step with a small negative reward value, or alternatively
to use an adequate discount factor.

• for fairness: to favor alternation (Alt) between two teams, a negative reward can
be given to the mediator if she lets the same team speak twice consecutively. When
considering more than two teams, the state has to be augmented with the history of the
|D − 1| last teams’ turns. Regarding (Resp), the mediator may be rewarded if a move
is relevant, i.e., related to the last (or some recent) moves. To that aim, the state space
would need to be augmented to keep track of a few last moves. For simplicity, we do
not take it into account in our model. Finally, (Part) is guaranteed in our model since the
debate only ends when each team has triggered the skip act.

In short, the designer only has to specify goal and relevance rewards, along with
progress, length and alternation penalties to model the mediator of her choice. It is pos-
sible to play on the parameters and combine these dimensions to obtain various types
of mediator. In the end, the mediator aims at optimizing the expected sum of rewards
discounted by a discount factor γ ∈ [0, 1).

4. Solving a DMP and experiments

We ran experiments to test the relevance of formalizing the possible behaviors of the
agents in the decision process. We compared the performance of the mediator while
making decisions using an HS3MDP policy against a policy issued from a mean model
over all behaviors. Indeed, this common method (see, e.g., [2]) approximates the non-
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stationarity to solve the problem with standard algorithms. Given an instance of debate
mediation, the mean model is defined by averaging over the behaviors, rule by rule, the
probability distributions over possible acts. We obtain a “mean” MDP with stationary
state transition and reward functions. The HS3MDP and the “mean” MDP are then solved
using POMCP [20] that we modified and improved using the structure of HS3MDPs [6].

Each part of Table 1 corresponds to respectively 3 agents in one team v. 4 in the other,
12 v. 12, 25 v. 25 and finally 50 v. 50. For each team size, we generate 100 instances of
the problem described in Example 1 with different probabilities on acts in the rules. They
are defined randomly for each agent with respect to the behaviors, i.e., in the constructive
behavior, the probability of the act moving the debate towards the goal is higher than
the probability of trying to defeat the opponent. The mediator’s goal is randomized for
each instance. We record the mediator’s performance (i.e., discounted sum of rewards)
for each instance and average over the 100 instances. We also increase the numbers of
simulations done by POMCP while averaging on 1000 runs with the given number of
simulations. The number of simulations is the number of Monte-Carlo executions done
in the simulator before executing in the real environment the best action found. It starts
with eight simulations and doubles the number of simulations until it takes more than
one hour for 1000 runs (for at least one of the 100 averaging instances). POMCP results
tend towards the optimal results when increasing the number of simulations [20].

We use a goal reward of 10 for each part of the goal accepted, -100 for the alterna-
tion penalty and a discount factor of 0.9 accounting for both the length and the progress
penalties. Reported performances correspond to the results obtained by the mediator us-
ing step-wise and final reward functions. The left (resp. right) value of each column is ob-
tained using the “mean” model (resp. the HS3MDP model). Bold face values mean that
the relative improvement is at least 1% and that the difference is statistically significant.
Both values are in bold face in the opposite case. For all sizes of instances, with a suffi-
cient number of simulations, one can see that HS3MDP always outperforms the “mean”
model. However, as the size of the instances increases, more simulations are needed to
outperform the “mean” model. In fact, without enough simulations, the additional infor-
mation brought by the HS3MDP model is not used and leads to wrong choices of ac-
tions when the model believes to be in a wrong mode. Nonetheless, it has to be noticed
that, even for large-sized instances, the number of simulations required to outperform
the “mean” model remains small. HS3MDPs can lead to significant improvements since
the relative improvements are up to 79%. Apart from the results for Teams 12-12 and
Teams 50-50 at 256 simulations for the “final” reward function, all results are statistically
significant with p < 0.05 and most of them with p < 0.001 under a Student t-test.

The high alternation penalty has been defined as shown previously to verify that the
objective (Alt) can be learned with an appropriate setting of the reward function.

Finally, to further validate our method, we performed a set of experiments with an
impartial mediator who has disjunctive goals, i.e. disjunction of random parts of the goals
of each team. Again, we can observe in Table 2 that our method consistently performs at
least as good as the “mean” model, with relative improvements of up to 43%.
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