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Abstract. In this work, we formulate a network design problem with user-optimal flows as a mixed
discrete bilevel linear programming problem. The upper level objective function minimizes the sum of
fixed and variable costs associated with edges. The lower level problem defines a set of independent
shortest path problems on the network resulting from the decisions taken in the upper level. Using the
Bellman optimality conditions for the shortest path problems in the lower level, we obtain a one-level
integer formulation for the network design problem. We implemented a tabu search metaheuristic based
in a framework proposed in the literature to solve discrete bilevel problems. We propose a hybrid strategy
that uses information coming from the linear relaxation of the one level formulation to select the initial
solutions in the tabu search. Preliminary computational results are discussed as well as some directions
to continue this research.

1 Introduction

The fixed charge network design problem (FCNDP) consist of selecting a subset of edges
from a graph, in such a way that a number of given commodities can be transported from their
origins to their destinations. The problem states the minimization of the sum of fixed costs
(due to selecting the edges) and variable costs (depending on the flows of commodities on those
edges). Both fixed and variable costs are linear and the edges are uncapacitated. The FCNDP
problem is a large class of network design problems (Magnanti and Wong, 1984).

A variant of the FCNDP states that the commaodities are routed along a shortest path on the
resulting network. We call this problem FCNDP-SPR. This characteristic adds new constraints
to the general problem.

Namely, consider a network G' = (V, E') where V' is the set of vertices and E is the set of
admissible edges linking these vertices. A length, a fixed and a variable cost are associated with
each edge in the graph. Consider also, a set X of commodities to be transported along the edges
in E. Each commodity k € K is associated with an origin-destination pair of vertices (o*, d*).
The FCNDP-SPR problem is to select a set of edges in £ to be opened and to find, for each
commodity in K, a feasible flow in the resulting network such that the sum of the fixed costs
plus the variable flow costs is minimized. For a commodity & € K, a flow is said to be feasible
if it is sent along a shortest path from o” to d*, with respect to the edge lengths.

The FCNDP-SPR involves two distinct decision makers acting non-cooperatively and in a
sequential way. At the upper level the leader is in charge of choosing the set of edges to be
opened and he makes this decision trying to minimize the fixed and variable costs. As an
answer, at the lower level the followers choose a set of shortest paths in the resulting network



along which the commodities will be sent. The effect of a decision maker on the other part is
indirect: the followers’ decision is affected by the network designed in the upper level whereas
the leader’s decision is affected by the variable costs imposed by the routes set in the lower
level.

The inclusion of shortest path routing constraints in a mixed integer program is not straight-
forward. Difficulties arise both at the modeling as well as to design efficient solution methods.
For the best of our knowledge, the FCNDP-SPR has only been addressed two times in the liter-
ature (Billheimer and Gray, 1973; Kara and Verter, 2004) and has been treated as part of bigger
problems in some applications (Holmberg and Yuan, 2004).

The remainder of this text is structured as follows. In Section (2) we present a discrete
bilevel formulation (Colson et al., 2005) and a one-level integer formulation to the FCNDP-
SPR problem. In Section (3) a tabu search procedure for the FCNDP-SPR problem is briefly
described. Preliminar computational results for the one-level formulation and the tabu search
are provided in Section (4). Finally, in Section (5) some concluding remarks are given.

2 Discrete formulations

Let A¥ = {(4,7), (4,4) | V [i,j] € E} be the set of arcs obtained by bidirecting the edges
in £. With each edge ¢ € E we associate a fixed opening cost f and with each arc a € A"
we associate a positive length ¢, and an operating variable cost g*, for each commodity k € K.
Considering an arc a = (i, j) € AF we define e(a) = [i,j] and @ = (j,7). Also, considering an
edge e = [4, j] € E we define a(e) = (i,7) and a(e) = (j,¢). Notice that there is no capacities
associated neither with edges in set £ nor with arcs in set AZ.

Each commodity £ € K must be sent along one unique path carrying the total demand
associated with its origin-destination pair. Then, for each commodity k£ € K a demand vector
b* € {—1,0,1}"Iis specified as

1 ifi=oF
bf =4 —1 ifi=d",
0 otherwise.

For each edge e € E, we define an upper level variable ¢ € [0, 1] such that y. = 1 if and
only if edge e is part of the network design. Also, for each commodity £ € K we define a set
of continuous lower level variables =%, a € A¥, used to model the shortest path from vertex

o to vertex d*, with respect to the lengths c,. The discrete bilevel formulation (BIP) to the

FCNDP-SPR problem is
min} _ foye+ Y Y 947 (1)

eeFR keK acAE

ve € {0,1},Ve € E, (2

where z is a solution to the problem

mzinz Z camlj 3

keK aqcAE

subject to Z L Z ak = b, Vie V,Vk € K, 4)
a€dt (i) a€d— (i)
xl;(e) + 17]5,(5) < Ve, Vee E.Vk € K, (5)

zF >0, Va € A¥ VEk € K. (6)



Let 0" (i) (respectively 6~ (7)) denotes the set of arcs having node 7 as its tail (respectively head).
The upper level objective function (1) minimizes the sum of the fixed and variable costs. The
lower level problem is described by (3)-(6) in which constraints (4) are the well-known flow
conservation constraints. Constraints (5) force each variable y.,) to take value 1 whenever z*
is positive for some k € K.

The FCNDP-SPR problem can be reformulated as a one-level integer formulation by replac-
ing the lower-level linear program defined by @), (4), (5) and (6) with its optimality conditions.
That could be done by applying the fundamental theorem of duality and the complementary
slackness theorem (Bazaraa et al., 2004). However, optimality conditions for the lower level
problem are, in fact, shortest path optimality conditions and they can be written in a more
compact and effective way considering the Bellman optimality conditions for the shortest path
problem (Ahuja et al., 1993) and using a simple lifting procedure (de Giovanni, 2004).

A one-level formulation (IP) for the FCNDP-SPR problem is as follows.

mind_ foye+ D D 9av

eckE k€K acAE

subject to (2), (4), (5),
z¥ € {0,1}, Vo€ AP Vke K, (7)
Wf—ﬂf§Mk—ye(a)(Mk—ca)—20ax§, Va = (i,j) € AP Vk € K, (8)
Wsk =0, Vke K. (9)

Variables 7%, k € K, i € V, are the shortest distances from vertice i to vertex d*. Then, we can
set variable 7%, equal to zero. Assuming the integrality of variables y and 2 and assuming also
that inequalities (5) are satisfied, constraints @) are equivalent to Bellman optimality conditions
for the set of | K| origin-destination pairs. The constant value M*, k € K, has to be sufficiently
large to guarantee that variables 7 and w;? will satisfy the shortest path conditions whenever
ye=0,e=1i,j| € E.

3 A simple tabu search procedure

Tabu Search (TS) is a metaheuristic originally proposed by Glover (Glover, 1989) to allow
local search methods to overcome local optima. Its basic principle is to accept non-improving
moves in order to allow the local search to escape from local optima; cycling back to al-
ready visited solutions is prevented by using memories called tabu lists, that record the recent
history of the search (Gendrau, 2003). TS has been successful in solving many hard com-
binatorial optimization problems, obtaining approximate solutions that are close to optimal-
ity (Glover and Laguna, 1997).

In this work we apply TS to obtain approximate solutions to the FCNDP-SPR problem. Our
main interest at this stage of the work is to compare its performance against the bounds obtained
using the (IP) formulation in a branch-and-bound framework, for problem instances of different
sizes. We propose a TS based on the algorithm of Wen and Huang (Wen and Huang, 1996), that
is originally proposed to solve mixed-integer linear bilevel problems with discrete variables in
the upper level. The algorithm of Wen and Huang represents a solution by recording explicitly
the value of each variable of the higher level of the mathematical formulation. Our algorithm,
that we call as Simple Tabu Search (STS), uses the same solution representation; thus we are
able to use information coming from the mathematical formulation to improve the performance
of STS.



STS represents a solution .S as a binary vector (si, ..., s|g), where s, = 1 means that edge
e belongs to S (s, = 0 if e is not included in S). We use the neighborhood structure proposed
by Wen and Huang, where the set N (.S) of neighbor solutions of S is obtained by replacing s.
by 1 — s, for each e € 1..|E|. This simple neighborhood structure changes the status of an edge
in the solution, including the edge if it is not included or removing it, if it is included on the
solution; according to this, the size of N(.S) is |E| for any solution S. Notice that the search
only changes values of the y variables of the formulation (those belonging to the higher level);
the values of x variables must be calculated according to the lower level problem, which in our
case is equivalent to calculate | K| independent shortest paths.

Algorithm 1 shows a pseudo-code of STS. At line 3, a new solution is constructed by fol-
lowing a given procedure; it must check that the solution allows to connect the origin and
destination vertices of each commaodity (constraint (4)). The neighborhood of S; is explored at
line 5. For each neighbor obtained by changing the status of a single edge, the feasibility of the
resulting network G’ is checked with respect to constraint (4). Then, shortest paths in G’ are
calculated for every commaodity k. Since formulation (BIP) implicitly represents the optimistic
version of the bilevel problem (Colson et al., 2005), we must check the existence of more than
one shortest path for each commodity. If ¢;, is the number of shortest paths from o* to d* in G/,
we evaluate the objective function of the higher level for ¢, x ... x ¢k different solutions of the
x variables and we select the less costly according to objective function (1). At line 6, the tabu
list is updated, by stating thatthe edge involved in the move performed at line 5, can not change
its value during the following ¢ local search iterations (where the value of ¢ is set according to
a given criterion). The tabu status of a move can be dropped (aspiration) if the move leads to a
solution with less cost than a given value (aspiration level).

Algorithm 1 STS

L Spest — 0;

2: for i € 1..startingSolutions do
S; < generate new solution;
while not stopping criterion do

S; < select best neighbor of S; not in the tabu list;
Update tabu list;
if S; improves Sp.s; then
Sbest — Sz;
end if
10: end while
11: end for

©CONDOR®

4 Preliminary computational results

STS was tested using a set of random instances specially generated for this problem. The
instances are characterized by three parameters, namely number of vertices n, number of com-
modities & and density of edges « € [0, 1]. The program that generates the instances takes these
parameters, and randomly generates m (a fourth parameter) different instances with the char-
acteristic indicated by (n,k,a). Parameter « is used as a probability to decide whether or not
to include in the instance, each possible edge of the complete undirected graph of n vertices.
Fixed and variable costs, and edge lengths are set as random uniform numbers in the integer
range [1..100].

Instances were generated for values of n in the set {10,20,30}; for each value of n we
considered values of & in {n/2,n,3n/2} and « in {0.3,0.5,0.8}. For each one of these 27



combinations of parameters, we generated m = 5 different instances.

We solved the formulation (IP) using the Branch and Bound algorithm of the Xpress Opti-
mizer 1.7, turning off its pre-solve routine and its automatic cuts generation. We put a time limit
of 1 hour in a 1 GHz processor computer.

The solver found the optimal solution for the small and medium-sized instances. For the
smallest instances (10 vertices), it took less than 1 second. For some of the biggest instances
(30 vertices, density 0.8, 30 and 45 commaodities), the solver does not found the optimal solution
within the imposed time-out.

For the TS we configured the algorithm as follows: the number of startingSolutions is
equal to | E|, ¢ is randomly selected at each move from the integer interval 1..| E|, the stopping
criterion uses a time limit and a condition that is true when no improvement is found after | E'| /2
moves. The aspiration level is set as the objective value of the current solution of the search. The
algorithm was coded in C++, and run in a 1.8 Ghz computer. The time limit was 30 minutes.
We implemented three variants of the routine of generation of initial solutions:

1. Uniform random generation (STS1): for each edge ¢, a random uniform value in the real
interval [0, 1] is sampled, and it is used to decide whether or not to include the edge on
the solution.

2. Biased random generation (STS2): similar to the previous one, but using probabilities
which are proportional to the value of the variable y., in the optimal solution of the linear
relaxation of (IP) formulation.

3. Profit-guided generation (STS3): the edges are sorted in decreasing order according to
the values of their respective variables in the optimal solution of the linear relaxation of
(IP) formulation. At each new solution generated, a new edge is added to it taken from
the sorted list described above.

Table 1 shows the results produced by both exact (Branch and Bound) and approximated
(STS) approaches, for the 5 instances of characteristic (30,30,0.8). In that table, z**** and z*
are the objective value of the best solution found by the exact and approximated approach
respectively, ¢ is the CPU time in seconds and gap = (2%t — 2*) /2%t x 100 is the percentage
gap. We observe that gap values of STS1 are very high (}), while gaps of STS2 and STS3 are
much lower (1). This suggest that the information provided by the optimal solution of the linear
relaxation of formulation (IP) greatly improves the performance of the STS algorithm; on the
other hand the “blind” generation of solutions of STS1 performs poorly when compared with
the exact approach. Moreover we observe that the exact approach does not found the optimal
solution for 4 out of the 5 instances (—), while STS2 and STS3 found better solutions for 3 of
these instances (v).

Exact STS1 STS2 STS3
instance | z°Pt t z* gap t z* gap t z* gap t
1 4830 61,39 | 52119 979,07f 1802 | 5026 4,068 230 | 4927 2,01f 1110
2 7276 - 50788 598,021 1810 | 7426 2,06f 1262 | 7322 0,63 93
3 8749 - 58623 570,057 1826 | 8321 v 98 | 8142 v 565
4 9741 - 64783 565,057 1822 | 8864 v 1059 | 8828 v 1287
5 7560 - 83644 1006,40f 1870 | 7573 0,17f 1212 | 7502 v 794

Table 1: Results for instances (30,30,0.8)



5 Conclusions and future work

A variant of the fixed charge network design problem is studied, where the commodities
are routed along the shortest path of the network. We model it as a linear mixed-integer bilevel
problem with discrete variables in the upper level, and we solve it using a tabu search algorithm.
We compare the results of the tabu search against exact solutions obtained by branch and bound
using a one-level integer linear formulation derived from the original bilevel formulation. Tabu
search obtains good results, specially for the biggest instances of the problem; information
coming from the linear relaxation of the one-level integer formulation greatly contributes to the
performance of the tabu search.

Some aspects of the implementation of the tabu search could be changed in order to improve
its performance. The computation of shortest paths during the exploration of the neighbor-
hood is a critical component of the overall algorithm. Avoiding recomputation of all these
paths (Buriol et al., 2008) could improve the performance of the algorithm.

Acknowledgments: This work was supported by grant from Coordenacdo de Aperfeicoamento
de Pessoal de Nivel Superior-CAPES and the Project ALFA 11-0457-FA-FCD-FI-FC.
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