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Abstract9

In this paper, we propose a novel continuum finite strain formulation of the equilibrium10

gap regularization for image registration. The equilibrium gap regularization essentially pe-11

nalizes any deviation from the solution of a hyperelastic body in equilibrium with arbitrary12

loads prescribed at the boundary. It thus represents a regularization with strong mechanical13

basis, especially suited for cardiac image analysis. We describe the consistent linearization14

and discretization of the regularized image registration problem, in the framework of the15

finite elements method. The method is implemented using FEniCS & VTK, and distributed16

as a freely available python library. We show that the equilibrated warping method is ef-17

fective and robust: regularization strength and image noise have minimal impact on motion18

tracking, especially when compared to strain-based regularization methods such as hypere-19

lastic warping. We also show that equilibrated warping is able to extract main deformation20

features on both tagged and untagged cardiac magnetic resonance images.21

Highlights.22

• Continuum finite strain formulation of the equilibrium gap regularization principle23

• Consistent linearization and finite element discretization24

• Efficient implementation based on FEniCS & VTK, freely available as a python library25

• Equilibrium gap regularization allows the registration of highly noisy images26

• Equilibrated warping can extract strains from cardiac magnetic resonance images27
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1. Introduction30

Image processing, in particular image registration for motion tracking, is playing an31

important role in biomedical imaging [Tobon-Gomez et al., 2013; Sotiras et al., 2013] and32

in other domains such as materials and mechanical engineering [Sutton and Hild, 2015].33

However, despite important progress made in the past decades, robustness, efficiency and34

precision of the existing methods must still be improved to translate them into medical35
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and engineering applications. In this paper we propose a novel regularization approach1

that has a strong mechanical basis, and apply it to finite element-based image registration2

problems. We illustrate our approach on cardiac motion tracking from magnetic resonance3

(MR) images.4

MR imaging (MRI) is a powerful tool that can be used to quantify the motion of the beat-5

ing heart in vivo and non-invasively, with wide ranging clinical applications. They include6

the diagnosis of coronary artery diseases, myocardial ischemia and infarction, non-ischemic7

cardiomyopathies, ventricular dyssynchrony, etc. [Shehata et al., 2009; Ibrahim, 2011]. Be-8

sides diagnosing heart diseases, cardiac motion tracking is also used as a component of other9

MRI techniques, for instance in in vivo diffusion tensor imaging [Stoeck et al., 2015; von10

Deuster et al., 2015], which has high clinical relevance. In the field of personalized compu-11

tational modeling [Krishnamurthy et al., 2013; Lee et al., 2014], cardiac motion tracking is12

used to estimate model parameters that could serve as biomarkers for cardiovascular diseases13

[Sermesant et al., 2006; Imperiale et al., 2011].14

Since regular anatomical cine MR images have little contrast within the myocardial wall,15

tagged MRI was designed to track material points through the generation and imaging16

of a magnetization grid (SPAtial Modulation of Magnetization, SPAMM) [Zerhouni et al.,17

1988; Axel and Dougherty, 1989]. It was later improved with the Complementary SPAMM18

(CSPAMM) method, which prevents tag fading [Fischer et al., 1993]. Accelerated whole-19

heart 3D sequences (3D CSPAMM) have since been proposed [Ryf et al., 2002], which20

mitigate misregistration issues common with multi-slice acquisitions and allow for fast and21

reliable tracking of the entire left ventricle throughout the cardiac cycle (except for end-22

diastole) in only three [Rutz et al., 2008], or even a single [Stoeck et al., 2012] breath hold.23

24

Multiple approaches have been proposed to post-process cardiac magnetic resonance25

images and extract motion and deformation fields [Wang and Amini, 2012; Tobon-Gomez26

et al., 2013]. They vary in the nature of the a priori knowledge that is used to better27

distinguish signal from noise, and how it is incorporated. A first distinction exists between28

data assimilation and image registration techniques. In data assimilation, a realistic physical29

model is used and its parameters are estimated to best match the acquired images [Sermesant30

et al., 2006; Sainte-Marie et al., 2006]. This estimation is either variational [Delingette et al.,31

2012] or sequential [Moireau et al., 2008; Chapelle et al., 2013]. In other communities, this32

is called integrated image correlation [Hild and Roux, 2006; Hild et al., 2016]. Conversely,33

in image registration techniques, which are the focus of this paper, only limited a priori34

knowledge is required, solely to regularize the registration problem. The strengths and35

weaknesses of both approaches are opposite: using a realistic model as regularizer allows to36

process low resolution and/or noisy data while extracting meaningful physical parameters;37

on the other hand the processing is highly dependent on the validity of the model.38

Within image registration methods, another distinction exists, between Fourier-based39

and tracking-based methods [Tobon-Gomez et al., 2013]. Among Fourier-based methods,40

HARmonic Phases (HARP)-based techniques [Osman et al., 1999; Garot et al., 2000] are41

the most commonly used methods, which have enabled fully automatic post-processing of42

tagged images. Based on similar concepts, the SinMod method [Arts et al., 2010; Wang43
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et al., 2013] offers improved motion tracking performance. However, these methods are1

limited to tagged images, as HARP requires phase data, and SinMod makes use of the sine2

modulation of magnitude data. In contrast, tracking-based methods, which are the focus of3

this paper, can be applied to any type of images.4

A final notable distinction exists, within tracking-based image registration techniques,5

between local and global approaches [Hild and Roux, 2012]. In local approaches, images6

are correlated region by region [Lenoir et al., 2007], while in global approaches they are7

correlated at once [Veress et al., 2005; Phatak et al., 2009]. Note that hybrid methods have8

been proposed, which efficiently alternate between local and global steps [Thirion, 1998;9

Vercauteren et al., 2008].10

11

The present paper focuses on global tracking-based image registration, specifically on12

the regularization of the registration problem. Basic mathematical regularization such as13

Laplacian smoothing [Passieux and Périé, 2012] penalizes rigid body rotations and are thus14

limited to very small deformations. Fluid-like mechanical regularization has been proposed15

in [Christensen et al., 1996], which is not suitable for the (solid) myocardium as it does not16

enforce the continuity of the displacement field. Incompressibility has also been used as a17

regularizer [Mansi et al., 2011; McLeod et al., 2012], but it represents a strong kinematic18

constraint that can potentially interfere with the estimation of the actual kinematics de-19

scribed in the images. Hyperelastic regularization [Veress et al., 2005; Phatak et al., 2009;20

Burger et al., 2013] uses a proper strain measure valid for arbitrary large rotations and21

deformations, but still penalizes strain itself, hence might be considered too strong of a22

regularization as well.23

In this paper, we propose a novel regularizer for finite element-based image registration24

problems based on the continuum finite strain formulation of the equilibrium gap principle.25

This regularizer has strong physical basis as it penalizes any deviation from the mechanical26

equilibrium (which is a fundamental principle) instead of penalizing the kinematics itself27

(which can be arbitrary). It also benefits from the finite elasticity framework, and does not28

penalize rigid body displacement or rotation. This work inherits ideas from [Claire et al.,29

2004; Leclerc et al., 2010], where a similar regularizer has been formulated at the discrete30

level, and within the linearized elasticity framework. The formulation is presented in details31

in Section 2, validation is provided in Section 3.1, and an illustration on in vivo cardiac MR32

images is given in Section 3.2.33

2. Methods34

2.1. Finite element-based image registration35

2.1.1. Problem36

Formulation. Let us denote I0 & It as the scalar intensity fields of two images representing37

an object occupying the domains Ω0 & Ωt in the reference and deformed states, respectively.38

The problem is to find the smooth mapping ϕ, or equivalently the smooth displacement field39

U (ϕ (X) = X + U (X)), between Ω0 & Ωt. This problem is ill-posed, notably because of40
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image noise, and must thus be formulated as a regularized minimization problem:1

find U = argmin{U∗}
{

J (U∗) = (1− β)Ψim (U∗) + βΨreg (U∗)
}

, (1)

where J is the functional to minimize, Ψim the image similarity metric or “energy”, Ψreg the2

regularization “energy”, and β is the regularization strength.3

Similarity metric. We use a simple sum of squares between image intensities, written here4

in the reference configuration, as similarity metric:5

Ψim (U∗) =
1

2

∫

Ω0

(It (X + U∗ (X))− I0 (X))2 dΩ0 =
1

2

∫

Ω0

(

It ◦ ϕ∗ − I0
)2
dΩ0. (2)

Regularization. Many regularizers have been proposed for image registration problems, in-6

cluding fluid [Christensen et al., 1996] and hyperelastic [Veress et al., 2005; Phatak et al.,7

2009; Genet et al., 2016] constraints.8

In hyperelastic warping [Veress et al., 2005; Phatak et al., 2009], the regularization energy9

is directly the strain energy of the body:10

Ψreg,hyper =

∫

Ω0

ρ0ψdΩ0, (3)

where ρ0 is the mass density, and ψ the specific strain energy potential. Thus, strain, a11

quantity that we seek to extract from the images and that can be in principle arbitrary, is12

directly penalized by the regularization in hyperelastic warping. Moreover, the minimizer of13

Problem (1-3), being the minimum of a “potential” energy, is the solution of a mechanical14

problem of a body in equilibrium under an unphysical body force that corresponds to the15

mismatch between the image intensity fields. The obtained deformation therefore has weak16

mechanical basis.17

Motivated by this inconsistency, we propose an alternate regularizer, which essentially18

penalizes any deviation from the solution of a hyperelastic body in equilibrium with arbitrary19

boundary loads (but no body load). Let us first recall that mechanical equilibrium, i.e.,20

conservation of momentum, in absence of body load and inertia, can be expressed as:21

{

Div
(

F · S
)

= 0
tS = S

∀X ∈ Ω0, (4)

where S is the second Piola-Kirchhoff stress tensor, and F =
∂ϕ

∂X
the transformation gradient22

[Holzapfel, 2000]. These relations correspond to conservation of linear and angular momen-23

tum, respectively. We also recall that the second principle of thermodynamics requires that:24

25

S =
∂ρ0ψ

∂E
, (5)

where E = 1
2

(

C − 1
)

is the Green-Lagrange strain tensor, and C = tF ·F the right Cauchy-26

Green dilatation tensor [Holzapfel, 2000]. The Green-Lagrange strain tensor is symmetric,27
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such that when computed through the constitutive law (5) the second Piola-Kirchhoff stress1

tensor is necessarily symmetric, and the conservation of angular momentum is automatically2

verified. However, the conservation of linear momentum still needs to be enforced. In3

principle one could use Ψreg,equil = 1
2

∥

∥Div
(

F · S
)∥

∥

2

L2(Ω0)
. However, we discretize Problem4

(1) using standard Lagrange elements, so that F and S belong to L2 (Ω0)—more strictly they5

belong to piecewise-H (div; Ω0), but not to H (div; Ω0), as they are H (div) on the elements6

but have jumps across element faces. Thus, the following equivalent norm is used instead:7

Ψreg,equil =
∑

K

1

2

∥

∥Div
(

F · S
)∥

∥

2

L2(K)
+
∑

F

1

2h

[[

F · S ·N
]]2

L2(F )
, (6)

where K denotes the set of elements, F the set the interior faces with normal N , and h a8

characteristic length of the finite element mesh. When the mesh is refined, if the discrete9

stress field converges toward a continuous solution, this discrete norm converges toward10

the original continuous norm. This regularization is an extension of the equilibrium gap11

regularization [Claire et al., 2004], but written at the continuous level and valid for arbitrary12

large deformations.13

Mechanical model. As strain energy potential, for both hyperelastic and equilibrated warping14

we use the classical Ciarlet-Geymonat potential:15

ρ0ψ =
κ

2

(

J2 − 1− ln (J)
)

+
µ

2
(IC − 3− 2 ln (J)) , (7)

where κ & µ denote bulk and shear modulus, J = det
(

F
)

, IC = tr
(

C
)

, C = tF · F ,16

F = 1 + Grad (U) [Ciarlet and Geymonat, 1982]. Contrary to the Saint Venant-Kirchhoff17

potential, the Ciarlet-Geymonat potential is valid for arbitrary deformation levels [Ciarlet18

and Geymonat, 1982; Le Tallec, 1994]. In practice, we use a unit Young’s modulus and null19

Poisson’s ratio, which is equivalent to κ = 1
3
& µ = 1

2
, the strength of the regularization20

being set by the parameter β.21

Let us point out that an incompressible material law could be used to enforce incompress-22

ibility. However, that would represent too strong of a kinematic constraint for a problem23

whose aim is to extract the kinematics from images. Moreover, it is known that the my-24

ocardial deformation is not fully incompressible, notably because of perfusion effects [May-25

Newman et al., 1994]. Nevertheless, if the deformation is indeed incompressible, and that is26

well represented in the images, the current regularization will not interfere with the image27

registration, even with a Poisson’s ratio of 0. Indeed, the surface loads will simply adapt28

themselves so that the deformation of the mesh matches the one in the images.29

2.1.2. Resolution30

Variational formulation. The first variation of Problem (1) yields its variational formulation:31

32

find U / DV J (U) = (1− β)DVΨ
im (U) + βDVΨ

reg (U) = 0 ∀V , (8)
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where1

DVΨ
im (U) =

∫

Ω0

(

It ◦ ϕ− I0
) (

∇It ◦ ϕ · V
)

dΩ0 (9)

For the case of hyperelastic warping, one obtains:2

DVΨ
reg,hyper (U) =

∫

Ω0

∂ρ0ψ

∂E
(U) : δE (U, V ) dΩ0, (10)

where δE (U, V ) =
(

tF (U) ·Grad (V )
)

sym
denotes the variation of Green-Lagrange strain3

[Holzapfel, 2000]. For the case of equilibrated warping, the following expression results:4

DV Ψ
reg,equil (U) =

∑

K

∫

K

Div

(

F (U) · ∂ρ0ψ
∂E

(U)

)

· Div

(

Grad (V ) · ∂ρ0ψ
∂E

(U) + F (U) ·
(

∂2ρ0ψ

∂E2 (U) : δE (U, V )

))

dK

+
∑

F

∫

F

[[(

F (U) · ∂ρ0ψ
∂E

(U)

)

·N
]]

·
[[(

Grad (V ) · ∂ρ0ψ
∂E

(U) + F (U) ·
(

∂2ρ0ψ

∂E2 (U) : δE (U, V )

))

·N
]]

dF.

(11)

5

Linearization. Nonlinear Problem (8) is solved iteratively using Newton’s method, so that6

at each iteration the following linearized problem must be solved:7

find ∆U / (1− β) aim (U ; ∆U, V ) + βareg (U ; ∆U, V )
= (1− β) bim (U ;V ) + βbreg (U ;V ) ∀V , (12)

where (without image Hessian terms)8















aim (U ; ∆U, V ) =

∫

Ω0

((

∇It ◦ ϕ (U)
)

·∆U
) ((

∇It ◦ ϕ (U)
)

· V
)

dΩ0

bim (U ;V ) =

∫

Ω0

((

It ◦ ϕ (U)
)

− I0
) ((

∇It ◦ ϕ (U)
)

· V
)

dΩ0

. (13)

For the case of hyperelastic warping, one has:9































areg,hyper (U ; ∆U, V ) =

∫

Ω0

∂ρ0ψ

∂E
(U) : δE (∆U, V )

+ δE (U,∆U) :
∂2ρ0ψ

∂E2 (U) : δE (U, V ) dΩ0

breg,hyper (U ;V ) =

∫

Ω0

∂ρ0ψ

∂E
(U) : δE (U, V ) dΩ0

. (14)
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And for the case of equilibrated warping, one obtains:1
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

areg,equil (U ; ∆U, V ) =
∑

K

∫

K

(

Div

(

Grad (∆U) · ∂ρ0ψ
∂E

(U) + F (U) ·
(

∂2ρ0ψ

∂E2
(U) : δE (U,∆U)

))

· Div

(

Grad (V ) · ∂ρ0ψ
∂E

(U) + F (U) ·
(

∂2ρ0ψ

∂E2
(U) : δE (U, V )

))

+ Div

(

F (U) · ∂ρ0ψ
∂E

(U)

)

· Div

(

Grad (V ) ·
(

∂2ρ0ψ

∂E2
(U) : δE (U,∆U)

)

+Grad (∆U) ·
(

∂2ρ0ψ

∂E2
(U) : δE (U, V )

)

+ F (U) ·
(

δE (U,∆U) :
∂3ρ0ψ

∂E3
(U) : δE (U, V ) +

∂2ρ0ψ

∂E2
(U) : δδE (∆U, V )

)))

dK

+
∑

F

∫

F

[[(

Grad (∆U) · ∂ρ0ψ
∂E

(U) + F (U) ·
(

∂2ρ0ψ

∂E2
(U) : δE (U,∆U)

))

·N
]]

·
[[(

Grad (V ) · ∂ρ0ψ
∂E

(U) + F (U) ·
(

∂2ρ0ψ

∂E2
(U) : δE (U, V )

))

·N
]]

+

[[(

F (U) · ∂ρ0ψ
∂E

(U)

)

·N
]]

·
[[(

Grad (V ) ·
(

∂2ρ0ψ

∂E2
(U) : δE (U,∆U)

)

+Grad (∆U) ·
(

∂2ρ0ψ

∂E2
(U) : δE (U, V )

)

+ F (U) ·
(

δE (U,∆U) :
∂3ρ0ψ

∂E3
(U) : δE (U, V ) +

∂2ρ0ψ

∂E2
(U) : δδE (∆U, V )

))

·N
]]

dF

breg,equil (U ;V ) =
∑

K

∫

K

Div

(

F (U) · ∂ρ0ψ
∂E

(U)

)

· Div

(

Grad (V ) · ∂ρ0ψ
∂E

(U) + F (U) ·
(

∂2ρ0ψ

∂E2
(U) : δE (U, V )

))

dK

+
∑

F

∫

F

[[(

F (U) · ∂ρ0ψ
∂E

(U)

)

·N
]]

·
[[(

Grad (V ) · ∂ρ0ψ
∂E

(U) + F (U) ·
(

∂2ρ0ψ

∂E2
(U) : δE (U, V )

))

·N
]]

dF

,

(15)

where δδE (∆U, V ) =
(

tGrad (∆U) ·Grad (V )
)

sym
denotes the second variation of Green-2

Lagrange strain [Holzapfel, 2000].3

Discretization. Problem (12) is discretized using standard continuous Galerkin elements,4

yielding the discrete problem:5

find ∆U /
(

(1− β)Aim (U) + βAreg (U)
)

·∆U = (1− β)Bim (U) + βBreg (U) (16)

Nonlinear solver. For a given couple of images, the discrete Problem (16) is iterated un-6

til convergence. In practice, convergence is achieved when the incremental error (i.e.,7

‖∆U‖/‖U‖) reaches 1%. For time series of images, each image t is registered to the ref-8

erence image 0, taking the converged solution of the previous image t− 1 as initialization of9

the nonlinear iterations for the current image t.10

8



Gradient-free line search. The solution of Problem (8) has proven unstable, especially on in1

vivo images, notably (i) because of the steepness of the mechanical term, and (ii) because2

in the current VTK implementation, interpolated gradients are not the actual gradients3

of the interpolated images1 (so that the minimum of the image similarity energy does not4

correspond to the root of its “derivative”). Thus, a gradient-free golden section line search5

[Press et al., 2007] has been implemented, where the initial interval is taken as
[

1−ϕ

2−ϕ
; 1
2−ϕ

]

6

(with ϕ = 1+
√
5

2
) such that the two initially tested values are 0 & 1. This line search comes7

after the search direction as been computed by solving Problem (16), and allows to find the8

optimal relaxation parameter at each iteration.9

Image scaling. Since the image norm used here is sensitive to global image intensity that10

changes from scan to scan and, for tagged images, that decreases slowly throughout the11

cardiac cycle, we introduce a global image intensity scaling. Because the decrease is slow,12

we use an explicit scaling. Specifically, after registering the image t to the reference image13

0, we compute the linear scaling that best matches both images:14

find (a, b) = argminR2

{

J2 (a∗, b∗) =
1

2

∫

Ω0

((

a∗
(

It ◦ ϕ
)

+ b∗
)

− I0
)2
dΩ0

}

, (17)

which leads to the following symmetric linear system:15









∫

Ω0

(

It ◦ ϕ
)2
dΩ0

∫

Ω0

(

It ◦ ϕ
)

dΩ0

∫

Ω0

(

It ◦ ϕ
)

dΩ0 1









·
(

a
b

)

=









∫

Ω0

I0 ·
(

It ◦ ϕ
)

dΩ0

∫

Ω0

I0 dΩ0









(18)

This scaling is then used for the registration of the subsequent image t+ 1 to the reference16

image 0.17

2.1.3. Implementation18

The time stepping, nonlinear solver and gradient-free line search have been implemented19

in python2. The finite element procedure is directly based on the FEniCS library3, which20

provides automatic derivation and integration of the mechanical terms (14) or (15): as21

FEniCS can process symbolic expressions, it can determine the degree of the expressions22

it is given, and thus determine the order of the quadrature required to exactly integrate23

these expressions [Logg et al., 2012; Alnæs et al., 2015]. Integration of image terms (13) is24

done with the help of the VTK library4 for image derivation and interpolation [Schroeder25

et al., 2006], using linear interpolation of image intensity and image gradients. High-order26

quadrature is used for integration of image terms, in order to have as many integration27

1http://www.vtk.org/Wiki/VTK/Image_Interpolators#Gradients
2https://www.python.org
3https://www.fenicsproject.org
4http://www.vtk.org
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points as pixels in the mesh. For greater efficiency, the C++ interface to both FEniCS &1

VTK is used for the integration of image terms. The code is freely available at https:2

//gitlab.inria.fr/mgenet/dolfin_dic.3

2.2. Image synthesis, acquisition, combination and segmentation4

2.2.1. Image synthesis5

In order to validate our method, we generated a series of 2D synthetic tagged MR images.6

The reference image has the following intensity field:7

I0 (X) =

√

∣

∣

∣

∣

sin

(

πX0

s

)∣

∣

∣

∣

·
∣

∣

∣

∣

sin

(

πX1

s

)∣

∣

∣

∣

, (19)

where X0 & X1 denote spatial coordinates, and s is the tagging period. The prescribed8

deformation is a simple uniaxial and uniform deformation:9

{

x0 =
√

2f (t) + 1X0

x1 = X1
, (20)

where f (t) is a temporal function. Correspondingly,10

F =
∂x

∂X
=

( √

2f (t) + 1 0
0 1

)

, (21)

11

C = tF · F =

(

2f (t) + 1 0
0 1

)

(22)

and12

E =
C − 1

2
=

(

f (t) 0
0 0

)

. (23)

Because the mapping is uniform, one simply has x = F ·X. The deformed images therefore13

have the following intensity:14

It (x, t) = I0
(

F−1 · x
)

. (24)

In practice, we generated images of size 1×1 (arbitrary units) with 100×100 pixels, s = 0.115

(arbitrary units), 21 frames over [0; 1], and f (t) = −0.30 t. Normal noise with zero mean16

and standard deviation of 0.1 (i.e., signal-to-noise ratio of 10) and 0.2 (i.e., signal-to-noise17

ratio of 5) was also added.18

To process the synthetic images, simple square meshes with multiple element sizes were19

generated using GMSH5 [Geuzaine and Remacle, 2009].20

5http://gmsh.info
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2.2.2. Image acquisition and combination1

Image acquisition. Standard multi-slice balanced Steady State Free Precession (SSFP) cine2

and whole-heart 3D Complimentary SPAtial Modulation of Magnetization (3D CSPAMM)3

[Rutz et al., 2008; Stoeck et al., 2012] images were acquired in a healthy volunteer (female,4

age 27) on a clinical 1.5T MR scanner (Philips Achieva, Best, The Netherlands). Multi-slice5

balanced SSFP cine images were acquired with a spatial resolution of 1.2×1.2×8mm3 and a6

temporal resolution of 35 ms. 3D CSPAMM images were acquired with a spatial resolution7

of 3.5× 7.7× 7.7 mm3 reconstructed to 1× 1× 1 mm3 through zero-filling in Fourier space8

(which corresponds to a cardinal sine interpolation in image space), a tag wave modulation9

period of 14 mm (i.e., tagging distance of 7 mm in the magnitude images) and a temporal10

resolution of 28 ms. Image acquisition was performed during respiratory navigator gated11

breath-holding, and geometrical stack alignment of all tagged volume images was performed12

by incorporating navigator offsets and rigid image registration. More details on the imaging13

process can be found in [Rutz et al., 2008; Stoeck et al., 2012].14

Image combination. Cine images were normalized using their maximal pixel intensity. More-15

over, they were resampled in order to have an isotropic pixel size, ensuring a correct inte-16

gration of image terms (as detailed Section 2.1.3, the quadrature of image terms is chosen17

such that in average there are as many integration points as pixels in each element—better18

quadrature should be used to correctly handle images with anisotropic pixel sizes [Pierré19

et al., 2016]). This processing was done using MeVisLab6.20

3D CSPAMM magnetic resonance imaging produces six time series of volumetric images:21

magnitude and “phase” for three orthogonal tag orientations [Rutz et al., 2008; Stoeck et al.,22

2012]. Initial magnitude images are modulated by |sin (k x)|, where k is the wave vector23

of the modulation. Thus they are not continuously differentiable, which could be an is-24

sue since the registration method involves image gradients. On the other hand, “phase”25

images simply contain the sign of the modulation, i.e., sign (sin (k x)). While in princi-26

ple it would be possible to reconstruct time series of continuously differentiable images27

(sign (sin (k x)) · |sin (k x)| = sin (k x) is indeed differentiable), in practice, however, such28

smooth reconstruction is not possible because of noise. Nevertheless, magnitude images29

are smooth enough to be used directly for the registration. Thus, the three time series of30

orthogonal tagged images were combined into a single time series:31

I = 3

√

I1I2I3, (25)

where the cube root introduces another source of theoretical non differentiability that, in32

practice, does not generate issues as the non differentiability is smoothed out by the image33

sampling. More importantly, this allows to keep a reasonable contrast in the combined34

images. Similar to untagged images, the combined tagged images were normalized using35

their maximal pixel intensity.36

6http://www.mevislab.de
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2.2.3. Image segmentation1

The left ventricle was manually segmented on the cine and 3D CSPAMM images using2

MeVisLab. For cine images, the first frame was used, i.e., end-diastole. For tagged images,3

the last frame (which is not exactly end-diastole since the last part of the cardiac cycle4

is not imaged [Rutz et al., 2008; Stoeck et al., 2012]) was used because of absent blood5

pool signal and hence better contrast between myocardium and lumen. The surface meshes6

generated by MeVisLab were then used to generate volume meshes using GMSH, which first7

reparametrizes the surface meshes, remeshes them with proper finite elements, and then8

generates the volume meshes [Geuzaine and Remacle, 2009; Remacle et al., 2010]. For the9

sake of simplicity, first order finite elements were used, though the method can be used10

with higher order elements in order to improve convergence. Finally, a local pseudo-prolate11

spheroidal coordinate system was assigned to all nodes and elements of the mesh to define12

local transmural, circumferential and longitudinal directions. More details on the pipeline13

for reconstruction of the left ventricular mesh can be found in [Genet et al., 2014, 2015].14

For finite element-based image registration on untagged images, it is necessary for the15

mesh to extend on both sides of the object boundary if one wants to track its motion in both16

directions. Indeed, the correlation only happens under the mesh, so that if the boundary17

moves toward the outward normal (i.e., away from the mesh), and if there is no contrast in18

the image under the mesh, then the boundary motion will not be tracked. (If the boundary19

moves toward the inward normal, then it will be tracked.) Thus, for cine images, a layer of20

elements was added around the mesh using GMSH, which has the ability to extrude surfaces21

in the direction of their normal [Geuzaine and Remacle, 2009]. These elements are used to22

enhance the image registration but not for strain analysis.23

For image registration on tagged images, the registration is run backwards in time, i.e.,24

from the last to the first image in the series, since the mesh is actually created on the last25

image. As a consequence, strains are naturally defined from the last image, which is usually26

around mid-diastole [Rutz et al., 2008; Stoeck et al., 2012]. In order to express strains with27

respect to end-diastole, i.e., the first image of the series, we need to multiplicatively combine28

the transformation gradients:29

F0→t = FT→t · F0→T = FT→t · FT→0
−1, (26)

where F0→t is the gradient of the mapping from the first image 0 to the current image t, FT→t30

is the gradient of the mapping from the last image T to the current image t, and F0→T is the31

gradient of the mapping from the first to the last image, i.e., of the inverse mapping from the32

last to the first image. Note that both FT→t and FT→0 are computed during the registration33

process, so that F0→t can be computed explicitly from Equation (26). Then, Green-Lagrange34

strains with end-diastole as reference configuration can be directly computed from F0→t.35

12



3. Results & Discussion1

3.1. Validation on in silico images2

3.1.1. Influence of regularization strength3

We first consider the simple problem of a uniformly deforming image (see Section 2.24

for details on images synthesis), and study the influence of regularization type (hyperelastic5

vs. equilibrated), as well as regularization strength β, on the computed strains. Since the6

images are 2D, a plane strain assumption is made in the mechanical model used in the7

regularization. Figure 1 shows the deforming images (for different noise and deformation8

levels) with superimposed warped meshes (for both hyperelastic and equilibrated warping).9

Regularization strength was β = 0.1 for all cases. One can see that equilibrated warping10

provides almost perfect registration, while hyperelastic warping results in underestimated11

and more noisy strains.12

This is better seen in Figure 2, which shows the final computed longitudinal strain (mean13

± standard deviation over the mesh) for both methods and for the different noise levels. We14

consider Green-Lagrange strain, the reference configuration being the undeformed mesh,15

which corresponds to the initial undeformed image. Ground truth is -30% homogeneous16

longitudinal strain, all other components being null. In the case of hyperelastic warping,17

the mesh does not deform at all if the regularization strength β is close to 1, because the18

hyperelastic regularization basically makes the mesh extremely stiff. When the regularization19

strength β decreases, the computed strain tends to converge toward the exact value. For20

noise-free images, it does converge exactly toward ground truth. For noisy images, there is21

an optimum (here ca. β = 0.1) for which the mean strain is closest to the exact value and22

standard deviation is still limited; however, further reduction in the regularization strength23

leads to divergence of the mean and the standard deviation from ground truth. Conversely,24

in case of equilibrated warping, the registration is almost perfect, over a wide range of25

regularization strengths. For noise-free images, it is actually perfect for all regularization26

strengths. For noisy images, as long as there is enough regularization (here ca. β > 0.001)27

to get the registration to converge, the registration is almost perfect.28

Similar conclusions can be drawn from Figure 3, which shows the normalized image29

similarity root mean square error (RMSE) at the last time frame T , i.e.30

RMSE =

√
Ψim

√

∫

Ω0

I20dΩ0

=

√

∫

Ω0

(

IT ◦ ϕ− I0
)2
dΩ0

√

∫

Ω0

I20dΩ0

, (27)

as a function of regularization strength β. For large values of regularization strength, hyper-31

elastic warping heavily degrades the registration, and the image similarity error is largely32

above the noise level. When decreasing the regularization strength, the image similarity33

error converges toward noise level. (The convergence is slower for noise-free images, sim-34

ply because for noisy images the error is noise-dominated for β < 0.1.) Conversely, with35

13
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Figure 1: Results on synthetic data. Uniformly deformed images (exact strain is thus homogeneous) with
superimposed meshes obtained with equilibrated and hyperelastic warping. Each row shows a different noise
level (0.0, 0.1 & 0.2), while each column shows a different deformation level (0%, -15% & -30%). Results
for equilibrated warping are shown in red, blue & green, while results for hyperelastic warping are shown in
cyan, orange & magenta. Regularization strength was β = 0.1 for all cases. One can see that equilibrated
warping provides almost perfect registration, while hyperelastic warping provides underestimated and more
noisy strains.
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Figure 2: Results on synthetic data. Final measured longitudinal Green-Lagrange strain (mean ± standard
deviation over the mesh) as a function of regularization strength β, for hyperelastic (left) and equilibrated
(right) warping, and for different noise levels (0.0, 0.1 & 0.2). Ground truth is -30% homogeneous strain.
Hyperelastic regularization has a very strong impact on registration, and is very sensitive to regularization
strength. Conversely, equilibrium gap regularization has a much reduced impact on registration.
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equilibrated warping, the image similarity error is close to noise level independently of the1

regularization strength. It is interesting to see that for small values of regularization strength,2

the image similarity error is close to noise level even though the actual strain is far from3

ground truth, meaning that image similarity error is not a good criterion for the success of4

the registration.5

This result illustrates a general weakness of the hyperelastic regularization, and the6

main strength of the equilibrium gap regularization. Indeed, the exact uniform strain is7

not a minimizer of the hyperelastic energy, but it is a minimizer of the equilibrium gap8

energy. Actually the unique minimizer of the hyperelastic energy is the null deformation,9

so that strain measurements are always compromised. Conversely, any deformation that10

corresponds to the solution of a hyperelastic body in equilibrium with surface loads is a11

minimizer of the equilibrium gap energy, so that it minimally affects strain measurements.12

3.1.2. Influence of mesh density13

We now study the influence of mesh density on the registration. The mesh used in the14

previous section was successively refined until the elements reached the image pixel size.15

They are shown in the left column of Figure 4, while the middle and right column show the16

registration results (final strain as a function of regularization strength, similar to Figure 2)17

for hyperelastic and equilibrated warping, respectively.18

When the mesh is refined, the signal-to-noise ratio on each finite element decreases, and19

larger regularization strengths are required to perform the registration and obtain satisfy-20

ing strains. As a result, the range of registration strengths that provide satisfying strains21

becomes smaller. This is the case for both regularization methods; however, this is more crit-22

ical for hyperelastic regularization, for which the range of acceptable regularization strengths23

becomes very narrow. Conversely, for equilibrium gap regularization, the impact of mesh24

size is less critical.25

26

Further validation of the proposed method based on the Cardiac Motion Tracking Chal-27

lenge [Tobon-Gomez et al., 2013] is provided in Appendix A.28

3.2. Results on in vivo images29

We now consider in vivo tagged and untagged cardiac MR images of a healthy human30

subject (see Section 2.2 for details on image acquisition, combination and segmentation).31

3.2.1. Results on in vivo tagged images32

Finding the optimal regularization strength. Similarly to Figure 2 for synthetic images, Fig-33

ure 5 shows the influence of regularization strength β on strain extracted from tagged im-34

ages using equilibrated warping. Here we consider Green-Lagrange strains at end-systole35

with regard to end-diastole, rotated in local pseudo-prolate spheroidal coordinates (trans-36

mural, circumferential, longitudinal), and we show the mean ± standard deviation across37

the entire ventricle. For circumferential and longitudinal components, as well as for the38

circumferential-longitudinal shear component (i.e., the out-of-plane twist), the trend is sim-39

ilar to that found with the in silico images: above a given regularization strength (here ca.40

16
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Figure 4: Results on synthetic data. Each line corresponds to a mesh refinement level. Left column shows the
mesh, while middle and right columns show registration results (final strain as a function of regularization
strength, similar to Figure 2) for hyperelastic and equilibrated warping, respectively. Failed computations
(because of divergence or large unrealistic strains) have been removed. For both regularization methods,
stronger regularization is required for finer meshes. However, the impact of mesh size is more benign for
equilibrated warping compared to hyperelastic warping.
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β = 0.1) the equilibrium gap regularization does not significantly affect the mean computed1

strains, though increasing the regularization strength does reduce their standard deviation.2

Conversely, radial strain is not very well captured and is largely underestimated—decreasing3

regularization strength does increase mean radial strain toward more realistic values, but at4

the cost of a very large standard deviation.5

Strain measurement. Figure 6 shows the results of the registration (for β = 0.1), with 3D6

CSPAMM images superimposed with the deformed mesh. The motion of the left ventricle7

is very well tracked. Figure 7 shows the temporal variations of each strain component aver-8

aged over the entire ventricle. Figure 8 shows the spatial variations of each strain component9

at end-systole, averaged over multiple sectors. Once again, we see that circumferential &10

longitudinal shortenings are very well captured, as well as circumferential-longitudinal (i.e.,11

out-of-plane) twist. Moreover, these components are mostly homogeneous within the ventri-12

cle, as expected for a healthy heart [Moore et al., 2000]. Furthermore, longitudinal variation13

of radial-circumferential (i.e., in-plane) twist, with positive rotation differential between en-14

docardium and epicardium at apex and negative rotation differential at base [Bertini et al.,15

2010], was correclty captured. Conversely, radial thickening is largely underestimated. This16

has already been noted in [Tobon-Gomez et al., 2013], using other registration methods.17

It is due to the limited spatial resolution of 3.5 × 7.7 × 7.7 mm3, which leads to partial18

voluming at the endo- and epicardial surfaces and thus reduced accuracy of in-plane motion19

tracking. We are currently working on characterizing the impact of image resolution on20

measured radial strains.21

3.2.2. Results on in vivo untagged images22

Finding the optimal regularization strength. We now show similar results for untagged im-23

ages. Figure 9 is analogous to Figure 5, and shows end-systolic strain as a function of24

regularization strength. Impact of equilibrium gap regularization on average circumferential25

& longitudinal strains is again limited, albeit slightly larger than for tagged images, and26

without clear convergence of the mean value in the radial strain. Moreover, except for very27

large regularization strength, there is a spurious radial-longitudinal deformation, which is28

located toward the free wall of the ventricle. This is due to the fact that, besides lack of29

texture, short-axis cine stacks have very poor longitudinal resolution, so that tracking of30

the myocardium, especially toward the base, is not robust. We are currently working on31

combining both short-axis and long-axis cine images in order to overcome this difficulty.32

Strain measurement. Figures 10, 11 & 12 show, for β = 0.1, cine images superimposed with33

the deformed mesh, temporal and spatial variations of strains, respectively. As opposed to34

that found in the tagged images, radial thickening is very well captured by the equilibrated35

warping method. The method was even able to capture regional variations of radial strain:36

it is larger in the left ventricular free wall than in the septum [Moore et al., 2000], as a37

consequence of being pressurized on both side. Circumferential and longitudinal shortenings38

are also well captured. Despite the spurious radial-longitudinal strain, it is interesting39

that the method was able to capture some in-plane (i.e., radial-circumferential) and out-of-40

plane (i.e., circumferential-longitudinal) twists, even though there is no contrast within the41

18
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Figure 5: Results on in vivo tagged data. Green-Lagrange strain components at end-systole with respect to
end-diastole (mean ± standard deviation over the ventricle) as a function of regularization strength. Except
for radial strain (top left), for all other components, including circumferential (top center), longitudinal
(top right) and circumferential-longitudinal (bottom right) components, the equilibrium gap regularization
has a limited impact on the registration above a certain level of regularization required to regularize the
registration problem.
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t = 17ms t = 251ms t = 486ms t = 720ms

Figure 6: Results on in vivo tagged data. Sequence of 3D CSPAMM images with superimposed warped
mesh, for a regularization strength of β = 0.1. First row shows 3D view, while second, third and fourth
rows show short axis, two-chamber and four-chamber views, respectively.
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Figure 7: Results on in vivo tagged data. Green-Lagrange strain components with respect to end-diastole
(mean ± standard deviation over the ventricle) as a function of time, for a regularization strength of β = 0.1.
Circumferential & longitudinal shortenings, as well as circumferential-longitudinal (i.e., out-of-plane) twist
are well captured. Conversely, radial thickening is largely underestimated.
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Figure 8: Results on in vivo tagged data. Bull’s eye plots of end-systolic Green-Lagrange strains, for a
regularization strength of β = 0.1. The left ventricle was split into 18 sectors (6 circumferential and 3
longitudinal sections, see Figure 12), and strains were averaged over each sector. Numbers within sectors
represent their ID, as described on Figure 12. Circumferential, longitudinal and circumferential-longitudinal
components are mostly homogeneous within the ventricle, which is expected for a normal case [Moore et al.,
2000]. Longitudinal variation of radial-circumferential shear is captured as well [Bertini et al., 2010].
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Figure 9: Results on in vivo untagged data. Green-Lagrange strain components at end-systole with respect
to end-diastole (mean ± standard deviation over the ventricle) as a function of regularization strength. As
for tagged images, the equilibrium gap regularization has a limited impact on the registration.
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myocardial wall in the untagged images. This is induced by the motion of the neighboring1

features to the myocardium such as papillary muscles and pericardial fluid, which are present2

in the boundary layer of elements used to improve tracking of endocardium & epicardium3

(see Section 2.2.3 for details). Indeed, tracking without boundary layer (not shown here)4

shows much reduced radial thickening, and almost no twist at all. Nevertheless, this is not a5

local measurement per se. We will further investigate the ability to measure heterogeneous6

strain fields, in case of myocardial infarction for instance.7

3.3. Limitations8

The proposed method has a number of limitations that we want to emphasize here.9

First of all, the finite element approach to image registration requires a segmentation and10

a mesh for the processing, which can be a drawback compared to other methods that work11

directly on the images. However, having a finite element mesh as support of the sought after12

displacement fields allows to define consistent functional spaces, with specific smoothness13

properties; moreover it opens the door for the combined processing of multiple images with14

different orientations and discretizations.15

This points to another limitation of the current implementation of the method, where16

only one image set can be used at a time. Consequently, short-axis cine stacks need to be17

interpolated in the longitudinal direction, leading to registration errors as seen on Figure 10.18

Combining short-axis cine stacks and long-axis cine slices, and even untagged and tagged19

images, will probably improve registration significantly.20

Specifically to the regularization method introduced here, even though equilibrium gap21

regularization was designed to have a limited bias on the strain results, it might still have a22

non-negligible impact on strains. Indeed, any mapping that is the solution of a hyperelastic23

body in equilibrium with surface loads is the minimizer of Ψreg,equil, so that the actual solution24

is probably close to a minimizer—this must be compared to hyperelastic regularization,25

where only the null mapping is a minimizer of the Ψreg,hyper, hence the large bias on strain26

results. However, because of anisotropy, contraction, and possibly non-affine deformation27

patterns, the actual solution might still be far from the equilibrium solution of the isotropic28

hyperelastic model postulated here, which could explain the poor tracking of radial strain29

found in Figure 7. It could also explain the fact that radial strains do not converge toward30

a given value when decreasing regularization strength, but keep increasing, on both tagged31

and untagged images, as seen in Figures 5 & 9. More complex behavior laws could be used32

to address this issue.33

4. Conclusion34

Equilibrated warping is a powerful method for non-rigid registration of images involving35

arbitrary large deformation. The equilibrium gap constraint regularizes the image regis-36

tration problem, even in presence of noise, with limited effect on strain measurement, as37

demonstrated using synthetic data. The method has been implemented based on FEniCS38

and VTK, providing an efficient tool for 2D & 3D images registration. When applied to39

cardiac MR images, it allows to extract the main features of left ventricular deformation.40
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t = 0ms t = 309ms t = 618ms t = 927ms

Figure 10: Results on in vivo untagged data. First row shows 3D view, while second, third and fourth rows
show short axis, two-chamber and four-chamber views, respectively.
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Figure 11: Results on in vivo untagged data. Green-Lagrange strain components with respect to end-
diastole (mean ± standard deviation over the ventricle) as a function of time, for a regularization strength
of β = 0.1. Despite a spurious radial-longitudinal motion, the method was able to capture circumferential
and longitudinal shortenings, but also radial thickening as well as in-plane (i.e., radial-circumferential) and
out-of-plane (i.e., circumferential-longitudinal) twists.

26



1

2

3

4

5

6

7

8

9

10

11

12

131415
161718

anteriorse
pt

al

inferior la
te

ra
l

radial strain (%)

-60

-45

-30

-15

+0

+15

+30

+45

+60

1

2

3

4

5

6

7

8

9

10

11

12

131415
161718

anteriorse
pt

al

inferior la
te

ra
l

circumferential strain (%)

-30

-24

-18

-12

-6

+0

+6

+12

+18

+24

+30

1

2

3

4

5

6

7

8

9

10

11

12

131415
161718

anteriorse
pt

al

inferior la
te

ra
l

longitudinal strain (%)

-30

-24

-18

-12

-6

+0

+6

+12

+18

+24

+30

1

2

3

4

5

6

7

8

9

10

11

12

131415
161718

anteriorse
pt

al

inferior la
te

ra
l

radial-circumferential strain (%)

-15

-12

-9

-6

-3

+0

+3

+6

+9

+12

+15

1

2

3

4

5

6

7

8

9

10

11

12

131415
161718

anteriorse
pt

al

inferior la
te

ra
l

radial-longitudinal strain (%)

-15

-12

-9

-6

-3

+0

+3

+6

+9

+12

+15

1

2

3

4

5

6

7

8

9

10

11

12

131415
161718

anteriorse
pt

al

inferior la
te

ra
l

circumferential-longitudinal strain (%)

-15

-12

-9

-6

-3

+0

+3

+6

+9

+12

+15

Figure 12: Results on in vivo untagged data. Top row: Left ventricular mesh split into 18 sectors (6
circumferential and 3 longitudinal sections). Bottom rows: Bull’s eye plots of end-systolic Green-Lagrange
strains, for a regularization strength of β = 0.1. Numbers within sectors represent their ID, as described on
the top row. Strains are generally more heterogeneous than for tagged images. However, it is interesting to
note that radial strains are more important in the free wall than in the septum, which is expected since the
septum is pressurized on both sides.
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Appendix A. Validation using Motion Tracking Challenge1

In order to further validate the proposed image registration framework, we processed2

the public dataset of the Cardiac Motion Analysis Challenge that was held at the 20113

MICCAI workshop7, and is described in details in [Tobon-Gomez et al., 2013]. Briefly,4

the dataset consists of untagged (SSFP) and tagged (3DTAG) images (3DUS images were5

not processed), segmentations and markers that were manually tracked by experts on the6

images (i.e., ground truth, GT), for a dynamic phantom (PHANTOM) and fifteen healthy7

volunteers (V1, V2, V4-V16). Results, in terms of tracked markers, from the challenge8

competitors (INRIA, IUCL, MEVIS, UPF) are also provided.9

We first generated volume meshes from the segmented surfaces using GMSH, as described10

in Section 2.2.2. (Segmented surface V8 was slightly distorted toward the base and could11

not be meshed, so this dataset was not analyzed.) Then, we run the equilibrated warping12

method on each dataset, with various regularization strengths, and interpolated the obtained13

displacement fields onto the markers. In order to assess the quality of the registration, the14

following normalized error on the markers trajectory was used:15

err =
1

nmarkers

nmarkers
∑

m=1

∑nframes

f=1

∥

∥Xm (f)−Xm,GT (f)
∥

∥

∑nframes−1
f=1

∥

∥Xm,GT (f + 1)−Xm,GT (f)
∥

∥

, (A.1)

where nmarkers is the number of “valid” markers (i.e., markers that lie within the mesh in the16

reference configuration and can thus be tracked), nframes is the number of frames, Xm,GT (f)17

is the ground truth position of marker m at frame f , and Xm (f) is the tracked position of18

marker m at frame f . In Figure A.1, we show this normalized markers error as a function of19

regularization strength, for the PHANTOM as well as the fourteen processed volunteers (V1,20

V2, V4-V7, V9-V16), for both 3DTAG and SSFP images. We also completed the normalized21

markers error for the results of the challenge competitors, which are shown on the plots. One22

can see that the regularization strength has a limited impact on registration. Moreover, the23

registration is overall quite satisfactory, with a normalized markers error always in the range24

of the other established methods. (With the exception of V11–SSFP results for β = 0.1, for25

which the tracking failed.)26

Figure A.2 shows the normalized markers error for all cases, for both 3DTAG and SSFP27

images, for all competitors as well as the proposed method for β = 0.1 and best β (which28

varies from one case to the other), in a bar plot. We also showed the average and standard29

deviation of normalized markers error over all cases (rightmost columns of the plot). This30

shows that the proposed method compares well to the other established methods.31
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7http://www.cardiacatlas.org/challenges/motion-tracking-challenge
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California, USA, from 2010 to 2012. In 2012 he obtained a Marie-Curie International Out-1

going fellowship to work on patient-specific cardiac modeling, at the University of California2
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design, scan acceleration techniques, novel information encoding concepts, dynamic nuclear1

polarization techniques to experimental validation and clinical translation of MR methods.2

References3

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes,4

M. E., Wells, G. N., 2015. The FEniCS Project Version 1.5. Tech. rep., University Library Heidelberg.5

Arts, T., Prinzen, F. W., Delhaas, T., Milles, J. R., Rossi, A. C., Clarysse, P., 2010. Mapping displacement6

and deformation of the heart with local sine-wave modeling. IEEE Transactions on Medical Imaging7

29 (5), 1114–23.8

Axel, L., Dougherty, L., 1989. MR imaging of motion with spatial modulation of magnetization. Radiology9

171, 841–845.10

Bertini, M., Delgado, V., Nucifora, G., Ajmone Marsan, N., Ng, A. C. T., Shanks, M., Antoni, M. L.,11

van de Veire, N. R. L., van Bommel, R. J., Rapezzi, C., Schalij, M. J., Bax, J. J., Nov. 2010. Left12

ventricular rotational mechanics in patients with coronary artery disease: Differences in subendocardial13

and subepicardial layers. Heart 96 (21), 1737–1743.14

Burger, M., Modersitzki, J., Ruthotto, L., Jan. 2013. A Hyperelastic Regularization Energy for Image15

Registration. SIAM Journal on Scientific Computing 35 (1), B132–B148.16

Chapelle, D., Fragu, M., Mallet, V., Moireau, P., 2013. Fundamental principles of data assimilation under-17

lying the Verdandi library: Applications to biophysical model personalization within euHeart. Medical18

and Biological Engineering and Computing 51, 1221–1233.19

Christensen, G. E., Rabbitt, R. D., Miller, M. I., Jan. 1996. Deformable templates using large deformation20

kinematics. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society21

5 (10), 1435–47.22

Ciarlet, P. G., Geymonat, G., 1982. Sur les lois de comportement en élasticité non-linéaire compressible.23
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Figure A.1: Validation using Motion Tracking Challenge. Normalized markers error as a function of regu-
larization strength, compared to results obtained by challengers, for 3DTAG & SSFP images, for all cases.
One can see that the equilibrium gap regularization is robust, and that the registration is not critically
dependent on regularization strength, which can then be roughly determined.
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Figure A.1: (Cont.)
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Figure A.2: Validation using Motion Tracking Challenge. Normalized markers error, for both 3DTAG &
SSFP images and for all cases, as well as normalized markers error mean and standard deviation over all
cases. One can see that the proposed method compares well to the other established registration methods.
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