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Abstract
Individually personalized computational models of heart mechanics can be used to estimate
important physiological and clinically-relevant quantities that are difficult, if not impossible, to
directly measure in the beating heart. Here we present a novel and efficient framework for cre-
ating patient-specific biventricular models using a gradient-based data assimilation method for
evaluating regional myocardial contractility and estimating myofiber stress. These simulations
can be performed on a regular laptop in less than two hours and produce excellent fit between
measured and simulated volume and strain data through the entire cardiac cycle. By applying the
framework using data obtained from three healthy human bi-ventricles, we extracted clinically
important quantities as well as explored the role of fiber angles on heart function. Our results
show that steep fiber angles at the endocardium and epicardium are required to produced simu-
latedmotion compatiblewithmeasured strain and volume data.We also find that the contraction
and subsequent systolic stresses in the right ventricle are signficantly lower than in the left ventri-
cle. Variability of the estimated quantitieswith respect to both patient data andmodeling choices
are also found to be low. Because of its high efficiency, this framework may be applicable to
modeling of patient specific cardiac mechanics for diagnostic purposes.
KEYWORDS:
Cardiac mechanics, Patient specific simulations, Parameter estimation, Data assimilation, Stress
estimation, Contractility estimation
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1 INTRODUCTION7

Cardiac computational modeling has emerged as both a powerful method to provide basic insight into cardiac function/ dysfunction, and as a sup-8
port tool to improve current clinical practice. Its development is in part drivenby significant advancements inmedical imaging techniques (Popeet al.9
2008; Townsend 2008; Lamata et al. 2014), which now provide awealth of information about cardiac structure and kinematics.Merging this infor-10
mation with biophysical descriptions of cardiac behavior allows for the creation of powerful patient specific models of the heart (Krishnamurthy11
et al. 2013; Lee et al. 2014; Chabiniok et al. 2016). Such models can be used to predict the outcome of different treatment strategies (Sermesant12
et al. 2012) or to extract useful indicators of mechanical function, such as myocardial contractility (Chabiniok et al. 2012; Finsberg et al. 2017) and13
myofiber stress (Genet et al. 2014; Xi et al. 2016), potential biomarkers which are currently difficult, if not impossible, to measure directly using14
imaging techniques (Huisman et al. 1980).15
Of particular importance is ventricularmyofiber stress (Yin 1981), which is hypothesized to be a key driver of pathological remodeling processes16

in cardiac diseases (Grossman et al. 1975). Correspondingly, quantifying stress and determining how cardiac interventions may reduce abnormal17
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stress is considered auseful avenue in developing treatments for heart failure (Guccione et al. 2003).However,whilemeasurements of heartmotion18
are possible using an array of imaging techniques, no direct measurements of the load experienced by myocytes are currently possible in vivo and19
estimates are used instead. One widely used method is the law of Laplace, a simplified model that takes into account pressure, wall thickness and20
curvature, and can be used to evaluate stress in idealized geometries. However, despite its wide use, it has been shown that this law severely under-21
estimatesmyofiber stress in largely irregular patient-specific ventricular geometries (Zhang et al. 2011). Furthermore, regional stresses also cannot22
be accurately estimated using this idealized law.23
In order to overcome these limitations, patient specific simulation using finite element modeling is widely accepted as a viable way to accurately24

estimate myofiber stresses in the complex geometry of the heart, and has been used in designing heart failure treatments to reduce myocardial25
stress (Lee et al. 2013; Guccione et al. 2003; Wall et al. 2006).However, oneof themany challenges facedby researchers developing patient specific26
models is to efficiently and accurately incorporate individual data into the them, which often requires determining model parameters that best27
reproduce the observations i.e., data assimilation (Sermesant et al. 2006; Chapelle et al. 2013). Typically, one defines a cost function representing28
the mismatch between simulated and observed data, and searches for model parameters that minimize this cost function. Several techniques have29
been employed to solve this minimization problem. Global methods, using parameter sweeps (Asner et al. 2015; Genet et al. 2015a; Xi et al. 2013)30
or genetic algorithms (Nair et al. 2007; Sun et al. 2009), are attractive because they can cover the entire parameter space, and are therefore more31
likely to retrieve the global mimumumof the cost function. However, suchmethods require an extensive number of functional evaluations, which in32
the case of heart mechanics can be computationally expensive. Local optimization methods, on the other hand, typically start at some given initial33
guess, and iteratively search the local neighborhood for better candidates in the minimization of the cost function. These methods are typically34
faster than global methods, but have the drawback that the solution may depend on the initial guess. One example of a local method is the reduced35
order unscented Kalman filtering (ruKF) approach (Moireau and Chapelle 2011), which has been applied to personalize cardiac electromechanical36
models from cineMRI (Marchesseau et al. 2013).37
Another class of local optimization methods are the gradient-based methods, which successively reduce the cost functional by searching along38

the gradient descent direction. While these methods may substantially improve the convergence towards the minimum, estimating the gradient39
in these methods, however, introduces significant additional computational costs. Specifically, estimating the gradient by standard finite differ-40
ences typically requires as many functional evaluations as the number of control parameters (N + 1 evaluations for N parameters). Gradient-based41
methods are therefore impractical if the number of control parameters is large. Nevertheless, gradient based approaches have been applied to per-42
sonalize cardiac mechanics models in several studies (Balaban et al. 2016; Sermesant et al. 2006; Wang et al. 2009; Delingette et al. 2012). For43
example in (Wang et al. 2009) a sequential quadratic programming (SQP) optimization technique was utilized to estimate passive material param-44
eters, while in (Göktepe et al. 2011) a Levenberg–Marquardt method was used to estimate material parameters from shear data. In (Delingette45
et al. 2012) theminimizationwas performed using a quasi-Newton BFGS-Bmethod, where the gradient was computed using the adjointmethod. In46
this study, however, the adjoint equation was derived analytically, whichmay be challenging in more complex problems of cardiac mechanics. More47
recently, a new approach based on automated derivation of functional gradients via solving the corresponding adjoint system have emerged (Far-48
rell et al. 2013). Overcoming the issue that gradient-basedmethods face in dealingwith a large number of parameters, this approach enables one to49
compute the functional gradient at a computational expense that does not depend on the number of control parameters (Balaban et al. 2016).50
Here, we apply such a gradient-based data assimilation framework in order to fuse clinical imaging data from a cohort of healthy subjects to a bi-51

ventricular mechanics model accurately and efficiently. By relating physical processes to the kinematics observed in medical images, we extracted52
clinically important quantities from these subject-fitted models and evaluated the sensitivity of these quantities to modeling choices such as fiber53
architecture andmodel for active contraction.54
The paper is organized as follows. In Section 2we present the pipeline for data assimilation, that includes an outline of the underlying ventricular55

mechanics model and solution methods. Section 3 presents the results of applying the framework to imaging data acquired from three healthy56
subjects, including a comparison of model prediction with the observed data, analysis of mechanical parameters extracted from the model, and57
a sensitivity analysis of model parameters to the input data. Finally, in sections 4 and 5 we discuss the performance of the framework and draw58
conclusions about its applicability in clinical settings.59

2 METHODS60

2.1 Data acquisition and pre-processing61

Cine magnetic resonance (MR) images of 3 healthy subjects, referred here as CASE1, CASE2 and CASE3, were acquired at the National Heart62
Center of Singapore and written informed consent was obtained from all participants. Three-dimensional biventricular geometries of each63
subject were manually segmented from the MR images at multiple cardiac time points using the medical image analysis software MeVisLab64
(http://www.mevislab.de).65
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Cavity volumes of the left ventricle (LV) and right ventricle (RV) were computed from the segmented geometries at different time points in a66
cardiac cycle in each subject. Using amethod described in (Xi et al. 2016), these volumeswere pairedwith normal left and right ventricular pressure67
wave forms fromprevious studies (Redington et al. 1988) to construct pressure-volume loops of the LV andRV. Based on a previous empirical study68
(Kelly et al. 1992), LV pressure for each subject was also scaled so that the end-systolic pressure is 90% of themeasured cuff pressure.69
Theobserved regional circumferential and longitudinalGreen-Lagrange strains in the LV freewall (LVFW), septumandRV freewall (RVFW)were70

estimated from the MR images in each subject using an hyperelastic warping technique (Veress et al. 2005; Genet et al. 2016). The output of this71
pre-processing step is used to calculate the estimated regional strain-time data. Briefly, a bi-ventricular finite element model reconstructed from72
the end-systolic (template) imagewas registered to all other cine (target) images acquired in the cardiac cycle byminimizing the squared difference73
between the target and template image intensities. This ill-posed correlation problem is regularized by alsominimizing a prescribed (Neo-Hookean)74
strain energy function over the mesh. We note that other regularization approaches have also been proposed, such as regularization based on75
incompressibility (Mansi et al. 2011) or on equilibrium (Claire et al. 2004; Genet et al. 2017). Hyperelastic warping offers a good balance between76
regularization and strain estimation (Genet et al. 2016). The implementation of the image correlation procedure is based on FEniCS (Alnæs et al.77
2015), and is freely available1.78
Three-dimensional biventricular meshes of the three normal subjects were created using Gmsh (Geuzaine and Remacle 2009) with the number79

of elements ranging from4000 - 8000 tetrahedral elements. The chosen reference geometrieswere reconstructed fromMR images in late diastole,80
and all meshes were uniformly refined in order to perform a convergence analysis .81
Rule based fibers were assigned using the Laplace Dirichlet Rule-Based (LDRB) algorithm (Bayer et al. 2012). Although previous histological82

studies (Streeter et al. 1969) suggest that myofiber fiber helix angle varies transmurally from+60◦ at the endocardium to−60◦ at the epicardium,83
variability infiber angle, nevertheless, exists between individuals. Therefore,we seek toalso test howdifferentfiber angle gradient alters theparam-84
eter estimation and the extracted outputs.More specifically, an angle+α/−α is prescribed on the endo-/epicardium forα ranging from 30◦ to 80◦85
at increments of 10◦. If not otherwise specified, an angle of+60◦ and−60◦ on the endo- and epicardium respectively is prescribed. In Figure 1 we86
show this range of fiber fields for one of the subjects.87

30 o 40 o 50 o

80 o70 o60 o

FIGURE 1 Left: finite element mesh of a biventricular geometry reconstructed fromMR images separated into 3 material regions, namely, LVFW
(blue), septum (green) andRVFW (right). Right:myocardial fiber orientation are assigned using the LDRB algorithm (Bayer et al. 2012)with an angle
+α and−α prescribed on the endocardium and epicardium, respectively. Here showing the fiber architecture for α ranging from 30◦ to 80◦ with
increments of 10◦, where the absolute value of the fiber angle is used as color-map.

2.2 Mechanical modeling88

We consider a configuration of a biventricular continuum bodyB, which is a function κ : B → R3, and denote the reference and current config-89
urations by Ω0 = κ0(B) and Ω = κ(B), respectively. LettingX and x be the coordinates of a given material point in the reference and current90
configuration respectively, we have the corresponding displacement fieldU = x−X, and the deformation gradient91

F =
∂U

∂X
+ I. (1)

1https://bitbucket.org/mgenet/dolfin_dic

https://bitbucket.org/mgenet/dolfin_dic
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Mechanics of the heart wall was described using an active strain formulation (Ambrosi et al. 2011) that assumes a multiplicative decomposition of92
the deformation gradient,93

F = FeFa. (2)
Here, Fa is associated with an inelastic deformation resulting from the actively contracting muscle fibers, whereas Fe = FF−1

a is associated94
with theelastic deformation that preserves compatibility in the tissue, andpassively carrying themechanical load.WechooseFa tohave the specific95
form96

Fa = (1− γ)f0 ⊗ f0 +
1√

1− γ (I− f0 ⊗ f0), (3)
in which the parameter γ is associated with the relative active shortening along the muscle fibers. The same form of the active deformation97

gradient has previously been applied in e.g (Gjerald et al. 2014; Balaban et al. 2016).98
We consider the transversely Holzapfel and Ogden hyperelastic material (Holzapfel and Ogden 2009) model that has the strain energy density99

function100

Ψ(F) =
a

2b

(
eb(I1−3) − 1

)
+

af

2bf

(
ebf (I4f0−1)2+ − 1

)
, (4)

where the invariants are given by101

I1 = trC, I4f0 = f0 · (Cf0). (5)
HereC = FTF is the right Cauchy Green tensor, and f0 denotes the unit fiber vector field in the reference configuration. Within the active strain102
formulation, the strain energy depends only on elastic deformations, and so themodified strain energy functionΨ = Ψ̃(Fe)was used instead.103
For comparison, we also test themore frequently used active stress formulation (Hunter et al. 1998). In this formulation, the total Cauchy stress104

tensor is additively decomposed into a passive and an active component i.e.,105

σ = σp + σa, (6)
where the passive stress tensor is given by106

σp =
1

J

∂Ψ

∂F
FT , (7)

and the active stress tensor is given by107

σa = Ta [f ⊗ f + η (I− f ⊗ f)] . (8)
HereTa is themagnitude of the active stress and η controls the amount of transverse active stresses. Although active stresses, in principle, develop108
along the fiber direction, studies have shown (Lin and Yin 1998) that active stresses in the transverse direction are non-negligible due to imperfect109
alignment of the muscle fibers. We therefore set η = 0.2 (Sundnes et al. 2014), and note that transverse active stresses are naturally embedded in110
the active strain formulation by requiring det Fa = 1 .111
Myocardiumwas assumed to be incompressible. The incompressibilitywas enforced in themodel using a two-field variational approach, inwhich112

the term −p(J − 1) was added to the total strain energy with p denoting a Lagrange multiplier that represents the hydrostatic pressure. The113
deviatoric and volumetricmechanical responseswere also uncoupled bymultiplicatively decomposing the deformation gradient (Weiss et al. 1996),114

F = FisoFvol (9)
and letting the strain-energy be a function of only isochoric deformations i.e.,Ψ = Ψ̄(Fiso).115
Ventricular basewas fixed in the longitudinal direction and the biventricular geometrywas anchored by constraining the epicardial surface using116

a Robin-type boundary condition with a linear spring of stiffness k = 0.5 kPa/cm2 (Xi et al. 2016). Measured cavity pressure in the LV (plv) and RV117
(prv) were applied as a Neumann condition at the endocardial surfaces. The Euler-Lagrange equations in the Lagrangian form reads: Find (U, p) ∈118
V ×Q such that for all (δU, δp) ∈ V ×Q and (U ·N)|∂Ωbase

0
= 0 ,119
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δΠ(U, p) =

∫
Ω0

[
P : ∇δU− δp(J − 1)− pJF−T : ∇δU

]
dV + δΠext = 0, (10)

with120

δΠext =

∫
∂Ωendo LV

0

plvJF−TN · δUdS

+

∫
∂Ωendo RV

0

prvJF−TN · δUdS +

∫
∂Ω

epi
0

kU · δUdS.
(11)

Here V = H1(Ω0), completed with homogeneous Dirichlet boundary data,Q = L2(Ω0),N is the outward pointing unit normal andP is the first121
Piola-Kirchhoff stress tensor.122
For an incompressible, hyperelastic, continuum body, the total Cauchy stress tensor is given by

σ =
1

J

∂Ψ(F)

∂F
FT − pI. (12)

With the decoupling of the isochoric and volumetric deformation according to (9), the first term in (12) represents the deviatoric stresses and p is123
the hydrostatic pressure. Myofiber stress was computed by first a push forward of the fiber field to the current configuration, f = Ff0, and then an124
inner product with the stress tensor σf = f · σf . The average fiber stress in a given region Ωj was computed by integrating the fiber stress over125
that region and dividing by the volume i.e.,σf

Ωj = |Ωj |−1
∫
Ωj

σfdV .126

2.3 PDE-constrained optimization127

The ventricularmechanicsmodel outlined in Section 2.2 containsmodel parameters thatmay vary from individual to individual. Calibration of these128
model (or control) parameterswasachievedby solving aPDE-constrainedoptimizationproblem,whereweminimizeda cost functional representing129
themismatch between the simulated and observed data, subject to the constraint of satisfying (10)-(11). Theminimization problem can be formally130
stated as131

minimize
m

J ((U, p),m)

subject to δΠ(U, p) = 0.
(13)

HereJ is the objective functional that we want to minimize, which depends on the state variable (U, p) and the control parameter(s)m. The state132
variables may also depend on the control parameters (U, p) = (U(m), p(m)). To ease notation, this dependency is not explicitly stated here.133
Minimizationof the cost functionalJ , shouldbring the simulated results closer to the clinical observations. Therefore,J should reflect adistance134

between the simulated results and the observed data. Given a measurement point i, let (Ui, pi) be the simulated state variables at that point, and135
letmi represents any generic model parameter, that wewant to estimate. The cost functional is then given by136

J ((Ui, pi),mi) = αJvolume((Ui, pi),mi) + βJstrain((Ui, pi),mi) + λJreg(mi). (14)
The first two terms represent the mismatch between simulated and observed strains and volumes, whereas Jreg is a regularization term that137
penalizes non-smooth values of the control parameter mi for numerical stability. The weights α, β and λ control what terms is favored in the138
optimization.139
The cavity volumewas given by140

Ṽ· = −1

3

∫
∂Ωendo ·

0

(X + U)JF−TNdS. (15)

This equation holds as long as the base remains flat and is located at the x = 0 plane. We let Jvolume be the sum of the squared relative volume141
error in each chamber:142

Jvolume((Ui, pi),mi) =

(
V iLV − Ṽ iLV
V iLV

)2

+

(
V iRV − Ṽ iRV

V iRV

)2

. (16)
Here, (ṼLV, ṼRV) and (VLV, VRV) are the simulated andmeasured cavity volumes, respectively.143
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Volumetric averaged strains were computed in each material region (i.e., LVFW, RVFW and septum) using end-diastole (ED) as reference. Let-144
ting FED be the deformation gradient tensor associated with ED, the Green-Lagrange strain tensor with ED as reference was given by Ẽ =145
1
2

(FTF−T
EDFF−1

ED − I). Averaged normal strain along the circumferential direction ecirc in material regionΩj was defined by146

ε̃j =
1

|Ωj |

∫
Ωj

ecirc · ẼecircdV. (17)

Correspondingly, the strain mismatch functional was given by the total squared error between the simulated circumferential strain ε̃ij and the147
measured circumferential strain εij over all material regions148

Jstrain((Ui, pi),mi) =

N∑
j=1

(
εij − ε̃ij

)2
. (18)

Finally, the regularization termwas defined as the total squared distance from themean value, that is ifmi = (m1, · · · ,mN ), then149

Jreg(mi) =

N∑
j=1

(mi
j −mi)2, mi =

1

N

N∑
j=1

mi
j . (19)

As noted above, the purpose of this term is to avoid numerical instabilities by penalizing large variations in the control parameters.150
The functional gradient151

dJ
dm

=
∂J
∂m

+
dJ
dw

∂w

∂m
, w = (U, p) (20)

points in the direction of steepest descent and is required in gradient-based optimization methods. While the terms ∂J
∂m

and dJ
dw

are typically152
straightforward to compute, the term ∂w

∂m
cannot be computed easily, since the state variable w can only be determined by solving the forces-153

balance equation (10). Specifically, estimating this term with N control parameters using a finite difference approach will require one to solve the154
(typically computational expensive) force-balance equationN+1 times, becoming impractical whenN is large. Instead, it is possible to transform the155
system of equations into its adjoint system, where the gradient is given by156

dJ
dm

=
∂J
∂m
− z∗ ∂(δΠ)

∂m
, (21)

with (·)∗ referring to the adjoint (or Hermitian transpose) and z is the solution of157 (
∂(δΠ)

∂w

)∗
z =

(
∂J
∂w

)∗
. (22)

We can therefore solve the adjoint equationfirst (22), and then compute the functional gradient by plugging the solution z into (21). Hence, comput-158
ing the functional gradient using the adjoint approach requires only one additional solve of a linearized system that is independent of the number159
of control parameters.160

2.4 Parameter estimation161

The pipeline for fitting themodel to patient data was divided into two sequential phases; a passive phasewherewe estimated thematerial parame-162
ters that define thepassivebehavior of themyocardium, andanactivephasewhereweestimated theamountof active contraction. Inboth cases, the163
control parameterswere spatially resolved.During the passive phase the control parameterwas allowed to vary spatially on the LV (LVFW+septum)164
and RV segments, while in the active phase the LV was separated into LV free wall and septal segments, which provided additional degrees of165
freedom to allow for non-homogeneous LV contraction.166
Geometries used in the simulationwere reconstructed frommedical images. These geometries are, in principle, not load-free. Hence, we need to167

estimate the unloaded (zero pressure) geometries, whichwill revert back to the original reconstructed geometries when loadedwith themeasured168
pressure. Several methods exists for estimating the unloaded geometry (Govindjee and Mihalic 1996; Gee et al. 2010). Among the most simplest169
ones is the backward displacement method (Sellier 2011; Bols et al. 2013) that can also be used to incorporate residual stresses into the finite170
element models by simulating tissue growth (Genet et al. 2015b). Nevertheless, this inverse problem (of finding the unloaded geometry) has been171
shown to produce non-unique solutions, especially when buckling is present (Govindjee and Mihalic 1996), although relaxation techniques can be172
used to improve convergence and stability (Rausch et al. 2017). For the case of a bi-ventricular geometry, bucklingmay occur due to the thin RVFW173
and a high RV pressure. For this reason, we choose a simpler approach to estimate the unloaded configuration. As shown in the left of Figure 2 ,174
we start by applying one iteration of the backward displacement method with initial values prescribed for thematerial parameters followed by the175
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material parameter estimation as outlined below. This will result in a deflated geometry as shown in the right of Figure 2 . A sensitivity analysis176
(APPENDIX A:) was conducted to assess how the choice of the initial material parameter values affects our results.177
Four material parameters i.e., a, af , b and bf (4) have to be estimated in the passive phase. Due to the sparsity of passive data used for the178

optimization, if we let all these parameters vary freely, we may end up in a situation where multiple parameter sets will equally minimize the cost179
functional, and the optimal control will depend heavily on the initial guess of the optimization.We therefore restricted our control parameter to be180
only the linear isotropic parameter with an initial guess a = 1.291kPa, and have the remaining parameters fixed according to (Asner et al. 2015,181
Table 2, case P2). The weights were set α = 1.0, β = 0.0 and λ = 10−6 in (14) so that only ED volumes were used for fitting. Since fitting the left182
and right ventricular end diastolic volumes might require different material properties of the left and right ventricular wall, the parameter a was183
spatially resolvedwith one parameter associated with the LV (LVFW+ septum) and one parameter associated with the RVFW184
In the active phase, the optimized passive material parameters were fixed and the relative active fiber shortening γ in (3) was chosen as control185

parameter. For this phase, the weights in (14) were set to α = 0.1, β = 1.0 and λ = 10−4, so that both strain and volume are considered in the186
optimization. This choice of weighting was made ad hoc, reflecting the relative size of the different terms in the cost functional. It should also be187
noted that the volume functional in (16) is a relative error while the strain functional in (18) represents a total error. The cost function parameter188
values were taken fromBalaban et al. (2016), where they were chosen based on an L-curve type analysis.189
For each time point, we estimated γ locally in the LVFW, RVFW and septum. The initial guesses for the optimization were set to zero in the first190

iteration. In subsequent iterations, the initial guesses were set to the optimized values found in the previous iteration. Note that in the case when191
active stress formulationwasused instead, theparameterTa in (8)wasusedas the control parameter andestimated in a similar fashion.A schematic192
illustration of the full optimization pipeline is provided to the left in Figure 2 .193

Volume

P
re

ss
u

re

Image-based

geometry

End diastole

1a: Unload with

      using one iteration of the 

      backward displacement method

1b: Optimize ED volume

      Control: 

2:   Optimize volume and strain

      Control: 

RV

LV

2

1b

1a

Model-personalization pipeline Unloaded geometry

FIGURE 2 To the left we see the model-personalization pipeline. The image-based geometry corresponds to some image frame taken at mid dias-
tole. An estimate of the unloaded geometry was found by applying one iteration of the backward displacement method using a = 1.291 kPa
according to (Asner et al. 2015), followed by an estimation of a by minimizing the fit of the end-diastolic volumes. During systole, both cavity vol-
umes and circumferential strain were used in the optimization to determine the amount of active contraction in terms of the active control, which
are respectively γ andTa in the active strain and active stress formulation. To the rightwe show a comparison of the unloaded geometry for CASE3.
The upper figure shows the resulting unloaded, zero pressure geometry in red and the the original image-based geometry in transparent, while the
bottom figure shows the unloaded geometry, inflated to the target pressure in the image-based geometry, and the original image-based geometry
in transparent for comparison.

The control parameter in the active phase represents an index of contractility (Finsberg et al. 2017), meaning that the higher the value of the194
control parameter, themore forcefully themyocardium is trying to contract against the external loads. To separate between the LV andRV contrac-195
tility, we extracted the average value of this control parameter in these two segments. Another index of contractility is the end systolic elastance196
(Sagawa et al. 1977), which we have also estimated in the LV and RV by perturbing the loading conditions at the end systolic state and estimate the197
slope of the resulting pressure-volume relationship (Finsberg et al. 2017).198
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TABLE1 Timings for evaluation (eval) of the forwardmodel and the gradient, running on one computing nodewith 8 cores for the different subjects
with different mesh resolutions. The average number of forward and gradient evaluations for each measurement points are also shown along with
the standard deviations.

Patient ID # elements forward eval time (s) # forward eval gradient eval time (s) # gradient eval Total run time (h)

CASE1 7362 32± 19.8 9± 1.6 9± 0.1 8± 1.5 1.97
58896 668± 529.8 9± 1.7 81± 1.3 7± 1.6 36.1

CASE2 4755 19± 9.6 9± 2.1 8± 0.1 8± 2.0 1.88
38040 387± 325.8 9± 2.5 47± 0.4 8± 2.2 32.6

CASE3 4377 17± 5.3 10± 2.1 8± 0.9 8± 2.1 1.35
35016 259± 146.3 9± 2.4 42± 0.7 8± 2.2 15.6

2.5 Implementation details199

The force-balance equations of this incompressible nonlinear elasticity problem were solved using the finite element method with Lagrange ele-200
ments. More specifically, the displacement and hydrostatic pressure fields were interpolated using piecewise quadratic and linear Lagrange basis201
functions, respectively. Thesemixed elements, known as the Taylor-Hood finite elements (Hood and Taylor 1974), are known to satisfy the discrete202
inf-sup condition (Chapelle and Bathe 1993) and leads to a stable discretization. The solver was implemented in FEniCS (Logg et al. 2012), which203
is an open-source platform for solving PDEs using the finite element method. Nonlinear systems of equations were solved using Newton’s method,204
and a distributedmemory parallel LU solver(Li and Demmel 2003) was used to solve the linear systems.205
To solve the optimization problem (13) we applied a sequential quadratic programming algorithm (SQP) (Kraft et al. 1988). This gradient-based206

optimization algorithm requires the functional gradient (20). This gradientwas computedby solving an automatically derived adjoint equation using207
dolfin-adjoint (Farrell et al. 2013). The full source code is publicly available2.208

3 RESULTS209

In this section we present the results from the model personalization process. Results of the data matching are presented in Section 3.1, together210
with a validation of the model and analysis of the solver performance. To validate the model we compare the simulated and measured longitudinal211
strain which was not used in the optimization. In Section 3.2 we present the results of the extractedmechanical features such as indices of contrac-212
tility and fiber stress.We also investigated the efficiency of the algorithm and the effect of mesh refinement, and found that the chosen refinement213
level was sufficient to yield convergent solutions.214

3.1 Data assimilation, validation and solver performance215

The simulated and measured pressure-volume (PV) loops of the RV and LV, as well as circumferential strain in the LV, septum and RV are shown in216
Figure3 .We found that thefit of thedatawashighly dependenton the choiceoffiber angles,which affects bothvolumechangeandcircumferential217
shortening. Plotting the average value of the volume cost functional (as defined in (16)) for each choice of fiber angles (see the upper right panel in218
Figure 3 ) revealed that the optimal value ofα lies in the range 70◦ − 80◦ for all 3 cases.219
Although available, we chose not to use longitudinal strain data in the optimization. Therefore, the comparison of model-predicted longitudinal220

strainwith themeasurements serves as a validationof themodel-personalizationprocess. The simulatedandmeasuredLV longitudinal strain curves221
are shown in Figure 4 . We note that the fit in all regions was again highly sensitive to the choice of fiber angle. Choosing α = 70◦ produced the222
best fit for the LV longitudinal strain for CASE1 and CASE3, while an angle 60◦ gave the best fit for CASE2. The Septal and RV longitudinal strain223
was best fitted withα = 80◦.224
We further evaluated the solver performance in the optimization process. In this work, all computationswere performed on a computing cluster225

using one node with 8 cores. In Table 1 we present timings for evaluation of the forward model (i.e., evaluation of the cost functional), timings for226
evaluationof the gradient, aswell as the averagenumberof suchevaluations and the standarddeviations. These timings are shown for optimizations227
using the original and refinedmeshes with a fiber angle of 60◦.228

2https://bitbucket.org/finsberg/pulse_adjoint

https://bitbucket.org/finsberg/pulse_adjoint
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FIGURE 3 Results of the gradient-based minimization of model-data mismatch for different choice of fiber angles. Left: simulated (color lines) and
measured (black circles) PV loops in the LV (top row) and RV (bottom row). Center: simulated (color lines) and measured (black circles) circumfer-
ential strain in the LV (top row), RV (middle row ) and septum (bottom row). Right: average values of cost functional for the volume (top row) and
strain (bottom row), for each choice of fiber angle.

3.2 Mechanical analysis229

3.2.1 Cardiac contraction230

The estimated active strain parameter γ in (3), which served as the control parameter during the optimization in the active phase, is plotted for231
various fiber angles to the left in Figure 5 . This parameter varies regionally in the LVFW, septum and RVFW, but is shown here as an average in the232
LV containing LVFW+ septum (top) and RV containing only RVFW (bottom). As shown in the figure, time-variation andmagnitude of γ were similar233
in the 3 cases and insensitive to the prescribed fiber angles.234
Time traces of the active strain parameter γ found in the LV and RV are plotted together for the 60◦ fiber angle case in the left of Figure 6 in235

order better compare their differences. A similar plot of the active stress parameter Ta in logarithmic scale is also shown in the same figure. As236
shown in the figure, the time-variations ofTa and γ, which are indices of cardiac contractility, were largely similar between the LV and RVwith peak237
values located approximately at end-systole. Peak values found in the RV were, however, lower than those found in the LV. These findings were238
consistent across all the 3 cases. A similar plot in Figure 7 shows that the active strain γ is insensitive to themesh resolutions listed in Table 1239

3.2.2 Fiber stress240

Time traces of the average Cauchy fiber stress are shown on the right of Figure 5 for different fiber angle variations. Only very small variations in241
the average fiber stress were found with respect to the choice of fiber angle in the optimization process. Snap shots of the fiber stress distribution242
at ED and ES are plotted in Figure 8 for the 60◦ fiber angle case. Regional variation of fiber stress was largely consistent between the 3 cases with243
pockets of high and low stresses found, respectively, at the apex-epicardial and endocardial regions at ES.244
In Figure6 ,we compare the averagefiber stress timevariation foundusing the twodifferent active contraction formulations, either active strain245

or active stress. As shown in thefigure,fiber stress in theRVcomputedusing active stress andactive strain formulationsbehaved similarlywith time.246
Similar regional variation was also foundwhere both formulations predicted higher fiber stress in the LV than the RV. Peak fiber stress predicted in247
the LV, however, was different in the two formulations with higher stress occurring at isovolumic relaxation in the active stress formulation.248
The specific average value of the end-diastolic and end systolic fiber stress for the case of a 60◦ fiber angle are displayed in Table 2 , showing249

small variability between patients, despite differences in individual PV loops.250
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FIGURE 5 To the left, average traces of the active strain parameter γ in (3) in the LV (top) and RV (bottom) for different choice of fiber angle. To the
right average traces of Cauchy fiber stress in the LV (top) and RV (bottom) for different choice of fiber angle. The fiber angles were defined symmet-
rically across the wall with a negative angle on the epicardium and a positive angle on the endocardium ranging from 30◦ − 80◦ with increments of
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TABLE 2 Average LV and RV fiber stress and end diastole and end systole

Patient ID LV (ED) RV (ED) LV (ES) RV (ES)
CASE1 5.76 4.87 48.3 19.2
CASE2 4.04 3.57 54.4 22.7
CASE3 9.94 8.34 40.3 18.2
Average± std 6.58± 2.48 5.59± 2.01 47.65± 5.74 20.03± 1.91
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3.2.3 Ventricular Elastance251

Table 3 shows the estimates of ES elastance in the LV and RV that were computed using the active strain formulation. The table shows the average252
± one standard deviation of the ES elastance over various fiber angles. Elastance was consistently found to be∼ 10 times larger in the LV than in253
the RV, andwas largely insensitive to the prescribed fiber angle as indicated by the small standard deviation.254

4 DISCUSSION255

In this study, we have presented a novel and highly efficient method for non invasive personalization of an image-based bi-ventricular mechanics256
model based on regional measurements of circumferential strain, as well as global measurements of volumes and pressures in the LV and RV. A257



12 Finsberg ET AL

CASE 1

CASE 2

CASE 3

End Diastole End Systole

Fiber stress (kPa) Fiber stress (kPa)

FIGURE 8 Snap shots of the end diastolic and end systolic configuration and the estimated fiber stresses shown as color-map.

TABLE 3 LV and RV end-systolic elastances estimated by perturbation of model at the end-systolic state. Average values and standard deviation
with respect to varying fiber angle are shown.

Patient ID LV (kPa/ml) RV (kPa/ml)
CASE1 1.96± 0.06 0.23± 0.02
CASE2 1.94± 0.14 0.18± 0.01
CASE3 1.52± 0.07 0.21± 0.01

gradient based optimization method was used to minimize the model-data mismatch by solving a PDE-constrained optimization problem for each258
measurement point in order to calibrate model parameters. Passive material parameters and an unloaded (zero-pressure) geometry were esti-259
mated using the bi-ventricular geometry that was reconstructed fromMR images acquired at late diastole. Time variation of an active contraction260
parameter was estimated throughout the cardiac cycle starting from ED.261
This framework was applied using measurements from three normal subjects to extract estimates of regional fiber stress as well as indices262

of myocardial contractility. Sensitivity analysis of the model outputs with respect to the choice of fiber angle distribution, mesh resolution and263
active formulation were also conducted. The described framework is effective and efficient in capturing cardiac mechanical behavior throughout264
the cardiac cycle, and gave low patient-to-patient variabililty in the extracted mechanical features. As such, it has potential clinical utility in the265
quantification of contractile function andmyocardial stress in vivo and the potential differentiation of pathological states.266

4.1 Data compatibility andmulti-objective optimization267

The objective functional in problem (13) consists of a weighted sum of different objective functionals. Such problems are referred to as multi-268
objective optimization problems (Marler and Arora 2004). While it is possible to perfectly match the strain or volume data individually with the269
chosen control parameters (data not shown), there is expected to be a trade-offwhenfitting both the volumeand strain data in a combinedobjective270
functional. In such cases, a single, unique optimum does not always exist, but rather a family of so called Pareto optimal solutions can be found271
(Marler and Arora 2004). The particular solution foundwill depend on the chosenweights of each objective.272
In a previous study (Balaban et al. 2016), the weights in the total functional given in (14) were determined by performing an exhaustive search,273

testing several combinations of weights of the strain and volume functionals, and choosing the corner-point of strain versus volume error curve.274
However, theweightswill dependon the data source, and in our case choosing theweights proposed in (Balaban et al. 2016), resulted in an excellent275
fit of the volume, while a relatively poor fit of the strain, and hence a higher weight was chosen for the strain. Nevertheless, neither was captured276
exactly, and which data source is more important for model utility remains to be determined. In addition, other general methods for solving multi-277
objective optimization problems (Marler and Arora 2004) may be superior to the weighted summethod used here, and will be considered in future278
studies.279
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4.2 Effect of mesh resolution280

As shown in Table 1 , the total run time is substantially larger for a refined mesh (35 000 - 60 000 elements) compared to a coarser mesh (4000281
- 8000 elements). Since computing time is an important factor that may limit the application of computational models in the clinic, we have inves-282
tigated the accuracy of our predictions from the coarse meshes. Our results show that the accuracy of the extracted features related to cardiac283
contraction and fiber stress are not very sensitive tomesh resolution beyond the coarsest levels of∼ 4000 elements. As seen in Figure 7 , the fiber284
stress and active strain traces obtained on the coarse and fine meshes are very similar, indicating that the coarsest meshes give sufficient accuracy285
for the extractedmechanical features.286

4.3 Fiber angle sensitivity287

In this work, we applied a rule-based algorithm (Bayer et al. 2012) to assign myocardial fiber orientations to the bi-ventricular geometries, and288
investigated the sensitivity of the datamatching and the extractedmechanical features to the choice offiberfield. Differentfiberfields, inwhich the289
fiber angle varies linearly across themyocardiumwall fromα at theendocardiumto−α at theepicardiumwere tested, for the range30◦ ≤ α ≤ 80◦.290
Our results show that α has to be in the upper part of the range i.e., 70 − 80◦, in order to fit the PV loop and circumferential strain measurements291
simultaneously. The validation study (Section 3.1), where we compared ourmodel results with the longitudinal strain, confirms this finding.292
This highlights a major challenge in building accurate mechanics models of the myocardium. The choice of fiber field is very important, as it con-293

trols the amount of longitudinal and radial shortening during contraction. Unless the correct fiber field is used, strain measurements cannot be294
reproduced simultaneously in the model with the measured pressure volume relationships. Accurate measurements of the underlying ventricular295
microstructure are lacking, however, and therefore, rule-basedmethods (Bayer et al. 2012) are often the only alternative to prescribe muscle fiber296
field in subject-specific modeling of cardiac mechanics. Our fundamental knowledge of the myocardial architecture is based largely on early histo-297
logical studies (Streeter et al. 1969), which found that themuscle fiber orientation varies linearly across themyocardial wall with an angleα = 60◦298
at the endocardium α = −60◦ at the epicardium. This fiber field is often prescribed in ventricular models without questioning. On the other hand,299
diffusion tensor MRI (DT-MRI) is now becoming an important tool to measure fiber orientations and could potentially do so in vivo (Toussaint et al.300
2013).301
More recent histological studies (LeGrice et al. 1995) on the canine left ventricle have shown that the muscle fibers are more longitudinally302

oriented at the subendocardium and subepicardium than those obtained using DT-MRI, and such fiber orientation can better reproduce the303
longitudinal motions observed in the experiments(Wang et al. 2015). Our results support this finding.304
A few hypotheses on the basis of cardiacmuscle fiber orientation in the ventricles have been put forward. For example, it has been hypothesized305

that myocardial fiber orientations adapts to achieve a minimal fiber-cross fiber shear strain during the cardiac cycle (Kroon et al. 2009). While our306
results showed that the active strain parameter γ varied a little with respect to the different fiber angle α prescribed in the model, they also show307
that the peak active strain γ is lowest when α lies between 60◦ and 70◦ in all 3 cases. This finding suggests that the tight range of α found here is308
optimal in the sense that the active shortening necessary to produce the same stroke volume is at its minimum.309

4.4 Fiber stress310

As there is nodirectway tomeasuremyocardialfiber stresses,wehave comparedour resultswith other patient specificmodeling studies. The range311
of reported values for humans are broad, and are mostly confined to the LV. For example, (Genet et al. 2014) reported fiber stress computed at ED312
(2.21 ± 0.58kPa) and ES (16.64 ± 4.73kPa) in normal humans, whereas (Scardulla et al. 2016) conducted a stress analysis on healthy bi-ventricles313
and found that wall stress at ES was 65.7± 12.3 kPa in the LV and 23.6± 14.2 in the RV.314
Our estimated average fiber stresses (Table 2 ) are well within the range of values reported in these studies. Fiber stress distributions at ED and315

ES (Figure 8 ) are also consistent in the three subjects investigated here. Furthermore, our results also show small variations in fiber stress with316
respect to the choice of fiber field. Fiber stresses obtained from active strain and stress formulations are also comparable during late diastole and317
early systole. A large difference in the fiber stress between these two formulations, however, can be found at late systole and during the isovolumic318
relaxation when the ventricles are in their most compressed state. In particular, the active stress formulation produces elevated stresses during319
this time interval. The same phenomenon was observed in a sensitivity analysis (APPENDIX A:) on the initial passive material parameter a used to320
find the unloaded geometry. We found that the elevated stresses are always accompanied by very high hydrostatic pressure p, suggesting that the321
enforcement of incompressibility, which does not hold in vivo due to blood perfusion in the myocardial wall, is causing this artifact. Future studies322
are needed to examine the effect of compressibility to our results.323
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4.5 Contractility324

Higher value of the active strain parameter γ or the active stress parameter Ta indicates that the myocardium is contracting more forcefully and325
our results also suggest that the LV generates a higher contractile force permyocardial volume than the RV.One of the underlyingmechanisms that326
modulate the contractile forces is calciumdynamics (Hunter et al. 1998; Ambrosi et al. 2011), andwhileTa andγ cannot bedirectly compared to the327
calcium concentration because of the difference in units, their time traces have similar shapeswhen compared to the calcium transient. This finding328
is independent of the prescribed fiber field and the initially assigned passivematerial parameter a, as shown in APPENDIX A:. Further investigation329
of theseestimates is needed, butwehypothesize that thesemeasurementsmayprovideuseful biomarkers.Due to theobservedconsistent results in330
normal patients, even forwide rangingPV loops, these estimates of contractility could therefore potentially serve as important diagnostic estimates331
in cases where disease alters myocardial contractility.332

4.6 Elastance333

End systolic elastance iswidely recognizedas an important determinant of systolic function (Sagawaet al. 1977).However, it’s use in clinical practice334
is limited due to the need for invasivemeasurements of pressure and volume in response to varying loading conditions.335
In the present work we have simulated a change in loading condition by perturbing only the ES pressure (keeping all other quantities fixed), and336

computing the ES elastance from the slope of the resulting pressure-volume relationship. This approach has previously been applied to obtain LV337
ES elastance (Finsberg et al. 2017), but has not been applied to find RV ES elastance in bi-ventricular geometries.338
The resulting LV ES elastances range from approximately 1.0 to 2.0 kPa/ml. These values are higher than previous measurements in healthy339

human hearts, which range from 0.26 to 0.4 kPa/ml (Chen et al. 1998).340
There are few reported values of normal humanRV elastance. However, (Brown andDitchey 1988) reported values of themaximal RV elastance341

in the range of 0.32 -1.23mmHg/ml/m2 in normal humans. Using a body surface area of 2m2 (typical in humans), this range translates to 0.08 - 0.32342
kPa/ml. Our estimated values∼ 0.2 kPa/ml is well within this range. It should be noted here that our estimated values of ES elastance do not take343
into account any physiological responses of the tissue, such as a change in active tension in response to an increased load. As such, these values344
represent only a local estimate of the elastance, since all other quantities were held fixed during the perturbation of the pressure. Because of these345
limitations, our elastance estimate will make most sense in the active strain formulation as a force-length dependence is implicitly included in this346
formulation. No such relation is, however, included in the simple active stressmodel here. Correspondingly, the active stress does not change as the347
load is perturbed, whichmay lead to an underestimation of the elastance.348

4.7 Limitations and future directions349

In this work, we clearly see a variability of model-data fit with respect to choice of the fiber angle, suggesting that the fiber field can be calibrated to350
betterfit thedata.Here,wehaveonly prescribed a linear transmuralfiber angle variation that has opposite signs at the endo- andepicardium inboth351
LV and RV. Dissection studies, however, generally found that the fibers are more circumferentially oriented at the subepicardium and more longi-352
tudinally orientated at the subendocardium in the RV (Ho andNihoyannopoulos 2006). This suggests that one should also consider non-symmetric353
fiber fields across the wall as well as different fiber field in the LV and RV. We seek to investigate these issues in future studies, possibly together354
with in vivomeasures of fiber angles.355
As noted above, the constants that balance the terms of the cost functional (14) were adjusted based on a previous study Balaban et al. (2016)356

of a single LV, where an L-curve type analysis was performed to estimate an optimal set of weights. Since the present study also considers the RV357
and the current cost functional form differs from the LV case, it is likely that these differences may affect the optimal choice of weight parameters.358
Hence, although the chosen parameter values gave good results for our applications here, theremay exist even better choices.359
While we were able to obtain stress measures across a small cohort of healthy subjects that were both internally consistent as well as in broad360

agreementwith other published studies, the effect of ourmodelling assumptions remains to be determined. Herewe used an incompressiblemodel361
of themyocardium, even though it is well known that themyocardium is compressible due perfusion of blood. Future studies should investigate the362
role of compressibility, and in particular how fiber stress is altered when the material is allowed to compress. We clearly see stress effects related363
to the hydrostatic term in ourmodel, and this will be investigatedmore closely in future studies.364
Residual stresses are hypothesized to be important in stress estimation in soft biological tissue (Chuong andFung1986), and canbe incorporated365

into the finite elementmodel (Wang et al. 2014; Genet et al. 2015b). Because it has been shown in a previous study that residual stresses have little366
effects on ventricular function (Guccione et al. 2001), they were not considered in the present study. Nevertheless, the effect of including residual367
stresses in the estimation of fiber stress and contractility remains to be investigated in future studies368
The late diastolic pressure-volume curve is fitted by estimating one material parameter, while fixing the remaining parameters to previously369

reported values (Asner et al. 2015). This is a limitation in our study, and future studies will be geared towards reducing the need for fixing these370
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model parameters by incorporating more clinical data or by revising the constitutive model. In particular, the incorporation of diastolic strains may371
be useful in more clearly definingmaterial properties.372
The simple estimation of unloaded configuration using only one iteration of the backward displacementmethod can be usedwith different initial373

material parameters and still recapitulate the end-diastolic volumeswith different optimizedmaterial parameters. Several studies have jointly esti-374
mated the unloaded left-ventricular geometry andmaterial parameters (Nikou et al. 2016; Finsberg et al. 2017; Asner et al. 2015), but estimation375
of the unloaded configurationwith bi-ventricular geometries is not awell-posed problem, since buckling of the RV freewall might occur.Morework376
on formulating well-posed algorithms for determining the unloaded configuration should be considered in future studies.377
Finally, in this study we only considered three normal subjects, and in the future we would like to apply this framework to more individuals and378

use it to study larger cohorts as well as patients with cardiac pathology.379

5 CONCLUSION380

Patient-specific simulations can now be assembled via adjoint-based data assimilation techniques, using no more than a few hours on a regular381
laptop. From these simulations we are able to extract information about myocardial contractility and fiber stress which shows low variability in382
the modeling choices that we make. Validation of these models should be the main objective in the years to come in order to translate cardiac383
computational modeling into clinical utility.384
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APPENDIXA: SENSITIVITY TOUNLOADEDCONFIGURATION392

The choice of initial material parameter a in the unloading algorithm will influence the estimated unloaded configuration. A softer material will393
result in a lower unloaded volume, hence the optimized material parameter will be softer to compensate for the greater volume increase from the394
reference to the end diastolic state. In the results presented in this study the value a = 1.291 kPa was chosen based on a parameter set used in395
(Asner et al. 2015).396
To analyze the sensitivity of the results to the choice ofmaterial parameters used to unload the geometry,we unloaded the geometries using four397

different material parameters, i.e a = 0.5, 1.0, 2.0 and 4.0 kPa, and evaluated the corresponding model outputs. The resulting optimized material398
parameters, unloaded cavity volumes and value of themismatch functional during the passive phase are shown in Table A1 .399
For a more visual presentation, the LV and RV filling curves are presented to the left in Figure A1 for the different choices of unloaded con-400

figuration. From these results it is clear that even tough the different choices results in very different unloaded geometries, and passive material401
parameters, the mismatches between simulated andmeasured volumes are very small in all cases, except for a = 0.5which hit the lower bound (of402
0.05 kPa) set in the optimization.403
Fiber stress and active strain are fairly consistent despite different unloaded geometries and material parameters (Figure A1 ). However, ele-404

vated fiber stresses can be seen during late systole for higher initial values of a. Furthermore, the magnitude of the active strain is increased in405
repose to stiffening of thematerial.406
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TABLEA1 Optimizedmaterial parameters in kPa for different choice of unloaded configuration.

Patient ID Initial a aLV aRV Jdata (passive) V LV
0 V RV

0

CASE1 0.5 0.05 0.321 0.000551 36.2 53.8
CASE1 1 0.165 0.699 7.13e-08 40.4 56.6
CASE1 2 0.64 1.49 1.81e-07 45.9 60.5
CASE1 4 1.92 2.91 2.46e-07 52.8 65.4
CASE2 0.5 0.05 0.29 0.000447 34.5 46.9
CASE2 1 0.168 0.736 8.06e-08 38.9 50.7
CASE2 2 0.642 1.79 3.27e-07 44.9 56.1
CASE2 4 2.03 4.01 9.79e-07 52.8 63.3
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