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Abstract: This paper presents a generic approach that combines model-based and data-based
methods for fault detection and diagnosis. A proposed generic representation framework is used
to express the different diagnosis results and to merge them without taking into account neither
their internal characteristics, nor the nature of their outputs. Within this framework, the generic
approach is performed in two steps. The first step consists in operating several diagnosis methods
using the system measurements. The second step deals with the fusion of various methods results.
This diagnosis approach is evaluated and tested on an anti-lock braking system. Simulations
show that methods combination and results fusion make our diagnosis approach more efficient.
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1. INTRODUCTION

With the technology development, modern industrial sys-
tems have become very complex. They are subjected to
very high stress which can lead to faults and failures
occurrence. At the same time, maintenance and safety
requirements are essential and have become economical
and technical challenges for companies. Therefore, it is
crucial to develop modern methods able to detect and iso-
late faults in these systems. To answer this issue, different
approaches have been developed by both of the automatic
control and the artificial intelligence communities.

Depending on the available knowledge on the system, it is
possible to distinguish two main types of fault diagnosis
methods: model-based and data-based approaches. The
model-based approaches use a mathematical representa-
tion based on the system physical laws. These methods are
very efficient if the system model is sufficiently accurate.
However a model is often hard to obtain. On the other
hand, data-driven methods are useful when the system
model is not available. They rely on the use of the acces-
sible sensors’ data. Each approach has its own advantages
and drawbacks. Moreover, the satisfaction of all the in-
dustrial requirements in terms of performances is always
difficult to obtain when using distinctly the conventional
methods. Recent researches mention that the combination
of several methods may potentially derive benefits from
each approach and overcome their eventual limitations
[Tidriri et al. (2016), Ghosh et al. (2011)].

In this work, in the same logic, we aim at strengthening
diagnosis methods, while overcoming the shortcomings
by an original combination approach resulting on more
reliable diagnosis results. The main contribution of the
article is to propose a generic approach of combination,
whatever the type of the used diagnosis methods (data-
based or model-based).

Fig. 1. Serial combination

Fig. 2. Parallel combination

This paper is organized as follows. Section 2 introduces
related work on diagnosis results fusion. Section 3 proposes
a generic method for the fusion of heterogeneous diagnosis
results. Section 4 presents the case study and the results
we obtained. Section 5 concludes the article and presents
some perspectives.

2. RELATED WORK

To enhance diagnosis performances, a considerable num-
ber of research studies have addressed the track of the
conventional approaches combination.

In a serial combination topology (Fig.1), n diagnosis
methods are put one after the other in series, so that
each method takes as input the output provided by its
upstream method. The methods succession increases the
global efficiency through the confirmation of each result.
Thus, this combination improves the decision-making by
reducing the ambiguity and increasing diagnosis accuracy.
However, in this architecture the first method must have
good performances, since the consequences of its bad re-
sults will be propagated all along the chain. In addition,



the serial combination requires some a priori knowledge
of the methods and compatibility of methods’ inputs and
outputs is mandatory. The serial combination is used, ei-
ther for data-based diagnosis methods, in order to improve
the classification accuracy, or for model-based diagnosis
methods to make the residual evaluation more reliable by
reducing the false alarm rate. Ghosh et al. (2011) propose
a serial combination in order to improve neural network
classification accuracy by using a linear model based on
the Kalman filter as a post processing step. The Kalman
filter transforms the predicted outputs of the neural net-
work into values closer to the desired outputs. This simple
combination reduces the error of the neural network and
improves classification performances.

In the parallel combination topology (Fig.2), n diagnosis
methods operate independently and solve the diagnosis
problem in their own way; then a fusion is made between
the outputs of the different diagnosis methods in order
to make the final decision. This architecture is efficient
in terms of reliability: if one of the diagnosis methods
is reliable, and if the fusion strategy is well proceeded,
the final diagnosis result is reliable. Moreover, a diagnosis
result is always available, even if one of the used methods
result is missing. Moreover, in terms of computation time,
all methods connected in series have to be activated
for a final result. Concerning the parallel combination
topology, in case of time’s lack, a set of methods could
be discarded momentarily. In the literature, few works
address the diagnosis problem where model-based and
data-based approaches are combined. The greater part of
them is focused on multi-classifier systems (MCS) which
are a parallel combination of only data-based methods, like
in Tidriri et al. (2016). Woźniak et al. (2014) present an up-
to-date survey on MCS. The article also discusses fusion
methods for decision making and provides a spectrum of
the applications that are currently under development.

The diagnosis fusion is the process of integrating the re-
sults obtained from several diagnosis methods in order to
make the final decision more precise and more reliable than
the separated diagnosis results.
Several fusion strategies have been proposed in the litera-
ture. We can cite simple majority vote, weighted majority
vote, the Bayesian approach, the fuzzy approach or the
Dempster–Shafer approach. Ghosh et al. (2011) give an
interesting review of these methods. The fusion is often
applied when dealing with data-based approaches. The
common point of all these methods is that for a given
observation, they take as input the class chosen by each
classifier, or the assigned probability (or else degree of
belief) to each class by each classifier. Our work aims
at applying indifferently these solutions to model-based
and data-based diagnosis methods. So, we need to define
a generic representation that can be used for the fusion of
heterogeneous diagnosis results.

3. A GENERIC METHOD FOR MODEL-BASED AND
DATA-BASED DIAGNOSIS APPROACHES FUSION

3.1 Overview

The proposed fusion architecture has to merge the outputs
of different diagnosis methods without taking into account

neither their internal characteristics, nor their algorithms
execution, nor the nature of their outputs. This architec-
ture intends to be generic and applicable to any diagnosis
problem. It is defined by a parallel combination topology,
as shown in Fig. 3.

A fusion block connected in series has to merge the
heterogeneous diagnosis results δi obtained by the different
methods for the observation x to supply the final diagnosis
decision ∆(x). This final diagnosis decision contains the
most likely operating mode m∗ for the system. The fusion
block transforms the diagnosis results δi into generic
representations ∆i which are then combined through a
fusion strategy.

3.2 Criteria for selecting diagnosis methods

Diagnosis methods are combined to take advantage of
each of them in order to improve diagnosis efficiency. Two
criteria are used to define the best combination of diagnosis
methods: complementarity and performance.

Complementarity Diagnosis methods are said to be com-
plementary if the information they provide are of different
natures. The complementarity helps to overcome some
method limits and may improve the diagnosis efficiency
and reliability. For example, complementarity in data-
based methods can be obtained by using different train-
ing datasets for the different methods. However, this is
only suitable for data-based methods for which a small
difference in the datasets can lead to significant changes
in diagnosis performance [Ghosh et al. (2011)]. Alterna-
tively, complementarity can be achieved by using methods
from different research domains (model-based, data-based,
hybrid methods). In this case, each method performs in-
dependently and solves the diagnosis problem. This last
type of combination will be studied in this paper.

Performance Selecting diagnosis methods with the high-
est performance is not necessarily the best solution to
achieve a correct final diagnosis decision. However, it is
necessary to ensure that the diagnosis results provided
by the different methods will not be degraded by using
a fusion strategy. The confusion matrix is a theoretical
tool used to evaluate the performance of classification
methods. It is obtained by comparing the observed data
with the reference data for each method [Ghosh et al.
(2011); Kuncheva (2002)]. The confusion matrix CMi for
the ith classifier is:

CMi =


N i
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 i = 1, 2, . . . , n (1)

where N i
jk is the number of input samples from class j that

are assigned to class k by the ith method. It is possible to
extend this result and to obtain a confusion matrix for
model-based methods by generating a set of simulations
for each operating mode.



Fig. 3. Fusion architecture for diagnosis methods

3.3 Generic representation for diagnosis results

The combination of diagnosis methods requires a generic
representation in order to express in the same frame of
reference the heterogeneous results of diagnosis and to
make the fusion task possible. Each method gives a result
δi for each new observation x on the system. These results
δi, for i = 1 . . . n, are heterogeneous, i.e. of different nature
(signal, class, rank, ...). The purpose of this paper is to
express these different data in a generic representation,
so that they can be merged to produce a final diagnosis
decision ∆(x) as shown in Fig. 4.

Let ∆i ∈ IRq+1 be the generic representation of di-
agnosis results. ∆i represents a vector whose coeffi-
cients are associated with the possible operating modes
M = {m0,m1, . . . ,mq} of the system such that:

∆i =


δi0
...
δik
...
δiq

 ∈ Rq+1 ;
i = 1, . . . , n
k = 0, . . . , q

∣∣∣∣∣∣∣∣
0 ≤ δik ≤ 1

q∑
k=0

δik = 1.
(2)

Data-based diagnosis results representation Data-based
diagnosis methods, like classification methods, compute
for an element x a membership degree between 0 and 1
to each class Ck, for k = 0, . . . , q, representing a possible
operating mode for the system [Bloch (1996)]. Let D(x)
be the membership vector of an element x containing all
membership degrees associated to operating modes:

D(x) = [d0 . . . dk . . . dq]T (3)

where dk is the membership degree to the kth class.

Most of classifiers perform an exclusive classification
[Ghosh et al. (2011)], so D(x) is represented by a binary
vector with dimension equal to the number of classes, in
which the value 1 indicates the class proposed by the
classifier. This type of provided result is already in the
generic form.

Some other classifiers compute rank-order results, which
reflect the order of preference of the classifier provided
propositions [Parker (2001)]:

Rank(x) = [rk1 . . . rkk . . . rkq]T (4)

where rkk is the rank assigned to the kth class. The class
placed in the first rank is the most admissible for the
observation x and the class of the last rank is the least
admissible. Some examples of ranked classifiers can be
found in Provost and Fawcett (2001). The transformation
of this type of result into the generic representation con-
sists in building a binary vector with dimension equal to
the number of classes, in which the value 1 indicates the
label of the first class of ranks list:

j = arg max(rkk) (5)

δik =

{
1 if k = j

0 otherwise
(6)

where δik is the coefficient of diagnosis result ∆i, which
is associated to the kth operating mode and computed by
the ith diagnosis method.

Model-based diagnosis results representation Continuous
model-based diagnosis methods are based on the principle
of residual generation [Gertler (1998)]. These residuals are
signals built from the model continuous equations where
only measurable variables are involved. They are equal
to zero when the system is fault-free in nominal mode,
and they are equal to a non-zero value when some faults
are present in the system. Fault detection is performed
by monitoring the residual values. For fault isolation, the
fault signature matrix is required to distinguish the effects
of the different anticipated faults on the set of residuals
[Gertler (1998)].

f0 f1 f2 . . . fq
r0 0 0 1 . . . 1
r1 0 1 1 0
...

...
rp 0 1 0 . . . 1

Table 1. Example of a fault signature matrix

A fault signature matrix is illustrated in Table 1, where
F = {f0, f1, . . . , fq} is the set of anticipated faults in the
system and R = [r0, r1, . . . , rp]T is the set of residuals gen-
erated from a continuous model-based diagnosis method.
Let Sfk be the signature of a given fault fk, the set of
fault signatures Sfi , for i = 0, . . . , q is represented by the
columns of the fault signature matrix. Under the simple
fault assumption (only one fault can occur on the system),
a fault fk can be directly associated to an operating mode



Fig. 4. Transformation of heterogeneous diagnosis results into a generic representation

mk, for k = 0, . . . , q. In this case, when the residual values
are equal to the fault signature Sfk , it means the system
may be in mode mk.

If each fault signature is different from the others in the
fault signature matrix, the system is diagnosable (all faults
are detectable and isolable). If the system is known to be
in operating mode mj from residual values Sfj in the fault
signature matrix, the generic representation is:

δik =

{
1 if k = j

0 else
(7)

where k corresponds to the kth line associated to the mode
mk of diagnosis results ∆i obtained by the ith diagnosis
method.

If the system is non-diagnosable, the membership degrees
in the generic representation may be equally distributed
for each possible operating mode. Let Sf = {Sfk} be the
set of fault is signatures that are compatible with the
residual values. Each Sfk in Sf represents one possible
operating mode mk in the generic representation:

δik =

{
1
‖Sf‖ for k s.t Sfk ∈ Sf

0 else
(8)

where ‖Sf‖ is the cardinal of the set Sf .

3.4 Criteria for adopting a fusion strategy

In the case of health management, when some actions
have to be decided in order to maintain or reconfigure
the system, an ambiguous diagnosis result is difficult to
interpret for undertaking the necessary actions. Probabi-
lized information in diagnosis results make the decision-
making more efficient even if only the most likely diagnosis
hypothesis is considered: the fusion strategy is chosen in
order to deal with probabilized information.

This probabilized information in diagnosis results may
depend on a priori knowledge on the system and on perfor-
mances of the combined methods. Some methods can be
preferred to the others according to the available models,
data or monitoring capabilities. The fusion strategy has
to be able to weight method results with respects to these
criteria. For safety reasons, some operating modes related
to the presence of critical faults can be also conserved even
if a low probability is computed. More details about the

criteria used to select a fusion strategy can be found in
Ghosh et al. (2011).

4. DEMONSTRATION ON A CASE STUDY

4.1 The ABS system

An anti-lock braking system (ABS) is an active safety
system that allows the wheels of vehicle (automobile, train,
aircraft) to maintain tractive contact with the road surface
according to driver inputs while braking, preventing the
wheels from locking up and avoiding uncontrolled skid-
ding. Fig. 5 illustrates a descriptive diagram of the ABS.
The system consists of a speed sensor for each wheel, an
electronic computer and a hydraulic system for regulating
the braking pressure.

Fig. 5. Synoptic diagram of an anti-lock braking system
(ABS)

The ABS model used in this work was initially proposed
by Luo et al. (2010), where details on the model are
available. This model considers the wheel speed and ve-
hicle speed as measured variables and the force applied
to the brake pedal as the input. One sensor fault and
three parametric faults are considered. As explained in Luo
et al. (2010), other components faults, such as those in the
hydraulic valve and the calculator, are not considered be-
cause they are easily detectable by the current diagnostic
troubleshooting codes. The wheel-speed-sensor fault (f1)
is modeled with two fault-severity cases: greater that 2%
but less than 5% reduction in the nominal wheel speed
(f1.1), and greater than 5% reduction in the nominal wheel
speed (f1.2). The three considered parametric faults (f2, f3
and f4) are changes in three parameters of the model: Rw,
Kf and Jw. Rw appears in the vehicle model and is the
radius of the wheel. It is used to model the tractive force



between the tire and the road surface, and the tractive
torque between the wheel and the road surface. Two faults
are considered for Rw: greater than 2% but less than 20%
(f2.1) decrease in Rw, and greater than 20% decrease in
Rw (f2.1). Kf represents the torque gain. It is used as the
gain of the transfer function between the brake torque and
the brake pressure. Jw is the rotating inertia of the wheel
and is used in the vehicle model in the dynamic equation
of the wheel speed. Variations between ±2% to ±10% of
Kf and Jw parameters are considered as faults.

The list of considered faults considered in the ABS are
summarized in Table 2.

Speed sensor f1.1 Sensor fault (2% to 5% decrease)
f1.2 Sensor fault (more than 5% decrease)

Wheel radius f2.1 Rw Fault (2% to 20% decrease)
f2.2 Rw Fault (more than 20% decrease)

Torque gain f3 Kf Fault (±2% to ±10%)

Wheel inertia f4 Jw Fault (±2% to ±10%)

Table 2. Considered fault list

We denote f0 as the normal operating mode. We suppose
that only simple faults occur on the system, so there exist 7
operating modes (m0, . . . ,m6) for the ABS system, simply
denoted f0, f1.1, f1.2, f2.1, f2.2, f3 and f4 for the clarity of
the paper.

4.2 Instantiation of the fusion architecture

Fig. 6 shows our instantiation of the proposed fusion
architecture. This solution has been implemented and
tested on the ABS system.

Diagnosis Methods Two model-based methods are used
in parallel to generate four residuals. The design of these
residuals is based on the work of Luo et al. (2010). The
parity equations are used for the linear part of the system
while the observer deals with the nonlinear part. Since
faults f1.1 and f1.2 (resp. f2.1 and f2.2) can be isolated
depending on the value of the residuals, a set of threshold
tests is put in series to improve fault isolation. The result
of this “parallel then series” combination of model-based
methods is called δ1.

Two data-based methods are also used in parallel. Arti-
ficial Neural Networks (ANN) are chosen because they
are particularly efficient when designing fault diagnosis
schemes [Cruz and Wishart (2006)]. The architecture of
the Neural Network consists in an input layer with two
neurons (number of measured signals), a hidden layer
with five neurons, and an output layer with seven neu-
rons (number of operating modes). The tangent sigmoid
function was used as the transfer function both from the
input layer to the hidden layer and from the hidden layer
to the output layer. The Neural Network was trained using
the Levenberg–Marquardt back-propagation algorithm in
the “Neural Network Toolbox” of Matlab. The result of
the ANN method is called δ2.

Support Vector Machines (SVM) are used to detect and to
isolate faults directly from the two measured variables of
the system. The SVMs are known to be binary classifiers,

while the ABS case study has seven operating modes. In
order to solve this problem, several approaches have been
proposed to extend the binary SVMs to the case of multi-
classification. A generalization of these approaches was
proposed in 1995 under the name ECOC (error-correcting
output codes) [Dietterich and Bakiri (1995)]. The two most
popular approaches are called “one versus all” and “one
versus one” [Hsu and Lin (2002)]. The “one versus one”
approach was preferred for this study, because its training
time is shorter compared to the “one against all” approach
[Hsu and Lin (2002)]. This method is implemented with
the “Statistics and Machine Learning Toolbox” of Matlab.
The result of the SVM method is called δ3.

Fusion Strategy Based on the criteria proposed in sec-
tion 3.4, a Bayesian fusion strategy is used within the
fusion architecture. The main interest of the Bayesian
approach or more generally of the probabilistic approaches
comes from the fact that they rely on a solid mathematical
basis tested by numerous studies for many years.

Bayesian fusion strategy is a probabilistic method for fus-
ing information from different sensors, based on Bayes the-
ory. It is very popular in image fusion [Stathaki (2011)] but
is also used for solving conflicts among multiple diagnosis
methods [Ghosh et al. (2011)]. The idea is to estimate the a
posteriori probability of attributing an observation x to an
operating mode from the a priori knowledge of diagnosis
performance of each individual method. The Bayes rule is
used to calculate the a posteriori probability. The final
decisions are then made based on the estimated value
of the a posteriori probabilities. This strategy is usually
applied to classification methods and we generalize it to
heterogeneous diagnosis methods.

We denote bymi
k the fact that the ith diagnosis method de-

cides that x belongs to the operating mode mk. At the end
of the diagnosis method, each method decides that x be-
longs to one operating modemi

∗, where ∗ = argmaxk(δik)
for k = 0, . . . , q. For the clarity of the following, we also
simplify the notation x ∈ mk by mk.

The Bayesian fusion algorithm used in this work consist of
the following steps.

Step 1: Computation of a priori probabilities of operat-
ing modes.
This step consists in calculating the a priori probability
that the ith diagnosis method assigns the observation x
to the operating mode mk while the true operating mode
is mj . These probabilities are directly computed based on
the confusion matrix of each method. For k = 0, . . . , q:

P (mi
k|mj) =

N i
kj∑q

j=0N
i
kj

, i = 1, . . . , n. (9)

Step 2: Decision fusion.
This step consists in computing the a posteriori probabil-
ity P (mk|m1

∗, . . . ,m
n
∗ ) of each operating mode from the

decision of each diagnosis method, using the Bayes rule,
while P (mk) is the k-th fault occurrence probability. For
k = 0, . . . , q:

P (mk|m1
∗, . . . ,m

n
∗ ) =

P (mk)P (m1
∗, . . . ,m

n
∗ |mk)∑q

j=0
P (mj)P (m1

∗, . . . ,m
n
∗ |mj)

(10)



Fig. 6. Descriptive diagram of the combination framework.

where P (mk) is the probability for the system to be in
operating mode mk.

We can assume that the diagnosis methods to be combined
are independent:

P (m1
∗, . . . ,m

n
∗ |mj) =

n∏
i=1

P (mi
∗|mj). (11)

So Equation 10 is simplified:

P (mk|m1
∗, . . . ,m

n
∗ ) =

P (mk)
∏n

i=1
P (mi

∗|mk)∑q

j=0
P (mj)

∏n

i=1
P (mi

∗|mj)
(12)

Step 3: Decision rule.
Finally the operating mode with the maximum a posteriori
probability is considered to be the operating mode of the
system:

∆(x) = arg max
k=0,...,q

[P (mk|m1
∗, . . . ,m

n
∗ )]. (13)

In case of non-diagnosable faults where each fault has the
same weight, the diagnosis remains ambiguous and a set of
operating modes can be returned. In this case, Equation 13
is adapted and the operating modes with the maximum a
posteriori probability are considered to be the operating
modes of the system.

4.3 Results

The four diagnosis methods were implemented on Matlab
and tested on the ABS system. The training data were gen-
erated from model simulation by introducing the different
faults in the system model and the confusion matrices are
obtained 1 .

Table 3 gives the ABS fault signature matrix obtained
from model-based diagnosis methods (parity space and
observer). It can be seen that all the faults are detectable,
except f4, which is not detected due to the low magnitude
of the fault. One naive solution could be the reduction of
the threshold levels, but it could lead to an increase in
the probability of false alarms. f1.1 and f1.2 (respectively
f2.1 and f2.2) are not isolable as they have the same
fault signature. Obviously these faults differ only on the
magnitude of parameters variation. f3 and f4 are isolable.
Thresholds (in series) are selected such that the false alarm
1 available on https://homepages.laas.fr/echanthe/papers/ABSfu-
sion.htm

rate is acceptable and that f1.1 and f1.2 (respectively f2.1
and f2.2) become isolable.

f0 f1.1 f1.2 f2.1 f2.2 f3 f4
r1 0 1 1 1 1 0 0
r2 0 0 0 0 0 1 0
r3 0 1 1 0 0 0 0
r4 0 0 0 1 1 0 0

Table 3. ABS fault signature matrix obtained
from model-based diagnosis methods.

Both data-based methods (SVM/ANN) do not detect the
sensor faults f1.1 and f1.2, because the effect of these
faults does not appear for a long time in the measured
outputs. Indeed, the controller compensates the effect of
the sensor’s faults as soon as they appear, to maintain
the reference input. Therefore, there is not enough data
illustrating these faults to efficiently train the data-based
methods. Both methods isolate the other faults.
Table 4 shows a summary of the fault detection and
isolation results by each diagnosis method (model-based
diagnosis with thresholds, ANN and SVM methods).

f0 f1.1 f1.2 f2.1 f2.2 f3 f4
MBD + threshold X X X X X X No

SVM X No No X X X X
ANN X No No X X X X

Table 4. Fault detection/isolation with data-
based diagnosis methods.

Fusion To illustrate the fusion procedure, the case of
the sensor fault f1.1 is studied. This fault is detected and
isolated using the model-based method but it is not de-
tectable by the two data-based methods. The model-based
approaches and the thresholds in series detect and isolate
the fault, so that δ1 = [f1.1]. The generic representation
of this result is ∆1 = [0 1 0 0 0 0 0]T and m1

∗ = f1.1.
The second method (ANN) diagnoses the normal oper-
ating mode: δ2 = ∆2 = [0.9072 0.0072 0.016 0.032 -
0.0004 0.0165 0.0206]T , and m2

∗ = f0. The third method
(SVM) also diagnoses the normal operating mode: δ3 =
∆3 = [1 0 0 0 0 0 0]T and m3

∗ = f0.

In order to take a decision, the Bayesian fusion strategy
is applied to the generic outputs of the three methods. It
consists in estimating the a posteriori probability of each
operating modes.



Faults ∆MBD+threshold ∆ANN ∆SV M Final decision

f0 [1 0 0 0 0 0 0]T [0.85 0.05 0.02 0.01 0.01 0.02 0.05]T [1 0 0 0 0 0 0]T Normal Operating f0
f1.1 [0 1 0 0 0 0 0]T [0.9 0.01 0.01 0.03 0.00 0.01 0.02]T [1 0 0 0 0 0 0]T Operating mode f1.1
f1.2 [0 0 1 0 0 0 0]T [0.56 0.12 0.16 0.16 0.00 0.024 0.04]T [1 0 0 0 0 0 0]T Operating mode f1.2
f2.1 [0 0 0 1 0 0 0]T [0.0 0.01 0.03 0.9 0.0 0.02 0.02]T [0 0 0 1 0 0 0]T Operating mode f2.1
f2.2 [0 0 0 0 1 0 0]T [0.01 0.02 0.03 0.0 0.93 0.0 0.0]T [0 0 0 0 1 0 0]T Operating mode f2.2
f3 [0 0 0 0 0 1 0]T [0.0 0.0 0.0 0.0 0.0 0.96 0.03]T [0 0 0 0 0 1 0]T Operating mode f3
f4 [1 0 0 0 0 0 0]T [0.01 0.02 0.02 0.0 0.0 0.02 0.92]T [0 0 0 0 0 0 1]T Operating mode f4

Table 5. Diagnosis results before and after the fusion.

The a posteriori probability P (f1.1|m1
∗,m

2
∗,m

3
∗) is esti-

mated using the Bayes rule:

P (f1.1|m1
∗,m

2
∗,m

3
∗) =

P (f1.1)
∏3

i=1
P (mi

∗|f1.1)∑7

k=1
P (mk)

∏3

k=1
P (mi

∗|mk)
(14)

where P (mk) is the probability for the system to be in
operating mode mk, which is assumed to be the same
for all the operating modes, then P (mk) = 1/7, for
k = 1 . . . 7. The a posteriori probability obtained in this
case is P (f1.1|m1

∗,m
2
∗,m

3
∗) = 0.778. Following the same

reasoning, P (f0|m1
∗,m

2
∗,m

3
∗) = 0.1111.

Comparing all the a posteriori probabilities and follow-
ing the decision rule (Equation 13), the final diagnosis
decision is ∆(x) = f1.1.

Table 5 presents the diagnosis results of the different
methods alone and the final diagnosis after the fusion. In
the case where two methods provide wrong results and the
third one has a correct result (case of f1.1 and f1.2) the final
diagnosis decision is correct. This can be explained by the
fact that the fusion calculations are implicitly based on
the performance of the three methods. These results show
the effectiveness of the proposed instantiation of the fusion
architecture. It is able to detect and isolate all the faults,
which is not the case considering each method separately.

5. CONCLUSION AND FUTURE WORK

This article proposes a generic method for the fusion
of model-based and data-based diagnosis approaches. It
combines results of one model-based method with two
data-based methods (SVM and ANN). Its application on
an ABS demonstrates the superiority of the combination
of heterogeneous diagnosis methods and shows that the
Bayesian strategy is efficient and easy to implement.

For future work, the proposed method will be tested on
other case studies in order to validate its robustness to
various data.

The criteria for selecting a fusion strategy have to be
studied in more details to consider the generic combination
framework in a global scheme of health management. A
reconfiguration task and a prognosis task could be taken
in account. The fusion strategy has to be able to weight
method results with respects to these criteria. For safety
reasons, some operating modes related to the presence
of critical faults can be also conserved even if a low
probability is computed.

It could be interesting to implement this generic fusion
architecture in an open environment in order to give
the opportunity to other researchers to test different

combinations of diagnosis methods and to propose their
own strategies.
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