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J. Sotomayor ∗∗ C. Artigues ∗
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Abstract: Centralized fault diagnosis architectures are sometimes prohibitive for large-
scale interconnected systems such as distribution systems, telecommunication networks, water
distribution networks, fluid power systems. This paper presents a decentralized fault diagnosis
method for continuous systems that only requires the knowledge of local models and limited
knowledge of their neighboring subsystems. The notion of Fault-Driven Minimal Structurally
Overdetermined (FMSO) set is used as the corner stone of the design of residual generators for
the design of decentralized fault diagnosis for systems that have constraints of confidentiality,
distance or limited access to some information. Binary integer linear programming (BILP) is
used to optimize the choice of FMSO sets in each local subsystem.
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1. INTRODUCTION

Two of the main tasks of fault diagnosis are fault detection
and fault isolation. Fault detection consists in deciding
if a faults has occurred in the system or not. If a fault
has occurred, fault isolation consists in identifying the
component responsible of the fault (Zaytoon and Sayed-
Mouchaweh (2012)). Centralized fault diagnosis architec-
tures are sometimes prohibitive for large-scale intercon-
nected systems such as distribution systems, telecommuni-
cation networks, water distribution networks, fluid power
systems. Actually this type of systems require sensing,
processing and transmission of a large number of mea-
sured variables from various parts of the system. Some
centralized approaches aim at selecting the tests that are
currently needed. FlexDx, proposed by Krysander et al.
(2010b), is one of these. However, centralized architectures
can be very expensive and lack robustness for such large-
scale interconnected systems. Thereby, decentralized con-
trol of interconnected systems has been deeply analyzed
in the literature (Siljak (2011); Wang et al. (2017)) while
decentralized fault diagnosis is being dealt only recently.

A decentralized diagnosis architecture is often interesting
from a design point of view. It means that the design and
development of diagnosers can be associated with the sub-
systems design and development, meeting the traditional
organization in which the nominal functions are developed
in parallel and then integrated together. Such approach
has the advantage to consider diagnosis from the early
stages of design, meaning that diagnosis requirements are
better accounted for.

Researchers have developed several decentralized or dis-
tributed diagnosis schemes in the past, mostly in the dis-
crete event framework (Debouk et al. (2000); Pencolé and

Cordier (2005); Wang et al. (2007); Cordier and Grastien
(2007)). Pencolé and Cordier (2005) present a method
to provide efficient online diagnosis to detect and isolate
faults in large discrete event systems. This approach uses
a decentralized model of the system and does not require
a global model computation. Wang et al. (2007) propose
a hierarchical framework for discrete event systems using
architectures where local sites can issue several types of
diagnosis decisions about the presence or absence of each
fault including some conditional decisions. Cordier and
Grastien (2007) present a decentralized computation of
the diagnosis to avoid the state-explosion problem that
appears when dealing with large systems. This decentral-
ized representation relies on two independence properties:
state and transition-independence, which are important to
get a tractable representation of diagnosis in the context
of both decentralized and incremental approaches.

Decentralized diagnosis methods for continuous systems
have been proposed only recently. Zhang (2010) presents
a decentralized fault detection scheme for continuous sys-
tems where a fault detection estimator is designed for each
local subsystem by using local measurements and some
communicated information directly from interconnected
subsystems. However this approach is limited to a specific
class of large-scale nonlinear systems such as nonlinear
uncertain systems under certain assumptions. In Ferdowsi
et al. (2012), a decentralized fault diagnosis and prognosis
(FDP) methodology is proposed for large-scale systems
by using local fault detectors (LFD) or observers for
each subsystem based on the measured local states of the
subsystem alone for nonlinear continuous-time systems.
The disadvantage of this approach is that it requires up-
per bounds on modeling uncertainties and interconnection



functions to be known in nominal operating conditions to
construct detection thresholds.

The diagnoser architecture developed in this paper is com-
posed of optimally selected local diagnosers which work
with local models of their subsystems. Diagnosis ambigu-
ity among local diagnosers is resolved by a supervisory
diagnoser at a higher level. This architecture is a natural
match to the systems engineering process which proceeds
with a functional decomposition of a system into sub-
systems. The architecture is hierarchically scalable, and
implements diagnosis based on Analytical Redundancy
Relations (ARRs). The approach to ARR generation and
implementation adopted in the architecture is presented.

This work resumes the work of Chanthery et al. (2016)
and it must be considered as a direct continuation. In
a similar way, the level of diagnosability deployed can
be dynamically changed depending upon fault manage-
ment requirements. This feature is known as isolation
on request (Chanthery et al. (2016)). The algorithm also
inherits the property that was demonstrated in Chanthery
et al. (2016) that assesses that decentralized diagnosis with
ARRs has equivalent diagnosability properties as a central-
ized diagnoser. Nevertheless, the proposed algorithm gains
efficiency over the algorithm of Chanthery et al. (2016)
by taking benefit of the concept of FMSO set introduced
in Pérez et al. (2016). As emphasized in Pérez et al.
(2016), FMSO sets are preferred to Minimal Test Equation
Supports (MTES) (Krysander et al. (2010a)) because even
if MTES are a better solution to develop more powerful
tests, they are not suited for minimizing the information
shared by subsystems and the number of tests. It aims
at optimizing the number of tests implemented for each
subsystem while still guarantying maximal diagnosability,
which is achieved by solving an optimization BILP (Binary
Integer Linear Programming) problem for every subsystem
(Sierksma and Zwols (2015); Vanderbei (2001)).

This paper is structured as follows: in section 2, some
well known concepts of the structural approach are sum-
marized and the notion of Fault-Driven Minimal Struc-
turally Overdetermined (FMSO) set is presented. Section
3 presents some notions for decentralized fault diagnosis
and different types of decentralized FMSO sets are in-
troduced. Section 4 explains how to design the proposed
decentralized diagnoser using a BILP problem formulation
for local FMSO sets selection. The attitude determination
and control system (ADCS) of a low earth orbit (LEO)
satellite is then used to illustrate the application of the
approach in section 5. Finally, a conclusion ends the paper.

2. BACKGROUND THEORY

Structural analysis allows to obtain structural models that
are very useful for the design of model based diagnosis
(MBD) systems. The main assumption is that each system
component is described by one or several constraints,
thereby, violation of at least one constraint indicates that
the system component is faulty.

Let the system description consist of a set of ne equations
involving a set of variables partitioned into a set Z of nZ
known (or measured) variables and a set X of nX unknown
(or unmeasured) variables. We refer to the vector of known

variables as z and the vector of unknown variables as x.
The system may be impacted by the presence of nf faults
that appear as parameters in the equations. The set of
faults is denoted by F and we refer to the vector of faults
as f.

Definition 1. (System). A system, denoted Σ(z, x, f) or Σ
for short, is any set of equations relating z, x and f. The
equations ek(z, x) ⊆ Σ(z, x, f), k = 1, . . . , ne, are assumed
to be differential or algebraic in z and x.

Consider the illustrative example shown in Table 1 for
which the system Σ(z, x, f) is composed of six equations
e1 to e6 relating the known variables Z = {z1, z2}, the
unknown variables X = {x1, x2, x3, x4, x5} and the set of
system faults F = {f1, f2, f3} besides a,b,c are constant
parameters.

Relation Expression

e1 ẋ3 = ex3 − a
e2 x23 = bẋ4 + f1
e3 z1 = x4
e4 z2 = x1 + b2 + x4
e5 ẋ1 = ex2 + x5
e6 ẋ3 = x4 + c+ f2

Table 1. Differential illustrative example.

The structural model of the system Σ(z, x, f), also denoted
with some abuse by Σ(z, x, f) or Σ in the following,
can be obtained abstracting the functional relations. This
abstraction leads to a bipartite graph G(Σ∪X ∪Z,A), or
equivalently to G(Σ ∪X,A), where A ⊆ A and A is a set
of edges such that a(i, j) ∈ A iff variable xi is involved in
equation ej .

A bipartite graph with vertices partitioned into the sets
Σ and X and edges A is written G = (Σ ∪ X,A). The
bipartite graph associated with the illustrative example is
shown in Figure 1.

Fig. 1. The bipartite graph for the illustrative example.

2.1 Analytical Redundancy Relations

The main concept for residual generation in the case
of continuous variable systems is analytical redundancy.
Analytical redundancy relations (ARR) are equations that
are deduced from an analytical model and only involve
measured variables.

Definition 2. (ARR for Σ(z, x, f)). Let Σ(z, x, f) be a sys-
tem. Then, a relation arr(z, ż, z̈, ...) = 0 is an Analytical
Redundancy Relation (ARR) for Σ(z, x, f) if for each z
consistent with Σ(z, x, f) the relation is fulfilled.

Definition 3. (Residual Generator for Σ(z, x, f)). A system
taking a subset of the variables z as input, and generating a
scalar signal arr, named residual, as output, is a residual



generator for the model Σ(z, x, f) if, for all z consistent
with Σ(z, x, f), it holds that lim

t→∞
arr(t) = 0.

ARRs can be used to check if the measured variables z
are consistent with the system model and as the basis of
residual generators used for diagnosis purposes. Each ARR
is sensitive to a set of faults and indicates that at least one
of these faults has occurred if the corresponding residual
is different from zero.

Several methods for computing sets with structural re-
dundancy in G(Σ ∪ X,A) are based on the Dulmage-
Mendelsohn (DM) canonical decomposition (Murota, 2000;
Dulmage and Mendelsohn, 1958). It results in a partition
of the system model Σ into three parts: the structurally
overdetermined (SO) part Σ+ with more equations than
unknown variables; the structurally just determined part
Σ0, and the structurally underdetermined part Σ− with
more unknown variables than equations (Blanke et al.,
2006).

Definition 4. (Structural redundancy). The structural re-
dundancy ρ

Σ′ of a set of equations Σ′ ⊆ Σ is defined as
the difference between the number of equations and the
number of unknown variables.

Definition 5. (PSO and MSO sets). A set of equations Σ
is proper structurally overdetermined (PSO) if Σ = Σ+

and minimally structurally overdetermined (MSO) if no
proper subset of Σ is overdetermined (Krysander et al.
(2010a)).

Definition 6. (Fault support). The fault support FΣ′ of a
set of equations Σ′ ⊆ Σ is defined as the set of faults that
are involved in the equations of Σ′.

Since PSO and MSO sets have more equations than vari-
ables, they can be used to generate ARRs and residuals.
MSO sets are of special interest since they are just overde-
termined, i.e. they have structural redundancy 1. However,
not all MSO sets are interesting to construct residual
generators, in particular those that are not impacted by
faults. Hence it is desirable to consider a fault-focused
concept.

A Fault-Driven Minimal Structurally Overdetermined
(FMSO) set can be defined as an MSO set of Σ(z, x, f)
whose fault support is not empty.

Let us define Zϕ ⊆ Z, Xϕ ⊆ X, and Fϕ ⊆ F as the set of
known variables, unknown variables involved in the FMSO
set ϕ, and its fault support, respectively. We then have the
following formal definition.

Definition 7. (FMSO set). A subset of equations ϕ ⊆
Σ(z, x, f) is an FMSO set of Σ(z, x, f) if (1) Fϕ 6= ∅ and
ρϕ = 1 that means |ϕ| = |Xϕ|+ 1, (2) no proper subset of
ϕ is overdeterminated.

We also define the concept of Clear Minimal Structurally
Overdetermined (CMSO) set as an MSO set of Σ(z, x, f)
whose fault support is empty.

Definition 8. (CMSO set). A subset of equations ψ ⊆
Σ(z, x, f) is a CMSO set of Σ(z, x, f) if (1) Fψ = ∅ and
ρψ = 1 that means |ψ| = |Xψ|+ 1, (2) no proper subset of
ψ is overdeterminated.

3. DECENTRALIZED DIAGNOSIS

3.1 Notions for Decentralized Fault Diagnosis

A decentralized diagnosis architecture assumes a decom-
position of the process in subsystems, each with its cor-
responding local diagnoser. The diagnostic task is coordi-
nated by a supervisory diagnoser to ensure the consistency
between local diagnosers. The supervisory levels may be
more than one, depending on how the subsystems are
recursively grouped together, hence forming a supervisory
hierarchy of embedded subsystems. In this work, one hy-
pothesis is that the decomposition in subsystems is guided
by functional constraints. The system is decomposed into
subsystems that implement primary functions and are
then encapsulated to achieve higher level functions. The
subsystems at each level can hence be seen as aggregations
of subsystems of the directly lower level. An illustration of
such hierarchy is given in Figure 2. The diagnosis system
is decomposed into different local diagnosers which refer
to the subsystems of the complete system. The local diag-
nosers process local measurements independently one from
the others.

Fig. 2. Illustration of a decentralized diagnosis architec-
ture.

In the following, the global level refers to no decentral-
ization and, without loss of generality, we consider two
hierarchical levels, the so-called local level and hierarchical
level.

Let us consider the system Σ and define the following:

Definition 9. (Global FMSO set). A global FMSO set is
an FMSO set of Σ(z, x, f). The set of global FMSO sets is
denoted by Φ.

Now, let us define the concepts of detectable fault, and
isolable fault using the concept of FMSO set.

Definition 10. (Detectable fault). A fault f ∈ F is de-
tectable in the system Σ(z, x, f) if there is an FMSO set
ϕ ∈ Φ such that f ∈ Fϕ.



The concept of isolation is based on determining the set
of faults that can be isolated from a given fault.

Definition 11. (Isolable fault). Given two detectable faults
f and f ′ of F , f 6= f ′, f is isolable from f ′ if there exists
an FMSO set ϕ ∈ Φ such that f ∈ Fϕ and f ′ 6∈ Fϕ.

A decomposition of the system Σ into several subsystems
Σj,i is defined as a hierarchical organization of its equa-
tions on several levels as shown in Figure 3. Σj,i repre-
sents the ith subsystem at level j, with j = 1, ...,m and
i = 1, ..., nj . The equations contained in the set Πj,i are
equations that are only available at the jth level, because
of specific constraints, e.g. confidentiality, distance or dif-
ficult access, and they are therefore not available at the
lower levels. Figure 3 illustrates the decentralized diagnosis
architecture, each square with a dotted line corresponding
to a subsystem.

Fig. 3. Decentralized diagnosis architecture proposed.

Without loss of generality, this decomposition leads to
subsystems denoted Σj,i(zj,i, xj,i, fj,i), with j = 1, ...,m
and i = 1, ..., nj , where zj,i is the vector of known variables
in Σj,i, xj,i the vector of unknown variables in Σj,i and fj,i
refers to the vector of faults in Σj,i. The set of unknown
variables Xj,i, known variables Zj,i, and faults Fj,i of Σj,i,
are defined as the variables of X, Z, and F respectively,
that are involved in the subsystem Σj,i.

Definition 12. (Local variables). The set of local variables
of subsystem Σj,i, denoted X l

j,i, is defined as the subset of
variables of Xj,i that are only involved in the subsystem
Σj,i:

X l
j,i = Xj,i\(

⋃
k=1,...,m
l=1,...,nk

(Xj,i ∩Xk,l)) with (k, l) 6= (j, i)

(1)

Definition 13. (Shared Variables). The set of shared vari-
ables of subsystem Σj,i, denoted as Xs

j,i, is defined as:

Xs
j,i = Xj,i\X l

j,i (2)

The set of shared variables of the whole system Σ is
denoted by Xs. It includes the set of variables involved
at least in two subsystems.

3.2 Decentralized FMSO Sets

This section is based on the concept of Fault-Driven Min-
imal Structurally Overdetermined (FMSO) set proposed
in the previous section and defines special types of FMSO
sets to decentralized diagnostic design.

Definition 14. (Local FMSO set). ϕ is a local FMSO set
of Σj,i(zj,i, xj,i, fj,i) if ϕ is an FMSO set of Σ(z, x, f) and
if ϕ ⊆ Σj,i, Xϕ ⊆ Xj,i and Zϕ ⊆ Zlj,i. The set of local

FMSO sets of Σj,i is denoted by Φlj,i. The set of all local

FMSO sets is denoted by Φl =
⋃

j=1,...,m
i=1,...,nj

Φlj,i.

Obviously, a local FMSO set for any subsystem Σj,i is also
an FMSO set of Σ, hence a global FMSO set.

We now define shared FMSO sets for a subsystem Σj,i
by considering shared variables as known variables and
computing FMSO sets. FMSO sets including equations
with shared variables are called shared FMSO sets.

Definition 15. (Shared FMSO set). ϕ is a shared FMSO
set of subsystem Σj,i(zj,i, xj,i, fj,i) if ϕ is an FMSO set

of Σ̃j,i(z̃j,i, x̃j,i, f̃j,i), where z̃j,i is the vector of variables

in Z̃j,i = Zj,i ∪ Xs
j,i, x̃j,i is the vector of variables in

X̃j,i = X l
j,i, and f̃j,i = fj,i. The set of shared FMSO sets

for Σj,i is denoted by Φsj,i. The set of all shared FMSO
sets is denoted by Φs =

⋃
j=1,...,m
i=1,...,nj

Φsj,i.

From the above definition, a shared FMSO set ϕ for
subsystem Σj,i(zj,i, xj,i, fj,i) is such that ϕ ⊆ Σj,i, Xϕ ⊆
X l
j,i, Zϕ ∩Xs

j,i 6= ∅, and Zϕ ⊆ (Zj,i ∪Xs
j,i).

Definitions 14 and 15 can also be applied to CMSO sets to
define local CMSO sets Ψl

j,i and shared CMSO sets Ψs
j,i.

The set of all shared CMSO sets is denoted by Ψs.

Definition 16. (Local CMSO set). ψ is a local CMSO set
of Σj,i(zj,i, xj,i, fj,i) if ψ is an CMSO set of Σ(z, x, f) and
if ψ ⊆ Σj,i, Xψ ⊆ Xj,i and Zψ ⊆ Zlj,i. The set of local

CMSO sets of Σj,i is denoted by Ψl
j,i. The set of all local

CMSO sets is denoted by Ψl =
⋃

j=1,...,m
i=1,...,nj

Ψl
j,i.

Definition 17. (Shared CMSO set). ψ is a shared CMSO
set of subsystem Σj,i(zj,i, xj,i, fj,i) if ψ is an CMSO set

of Σ̃j,i(z̃j,i, x̃j,i, f̃j,i), where z̃j,i is the vector of variables

in Z̃j,i = Zj,i ∪ Xs
j,i, x̃j,i is the vector of variables in

X̃j,i = X l
j,i, and f̃j,i = fj,i). The set of shared CMSO sets

for Σj,i is denoted by Ψs
j,i. The set of all shared CMSO

sets is denoted by Ψs =
⋃

j=1,...,m
i=1,...,nj

Ψs
j,i.

4. OPERATIONAL PROCEDURE FOR
DECENTRALIZED DIAGNOSIS

The decentralized diagnoser architecture developed in this
section, illustrated by Figure 3, is composed of hierar-



Algorithm 1. Decentralized Diagnoser Design.

Given : Σj,i(zj,i, xj,i, fj,i), j = 1, ...,m , i = 1, ..., nj
1: n0 = 1, E0,1 = ∅; . Init part
2: for j ← 1 to m do . Main part
3: ∆j,i ← Compute subsystems corresponding to level
j − 1 that have links to subsystem i at level j;

4: for i← 1 to nj do
5: Πj,i ← Load additional equations for Σj,i;
6: Σj,i = Πj,i ∪ (

⋃
i∈∆j,i

Ej−1,i) ;

7: Φlj,i ← Compute local FMSO sets of Σj,i;
8: Execute an optimal selection of computed

FMSO sets by solving a BILP problem as presented
in Subsection 4.2

9: Compute ARRs for Σj,i from selected FMSO
sets

10: ARRj,i ← Compute analytical residual genera-
tors of Σj,i;

11: if there is any fault f ∈ Fj,i not detectable or
not isolable with the ARRs computed so far then

12: Φsj,i ← Compute shared FMSO sets of Σj,i;
13: Ψs

j,i ← Compute shared CMSO sets of Σj,i;
14: Ej,i = {e ∈ Σ/e ∈ Φsj,i ∪Ψs

j,i};
15: end if
16: end for
17: end for

Result : Near-optimal distribution of ARRs on the hierar-
chy of subsystems that guarantee maximal fault isolability.

chically ordered diagnosers based on ARRs which are
generated from the FMSO sets obtained for each system
at each level. Diagnosis ambiguity among diagnosers of
the same level, if any, is resolved by the diagnosers at
higher levels. This architecture is a natural match to the
systems engineering design process which proceeds with
a functional decomposition of the system into subsystems
that implement primary functions and are then encapsu-
lated to achieve higher level functions. This architecture is
hierarchically scalable.

4.1 An Algorithm for Decentralized Diagnoser Design

The diagnoser design is done offline and is implemented
along the steps of algorithm 1. These steps are performed
for each subsystem Σj,i i = 1, . . . , nj at each level j =
1, . . . ,m, with a nested loop. For the first level, the sub-
systems are formed according to functional, geographical
or privacy constraints. If the faults are not detectable or
isolable at this level, aggregated subsystems are developed
at level two and so on until the diagnosability objective is
achieved.

At line 1, n0 and E0,1 are initial conditions for a virtual
level 0 that allows us apply the recursive operations for
the following levels.

The diagnosis hierarchy is constrained by the possible
inter-level communication, which is defined by a set of
bipartite graphs.

Definition 18. (Inter-level communication). The inter-level
communication is represented by a set of m − 1 bipartite
graphs Sjj−1(Njj−1,L

j
j−1), j = 2, . . . ,m. Sjj−1(Njj−1,L

j
j−1)

is a bipartite graph such that Njj−1 = Nj−1 ∪ Nj , where:

• Nj−1 = {nj−1,i, i = 1, . . . , nj−1} is a set of nodes cor-
responding to the subsystems Σj−1,i, i = 1, . . . , nj−1,
of level j − 1,

• Nj = {nj,i, i = 1, . . . , nj} is a set of nodes correspond-
ing to the subsystems Σj,i, i = 1, . . . , nj , of level j,

• Ljj−1 = {lν,ξ, ν = 1, . . . , nj−1, ξ = 1, . . . , nj} is a
set of edges such that the edge lν,ξ between node
nν ∈ Nj−1 and nξ ∈ Nj exists if communication is
possible between subsystem Σj−1,ν at level j − 1 and
subsystem Σj,ξ at level j.

In Algorithm 1, the inter-level communication is taken into
account by ∆j,i (line 3), where ∆j,i = {Σj−1,ν/lν,i exists

in Sjj−1(Njj−1,L
j
j−1)}, for j = 2, . . . ,m, and ∆1,i = ∅. In

other words, for j = 2, . . . ,m representing the level, ∆j,i

contains all subsystems of level j− 1 that have connection
with subsystem Σj,i, i.e. subsystem i at level j.

Line 3 is a for instruction on the levels from 1 to m. At
line 4, the set ∆j,i is determined as defined above.

Then a loop is started that covers all subsystems from
i = 1 to i = nj of level j (lines 4 to 16). The equa-
tions contained in the set Πj,i in Algorithm 1 (line 5)
are additional equations that are only available at level
j for forming subsystem Σj,i. The restriction on these
equations may originate from different constraint types,
e.g. confidentiality, distance and difficult access and they
are not therefore available at level j − 1. Πj,i is loaded
at line 5 and the new subsystem Σj,i is formed at line 6
from the additional equations Πj,i and union of equations
Ej−1,i coming from the shared FMSO and CMSO sets of
the connected subsystems (those in ∆j,i) of the previous
level.

Local 1 FMSO sets for Σj,i are computed at line 7 in
Algorithm 1, then an optimal selection is made by solving
the binary integer linear programming (BILP) problem
presented in Subsection 4.2 (line 8). With selected FMSO
sets, the set of ARRs for subsystem Σj,i is computed at
line 9. Shared FMSO and CMSO sets of subsystem Σj,i
are computed at lines 12 and 13 only if the faults of the
”children” subsystems of the previous level are not isolable
at this level (line 11). The equations included in shared
FMSO and CMSO sets, denoted Ej,i (line 14), are to be
sent to the next level. The output of Algorithm 1 is a
near-optimal distribution of FMSO sets and associated
ARRs that guarantee to isolate all the isolable faults of
the system.

Property 1. Algorithm 1 computes recursively, by devel-
oping the necessary levels, the set of optimal analytical
residual generators that guarantee to isolate all the faults.

Proof 1. The proof of Property 1 relies on the results of
Chanthery et al. (2016), more particularly Proposition 1.

The diagnoser runs online as a hierarchical residual gen-
erator bank based on the local FMSO sets generated for
each subsystem at each level. A standard fault signature
matrix is used to identify the faults. Let us notice that
the computations start with the residuals of the first level
and they are carried out at the higher level only if all the

1 Note that ”local” refers to a given subsystem as defined in
Definition 14 but this subsystem may be at any level of the hierarchy.



faults are not isolable at the current level. This is the idea
of isolation on request (Chanthery et al. (2016)).

4.2 Problem Formulation of Local FSMO sets Selection

Within the set of local FMSO sets computed, we derive an
integrated approach to determine a minimal set of FMSO
sets that guarantee maximum isolability for subsystem
Σj,i. The isolability degree is defined as the number of
pairs of faults that are isolable.

Let Zϕi be a boolean variable that shows whether a FSMO
set ϕi is selected or not. Given fϕikl as a boolean variable
that indicates if the fault fk is isolable from the fault fl by
using the FMSO set ϕi and let ekl be a boolean variable
that indicates if the two faults fk and fl are isolable.

The objective is to maximize the isolability minimizing
the number of local FMSO sets Φlj,i. α is the weighting
between the maximization of the isolability and the mini-
mization of the number of chosen FMSO sets. The BILP
model is the following:

max(α
∑

ekl
(fk,fl)∈Fj,i

− (α− 1)
∑

Zϕi

ϕi∈Φl
j,i

) (3)

Subject to:

∑
ϕi∈Φl

j,i

fϕiklZϕi ≥ ekl (4)

Zϕi
∈ {0, 1} for ϕi ∈ Φlj,i, (k, l) ∈ Fj,i, α ∈ [0, 1] (5)

Equation (3) is the objective function of the BILP problem
for selecting local FMSO sets. The constraint (4) is used to
guarantee the maximum possible isolation for subsystem
Σj,i, while (5) limits the solution space of the problem.

5. CASE STUDY: DECENTRALIZED DIAGNOSIS
FOR AN ADCS OF A SATELLITE LEO

Low Earth orbit (LEO) satellites have geocentric orbits
ranging in altitude from 180 km - 2000 km. This section
presents the application of the decentralized fault diag-
nosis method on the Attitude Determination and Control
System (ADCS) of a Low Earth Orbit satellite. This work
is an improvement of the work presented in Chanthery
et al. (2016) and Pérez et al. (2015).

The ADCS is composed by two subsystems: the attitude
determination subsystem (ADS) and the attitude control
subsystem (ACS).

The attitude determination subsystem (ADS) is composed
of sensors which sense the rate and angular position
of the satellite. An attitude estimate is achieved using
a sensor fusion for rate and vector sensors (Pirmoradi
et al. (2009)), which is provided as input to the attitude
control subsystem (ACS). The ACS is composed of the
control signal calculation and the actuators which provide
the stabilizing and/or control torque to the satellite.
The satellite under study is assumed to be a three-axis
stabilized satellite in orbit around the earth. Here, reaction

wheels and magnetorquers are considered as actuators
(Niemann (2003)).

The structure of the ADCS is abstracted as a set of
constraints on a set of variables. Related information of
such modelling can be founded in (Zuliana and Renuganth
(2010); Pirmoradi et al. (2009)). Most constraints are
composed of three behavioral relations corresponding to
three axes. From the set of variables of the system, the
sensed quantities form the set of observed variables with all
the rest assumed to be unobserved. The general procedure
for the diagnoser design starts with assuming a small set
of observed quantities, and can be optionally expanded to
fulfill diagnosis and isolation capability specifications.

The global model Σ(z, x, f) for this system is composed of
42 equations e1 to e42 that relate the set of known variables
Z, the set of unknown variables X and the set of system
faults F (Chanthery et al. (2016); Pérez et al. (2015)).

The natural decomposition of the ADCS system is an
attitude control subsystem (ACS) as Σ1,1 and an attitude
determination subsystem (ADS) as Σ1,2 as illustrated in
Figure 4.

Fig. 4. Architecture of the decentralized diagnoser de-
signed for the ADCS system.

The equations representing the dynamics of the satellite
(DYN) denoted Π2,1 are considered as additional equations
that are only available at level 2 for forming subsystem
Σ2,1. The restriction on the (DYN) equations may orig-
inate from different constraint types, e.g. confidentiality,
distance and difficult access and they not therefore avail-
able at level 1. The model decomposition of the ADCS
system into subsystems Σ1,1 and Σ1,2 is given in Table 2.

Additional equations referring to the subsystem Σ2,1 are
the following :

Π1,1 = Π1,2 = {∅} (6)

Π2,1 = {e25, e26, e27} (7)

The hierarchical decomposition of this system is shown
in Figure 4, where in level 1, the 2 subsystems Σ1,1 and
Σ1,2 are composed 21 equations each one, in level 2 the
necessary information with additional 3 equations in Π2,1

is grouped in subsystem Σ2,1.

5.1 Global FMSO Sets Computation

As a reference, the global FMSO sets are computed for
the whole ADCS system considered globally in order to
determine maximal fault isolation.



ACS = Σ1,1 =



Σ1,1 = {e1, e2, e3, e4, e5, e6, e7, ...e18}
F1,1 = {frwx , frwy , frwz}
X1,1 = {Tx, Ty , Tz , RWamx , RWamy , RWamz ,

dRWamx , dRWamy , dRWamz ,

RWωx , RWωy , RWωz}
Z1,1 = {φref , θref , ψref , Tcx, Tcy , Tcz ,Wωxs ,

Wωys ,Wωzs}

ADS = Σ1,2 =



Σ1,2 = {e22, e23, e24, e25, e26, e27, e38...e42}
F1,2 = {fvsx , fvsy , fvsz , frsx , frsy , frsz}
X1,2 = {Tx, Ty , Tz , RWamx , RWamy , RWamz ,

ψ̇est, θ̇est, φ̇est, ψest, θest, φest, ψ̇,

θ̇, φ̇, ψ, θ, φ, ψ̇est1, θ̇est1, φ̇est1, ψest1,

θest1, φest1, ψ̇est2, θ̇est2, φ̇est2, ψest2,

θest2, φest2, ψ̇est3, θ̇est3, φ̇est3,

ψest3, θest3, φest3}
Z1,2 = {ψ̇s, θ̇s, φ̇s, ψs, θs, φs}

Table 2. Model decomposition of the ADCS
system into subsystems. Σ1,i (i = 1, 2).

ADCS system Global Diagnoser

Max fault isolability [fvsx ],[fvsy ],[fvsz ],
[frsx ],[frsy ],[frsz ],[frwx ],[frwy ],[frwz ]

FMSO sets 2448 FMSO sets

Table 3. FMSO sets for the Global System.

According to the results of Table 3, it can be seen that
all faults can be detected and isolated with a centralized
diagnoser for the ADCS system with 2448 FMSO sets.

5.2 Decentralized Diagnoser Design

Now, the Algorithm 1 for the decentralized diagnoser
design is applied. This algorithm computes two levels (j =
1, 2) to achieve the diagnosticability objective, with two
subsystems (i = 1, 2) for the first level and one subsystem
(i = 1), for the second level. The design is explained in the
following steps:

0.- As a previous step, with the information of Table 2, it
is possible to determine the vector of shared variables for
Σ1,1 and Σ1,2 as:

Xs
1,1 = Xs

1,2 = {Tx, Ty, Tz, ψest, θest, φest,
RWamx , RWamy , RWamz}, (8)

This vector is used to compute the shared FMSO sets.

1.- First, local FMSO sets are calculated for the subsystem
Σ1,1 of level 1. In Σ1,1, 3 local FMSO sets are found.

Then, the BILP optimization program selects 2 FMSO sets
(between 3 possible sets) that guarantee full diagnosability
for the 3 faults: frwx

, frwy
and frwz

with no additional
information. Those results are shown in Table 4.

Σ1,1

Max fault isolability [frwz ],[frwy ],[frwx ]
Local FMSO sets selected Φl

1,1 = {ϕ11, ϕ12}
ϕ11 = {e6, e9, e12, e15}
ϕ12 = {e5, e8, e11, e14}

Table 4. Subsystem Σ1,1: selected local FMSO
sets.

2.- No Local FMSO sets are found for subsystem Σ1,2 of
level 1. Φl1,2 = ∅
The set of local FMSO sets for Σ1,2 is empty. Hence, with
no additional information, no fault can be diagnosed at
level 1 for this subsystem.The conclusion is the following
at this stage: if frwx

, frwy
or frwz

occurs, it is detected and
isolated at level 1, with no need of further investigation.
The 6 remaining faults require to consider the upper
level: they are detected at level 1, but need additional
information available at a higher level to be isolated.

3.- For subsystems Σ1,1 and Σ1,2, shared variables are now
assumed to be known and shared FMSO sets and shared
CMSO sets are computed. Results are given in Tables 5
and 6.

Σ1,1

Max fault isolability [frwz ],[frwy ],[frwx ]
Shared FMSO sets Φs

1,1 = {ϕ4, ϕ5, ϕ6, ϕ7, ϕ8, ϕ9}
ϕ4 = {e6, e18}, ϕ5 = {e5, e17}
ϕ6 = {e5, e8}, ϕ7 = {e4, e16}
ϕ8 = {e4, e7}, ϕ9 = {e6, e9}

Shared CMSO sets Ψs
1,1 = {ψ1, ψ2, ψ3, ..., ψ9}

ψ1 = {e1},ψ2 = {e2}, ψ3 = {e3}
ψ4 = {e6, e17}, ψ5 = {e8, e17}
ψ6 = {e9, e18}, ψ7 = {e10, e13}
ψ8 = {e11, e14}, ψ9 = {e12, e15}

Table 5. Subsystem Σ1,1: Φs1,1, Ψs
1,1.

Σ1,2

Max fault isolability [fvsx ],[fvsy ],[fvsz ]
Shared FMSO sets Φs

1,2 = {ϕ10, ϕ11, ϕ12..., ϕ20}
ϕ10 = {e21, e22, e23, e24, e28, e29, e30}
...
ϕ20 = {e19, e20, e21, e22, e28}

Shared CMSO sets Ψs
1,2 = {∅}

Table 6. Subsystem Σ1,2: Φs1,2, Ψs
1,2.

4.- Then, according to Algorithm 1, at level 2, the subsys-
tem Σ2,1 is built because all the faults are not yet isolable:
this is the idea of isolation on request.

For this purpose, shared FMSO and CMSO sets of the
children systems of level 1 are considered together with
the additional equations of Π2,1 to form Σ2,1 as shown in
Equation 9.

Σ2,1 = {e1, e2, ..., e24, e28, e29, e30}
∪{e25, e26, e27} (9)

Local FMSO sets are calculated for the subsystem Σ2,1 at
level 2. With the information received, 2448 local FMSO
sets are calculated at this stage. Then, the BILP optimiza-
tion program selects 3 FMSO sets that guarantee isolation
of the 6 remaining faults: [fvsx ],[fvsy ],[fvsz ],[frsx ],[frsy ]

and [frsz ] as given in Table 7 2

2 The number of FMSOs computed at this level is the same as
the number of FMSOs calculated with the centralized approach
because in this case study, full isolation requires to aggregate all
the subsystems. This is not a problem because these computations
are performed offline. Only 3 of these FMSO are then selected to be
implemented online.



Σ2,1

Max fault isolability [frsx ],[frsy ],[frsz ],[fvsx ],[fvsy ],[fvsz ]
Local FMSO sets selected Φl

2,1 = {ϕ211, ϕ212, ϕ213}
ϕ211 = {e24, e27, e30}
ϕ212 = {e23, e26, e29}
ϕ213 = {e3, e4, e5, e9}

Table 7. Subsystem Σ2,1: selected local FMSO
sets.

5.- Based on the results obtained using Algorithm 1, 2
local ARRs for subsystem Σ1,1 are enough to isolate frwz

,
frwy

and frwx
. Then, the 3 ARRs computed from the local

FMSO sets selected of Σ2,1 can complete the isolation for
the faults of the ADS fvsx ,fvsy ,fvsz , frsx ,frsy and frsz , as
shown in Table 8.

Faults

frwzfrwyfrwxfvsx fvsy fvsz frsx frsy frsz
arr1 ∈ ARR1,1 X
arr2 ∈ ARR1,1 X

arr4 ∈ ARR2,1 X X
arr5 ∈ ARR2,1 X X
arr6 ∈ ARR2,1 X X X

Table 8. detection capability for ARRs issued
from the decentralized diagnoser for the ADCS

system.

6. CONCLUSION

This paper proposes a design algorithm for decentralized
fault diagnosers for systems that have constraints of confi-
dentiality, distance or limited access to some information.
The algorithm uses the notion of inter-level communi-
cation and optimal selection using a BILP program for
each subsystem at each level. The algorithm computes
recursively, by developing the just-needed levels, all the
analytical residual generators that guaranty to isolate all
the faults. Despite the fact that this algorithm does not
guarantee that the number of FMSO sets selected are a
global minimum, it guarantees maximal fault isolability
considering information restrictions at each level. The
decentralized diagnoser design has been tested for a real
case study of Low Earth Satellite. The advantage of the
decentralized architectures comes with the possibility of
developing the local diagnosers following the traditional
function by function design organization, the fact that
the subsystem models do not need to be exposed and the
isolation on request property.
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