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Abstract

Diagnosis is the reasoning leading to the identi-
fication of the cause of a problem. Given a sys-
tem instrumented with a set of sensors, diagnosis
can be performed thanks to diagnosis tests that are
designed from the system model. The tests only
involve measured variables and can be checked
with the measured values. The configuration of
tests that pass and tests that do not pass provides
a way to isolate the faults. However the fact that
all faults are discriminable, i.e. the system is fully
diagnosable, depends on the set of tests and hence
of the sensors that are placed on the system. The
number of tests that can be designed is gener-
ally huge and more than sufficient to achieve full
or maximal diagnosability. This paper addresses
several variants of the problem of selecting the
set of tests/sensors so that diagnosability is maxi-
mal and a cost criterion is minimized. The variant
problems are formalized in the integer program-
ming framework.

1 Introduction
Since the end of the last century, the industrial world has
continued to evolve and with this evolution, the systems and
industrial processes are more complex and efficient. The
growing complexity of industrial systems that have become
increasingly demanding in terms of reliability, backup con-
tact performance and availability has given rise to increasing
interest of diagnosis.
As a result, companies are trying to develop and implement
diagnosis and maintenance systems to ensure the reliability
and availability of installations.
The effectiveness of the diagnosis system depends on the
relevance of the information received on the system to be
diagnosed through sensors. The efficiency of sensors can be
evaluated with the level of diagnosability that can achieved,
i.e. which faults are discriminable (or isolable) and which
are not. In this paper, we consider that the system is
composed by a set of interconnected components and that
faults are associated to components. Diagnosis is generally
achieved thanks to a set of diagnosis tests that are checked
against the measures. Diagnosability refers to two proper-
ties: detectability, that means that a fault can be detected by
at least one test; and isolability, that means that each fault
has its own way to answer the tests.

Which diagnosis tests and how many of them are achiev-
able depends on the sensors and their locations. In practice,
diagnosis systems are forced by the cost of sensors and by
the computational cost related to the number of diagnosis
tests to be checked that can be prohibitive for on-line
applications. Hence, optimizing the cost of sensors and/or
tests while still guarantying a good level of diagnosability
is essential in many application domains.

To achieve this, optimization methods can be put in
place. In this paper, we consider five increasingly complex
optimization problems. Problem I simply addresses the
selection of a minimal number of tests guarantying full
diagnosability. By full diagnosability, we mean that any
fault in any component can be distinguished from any
fault in another component. Problem II addresses the
selection of a set of minimal cost sensors, selected among
a set of possible sensors, that guaranty full diagnosability.
This latter problem is obviously more difficult because
sensors do not influence diagnosability directly but through
the tests that can be actually implemented. Problem III
considers that full diagnosability may not be achievable
with the possible sensors but minimal cost selection must
achieve maximal diagnosability. Problem IV maximizes
components diagnosability when sensors themselves can
undergo faults. Finally, Problem V requires that sensor
faults are also diagnosable in addition to component faults.
It maximizes diagnosability in this context. The two later
problems hence provide solutions to robust optimal sensor
selection problems. The five problems are formalized in an
integer programming framework.

The paper is structured as follows. Section 2 provides
an overview of the state of the art and positions the contri-
bution. In Section 3, the notations and definitions used in
the paper are presented. Section 4 formalizes the five op-
timization problems in an integer programming framework.
Section 5 proposes an evaluation on an academic example,
then on two real examples, a LEO satellite case study and
a water desalinator. Finally, section 6 discusses the results
and concludes the paper.

2 Related work
The objective of this paper is to propose a formalization of
five increasingly complex optimization problems related to
diagnosability. The optimization targets the cost of sensors
and/or the number of diagnosis tests.



The optimal test selection problem, as known in the litera-
ture, aims at minimizing the cost of the tests while satisfying
some isolability constraints. This problem is obviously re-
lated to the sensor placement problem, which searches the
minimum cost sensor configuration that satisfies a given set
of fault diagnosis specifications. However sensor selection
is a more difficult problem because sensors do not influence
diagnosability directly but through the tests that can be ac-
tually implemented.

In the literature, optimal test selection is often associ-
ated to the problem of test prioritization that corresponds to
choosing the next best test or measurement to disambiguate
a faulty situation. In practice, this is an integral part of the
troubleshooting task. This domain has received a lot of at-
tention [13; 14; 4].

Solutions have been proposed through heuristic optimiza-
tion techniques [12; 15], focusing on diagnosis ambiguity
reduction as the main optimization criterion, which leads to
adopt heuristics based on information theory [8]. The meth-
ods known as diagnosis Test Prioritization Techniques are
based on the Information Gain heuristic. They maximize
the diagnosis information gain per test and increase the rate
at which diagnosis quality improves [7] but they are often
limited by their complexity. Nevertheless, we can mention
the gReedy diagnosis Prioritization by ambiguiTy Reduc-
tion (RAPTOR) method [6] as a instance that achieves to
restrain this issue.

Some authors address the sensor selection problem [18].
Several papers adopt the structural analysis framework [2;
5; 10], which is in line with this paper. In particular, [9]
uses a structural model of the system to compute all min-
imal sensor sets that make faults isolable from each oth-
ers. [19] uses an alternative structural model decomposition,
based on gathering equations that can not be isolable. [11]
presents an approach for diagnosability analysis and sensor
placement based on genetic algorithms.

The problem of optimal test selection can also be for-
mulated as a combinatorial optimization problem. Such
formulation has already been proposed using binary inte-
ger programming [1; 17; 16], which is in line with the ap-
proach adopted in this paper. However, this approach has
not been applied to maximize the robust optimal selection
problem, when sensors themselves can be faulty and sensor
faults must be diagnosable. In other words, Problems I and
II find solutions in the litterature. For these problems we
contribute with a new compact binary integer programming
formulation. Problems III, IV, and V solve variants of the
diagnosability maximization problem.

3 Notations and definitions
Let us consider a system Σ composed of a set C of nc

components and instrumented with a set of sensors S.
Assume that a set T of N binary diagnosis tests is available
for this system. The output of a test is either 0 when the test
passes or 1 when it does not pass.

Every test Ti, i = 1, . . . , N , covers a subset of compo-
nents of 2T that form the component test support denoted
by SuppC(Ti) and it is supported by a subset of sensors of
2S that form the sensor test support denoted by SuppS(Ti).
This means that:

• all the sensors of SuppS(Ti) must be installed on the
system for the test Ti to be available,

• when the test Ti does not pass, one of the components
of SuppC(Ti), or SuppS(Ti) if sensors are assumed
to undergo faults, is faulty.

The matrix that crosses tests on lines and components
and sensors on columns is called the covering matrix and is
denoted by M . M is the concatenation of two matrices:

• MC is the submatrix that covers the set of components
C,

• MS is the submatrix that covers the set of sensors.

Let us denote by M(i,j), i = 1, . . . , N , j = 1, . . . , nC +

nS , the entry of M at the ith line and jth column. The
entries of MC and MS are defined similarly as MC(i,j),
i = 1, . . . , N , j = 1, . . . , nC , and MS(i,j), i = 1, . . . , N ,
j = 1, . . . , nS , respectively. cj denotes the column corre-
sponding to component Cj and sk denotes the column cor-
responding to sensor Sk.

In the matrix M an entry at "1" on line i means that the
corresponding component / sensor belongs to SuppC(Ti) /
SuppS(Ti). This is illustrated in Table 1.

C1 C2 · · · · · · CnC
S1 · · · SnS

T1 0 1 · · · · · · 1 1 · · · 1
T2 1 0 · · · · · · 0 1 · · · 0
... · · · · · · · · · · · · · · · · · · · · · · · ·
... · · · · · · · · · · · · · · · · · · · · · · · ·

TN 1 0 · · · · · · 0 1 · · · 1

Table 1: Covering Matrix.

Selecting a set of tests among the N available tests and a
set of sensors among the nS available sensors comes back
to choosing a submatrix M∗ composed of a subset of lines
and columns of M . The corresponding submatrices of MC

and MS are denoted by M∗
C and M∗

S , respectively.

Definition 3.1 (Instrumented test). A test is said to be in-
strumented for a submatrix M∗ if all the sensors required
for the test are available in M∗ and free of faults. n∗

C is the
number of instrumented tests for the submatrix M∗.

Definition 3.2 (Detectability). The fault fj of component cj
is said to be detectable if the column j of MC has at least
one ’1’.

Definition 3.3 (Isolability). A component cj is said to be
isolable from a component ci if the columns i and j of MC

are different.

Let us focuse on component faults and leave aside sensor
faults for now.

Definition 3.4 (Admissible matrix M∗). A matrix M∗ is
said to be admissible if the set of instrumented tests for M∗

provides the isolability for all pairs of components.

Property 3.5. M∗ is admissible if and only if M∗
C has nC

different columns and all tests required for this are instru-
mented.



Since the entries of the covering matrix M are binary, this
property can be formalized by:

N∑
k=1

|M∗
C(k, i)−M∗

C(k, j)| ≥ 1, (1)

∀(i, j) ∈ {1, ..., nC} , i ̸= j

Example Let us consider the covering matrix given in Ta-
ble 2 and assume that the sthree sensors are available, hence
all the tests T1 to T6 are instrumented.

C1 C2 C3 C4 C5 S1 S2 S3

T1 0 1 0 0 1 1 1 0
T2 1 0 1 1 0 0 1 0
T3 1 0 0 1 1 1 0 0
T4 1 1 1 1 0 1 1 0
T5 0 0 1 1 1 1 0 1
T6 1 0 1 1 0 1 1 0

Table 2: Full diagnosability covering matrix

We can notice that all the columns refering to components
are different, which means that all components are isolable.
In other words, the available tests guarantee full diagnos-
ability to the system. Now assume that sensor S3 is not
selected, then columns c1 and c4 are identical, hence com-
ponents C1 and C4 are not isolable anymore.

Our goal is to find a submatrix M∗ whose structure
guaranties full or maximal diagnosability to the system
while minimize some cost criterion.

4 Problem Formalization
There are several variants to formulate an optimal
test/sensor selection problem. We are interested in inves-
tigating integer programming formulations. In this section,
we hence provide the mathematical formulation of five vari-
ant problems that can be solved in the integer programming
framework. We consider the following hypotheses:

• Problems I and II assume that full diagnosability is
achievable and that sensors are not faulty,

• Problems III, IV, and V assume that full diagnosability
may not be achievable. In addition, Problems IV and
V relax the assumption that sensors cannot be faulty,
targeting a robust solution with respect to components
only and with respect to components and sensors, re-
spectively.

In all the problems, we do assume that all the tests are in-
strumented in M .

4.1 Integer Programming
In this section, we briefly introduce Integer Programming
(IP) that we use to solve all different formulations of our
problem.

An integer programming problem is a mathematical
optimization or feasibility program in which some or all of
the variables are restricted to be integers. In many settings
the term refers to Integer Linear Programming (ILP), in
which the objective function and the constraints (other than
the integer constraints) are linear. However, we have the

special case of 0-1 integer linear programming, which is an
integer linear program in which unknowns are binary.

4.2 Problem I: Optimal test selection with fault
free sensors

In this section, the goal is to minimize the number of tests
that guarantee full component diagnosability under the as-
sumption that sensors do not fail. In other words, the solu-
tion must provide an admissible matrix M∗.

Let us define the following variables:
• zi is a boolean variable associated to each test i ∈ T

such that:

zi =

{
1 if the test i is chosen
0 otherwise

• fikl is a parameter defined as follows:

fikl =


1 if the fault of component k

is isolable from the fault of
component l with the test i

0 otherwise

Problem I can be formalized as follows:

min
∑
i∈T

zi (2)

Subject to :∑
i∈T

fiklzi ≥ 1, for (k, l) ∈ C2 and k < l (3)

zi ∈ {0, 1} ∀i ∈ T (4)

Equation (3) verifies that components are 2 per 2 isolable.

Problem I amounts to the set covering problem (hitting
sets), a well-known NP-hard problem.

4.3 Problem II: Optimal sensor selection with
fault free sensors

In this section, we also consider that sensors do not fail. The
goal is now to minimize the cost of the used sensors, i.e. the
sensors that are required to obtain an admissible matrix M∗.

Besides the already defined parameters and variables, we
introduce new items as follows:

• αij is a boolean parameter such that:

αij =

{
1 if the test i uses the sensor j ∈ S
0 otherwise

• pj is the cost of sensor j.

Problem II can be formalized as follows:

min
∑
j∈S

pjyj (5)

Subject to :

yj ≥ zi for i ∈ T and j ∈ S s.t αij = 1 (6)



∑
i∈T

fiklzi ≥ 1, for (k, l) ∈ C2 and k < l (7)

yj ≥ 0, ∀j ∈ S (8)
zi ∈ {0, 1}, ∀i ∈ T (9)

Objective (5) represents the sum of the costs of selected
sensors. Constraints (6) impose to select all the sensors that
instrument a selected test. Constraints (7) ensure isolability
(covering constraint).

Let us notice that, for efficiency purposes1, the y′js are
coded as continuous variables in the program. In practice,
the r.h.s of inequality (6) is binary and, when equal to 1, it
forces the y′js to be equal to 1 and when equal to 0, the y′js
are forced to 0 by the minimization objective (5).

Note that Problem II is similar to the maximal covering
location problem [3], which is also NP-hard.

4.4 Problem III: Maximization of isolability with
fault free sensors

In this section, we assume the general case in which there
may not be a solution to ensure full isolability. In this case,
the solution provided by the solver must ensure maximal
isolability. We still have the concern of minimizing the
sensor cost. Thus, the problem becomes a bi-objective
optimization problem.

Problem III can be formalized as follows:

max(
∑
k,l

ekl − α
∑
j∈S

pjyj),∀(k, l) ∈ C2 (10)

Subject to:

yj ≥ zi for i ∈ T and j ∈ S s.t αij = 1 (11)∑
i∈T

fiklzi ≥ ekl, (k, l) ∈ C2, k < l (12)

yj ≥ 0, ∀j ∈ S (13)
0 ≤ ekl ≤ 1, l ∈ S, ∀k ∈ C (14)

zi ∈ {0, 1}, ∀i ∈ T (15)

In this formulation, variables ekl are used to obtain partial
isolability: ekl = 1 means that the fault of component k is
isolable from the fault of component l. Their sum is max-
imized by the objective function and variables ekl are in-
troduced as the r.h.s of constraints (12), which assures that
the required tests can be selected. aLet us notice that, for
efficiency purposes, the e′kls and y′js are coded as continu-
ous variables in the program. The explanation is the same
as in Problem II for the y′js. For the e′kls, it is the same
but for a maximization criterion. The l.h.s of inequality (12)
is binary: when equal to 0, it forces ekl to be equal to 0,
and when equal to 1, ekl is forced to 1 by the maximiza-
tion criterion (10). Note also that the isolability problem is
symmetric, thus ekl = elk.

In the objective function (10), α is a parameter that
weights the two considered criteria and allows us to set the
relative importance of the isolability criterion and the cost
criterion. Note that in the objective theory this method does

1Note that in recent solvers, it may not be more efficient.

not allow one to obtain the full Pareto front as the so-called
non supported solutions cannot be found by the weighted
sum objective. However the weighted sum method is largely
used in practice.

4.5 Problem IV: Maximization of robust
isolability w.r.t. component faults

In Problem IV, we consider another variant of the problem
where sensors may fail. We want however the output so-
lution to achieve maximal isolability for component faults
with minimum cost even when a single sensor fails.

We add a new element to our integer linear program:
• Ts is a parameter that denotes the set of tests instru-

mented by sensor s.

The optimization Problem IV becomes:

max(
∑
k,l

ekl − α
∑
j∈S

piyi), k ∈ C, l ∈ C (16)

Subject to:

yj ≥ zi for i ∈ T, j ∈ S s.t αij = 1 (17)∑
i∈T\Ts

fiklzi ≥ ekl, (k, l) ∈ C2, s ∈ S, k < l (18)

yj ≥ 0, ∀j ∈ S (19)
0 ≤ ekl ≤ 1, ∀l ∈ S, ∀k ∈ C (20)

zi ∈ {0, 1}, i ∈ T (21)

In Problem IV, a covering constraint (18) has been intro-
duced for each sensor, guarantying that the isolability set by
ekl is reached eventhough the sensor fails.

4.6 Problem V: Maximization of robust isolability
w.r.t. component and sensor fault

In Problem V, we yet consider another variant of the
problem. Like in Problem IV, one sensor may fail. How-
ever, we want the solution to achieve maximal isolability
for component and sensor faults with minimum cost.
Consequently, the index l now refers to components and
sensors (l ∈ (C ∪ S)) in constraints (24) and not only to
components like in Problem IV.

Problem V can be formalized as follows:

max(
∑
k,l

ekl − α
∑
j∈S

piyi), k ∈ C, l ∈ (C ∪ S) (22)

Subject to:

yj ≥ zi for i ∈ T, j ∈ S s.t αij = 1 (23)∑
i∈T\Ts

fiklzi ≥ ekl, k ∈ C, l ∈ (C∪S), s ∈ S, k < l

(24)
yj ≥ 0, ∀j ∈ S (25)

0 ≤ ekl ≤ 1, ∀l ∈ S, ∀k ∈ C (26)
zi ∈ {0, 1}, i ∈ T (27)



5 Implementation and validation
In the implementation of our mathematically formalized
problems, we used the Gurobi Optimizer with the Python
API. In what follows, we provide illustrative solutions to an
academic example and the solutions to two industrial prob-
lems.

5.1 Academic example
Let us consider a simple example where the number of com-
ponents nC , the number of sensors nS , and the number of
tests nT are all fixed at 9.

The covering matrix we consider is given in Table 3 (w.r.t.
components) and Table 4 (w.r.t. sensors).

C0 C1 C2 C3 C4 C5 C6 C7 C8

T1 0 1 1 1 1 0 1 0 1
T2 0 1 1 1 1 1 1 1 0
T3 0 1 1 1 1 0 1 0 1
T4 0 1 1 1 1 1 1 1 0
T5 0 1 1 1 1 0 1 0 0
T6 0 1 1 1 0 0 1 0 0
T7 0 1 0 0 0 0 0 0 0
T8 0 1 1 0 1 0 1 0 1
T9 0 1 1 1 1 0 1 0 0

Table 3: Covering matrix w.r.t. components MC for the
academic example

S1 S2 S3 S4 S5 S6 S7 S8 S9

T1 1 1 0 0 1 1 0 0 0
T2 0 1 0 0 0 0 1 0 0
T3 1 0 1 1 0 0 1 0 0
T4 0 0 0 0 1 1 0 0 0
T5 1 0 0 0 0 0 0 0 0
T6 0 0 0 0 0 1 1 0 0
T7 0 0 1 1 0 0 1 1 0
T8 1 0 1 0 0 0 0 0 0
T9 0 0 0 0 0 0 0 0 1

Table 4: Covering matrix w.r.t. sensors MS for the academic
example

Results for Problem I and Problem II
Problem I (Optimal test selection with fault free sensors)
and Problem 2 (Optimal sensor selection with fault free sen-
sors) were implemented in the Gurobi Optimizer. Their ex-
ecution did provide no solution. This means that full diag-
nosability is not possible given the covering matrices MC

and MS . This could be anticipated because in MC , we can
notice that C2 = C6 and C5 = C7. These components are
hence not isolable.

Results for the Problem III
After implementing Problem 3 (Maximization of isolabil-
ity with fault free sensors) with the Gurobi Optimizer, the
solution provided by its execution consisted in a subset of
7 sensors {S1, S2, S3, S4, S6, S7, S8}. These sensors can
indeed be used to instrument 5 tests T2, T5, T6, T7, T8 that

maximize diagnosability. The corresponding solution ma-
trix M∗ is given in Table 5 where we can check which com-
ponent columns are different leading to 34 pairs of isolable
components.

C0 C1 C2 C3 C4 C5 C6 C7 C8 S1 S2 S3 S4 S6 S7 S8

T2 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0
T5 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0
T6 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0
T7 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1
T8 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0

Table 5: Solution matrix M∗ for Problem III applied to the
academic example

Results for the Problem IV
After implementing Problem IV (Maximization of ro-
bust isolability w.r.t. component faults) with the Gurobi
Optimizer, the solution provided by its execution con-
sisted in a subset of 7 sensors {S1, S2, S3, S5, S6, S7, S9}.
These sensors can indeed be used to instrument 6 tests
T2, T4, T5, T6, T8, T9, achieving maximal robust diagnos-
ability w.r.t. component faults. The corresponding matrix
M∗ is given in Table 6 where we can check that all com-
ponent columns are different leading to 25 pairs of isolable
components but c6 and c7 even when one of the sensors is
faulty and cannot be used to instrument any test.

C0 C1 C2 C3 C4 C5 C6 C7 C8 S1 S2 S3 S5 S6 S7 S9

T2 0 1 1 1 1 1 1 1 0 0 1 0 0 0 1 0
T4 0 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0
T5 0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0
T6 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0
T8 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 0
T9 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 1

Table 6: Solution matrix M∗ for Problem IV applied to the
academic example

Interestingly, it can be noticed that the number of required
sensors is the same as for Problem III. Nevertheless, the sen-
sors are different and they can be used to instrument 6 tests
instead of 5, achieving this way robust diagnosability.

Results for the Problem V
After implementing Problem V (Maximization of ro-
bust isolability w.r.t. component faults and sen-
sor faults) with the Gurobi Optimizer, the solution
provided by its execution consisted in all the sen-
sors {S1, S2, S3, S4, S5, S6, S7, S8, S9}. However not
all the tests are necessary. 8 instrumented tests
T1, T2, T4, T5, T6, T7, T8, T9 are enough to achieve maxi-
mal robust diagnosability w.r.t. component faults and sensor
faults. The corresponding solution matrices M∗

C and M∗
S

are given in Table 7 and Table 8 where we can check which
component and sensor columns are different even when one
of the sensors is faulty and cannot be used to instrument any
test. We obtain 96 pairs of isolable components/sensors.

5.2 The LEO satellite benchmark
A LEO satellite (Low Earth Orbit) [20], also known as the
OTB orbit, is a satellite in the zone up to 2,000 kilome-



C0 C1 C2 C3 C4 C5 C6 C7 C8

T1 0 1 1 1 1 0 1 0 1
T2 0 1 1 1 1 1 1 1 0
T4 0 1 1 1 1 1 1 1 0
T5 0 1 1 1 1 0 1 0 0
T6 0 1 1 1 0 0 1 0 0
T7 0 1 0 0 0 0 0 0 0
T8 0 1 1 0 1 0 1 0 1
T9 0 1 1 1 1 0 1 0 0

Table 7: Solution matrix w.r.t. components M∗
C for Problem

V applied to the academic example

S1 S2 S3 S4 S5 S6 S7 S8 S9

T1 1 1 0 0 1 1 0 0 0
T2 0 1 0 0 0 0 1 0 0
T4 0 0 0 0 1 1 0 0 0
T5 1 0 0 0 0 0 0 0 0
T6 0 0 0 0 0 1 1 0 0
T7 0 0 1 1 0 0 1 1 0
T8 1 0 1 0 0 0 0 0 0
T9 0 0 0 0 0 0 0 0 1

Table 8: Solution matrix w.r.t. components M∗
C for Problem

V applied to the academic example

ters in altitude, located between the atmosphere and the Van
Allen outer belt. It is generally used in remote sensing and
telecommunication applications.

Figure 1: LEO satellite.

System description
LEO satellites are equipped with many radars and antennas
that must be oriented in a precise and specific direction. In
this case study, we are interested in the Attitude Determina-
tion and Control System (ADCS). This system is composed
of two subsystems: the Attitude Determination Subsystem
(ADS) and the Attitude Control Subsystem (ACS).

The Attitude Determination Subsystem is composed of
sensors that detect the angular position of the satellite. If we
take the example of Spot 7 LEO satellite [20], its Attitude
Determination Subsystem has two types of sensors: speed
sensors and gyroscopes. These sensors excite in triplicate
for the three axes.

The Attitude Control Subsystem is the one responsible
for controlling the movement to the desired position. The
ACS Spot 7 LEO satellite [20] is equipped with three re-
action wheels for three-axis control. The sensor suite of the

satellite is composed of rate gyros for each of the three axes,
and vector sensors which are used to periodically clear the
accumulated attitude drift error from the rate gyroscopes.

As a result, we consider faults on rate and vector sensors
as well as faults on the reaction wheels. This sums up to
9 faults f1 to f9 for the ADCS. The covering matrix that
we considered has faults as columns instead of components.
An entry at "1" on line i means that the test Ti does not pass
when the corresponding fault is present.

Results for Problem I
An analysis of the ADCS and its model has provided 2448
tests for this system [20]. In this case study, we have con-
sidered Problem I and implemented the corresponding pro-
gram in the Gurobi Optimizer. We found that only 4 of the
2448 tests are necessary to achieve full diagnosability and
discriminate all the faults. These tests are: T315, T346, T503

and T2100.

f1 f2 f3 f4 f5 f6 f7 f8 f9
T315 0 0 1 0 1 1 0 0 0
T346 0 0 1 0 0 0 1 1 1
T503 0 1 0 0 0 1 1 0 0
T2100 1 1 1 0 0 0 1 1 0

Table 9: The M∗ solution matrix.

The solution matrix M∗ shows that the tests found en-
sure the isolability of all faults and their number is minimal.
Optimality can be confirmed from the theoretical minimal
number of tests. It is obtained by considering that a set of
tests exists such that every test iteratively partitions the fault
set in two sets of non discriminable faults. So if we have nc

components, then log2(nc) is the greatest lower bound of
the theoretical minimal number of tests. In this case study,
nc = 9 and the theoretical minimal number of tests is hence
4, which is in accordance with the result provided by Prob-
lem I.

5.3 The desalinator benchmark
System description
The desalination system [20] is a system that removes salt
from the water. It uses several chemical, electrical and even
thermal procedures (cf. Figure 2). Given the complexity of
this system, there is a need for properly instrumenting the
system and providing relevant information that helps diag-
nosing the chemical desalination process.

If we take the desalinator case study presented in [20], it
has 7 possible faults:

• f1 is the fault of the conductivity sensor,

• f2 is the fault of the flow sensor,

• f3 is a high pressure pump fault,

• f4 is the fault of the temperature sensor,

• f5 is the fault of scaling of the membrane,

• f6 is the defect of the membrane,

• f7 is the failure of the pump acid pump pH.

nof is used to refer to the fault free operating mode. 5
sensors can be considered for this system. An analysis of
the desalinator benchmark and its model has provided 5173
tests for this system [20].



Figure 2: The desalinator case study.

nof f1 f2 f3 f4 f5 f6 f7
T129 0 0 0 1 1 0 1 1
T738 0 0 1 1 0 1 1 0
T833 0 1 1 1 0 0 0 1

Table 10: Solution matrix for Problem I applied to the de-
salinator

Results for Problem I
Problem I has been considered and the corresponding pro-
gram has been implemented in the Gurobi Optimizer. We
found that only 3 of the tests are necessary to guaranty full
diagnosability. The subset of tests is {T129, T738, T833} as
shown in Table 10.

We can notice that the tests found ensure detectability and
isolability of all faults and that their number is minimized.
Indeed, like in the LEO satelite case study, their number
corresponds to the theoretical optimal number.

Results for Problem II
The solution of Problem II provided by Gurobi indicates
that 3 sensors are necessary to guaranty full diagnosability.
These sensors are S1, S2 and S5. Interestingly, 283 tests can
be instrumented with these sensors.

Results for Problem III
The solution of Problem III provided by Gurobi is the same
as the solution of Problem II, which is obviously correct.
Indeed, when full diagnosability is achievable, maximal di-
agnosability is just full diagnosability. We obtain 28 pairs
of isolable components.

Results for Problem IV
The solution of Problem IV provided by Gurobi indicates
that 3 sensors are necessary to guaranty maximal diagnos-
ability w.r.t. components eventhough one sensor may be
faulty. These sensors are S1, S2 and S4. 333 tests can then
be instrumented and we obtain 27 pairs of isolable compo-
nents independently of the failure of one sensor.

Results for Problem V
The solution of Problem IV provided by Gurobi indicates
that the same 3 sensors as for Problem IV are necessary to
guaranty maximal diagnosability w.r.t. components and sen-
sors eventhough one sensor may be faulty. These sensors
are S1, S2 and S4. 333 tests can then be instrumented and

we obtain 59 pairs of isolable components/sensors indepen-
dently of the failure of one sensor.

6 Conclusion
This paper shows the potential of integer linear program-
ming for modeling five increasingly complex optimization
problems related to diagnosability. The optimization targets
the cost/number of sensors and/or the number of diagno-
sis tests under different assumptions. Although Problems I
and II find solutions in the litterature, we have contributed
with a new compact binary integer programming formula-
tion. Problems III, IV, and V solve variants of the diagnos-
ability maximization problem. Maximizing diagnosability
when full diagnosability is not achievable is an interesting
problem addressed in this paper. The five problems have
been programmed using the Python language accompanied
by the Gurobi solver library in order to find an optimal so-
lution to the problems.
Our programs have been validated with the application to
two real case studies, a LEO satellite and a water desalina-
tor benchmark [20].

Future work will consider additionnal constraints refering
to the practical implementation of the tests. On the other
hand, solving the five problems in a decentralized or dis-
tributed framework will also be considered.
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