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Large sample properties of the Midzuno

sampling scheme

Guillaume Chauvet∗

September 26, 2018

Abstract

Midzuno sampling enables to estimate ratios unbiasedly. We prove

the asymptotic normality for estimators of totals and ratios under

Midzuno sampling. We also propose consistent variance estimators.

Keywords: asymptotic normality, consistent variance estimator, coupling.

1 Introduction

Midzuno (1951) proposed a sampling algorithm which enables to select a

sample with unequal probabilities, while estimating unbiasedly a ratio. It is
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therefore of interest with a moderate sample size, when the so-called small

sample bias may be appreciable. Midzuno sampling has been recently consid-

ered in Escobar and Berger (2013) and Hidiroglou et al. (2016), for example.

We introduce a coupling algorithm between Midzuno sampling and simple

random sampling, which enables to prove that the Horvitz-Thompson associ-

ated to these two procedures are asymptotically equivalent. As a by-product,

we obtain a central-limit theorem for the estimator of a total and for the es-

timator of a ratio. We also prove that variance estimators suitable for simple

random sampling are also consistent for Midzuno sampling.

The paper is organized as follows. The notation is introduced in Section 2.

The coupling procedure is described in Section 3. It is used in Section 4 to

prove the asymptotic normality of total and ratio estimators, and to estab-

lish the consistency of the proposed variance estimators. Their behaviour is

studied in Section 5 through a simulation study, in case of a small sample

size. The proofs are given in Section 6.
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2 Notation and assumptions

We consider a finite population U of size N , with a variable of interest y

taking the value yk for the unit k ∈ U . We are interested in estimating the

total Y =
∑

k∈U yk or the ratio R = Y/X with X =
∑

k∈U xk and xk > 0 is

an auxiliary variable known for any unit k ∈ U .

Let pk > 0 be some probability for unit k, with
∑

k∈U pk = 1. If the probabil-

ities are chosen proportional to xk, we have pk = xk/X . A sample S of size

n is selected according to some sampling design with πk > 0 the inclusion

probability of unit k. The Horvitz-Thompson (HT) estimator for the total

is Ŷ =
∑

k∈S
yk
πk

, and the substitution estimator for the ratio is R̂ = Ŷ /X̂,

with X̂ =
∑

k∈S
xk

πk

.

2.1 Simple random sampling

If the sample is selected by simple random sampling in U , which is denoted

as SI(n;U), we obtain πSI
k = n/N and the estimators are

ŶSI =
N

n

∑

k∈SSI

yk and R̂SI =

∑

k∈SSI
yk

∑

k∈SSI
xk

. (2.1)

The variance of the HT-estimator is

V (ŶSI) =
N(N − n)

n
S2

y with S2

y =
1

N − 1

∑

k∈U

(

yk −
Y

N

)2

, (2.2)
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and is unbiasedly estimated by

V̂ (ŶSI) =
N(N − n)

n
s2y,SI with s2y,SI =

1

n− 1

∑

k∈SSI

(

yk −
ŶSI

N

)2

. (2.3)

Noting zk = yk−Rxk and ẑk = yk− R̂πxk, the linearization variance approx-

imation for R̂SI is

Vlin(R̂SI) =
N(N − n)

n X2
S2

z with S2

z =
1

N − 1

∑

k∈U

(

zk −

∑

l∈U zl

N

)2

, (2.4)

and the assorted variance estimator is

V̂lin(R̂SI) =
N(N − n)

n X̂2

SI

s2ẑ,SI with s2ẑ,SI =
1

n− 1

∑

k∈SSI

(

ẑk −

∑

l∈S ẑl

n

)2

.(2.5)

We prove in Section 4 that V̂ and V̂lin are consistent for Midzuno sampling.

2.2 Midzuno sampling

Suppose that the sample SMI is selected by means of the Midzuno (1951)

sampling scheme, which is denoted as MI. A first unit (k1, say) is selected in

U with probabilities pk. A sample S ′
MI is then selected among the remaining

units by SI(n−1;U \{k1}). The final Midzuno sample is SMI = S ′
MI ∪{k1},

and the associated inclusion probabilities are

πMI
k =

n− 1

N − 1
+ pk

(

N − n

N − 1

)

. (2.6)

The main advantage of MI is that R̂MI is exactly unbiased for R if the

probabilities pk are proportional to xk.
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2.3 Assumptions

We work under the asymptotic set-up of Isaki and Fuller (1982), where U is

embedded into a nested sequence of finite populations with n,N → ∞. We

suppose that the sampling rate is not degenerate, i.e. some constant f ∈]0, 1[

exists s.t. n/N → f . We will consider the following assumptions:

H1: Some constants c1, C1 exist, s.t. 0 < c1 ≤ Npk ≤ C1 for any k ∈ U .

H2: Some constant M exists, s.t. N−1
∑

k∈U y4k ≤ M .

H3a: Some constant m1 > 0 exists, s.t. S2

y ≥ m1.

H3b: Some constant m2 > 0 exists, s.t. S2

z ≥ m2.

3 Coupling procedure

The coupling procedure introduced in Algorithm 1 enables to justify of the

closeness between MI and SI, as proved in Proposition 2.

Proposition 1. The sample SSI in Algorithm 1 is selected by SI(n;U).

Proposition 2. Suppose that SMI and SSI are selected by Algorithm 1, and

that assumptions (H1)-(H2) hold. Then

E

[

(

ŶMI − ŶSI

)4
]

= O(N4n−4) and E

[

(

ŶMI − Y
)4
]

= O(N4n−2). (3.1)
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Algorithm 1 Coupling procedure between MI and SI sampling

1. Select some unit (k1, say) in U with probabilities pk.

2. Select S ′
MI by SI(n−1;U \{k1}). The MI sample is SMI = S ′

MI∪{k1}.

3. Select some unit (k2, say) in U \ S ′
MI , with probability n/N for k1 and

1/N otherwise. The SI sample is SSI = S ′
MI ∪ {k2}.

The first part of equation (3.1) implies in particular that

(

√

V (ŶMI)−

√

V (ŶSI)

)2

= O(N2n−2) = o{V (ŶSI)}. (3.2)

Consequently, V (ŶMI) and V (ŶSI) have asymptotically the same variance.

4 Interval estimation

Theorem 1. Suppose that assumptions (H1), (H2) and (H3a) hold. Then

{V (ŶMI)}
−0.5{ŶMI − Y } −→L N (0, 1), (4.1)

E
[

N−2n
{

V̂ (ŶMI)− V (ŶMI)
}]2

= O(n−1), (4.2)

with →L the convergence in distribution, and where V̂ (ŶMI) is the SI variance

estimator given in (2.3), applied to the sample SMI .

Theorem 1 implies that the HT-estimator is asymptotically normally dis-

tributed under MI, and that the SI variance estimator is also consistent for
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MI, in the sense that {V (ŶMI)}−1V̂ (ŶMI) →Pr 1, with →Pr the convergence

in probability. In particular, the studentized interval

[

ŶMI ± u1−α{V̂ (ŶMI)}
0.5
]

(4.3)

has an asymptotic coverage of 100(1− 2α)%, with u1−α the quantile of order

1− α of the standard normal distribution.

We now consider ratio estimation. We suppose that the probabilities pk are

defined proportionally to xk, and we strengthen (H1) as

H1b: Some constants c1, C1 exist, s.t. 0 < c1 ≤ xk ≤ C1 for any k ∈ U .

Proposition 3. Suppose that assumptions (H1b) and (H2) hold. Then

E

[

{

(R̂MI −R)−X−1(ẐMI − Z)
}2
]

= O(n−2). (4.4)

This proposition entails in particular the validity of the linearization variance

estimation, since it implies that {Vlin(R̂SI)}−1V (R̂SI) → 1 if (H3b) is verified.

Theorem 2. Suppose that assumptions (H1b), (H2) and (H3b) hold. Then

{Vlin(R̂MI)}
−0.5{R̂MI − R} −→L N (0, 1), (4.5)

E
∣

∣

∣
n
{

V̂lin(R̂MI)− Vlin(R̂MI)
}
∣

∣

∣
= O(n−0.5), (4.6)

where V̂lin(R̂MI) is the linearization SI variance estimator given in (2.5),

applied to the sample SMI .
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Theorem 2 implies that the confidence interval [R̂MI ± u1−α{V̂lin(R̂MI)}0.5]

has an asymptotic coverage of 100(1− 2α)%.

5 Simulation study

We conducted a small simulation to evaluate the proposed variance estima-

tors with small samples. We generated a population of N = 100 units, with

auxiliary variable x generated according to a gamma distribution with shape

and scale parameters 2 and 5, and we shifted and scaled the values so that

xk lies between 1 and 20. We generated a variable of interest y according to

the imputation model yk = xk + σ ǫk, with the ǫk’s generated according to a

standard normal distribution, and where σ was chosen so that the coefficient

of determination was approximately 0.70.

We repeated B = 10, 000 times MI with pk proportional to xk, and with

n = 20, 40 or 60. We computed: the relative bias (RB) of the proposed

variance estimators V̂ (ŶMI) and V̂lin(R̂MI), the true variance being approx-

imated by an independent run of 100, 000 simulations; and the error rate of

the normality-based confidence intervals with nominal one-tailed error rate

of 2.5 % in each tail. The results given in Table 1 indicate that V̂ is slightly

positively biased with n = 20, but the bias decreases quickly when n grows,
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as expected. The estimator V̂lin is almost unbiased and the coverage rates

are well respected in all cases.

Table 1: Percent relative bias and coverage probabilities

n = 20 n = 40 n = 60

V̂ (ŶMI) V̂lin(R̂MI) V̂ (ŶMI) V̂lin(R̂MI) V̂ (ŶMI) V̂lin(R̂MI)

RB (%) 12.1 2.0 4.6 -0.1 2.3 -0.1

Cov. Rate 94.4 94.5 94.9 94.6 94.8 94.3

6 Proofs

6.1 Proof of Proposition 1

We prove that conditionally on k1, SSI is obtained by SI(n;U). Let s ⊂ U

of size n. If k1 /∈ s, then

Pr(SSI = s) =
∑

k∈s

Pr(S ′
MI = s \ {k})Pr(k2 = k|S ′

MI = s \ {k})

= n
1

Cn−1

N−1

1

N
=

1

Cn
N

.

If k1 ∈ s, then

Pr(SSI = s) = Pr(S ′
MI = s \ {k1})Pr(k2 = k1|S

′
MI = s \ {k1})

=
1

Cn−1

N−1

n

N
=

1

Cn
N

.
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6.2 Proof of Proposition 2

Lemma 1. Under assumption (H1), we have

|πMI
k − πSI

k |

πMI
k πSI

k

≤ max(1− c1, C1 − 1)
N − n

n(n− 1)
. (6.1)

Lemma 2. Let ak denote some characteristic of unit k, and let m be some

positive integer. If SMI and SSI are selected by means of Algorithm 1, then

E





(

∑

k∈SSI

ak −
∑

k∈SMI

ak

)2m


 =
N − n

N(N − 1)

∑

k∈U

∑

l∈U

pl(ak − al)
2m.(6.2)

If in addition the assumption (H1) holds, then

E











(

∑

k∈SSI

ak

)2

−

(

∑

k∈SMI

ak

)2






2

 = O

(

N−1
∑

k∈U

a4k

)

. (6.3)

Proof. From Algorithm 1, we have
∑

k∈SSI
ak −

∑

k∈SMI
ak = ak2 − ak1 . We

obtain successively

E
[

(ak2 − ak1)
2m |k1, S

′
MI

]

=
1

N

∑

k∈U\{k1}

(ak − ak1)
2m1(k /∈ S ′

MI),

E
[

(ak2 − ak1)
2m |k1

]

=
N − n

N(N − 1)

∑

k∈U\{k1}

(ak − ak1)
2m,

which leads to (6.2). The proof of equation (6.3) follows from tedious but

straightforward computations.

We consider the first part of equation (3.1) only, since from E[(ŶSI − Y )4] =

O(N4n−2), it implies the second part. From the writing

ŶMI − ŶSI =
∑

k∈SMI

πSI
k − πMI

k

πSI
k πMI

k

yk +
N

n

(

∑

k∈SMI

yk −
∑

k∈SSI

yk

)

,

10



we obtain

E

[

(

ŶMI − ŶSI

)4
]

≤ 4E





(

∑

k∈SMI

πSI
k − πMI

k

πSI
k πMI

k

yk

)4


+ 4
N4

n4
E





(

∑

k∈SMI

yk −
∑

k∈SSI

yk

)4


 .(6.4)

From equation (6.2) applied with ak = yk andm = 2, and since E[(
∑

k∈SSI
yk)

4] =

O(n4) (see for example Ardilly and Tillé (2003, equation 2.12)), we have

E[(
∑

k∈SSI
yk)

4] = O(n4). By applying Lemma 1, we obtain that the first

term in the r.h.s of (6.4) is O(N4n−4). Applying once again equation (6.2),

we obtain that the second term in the r.h.s of (6.4) is O(N4n−4), which

completes the proof.

6.3 Proof of Theorem 1

We can write

ŶMI − Y
√

V (ŶMI)
=

√

V (ŶSI)

V (ŶMI)





ŶSI − Y
√

V (ŶSI)
+

ŶMI − ŶSI
√

V (ŶSI)



 . (6.5)

From equation (3.2), we have {V (ŶMI)}−1V (ŶSI) → 1 and {
√

V (ŶSI)}−1{ŶMI−

ŶSI} = op(1). Equation (6.5) follows from the central-limit theorem for sim-

ple random sampling (e.g., Hájek, 1960) and from Slutsky’s theorem.

To prove equation (4.2), we simplify the notation as V (ŶMI) ≡ VMI , V̂ (ŶMI) ≡

V̂MI , and similarly for SI. We can write

V̂MI − VMI = (V̂SI − VSI) + (V̂MI − V̂SI) + (VSI − VMI).
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We have E[(V̂SI−VSI)
2] = O(N4n−3), see for example Ardilly and Tillé (2003,

ex. 2.21). Also, from Lemma 2, we obtain E[(V̂MI − V̂SI)
2] = O(N4n−4).

Finally, from equation (3.2) and since both VSI and VMI are O(N2n−1), we

obtain (VSI − VMI)
2 = O(N4n−3). This completes the proof.

6.4 Proof of Proposition 3

We note ∆ ≡ (R̂MI − R) − X−1(ẐMI − Z) = (X̂−1

MI)(ẐMI − Z)(X − X̂MI).

From assumption (H1b), we obtain X̂MI ≥ (c1/C1)N , which gives

E[∆2] ≤ (C1/c1)
2N−2

√

E[(ẐMI − Z)4]

√

E[(X̂MI −X)4].

By applying Proposition 2 to xk and zk, we obtain E[(ẐMI −Z)4] = O(n−1)

and E[(X̂MI −X)4] = O(N2n−1), which gives the result.

6.5 Proof of Theorem 2

Equation (4.5) follows from Proposition 3 and Slutsky’s theorem. To prove

equation (4.6), we note Ṽlin(R̂MI) = N(N − n)s2z/(n X2). The proof for

equation (4.2) is easily adapted to obtain E[{Ṽlin(R̂MI) − Vlin(R̂MI)}2] =

O(n−3). Also, we obtain after some algebra E[|Ṽlin(R̂MI) − Vlin(R̂MI)|] =

O(n−1.5), which gives the result.
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Hájek, J. (1960). Limiting distributions in simple random sampling from a

finite population. Publications of the Mathematics Institute of the Hun-

garian Academy of Science, 5:361–74.

Hidiroglou, M. A., Kim, J. K., and Nambeu, C. O. (2016). A note on re-

gression estimation with unknown population size. Survey Methodology,

42(1):121.

Isaki, C. T. and Fuller, W. A. (1982). Survey design under the regression

superpopulation model. J. Am. Stat. Assoc., 77(377):89–96.

Midzuno, H. (1951). On the sampling system with probability proportional

to sum of sizes. Ann. Inst. Stat. Math., 3:99–107.

13


