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1. INTRODUCTION 

 The slip flow regime is a slightly rarefied regime of great 
interest for gas flows through microchannels [1]. It typically 
corresponds to a Knudsen number between 10-3 and 10-1, and 
this range is commonly reached in standard conditions for 
hydraulic diameters in the order of a few micrometers. The 
Knudsen layer plays a fundamental role in the slip flow 
regime. This thin layer, one or two molecular mean free paths 
in thickness, is a region of local non-equilibrium which is 
observed in any gas flow near a surface. In non rarefied 
flows, the Knudsen layer is too thin for having any 
significant influence, but in the slip flow regime, it should be 
taken into account. 
 Although the Navier-Stokes equations are not valid in the 
Knudsen layer, due to a nonlinear stress/strain-rate behavior 
in this small layer [2], their use with appropriate boundary 
velocity slip and temperature jump conditions proved to be 
accurate for predicting mass flow rates [3],[4] and velocity 
profiles out of the Knudsen layer. Classically, the real flow is 
not simulated within the Knudsen layer, but the influence of 
the Knudsen layer on the flow outside this non-equilibrium 
layer is taken into account, replacing the no-slip condition at 
the wall with a slip-flow condition. The first slip-flow 
condition was proposed by Maxwell [5] and reduces to the 
form  
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if isothermal flow is assumed. In this equation, Wslip is the 
slip velocity, Ws is the flow velocity at the wall and Ww is the 
velocity of the wall, the normal direction of which is noted n. 
The mean free path of the molecules is λ and σv is the 
tangential momentum accommodation coefficient, equal to 
unity for perfectly diffuse molecular reflection and zero for 
purely specular reflection. In Maxwell’s model, the 
dimensionless coefficient Aα was taken equal to unity, which 
overestimates the real velocity at the wall but leads to a rather 
good prediction of the velocity out of the Knudsen layer. 

Cercignani has shown [6] that a better prediction of the flow 
out of the Knudsen layer would be obtained with Aα   = 
1.146. Equation (1) is called first-order slip boundary 
condition, because it involves the Knudsen number Kn (ratio 
of the mean free path λ over a reference length) and the first 
derivative 

wall
W n  . Second-order boundary conditions 

involving Kn2 and second derivative 2 2

wall
W n    have been 

further proposed in the attempt to predict flow rates with 
improved accuracy [1], [7], [8], [9], [10], [11]. 
 For benchmark flows such as Poiseuille or Couette flows 
in microchannels with simple constant section (plane, 
circular, rectangular), isothermal slip flow may be 
analytically modeled [12], [13], even with second-order 
boundary conditions [14] such as those proposed by Deissler. 
However, for other sections such as isosceles triangular or 
trapezoidal sections, frequently met in microchannels 
fabricated by silicon wet etching, numerical simulations are 
required. 
 The aim of this paper is to analyze possibilities of slip 
flow simulations with the commercial CFD code Fluent. 
Rarefied gas flow simulation is feasible in Fluent using the 
"Low Pressure Boundary Slip" (LPBS) option in the 
"Viscous Model" panel. However, the choice of velocity slip 
boundary condition is limited to Maxwell’s first order model 
with an expression of the mean free path adjustable via the 
value of the Lennard-Jones length. Moreover, we show in 
this article that the LPBS method is inaccurate for predicting 
slip near the corners of the section, leading to significant 
errors in flow rate estimation. In order to overcome these 
issues, we propose another method which uses “Moving 
Wall” (MW) boundary conditions. Comparison of both 
models is first made with the only triangular section for 
which an analytical solution of Poiseuille slip flow is 
available: the equilateral triangular section. After validation 
of the proposed method, slip flow in isosceles triangular and 
trapezoidal sections is simulated and data are discussed.  
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ABSTRACT 
 
Modeling gaseous slip flows in microchannels is now possible by means of commercial CFD codes such as Fluent. This 
article shows that the so-called Low Pressure Boundary Slip method proposed in Fluent for implementing slip conditions 
leads to inaccurate results concerning velocity at the walls, particularly in angles such as those met in microchannels with 
triangular or trapezoidal sections. We propose another method whose aim is to avoid this issue. Numerical results are 
compared for validation to the analytical solution obtained for an equilateral triangular section. Finally, the method is applied 
to isosceles triangular and trapezoidal sections of practical interest, since they are frequently etched in silicon microsystems. 
 
 



2. SLIP FLOW IN AN EQUILATERAL TRIANGULAR 
SECTION 

 The Cartesian coordinates system (x, y, z) is used. Each 
side of the equilateral triangular section has a length of 

2 3L , so that [ 2 ; ]x L L   and  [ 3 ; 3 ]y L L  . 
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Figure 1: Equilateral triangular section. 
 
 

2.1 Analytical solution  

 For a locally fully developed gas flow in a cylindrical (i.e. 
straight and with constant section) microchannel, the 
momentum equation reduces to the Poisson equation 
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which can be written in a non-dimensional form as 
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with  
 

*x x L ; *y y L ; 0*W W W .                  (4) 

 
In these equations, W is the streamwise velocity, 
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P is the pressure and  is the dynamic viscosity of the gas. 
The Knudsen number, which quantifies rarefaction effects, is 
defined as 
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where the hydraulic diameter Dh = 2L for an equilateral 
triangular section. Solving Equation (3) with the boundary 
conditions 
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where *n n L  and the dimensionless slip coefficient   

* L   with   2 2
v v

A     , leads to [15] 
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The mass flow rate 
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which leads to the classic no-slip value 
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when  0  , and to the non-dimensional flow rate 
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2.2 Numerical simulation 

 Calculation domains and 3-D grids are generated with 
Gambit, the Fluent’s preprocessing software. Two types of 
domains are simulated according to the considered 
symmetries: 
a) the first one is a sixth of the section (S/6), which can be 

used only for the equilateral section (figure 2a), 
b) the second one is a half of the section (S/2) (figure 2b). 
 Grids are created with a reasonable cells density: 8319 
and 20038 quadrilateral cells for one sixth (S/6) and one half 
(S/2) of the section respectively. These grids are refined near 
boundaries to improve the velocity gradients calculations. 
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Figure 2a: simulation on one sixth of a section (S/6) 
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Figure 2 b: simulation on one half section (S/2) 
 
 
 Simulations are performed for a nitrogen gas flow. 
Periodic boundary conditions are used to model 
incompressible locally fully developed isothermal flow. The 
effect of the number of cells along the z-direction has been 
tested, showing no particular consequence on the results. 
Consequently, only one cell along the z-direction has been 
used afterwards. The laminar viscous model is selected. 
Double precision calculations are done with second order 
discretization scheme for a better accuracy.   
 
 The aim of this paper is to validate and to determine 
advantages and drawbacks of two methods to process slip 
velocity boundary conditions: 
 
(l) The first one uses the so-called Low Pressure Boundary 

Slip (LPBS) condition which can be simply applied by 
selecting it in Fluent’s "Viscous Model" menu. 

 (2) The second method is the one that we propose in this 
article: it is an iterative method that we called Moving 
Wall (MW) method. Indeed, several treatments are 
required. The simulation is first done with no slip 
conditions. Results of this preliminary step are used to 
calculate slip flow velocities at the wall by using 
equation (7). These local slip velocities are then applied 
to each cell at the wall as a moving wall boundary 
condition. For 2-D flows between parallel plates, this 
first iteration is sufficient, since in this case the 
transverse velocity gradient at the wall is the same with 
or without slip at the wall [12]. In 3-D flows through an 
equilateral section, further iterations are needed: for 
each iteration, the slip velocity is calculated from the 
previous iteration by using equation (7) with the help of 
Fluent’s Custom Field Function and iterations are done 
until the slip velocity at the wall is stable. However, to 
improve the accuracy of the results near boundaries, 
especially in acute angles, slip velocities are 
extrapolated outside Fluent and the calculated results are 
applied to MW boundaries cell by cell. In each tested 
configuration the same grid is used for both methods. 
Moreover, the two methods are based on the resolution 
of the same set of equations (cf. 2.1.), the only 
difference being the way to implement the slip boundary 
condition at the wall. 

 
 For a valid comparison between both methods, the mean 
free path used for the MW method is defined as it is with 
Fluent’s LPBS method, that is    
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Where 23 11.38066 10  J K
B

k     is the Boltzmann constant, T  

the temperature, P the pressure and σ the Lennard-Jones 
characteristic length of the gas. Any other kind of expression 
for λ, for example based on hard spheres (HS), variable hard 
spheres (VHS) or variable soft spheres (VSS) models, could 
be used in the MW method. Note also that only Maxwell’s 
first order slip velocity model can be used with LPBS 
conditions. Thus, in order to adequately compare both 
methods, only this kind of boundary has been used here for 
the MW method, which is nevertheless valid with higher-
order boundary conditions. Moreover, the slip coefficient 
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is limited with the LPBS method to the Maxwell value 

1A  . The same value has been kept for the MW method. 

 

2.3 Results and discussion 

 In this article, the accommodation has always been 
assumed totally diffuse, i.e. with 1

v
  , whatever the 

method, LPBS or MW. The influence of the Knudsen number 
is firstly investigated. Since Fluent doesn’t allow any 
dimensionless calculation, Kn varies according to the 
operating pressure applied in the calculation domain. To gain 
calculation time, only one sixth of the section is simulated. 
The dimensionless mass flow rate results are reported in table 
1. To discuss the simulations accuracy, the deviation from the 
analytical solution is calculated (table 2). 
 
 
Table 1: Equilateral triangular section – dimensionless mass 
flow rates for different Knudsen numbers analytical and 
numerical (S/6) simulations 
 
 

 
Concerning no slip simulations, only a 0.059 % 

deviation from the analytical solution is found (see table 2) 
and this result is identical for all operating pressures. For slip 
flow simulations, table 2 shows that the deviation from the 
analytical solution observed for the MW method is very low 
(around 0.08 %, the minus sign denoting an underestimation 
of the flow rate) whatever the Knudsen number. On the other 
hand, the LPBS method is very accurate for low Kn, but this 
accuracy reduces substantially when Kn increases. 
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0 1.000 0.999   

0.0125 1.100 

  

1.099 1.099 1.099 1.100 

0.0500 1.394 1.399 1.392 1.393 1.405 

0.0750 1.587 1.599 1.583 1.586 1.611 



Table 2: Equilateral triangular section – flow rate deviation 
between numerical simulations and analytical solutions 
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Figure 3: Equilateral triangular section - dimensionless 
velocity along the symmetry axis ( * 0y  ); comparison 
between no slip (--), slip flow analytical results (—), MW (O) 
and LPBS (Δ) S/6 simulations for different Kn 
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Figure 4: Equilateral triangular section - dimensionless 
velocity at the wall (x* = 1); comparison between analytical 
solutions (—) and MW (O) S/6 simulations for different Kn. 
 
                    

Figures 3, 4 and 5 can give further explanations on this 
issue. Velocity profiles on the symmetry plane given by both 
methods are compared in figure 3 to the analytical solutions 
with slip and no slip assumptions. An excellent agreement 
can be observed between analytical and numerical results 
whatever the method for 0.0125Kn  . For 0.05Kn   and 

0.075Kn  , the agreement is still excellent for the MW 
method but deviations become significant for the LPBS 
method when approaching the corner at * 2x  . The same 

excellent agreement is shown in figure 4 between MW and 
analytical velocity profiles at the wall. As Fluent does not 
provide directly velocity at the wall when LPBS option is 
active, velocity profiles have also been plotted in figure 5 at 
the center of the first cells near the wall for both methods and 
compared to the analytical solution. In this case, LPBS 
generates over 100 % deviation at the wall near the corner for 
high Knudsen numbers, which can explain the lack of 
precision on the mass flow rate calculation highlighted in 
table 2. 
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Figure 5: Equilateral triangular section - dimensionless 
velocity at cells center near the wall ( * 1x  ); comparison 
between analytical solutions (—), MW (O) and LPBS (Δ) S/6 
simulations for different Kn 
 
 
        The simulation of one sixth of the section can only be 
done for an equilateral triangular section. For more complex 
shapes, obtained for example by wet etching on silicon 
wafers, only one symmetry plane can be used to reduce the 
calculation domain. Thus MW and LPBS methods have to be 
validated on one half of an equilateral triangular section in 
order to be used for the simulation of more complex 

channels. For Kn = 0.075, the simulated value *m


 of the 
dimensionless mass flow rate and its deviation from the 

analytical value *anam


 are shown in table 3, for both methods 

and a simulation either on one sixth or on one half of the 
section.   
 
 
Table 3: Equilateral triangular section - analytical and 
numerical calculations of mass flow rates calculations from 
simulations on one sixth (S/6) or one half (S/2) of the section 

Kn 
Flow rate deviation from analytical solution (%) 

Fluent  
No slip 

Fluent MW 
1st iteration 

Fluent MW 
2nd iteration 

Fluent MW 
3rd iteration 
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LPBS 

0 -0.059   

0.0125 

  

-0.029 -0.068 -0.067 0.018 
0.0500 0.354 -0.132 -0.085 0.806 
0.0750 0.735 -0.226 -0.086 1.537 
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S/6 0.00
0 1.000 

1.000 (-0.047 %) 
S/2 1.000 (-0.028 %) 

MW 
S/6 

0.07
5 1.587 

1.599 
(0.735 %) 

1.584 
(-0.226 %) 

1.586 
(-0.086 %) 

S/2 
1.599 

(0.755 %) 
1.584 

(-0.195 %) 
1.585 

(-0.160 %) 

LPBS
S/6 1.612 (1.537 %) 
S/2 1.604 (1.035 %) 

Kn = 0.0125 

Kn = 0.05 

Kn = 0.075 

Kn = 0.0125 

Kn = 0.05 

Kn = 0.075 

Kn = 0.075 

Kn = 0.05

Kn = 0.0125 



        The MW method is very slightly less accurate on a half 
section than on one sixth but the deviation from the analytical 
solution remains smaller than 0.2 % after the 3rd iteration. 
The very small difference between S/2 and S/6 simulations 
could be explained by a 20 % lower grid density for the S/2 
simulation. On the other hand, the accuracy of LPBS method 
is slightly improved with S/2 simulation but still remains 
much lower than the MW method's one (more than 1 % 
deviation from the analytical solution). The good prediction 
of MW method is essentially due to its ability to properly 
calculate slip in the acute angles, whereas the LPBS method 
is not accurate there. This is illustrated by figure 6 which 
represents velocity on the * 0y   symmetry axis. In this 
figure, S/2 simulation data are directly obtained on the 
symmetry axis (noted Symmetry-01 in figure 2), and S/6 
simulation data are obtained on Symmetry-01 axis for 

 0;1x  and on Symmetry-02 axis for  2;0x  . 

Differences between S/2 and S/6 data remain very low, but 
the LPBS method largely overestimates the velocity when 
approaching the corner, at * 2x   . 
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Figure 6: Equilateral triangular section - dimensionless 
velocity along the symmetry axis (y* = 0): comparison 
between analytical results (—), S/6 MW (○), S/6 LPBS (Δ), 
S/2 MW (●), S/2 LPBS(▲) simulations for Kn = 0.075. 
 
 
        As a conclusion, the LPBS method proposed in Fluent 
can be used with a good accuracy only for low Knudsen 
numbers. For Knudsen numbers higher than 0.025, this 
method overestimates slip at the wall near the angles, which 
leads to an overestimation of the flow rate. 
        The MW method proposed in this paper has been shown 
to be very accurate whatever the Knudsen number in the 
range [10-3;10-1] and gives very similar results when using or 
not symmetries of the section: for an equilateral triangular 
section, deviations from the analytical solution were always 
lower than 0.2 %. This method proved to be accurate even in 
acute angles, and consequently could be employed with a 
good precision for slip flow simulations with first order 
boundary conditions on more complex channels geometries. 
Moreover, it permits to implement various slip boundary 
conditions types with different orders or mean free path 
definitions, which is not allowed in the LPBS method. 
 

3. SLIP FLOW IN ISOSCELES TRIANGULAR AND 
TRAPEZOIDAL SECTIONS 

3.1 Numerical simulation 

        Slip flow through realistic microchannels, with isosceles 
triangular and trapezoidal sections which could be made by 
anisotropic wet etching on silicon wafers, are now 
investigated. Their geometries are shown in figure 7. 
Dimensions are normalized by a reference length L as for the 
equilateral triangular section. According to the etching time, 
the etching can be limited in the x-direction, leading to a 
trapezoidal section. For longer-term etching, the section is an 
isosceles triangle. For a silicon wafer with a 100    surface 

orientation, the angle 54.74   .   
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Figure 7a: Isosceles triangular section with Dh* = 1.773       
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Figure 7b: trapezoidal section with Dh* = 1.502;   β = 54.74° 
 
        Grids with quadrilateral cells are generated with Gambit. 
The operating conditions are the same as those used for the 
equilateral triangular section. 

3.2 Results and discussion 

        Table 4 shows dimensionless mass flow rates through 
microchannels with equilateral triangular, isosceles and 
trapezoidal sections both for MW and LPBS boundary 
conditions for the same value of Kn’.  

' ( 3 ) 0.0866Kn L   is based on the section half width in 

the 3 cases. As observed in section 2, the LPBS method gives 
a higher mass flow rate than the MW method whatever the 
Knudsen number. This is due again to the overestimation of 
the velocity by the LPBS method in zones presenting angles, 
as shown in figures 8, 9 and 10. 



Table 4: Comparison of mass flow rates through equilateral 
triangular, isosceles rectangular and trapezoidal sections for 

the same length of wall-01 (  ' 3 0.0866Kn L    in the 3 

cases) 
 

 
 
        Figure 8 presents the velocity profiles obtained by both 
methods along the symmetry axis of an isosceles triangular 
section. No difference can be observed between both profiles 
near the base of the triangular section, where the symmetry 
axis is perpendicular to the wall, but the deviation is 
increasing when approaching the other wall which forms an 
acute angle with the symmetry axis. The same phenomena 
can be observed in figure 9 along the walls 01 and 02 of a 
trapezoidal section: no significant discrepancy between both 
methods near the symmetry axis, but increasing differences 
when approaching the angular zones. Moreover, figure 10 
shows that for a trapezoidal section the two methods lead to 
the same velocity profile on the symmetry plane which is 
normal to the two walls. On the other hand, discrepancies are 
very sensitive along the wall between the two angles (figure 
11), and it can observed that the more acute the angle, the 
more the deviation of LPBS method with MW method. In the 
same way, this deviation has an influence farther away from 
the angle when it is more acute (case of angle at * 1.15x   to 
be compared with the angle at * 0x  ). This observation is 
confirmed by data plotted in figure 9. 
 
        Finally, the values of Poiseuille number calculated from 
the product of the friction factor f and the Reynolds number 
Re for both methods have been compared in Table 5 to the 
numerical values from Morini et al. [16]. All results are in 
excellent agreement but MW results are closer to Morini's 
ones. However, additional comparisons on other geometrical 
configurations should be performed in future work to confirm 
this analysis. 
 
 
Table 5: Product of friction factor and Reynolds number: 
comparison with the results from [16], for βTZ = 0.2 and γTZ = 
0.156 (βTZ = height / 2 x larger of wall02, γTZ = height / 2 x 
larger of wall01). 
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Figure 8: Isosceles triangular section, dimensionless velocity 
along the symmetry axis (y* = 0); comparison between no 
slip (--), MW (O) and LPBS (Δ) simulations for Kn’ = 
0.0866 
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Figure 9: Trapezoidal section, dimensionless velocity at cells 
center near the walls (x* = 0, x* = 1.15); comparison 
between MW (O) and LPBS (Δ) simulations for Kn’ = 
0.0866 
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Figure 10: Trapezoidal section, dimensionless velocity along 
the symmetry axis (y* = 0); comparison between no slip (--), 
MW (O) and LPBS (Δ) simulations for Kn’ = 0.0866 
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4. CONCLUSION AND PERSPECTIVES  

        Rarefied gas flows in microchannels with triangular or 
trapezoidal sections have been simulated using Fluent CFD 
code. Two methods were tested for first order slip boundary 
conditions implementation: the LPBS method currently 
developed in Fluent and the MW method proposed in this 
article. Mass flow rates and velocity profiles were calculated 
from MW and LPBS methods and compared for validation to 
the analytical solution for equilateral triangular sections, 
before applying them to isosceles and trapezoidal sections. 
This investigation pointed out the LPBS limitations: 
(l) Only Maxwell’s slip models are allowed for slip flow 

simulation with the LPBS method. No other slip 
coefficient or higher order slip models (e.g. second 
order boundary conditions proposed by Deissler [8]) can 
be used with this method. 

(2) The mean free path used by the LPBS method is 
necessarily calculated from equation 13. Nevertheless, a 
fictitious adjustment of the Lennard-Jones length value 
allows modifying the expression of λ by a multiplier 
coefficient. 

(3) LPBS method does not calculate slip velocity exactly at 
the wall. Only the velocity at cell centers near the wall is 
available.   

  
        In addition to these limitations, important slip velocity 
deviations from analytical solutions were found near the 
angles. These local deviations increase with Knudsen number 
and can reach 100% and more in some cases, leading to 
significant errors on mass flow rate estimation. They are 
particularly sensitive in acute angles. 
        On the contrary, in the MW method, various kinds of 
slip boundary conditions and diverse definitions of the mean 
free path may be used. The very good agreement between the 
numerical results and the analytical ones (less than 0.2 % 
deviation for Knudsen numbers up to 0.075 in the case of an 
equilateral triangular section) supports the use of this method 
for numerical simulations in the slip flow regime.  
Future work will include: 
 
• Implementation of second order boundary conditions for 

simulating higher Knudsen numbers flows; 
• 3D simulations in more complex geometries; 
• Comparison with simulated data using near-wall scaling 

function for describing the non-linear stress-strain 
relationship within the Knudsen layer [2], [17]. 

5. NOMENCLATURE 

Aα dimensionless slip coefficient without Maxwell’s 
reflection term 

A* dimensionless constant of analytical slip flow 
equation in trapezoidal section 

B* dimensionless constant of analytical slip flow 
equation in trapezoidal section 

Dh hydraulic diameter  
Kn Knudsen number 
kB Boltzman constant (1.38066E-23 JK-1) 
L characteristic length 

m


 mass flow rate 

NSm


 no-slip mass flow rate 

*m


 non - dimensional mass flow rate 

n normal direction 
P pressure  
T  temperature 
W streamwise velocity 
Ws flow velocity at the wall 
Wslip slip velocity 
Ww velocity of the wall 
W* dimensionless velocity 
x widthwise coordinate 
y depthwise coordinate 
z streamwise coordinate 
 
α slip coefficient with mean free path of the molecules 

and  Maxwell’s reflection term 
α* dimensionless slip coefficient with mean free path of 

the molecules and  Maxwell’s reflection term 
 
β base angle 
βTZ aspect ratio of trapezoidal section 
γTZ aspect ratio of trapezoidal section 
λ mean free path of the molecules 
 dynamic viscosity of the gas 
σ  Lennard-Jones characteristic length of the gas 
σv tangential momentum accommodation coefficient 
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