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SEMI-CLASSICAL RESOLVENT ESTIMATES FOR SHORT-RANGE L ∞ POTENTIALS

Introduction and statement of results

Our goal in this note is to study the resolvent of the Schrödinger operator

P (h) = -h 2 ∆ + V (x)
where 0 < h ≪ 1 is a semi-classical parameter, ∆ is the negative Laplacian in R n , n ≥ 3, and

V ∈ L ∞ (R n ) is a real-valued potential satisfying (1.1) |V (x)| ≤ C x -δ
with some constants C > 0 and δ > 3. More precisely, we are interested in bounding from above the quantity g ± s (h, ε) := log x -s (P (h) -E ± iε) -1 x -s

L 2 →L 2
where L 2 := L 2 (R n ), 0 < ε < 1, s > 1/2 and E > 0 is a fixed energy level independent of h. Such bounds are known in various situations. For example, for long-range real-valued C 1 potentials it is proved in [START_REF] Datchev | Quantative limiting absorption principle in the semiclassical limit[END_REF] when n ≥ 3 and in [START_REF] Shapiro | Semiclassical resolvent bounds in dimension two[END_REF] when n = 2 that (1.2) g ± s (h, ε) ≤ Ch -1 with some constant C > 0 independent of h and ε. Previously, the bound (1.2) was proved for smooth potentials in [START_REF] Burq | Lower bounds for shape resonances widths of long-range Schrödinger operators[END_REF] and an analog of (1.2) for Hölder potentials was proved in [START_REF] Vodev | Semi-classical resolvent estimates and regions free of resonances[END_REF]. A high-frequency analog of (1.2) on more complex Riemannian manifolds was also proved in [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF] and [START_REF] Cardoso | Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds[END_REF]. In all these papers the regularity of the potential (and of the perturbation in general) plays an essential role. Without any regularity the problem of bounding g ± s from above by an explicit function of h gets quite tough. Nevertheless, it has been recently shown in [START_REF] Shapiro | Semiclassical resolvent bound for compactly supported L ∞ potentials[END_REF] that for real-valued compactly supported L ∞ potentials one has the bound

(1.3) g ± s (h, ε) ≤ Ch -4/3 log(h -1
) with some constant C > 0 independent of h and ε. The bound (1.3) has been also proved in [START_REF] Klopp | On resolvent estimates and resonance free regions for semiclassical Schrödinger operators with bounded potentials[END_REF] still for real-valued compactly supported L ∞ potentials but with the weight x -s replaced by a cut-off function. When n = 1 it was shown in [START_REF] Dyatlov | The mathematical theory of scattering resonances[END_REF] that we have the better bound (1.2) instead of (1.3). When n ≥ 2, however, the bound (1.3) seems hard to improve without extra conditions on the potential. The problem of showing that the bound (1.3) is optimal is largely open. In contrast, it is well-known that the bound (1.2) cannot be improved in general (e.g. see [START_REF] Datchev | Resonances and lower resolvent bounds[END_REF]).

In this note we show that the bound (1.3) still holds for non-compactly supported L ∞ potentials when n ≥ 3. Our main result is the following Theorem 1.1. Under the condition (1.1), there exists h 0 > 0 such that for all 0 < h ≤ h 0 the bound (1.3) holds true. Remark. It is easy to see from the proof (see the inequality (4.2)) that the bound (1.3) holds also for a complex-valued potential V satisfying (1.1), provided that its imaginary part satisfies the condition ∓Im V (x) ≥ 0 for all x ∈ R n .

To prove this theorem we adapt the Carleman estimates proved in [START_REF] Shapiro | Semiclassical resolvent bound for compactly supported L ∞ potentials[END_REF] simplifying some key arguments as for example the construction of the phase function ϕ. This is made possible by defining the key function F in Section 3 differently, without involving the second derivative ϕ ′′ . The consequence is that we do not need to seek ϕ ′ as a solution to a differential equation as done in [START_REF] Shapiro | Semiclassical resolvent bound for compactly supported L ∞ potentials[END_REF], but it suffices to define it explicitly. Note also that similar (but simpler) Carleman estimates have been used in [START_REF] Vodev | Resolvent estimates for the magnetic Schrödinger operator[END_REF] to prove high-frequency resolvent estimates for the magnetic Schrödinger operator with large L ∞ magnetic potentials.

Construction of the phase and weight functions

We will first construct the weight function. We begin by introducing the continuous function

µ(r) = (r + 1) 2 -1 for 0 ≤ r ≤ a, (a + 1) 2 -1 + (a + 1) -2s+1 -(r + 1) -2s+1 for r ≥ a, where (2.1) 1 2 < s < δ -2 2
and a = h -m with some parameter m > 0 to be fixed in the proof of Lemma 2.3 below depending only on δ and s. Clearly, the first derivative (in sense of distributions) of µ satisfies

µ ′ (r) = 2(r + 1) for 0 ≤ r < a, (2s -1)(r + 1) -2s for r > a.
The main properties of the functions µ and µ ′ are given in the following Lemma 2.1. For all r > 0, r = a, we have the inequalities

(2.2) 2r -1 µ(r) -µ ′ (r) ≥ 0, (2.3) µ ′ (r) ≥ C 1 (r + 1) -2s , (2.4) µ(r) 2 µ ′ (r) ≤ C 2 a 4 (r + 1) 2s with some constants C 1 , C 2 > 0.
Proof. For r < a the left-hand side of (2.2) is equal to 2, while for r > a it is bounded from below by 2r -1 (a 2 -s) > 0 provided a is taken large enough. Furthermore, we clearly have (2.3) for r < a with C 1 = 2, while for r > a it holds with C 1 = 2s -1. Therefore, (2.3) holds with C 1 = min{2, 2s -1}. The bound (2.4) follows from the observation that µ(r) ≤ a 2 for all r, and µ ′ (r) ≥ 2 for r < a. Thus we get that (2.4) holds with C 2 = max{2 -1 , (2s -1) -1 }. ✷

We now turn to the construction of the phase function ϕ ∈ C 1 ([0, +∞)) such that ϕ(0) = 0 and ϕ(r) > 0 for r > 0. We define the first derivative of ϕ by

ϕ ′ (r) = τ (r + 1) -1 -τ (a + 1) -1 for 0 ≤ r ≤ a, 0 for r ≥ a, where (2.5) τ = τ 0 h -1/3
with some parameter τ 0 ≫ 1 independent of h to be fixed in Lemma 2.3 below. Clearly, the first derivative of ϕ ′ satisfies ϕ ′′ (r) = -τ (r + 1) -2 for 0 ≤ r < a, 0 for r > a.

Lemma 2.2. For all r ≥ 0 we have the bound

(2.6) h -1 ϕ(r) h -4/3 log 1 h .
Proof. We have

max ϕ = a 0 ϕ ′ (r)dr ≤ τ a 0 (r + 1) -1 dr = τ log(a + 1)
which clearly implies (2.6) in view of the choice of τ and a. ✷

For r = a, set A(r) = µϕ ′2 ′ (r) and

B(r) = µ(r) h -1 (r + 1) -δ + |ϕ ′′ (r)| 2 h -1 ϕ ′ (r)µ(r) + µ ′ (r) .
The following lemma will play a crucial role in the proof of the Carleman estimates in the next section.

Lemma 2.3. Given any C > 0 independent of the variable r and the parameters h, τ and a, there exist τ 0 = τ 0 (C) > 0 and h 0 = h 0 (C) > 0 so that for τ satisfying (2.5) and for all 0 < h ≤ h 0 we have the inequality

(2.7) A(r) -CB(r) ≥ - E 2 µ ′ (r)
for all r > 0, r = a.

Proof. For r < a we have

A(r) = -ϕ ′2 ′ (r) + τ 2 ∂ r 1 -(r + 1)(a + 1) -1 2 = -2ϕ ′ (r)ϕ ′′ (r) -2τ 2 (a + 1) -1 1 -(r + 1)(a + 1) -1 ≥ 2τ (r + 1) -2 ϕ ′ (r) -2τ 2 (a + 1) -1 ≥ 2τ (r + 1) -2 ϕ ′ (r) -τ 2 a -1 µ ′ (r) ≥ 2τ (r + 1) -2 ϕ ′ (r) -O(h m-1 )µ ′ (r) where we have used that µ ′ (r) ≥ 2. Taking m > 2 we get (2.8) A(r) ≥ 2τ (r + 1) -2 ϕ ′ (r) -O(h)µ ′ (r)
for all r < a. We will now bound the function B from above. Let first 0 < r ≤ a 2 . Since in this case we have

ϕ ′ (r) ≥ τ 3 (r + 1) -1
we obtain

B(r) µ(r) h -2 (r + 1) -2δ + ϕ ′′ (r) 2 h -1 ϕ ′ (r) (τ h) -1 µ(r)(r + 1) 2-2δ ϕ ′ (r) 2 τ (r + 1) -2 ϕ ′ (r) + h µ(r)ϕ ′′ (r) 2 µ ′ (r)ϕ ′ (r) µ ′ (r) τ -3 h -1 (r + 1) 6-2δ τ (r + 1) -2 ϕ ′ (r) + τ hµ ′ (r) τ -3 0 τ (r + 1) -2 ϕ ′ (r) + h 2/3 µ ′ (r)
where we have used that δ > 3. This bound together with (2.8) clearly imply (2.7), provided τ -1 0 and h are taken small enough depending on C. Let now a 2 < r < a. Then we have the bound

B(r) ≤ µ(r) µ ′ (r) 2 h -1 (r + 1) -δ + |ϕ ′′ (r)| 2 µ ′ (r) h -2 (r + 1) 2-2δ + τ 2 (r + 1) -2 µ ′ (r) h -2 a 2-2δ + τ 2 a -2 µ ′ (r) h 2m(δ-1)-2 + h 2m-2/3 µ ′ (r) hµ ′ (r)
provided m is taken large enough. Again, this bound together with (2.8) imply (2.7). It remains to consider the case r > a. Using that µ = O(a 2 ) together with (2.3) and taking into account that s satisfies (2.1), we get

B(r) = µ(r) h -1 (r + 1) -δ 2 µ ′ (r) h -2 a 4 (r + 1) 4s-2δ µ ′ (r) h -2 a 4+4s-2δ µ ′ (r) h 2m(δ-2-2s)-2 µ ′ (r) hµ ′ (r)
provided that m is taken large enough. Since in this case A(r) = 0, the above bound clearly implies (2.7). ✷

Carleman estimates

Our goal in this section is to prove the following Theorem 3.1. Suppose (1.1) holds and let s satisfy (2.1). Then, for all functions f ∈ H 2 (R n ) such that x s (P (h) -E ± iε)f ∈ L 2 and for all 0 < h ≪ 1, 0 < ε ≤ ha -2 , we have the estimate

(3.1) x -s e ϕ/h f L 2 ≤ Ca 2 h -1 x s e ϕ/h (P (h) -E ± iε)f L 2 + Caτ (ε/h) 1/2 e ϕ/h f L 2
with a constant C > 0 independent of h, ε and f .

Proof. We pass to the polar coordinates (r, w) ∈ R + × S n-1 , r = |x|, w = x/|x|, and recall that L

2 (R n ) = L 2 (R + × S n-1 , r n-1 drdw).
In what follows we denote by • and •, • the norm and the scalar product in L 2 (S n-1 ). We will make use of the identity

(3.2) r (n-1)/2 ∆r -(n-1)/2 = ∂ 2 r + ∆ w r 2
where ∆ w = ∆ w -1 4 (n -1)(n -3) and ∆ w denotes the negative Laplace-Beltrami operator on S n-1 . Set u = r (n-1)/2 e ϕ/h f and P ± (h) = r (n-1)/2 (P (h) -E ± iε)r -(n-1)/2 , P ± ϕ (h) = e ϕ/h P ± (h)e -ϕ/h . Using (3.2) we can write the operator P ± (h) in the coordinates (r, w) as follows

P ± (h) = D 2 r + Λ w r 2 -E ± iε + V
where we have put D r = -ih∂ r and Λ w = -h 2 ∆ w . Since the function ϕ depends only on the variable r, this implies

P ± ϕ (h) = D 2 r + Λ w r 2 -E ± iε -ϕ ′2 + hϕ ′′ + 2iϕ ′ D r + V. For r > 0, r = a, introduce the function F (r) = -(r -2 Λ w -E -ϕ ′ (r) 2 )u(r, •), u(r, •) + D r u(r, •) 2
and observe that its first derivative is given by

F ′ (r) = 2 r r -2 Λ w u(r, •), u(r, •) + ((ϕ ′ ) 2 ) ′ u(r, •) 2 -2h -1 Im P ± ϕ (h)u(r, •), D r u(r, •) ±2εh -1 Re u(r, •), D r u(r, •) + 4h -1 ϕ ′ D r u(r, •) 2 +2h -1 Im (V + hϕ ′′ )u(r, •), D r u(r, •) .
Thus, if µ is the function defined in the previous section, we obtain the identity

µ ′ F + µF ′ = (2r -1 µ -µ ′ ) r -2 Λ w u(r, •), u(r, •) + (Eµ ′ + (µ(ϕ ′ ) 2 ) ′ ) u(r, •) 2 -2h -1 µIm P ± ϕ (h)u(r, •), D r u(r, •) ±2εh -1 µRe u(r, •), D r u(r, •) + (µ ′ + 4h -1 ϕ ′ µ) D r u(r, •) 2 +2h -1 µIm (V + hϕ ′′ )u(r, •), D r u(r, •) .
Using that Λ w ≥ 0 together with (2.2) we get the inequality

µ ′ F + µF ′ ≥ (Eµ ′ + (µ(ϕ ′ ) 2 ) ′ ) u(r, •) 2 + (µ ′ + 4h -1 ϕ ′ µ) D r u(r, •) 2 - 3h -2 µ 2 µ ′ P ± ϕ (h)u(r, •) 2 - µ ′ 3 D r u(r, •) 2 -εh -1 µ u(r, •) 2 + D r u(r, •) 2 -3h -2 µ 2 (µ ′ + 4h -1 ϕ ′ µ) -1 (V + hϕ ′′ )u(r, •) 2 - 1 3 (µ ′ + 4h -1 ϕ ′ µ) D r u(r, •) 2 ≥ Eµ ′ + (µ(ϕ ′ ) 2 ) ′ -Cµ 2 (µ ′ + h -1 ϕ ′ µ) -1 (h -1 (r + 1) -δ + |ϕ ′′ |) 2 u(r, •) 2 - 3h -2 µ 2 µ ′ P ± ϕ (h)u(r, •) 2 -εh -1 µ u(r, •) 2 + D r u(r, •) 2
with some constant C > 0. Now we use Lemma 2.3 to conclude that

µ ′ F + µF ′ ≥ E 2 µ ′ u(r, •) 2 - 3h -2 µ 2 µ ′ P ± ϕ (h)u(r, •) 2 -εh -1 µ u(r, •) 2 + D r u(r, •) 2 .
We now integrate this inequality with respect to r and use that, since µ(0) = 0, we have

∞ 0 (µ ′ F + µF ′ )dr = 0.
Thus we obtain the estimate

E 2 ∞ 0 µ ′ u(r, •) 2 dr ≤ 3h -2 ∞ 0 µ 2 µ ′ P ± ϕ (h)u(r, •) 2 dr (3.3) +εh -1 ∞ 0 µ u(r, •) 2 + D r u(r, •) 2 dr.
Using that µ = O(a 2 ) together with (2.3) and (2.4) we get from (3.3)

∞ 0 (r + 1) -2s u(r, •) 2 dr ≤ Ca 4 h -2 ∞ 0 (r + 1) 2s P ± ϕ (h)u(r, •) 2 dr (3.4) +Cεh -1 a 2 ∞ 0 u(r, •) 2 + D r u(r, •) 2 dr
with some constant C > 0 independent of h and ε. On the other hand, we have the identity

Re ∞ 0 2iϕ ′ D r u(r, •), u(r, •) dr = ∞ 0 hϕ ′′ u(r, •) 2 dr and hence Re ∞ 0 P ± ϕ (h)u(r, •), u(r, •) dr = ∞ 0 D r u(r, •) 2 dr + ∞ 0 r -2 Λ w u(r, •), u(r, •) dr - ∞ 0 (E + ϕ ′2 ) u(r, •) 2 dr + ∞ 0 V u(r, •), u(r, •) dr. This implies ∞ 0 D r u(r, •) 2 dr ≤ O(τ 2 ) ∞ 0 u(r, •) 2 dr (3.5) +γ ∞ 0 (r + 1) -2s u(r, •) 2 dr + γ -1 ∞ 0 (r + 1) 2s P ± ϕ (h)u(r, •) 2 dr
for every γ > 0. We take now γ small enough, independent of h, and recall that εh -1 a 2 ≤ 1. Thus, combining the estimates (3.4) and (3.5), we get

∞ 0 (r + 1) -2s u(r, •) 2 dr ≤ Ca 4 h -2 ∞ 0 (r + 1) 2s P ± ϕ (h)u(r, •) 2 dr (3.6) +Cεh -1 a 2 τ 2 ∞ 0 u(r, •) 2 dr
with a new constant C > 0 independent of h and ε. It is an easy observation now that the estimate (3.6) implies (3.1). ✷

Resolvent estimates

In this section we will derive the bound (1.3) from Theorem 3.1. Indeed, it follows from the estimate (3.1) and Lemma 2.2 that for 0 < h ≪ 1, 0 < ε ≤ ha -2 and s satisfying (2.1) we have (4.1)

x -s f L 2 ≤ M x s (P (h) -E ± iε)f L 2 + M ε 1/2 f L 2 where M = exp Ch -4/3 log(h -1 ) with a constant C > 0 independent of h and ε. On the other hand, since the operator P (h) is symmetric, we have ε f 2 L 2 = ±Im (P (h) -E ± iε)f, f L 2 (4.2) ≤ (2M ) -2 x -s f 2 L 2 + (2M ) 2 x s (P (h) -E ± iε)f 2 L 2 . We rewrite (4.2) in the form

(4.3) M ε 1/2 f L 2 ≤ 1 2 x -s f L 2 + 2M 2 x s (P (h) -E ± iε)f L 2 .
We now combine (4.1) and (4.3) to get (4.4)

x -s f L 2 ≤ 4M 2 x s (P (h) -E ± iε)f L 2 .

It follows from (4.4) that the resolvent estimate (4.5)

x -s (P (h) -E ± iε) -1 x -s L 2 →L 2 ≤ 4M 2 holds for all 0 < h ≪ 1, 0 < ε ≤ ha -2 and s satisfying (2.1). On the other hand, for ε ≥ ha -2 the estimate (4.5) holds in a trivial way. Indeed, in this case, since the operator P (h) is symmetric, the norm of the resolvent is upper bounded by ε -1 = O(h -2m-1 ). Finally, observe that if (4.5) holds for s satisfying (2.1), it holds for all s > 1/2.
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