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The numerical simulation of interaction between structures and two-phase flows is a major concern for 
many industrial applications. In order to address this challenge, the motion of structures has to be tracked 
accurately. In the present work, a discrete forcing method based on a porous medium approach is proposed to 
follow non-deformable rigid body with an imposed velocity by using a finite-volume Navier-Stokes solver 
code dedicated to multi-phase flows and based on a two-fluid approach. To deal with the action reaction 
principle at the solid wall interfaces in a conservative way, a porosity is introduced allowing to locate the 
solid and insuring no diffusion of the fluid-structure interface. The volumetric fraction equilibrium is adapted 
to this novelty. Mass and momentum balance equations are formulated on a fixed cartesian grid. Interface 
tracking is addressed in detail going from the definition of the porosity to the changes in the discretization 
of the momentum balance equation. This so-called Time and Space Dependent Porosity (TSDP) method is 
then validated by using analytical and elementary test cases. 

Received . . .

KEY WORDS: Fluid-structure interface tracking method, multi-phase flow, CFD, Discrete Forcing
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1. INTRODUCTION

In industrial applications such as petroleum, nuclear industry, or naval engineering, mobile solid

bodies in two-phase flows are a major concern as they might be involved in different possible

damages. Consequently, several points of view can be considered to investigate them through

experiments or numerical simulations. For the purpose of this work, numerical simulation is

considered.

In Computational Fluid Dynamics (CFD), to deal with moving-boundary problems, it is possible

to use mobile-mesh methods such as the Arbitrary Lagrangian Eulerian[21] or Chimera [1]. Mobile-

mesh methods are very accurate since the mesh is body-fitted at anytime. However, the issue of this
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kind of method is the high computational cost of mesh updating for complex geometries. Immersed

Boundary methods are more and more popular since the mesh generation is simple and not updated.

Based on the original approach introduced by Peskin 1972 [22], Immersed Boundary Method

(IBM) consists in representing fluid in an Eulerian framework and solid in a Lagrangian one. The

domain contains the structure, it is considered as a real part of the calculation domain. The main

advantage with this method is in the non-explicit representation of the structure, such that it is

possible to perform calculations on complex geometries using Cartesian grids. Mittal and Iaccarino

[19] categorized IBM into two approaches:

• Continuous forcing: the operator discretization is unchanged, a source term is added in the

momentum balance equation in order to take into account the immersed boundary. Penalty

method and Peskin approach are continuous forcing methods.

• Discrete forcing: operator discretization is different close to the fluid-structure interface in

order to take into account the boundary. The challenge of these methods is to properly

reconstruct the interface properties.

In the present work, a Discrete Forcing method dedicated to moving bodies in two-phase flow is

proposed. The concept of these methods, in mirror of continuous forcing ones, is to keep unchanged

the conservation laws at the wall by modifying the operator discretization in order to have the

right condition at the interface. For example, the Cut-cell approach [5, 29]modifies the shape of the

control volumes near the interface by cutting and merging them. Mass, convective, diffusive fluxes

and gradients have to be computed on each face of these new cells. Developed by Tseng et al. [25],

the Ghost-Fluid approach consists in the introduction of a force in Navier-Stokes equation in order to

impose the exact boundary condition at the interface. For each cell crossed by the interface, a ghost

zone is introduced in the non-fluid area where the boundary condition has to be enforced. These

methods are robust and used for different situations from bubbly flow to fluid-structure interaction.

Bai et al. [2] used Cartesian cut cell approach to simulate waves for example. However, in the present

work, we are interested in moving-bodies in two-phase flows. This is not the first time an article is

dedicated to this kind of flow with a discrete-forcing method. For example, Xie [28] investigated

breaking waves, he used the cut-cell method to reproduce the reef. Most of the time these methods

are implemented in multi-phase flow code based on a one-fluid approach. The novelty of this article

is to implement a discrete forcing method in a code based on a two-fluid approach and to adapt the

volumetric fraction equilibrium and the momentum balance equation to it.

Based on a porous media approach, the Time and Space Dependent Porosity is a discrete forcing

approach able to track non-deformable solids with imposed velocities in a multi-phase flow on

a Cartesian grid. In order to reconstruct the wall, several major steps are required such as the

convection of the porosity, reshaping cells taking into account the fluid-structure interface or

computing a fitted pressure gradient. Firstly, two-phase flow governing equations and modeling

are presented. Then, a discrete forcing method based on a porous media approach and dedicated to

follow a structure in a two-phase flow is proposed. Variable interface-reconstructions are detailed. In

order to assess the proposed novelties, four verification test cases are presented: Poiseuille flow with

porous walls, cylinder moving in a fluid with the same velocity, accelerated piston, and one based on

Taylor-Green vortices. Finally, two-phase flow applications are presented with the Time and Space

Dependent Porosity method: a suddenly stopped cylinder in a fluid, the impact of a bubble on a

cylinder, a dam break on a wet bed, and a wave generator.

2. TWO-PHASE FLOW MODELING

The present work involves a CFD code dedicated to multiphase flows and based on the two-fluid

(extended to n) approach. NEPTUNE CFD code developed in the framework of the NEPTUNE

project [11] (funded by EDF, CEA, Framatome and IRSN) is a finite-volume code with a collocated

arrangement for all variables. The data structure is totally face-based, which allows the use of

arbitrary shaped cells (tetrahedra, hexahedra, prisms, pyramids, ...). Using a pressure correction

approach [13], it is able to simulate multiphase flows by solving a set of three balance equations for
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each field. These balance equations are deduced from volumetric averaging of local instantaneous

balance equations where the k-phase volumetric fraction is written αk. In multiphase flow, one

property of the k-phase volumetric fractions is:

N
∑

k=1

αk = 1 (1)

with N the number of fluid phases included into the fluid domain.

Fields can represent different kinds of multiphase flows. The present work is focusing on liquid-

gas flows only and restricted to adiabatic cases, simplifying the system to the mass and momentum

balance equations for each phase k:

∂(αkρk)

∂t
+∇ · (αkρkUk) = 0

∂ (α ρ Uk)

∂t
+∇ · (αkρkUkUk) = −αk∇P + αkρkg +∇ · τk +

N
∑

p=1 p6=k

Mp→k

(2)

where α, ρ, U , Γ, P , τ , g and M are respectively the volume fraction, the density, the velocity,

the mass transfer, the pressure, the Reynolds-stress tensor, the gravity and the momentum transfer

to the phase k. Depending on the forms of the same physical components, i.e.: a continuous or

dispersed field, the interfacial momentum transfers of each phase are defined. Different approaches

are consequently possible depending on the two-phase flow regime. For a bubbly flow, a dispersed

approach for the gas field is more appropriate [18]. However, for stratified or slug flow, a Large

Interface approach seems to be more suitable [6]. To deal with multi-regime flow, where small and

large bubbles are present, both models using respectively two and three fields are implemented: the

Generalized Large Interface To Dispersed approach [17] and the multi-field approach [8].

3. TIME AND SPACE DEPENDENT POROSITY METHOD DEFINITION

The aim of discrete forcing methods is to strictly ensure the conservation laws at the close vicinity

of the interface. The idea is to reshape the cells crossed by the interface and to build specific

schemes inside them. The interface is approximated as a plane in each cut-cell. The domain

contains the structure, which is considered as a real part of the calculation domain. A recognition

function is therefore required to determine the solid location on the cells. The main advantage

of these methods lies in the non-explicit representation of the structure, such as, it is possible to

perform calculations on complex geometries using Cartesian grids. The major challenge of these

methods is to reconstruct the interface properties.

In order to locate the solid, cells are identified as a solid, fluid, or interface cells. In the present

method, the whole domain is considered in the framework of a porous media approach where a

time and space dependent fraction called porosity is 0 in the solid, and 1 in the fluid. The fluid-

structure interface is consequently represented with a porosity between 0 and 1. Here, the porosity

is as follows:

ε(x, t) = 1− αs(x, t) (3)

with α the volumetric fraction of the solid phase, and ε(x, t) the porosity (in x at time t) being

between [0, 1]. Therefore, the previous relation (1) describing the volumetric fraction balance

becomes:

∑

k

αk(x, t) = ε(x, t) (4)

This method involves a non-moving Cartesian grid where the body is meshed and defined with a

porosity equal to 0 insuring no mass transfer between solid and fluids. In a finite-volume framework,

the porosity is computed for a cell I by using the following relation:
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εI =
fluid volume of the cell I

total volume of the cell I
. (5)

Here, the solid motion is tracked thanks to the porosity evolution in a Lagrangian framework. To

take into account the solid motion and the presence of an interface in cut-cells, the porosity has to

be convected and the momentum balance equations are formulated differently.

3.1. Porous mass balance equation and media definition

The time and space dependent porosity definition is the key element in the method. The volume of

the solid domain should be constant whether the object is moving or not. Acting like volumetric

fraction, a porosity is computed for each cell and for each face of the domain in order to convect the

structure.

Figure 1. Cell-porosity computation: nodes in the solid domain are in red, others in black. In a cell, if each
node is solid (blue), it is a solid-cell; if each node is not solid (white), it is a fluid-cell; otherwise it is a a

cut-cell (green).

3.1.1. Cell-porosity computation For each cell, three kinds of cells are possible and defined thanks

to the porosity:

1. if the cell is solid, porosity value is 0 ;

2. if the cell is fluid, porosity value is 1 ;

3. in other cases, the cell contains an interface.

At each time step, the porosity is computed by using a Volume of Fluid Initialization (VOFI)

method [3, 4] as follows. An implicit function f is introduced. This function is defined as follows :

f(x, y, z) = 0 with x, y,and z defining a point located on the interface between the fluid domain and

the solid domain. Then, this function is used in order to evaluate in each cell the porosity. Examples

of cells with porosity of 0, 1 and intermediate values are displayed on Figure 1.

3.1.2. Geometric face-porosity determination If a face is cut by the fluid-structure interface, the two

Cartesian neighboring cells sharing this face are required to compute geometrically the face porosity.

Based on the node coordinates and the porosity of each cell, it is determined geometrically by

assuming the interface straight (linear function) and not curved. Several configurations are possible

and illustrated in two dimensions in Figure 2 for εI > εJ .
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Figure 2. Fluid-structure interface crossing a face in a two-dimensional configuration. Each cell area is
calculated by using triangle and rectangle areas when it is required.

The interface is defined: y = Ax +B where A and B are two real coefficients. In each cell, the

blue surface is computed based on node coordinates, A, B. Consequently, for a given case :

{

SI = 1− αI = s1(A,B, x)

SJ = 1− αJ = s2(A,B, x)
(6)

where S and S designate respectively the blue areas of both cells, si and sj are two functions

computing the area based on A, B and x. The computation of this system leads to an evaluation of

A and B, and then εIJ . For example, node coordinates are given in Figure.2 for case (A). Based on

them, the blue surface is computed in each cell such as:

{

SI = 1− αI = BL+AL2/2

SJ = 1− αJ = (AL + B)L+AL2/2
(7)

Then, by solving the present system, A and B are computed. Finally, εIJ = 1− (AL +B). For

three-dimensional cases, the mesh is assumed enough refined to use exactly the same method.

3.1.3. Convected porosity computation As described in (4): the porosity has to be treated like k-

phase volumetric fractions, hence convecting the porosity is necessary. There are no mass transfer

between a solid and other phases, therefore:

∂ε

∂t
+∇ · (εUs) = 0 (8)

with ε =
∑

k
α . In a finite-volume framework, the discretization at each time step is given by:

εn+1
I − εnI

∆t
ΩI +

∑

J∈NI

εnIJφIJ = 0 (9)

with φIJ = Us · nIJ , where nIJ is the face unit normal vector between cells I and J , and NI

neighboring cells around I. For multiple solids, the domain is decomposed in subdomains depending
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on the position of each structure in order to differentiate their own velocities like in Figure 3. In order

to allow the independent motion of different structures with several velocities, the solid volumetric

phase fraction αs = 1− ε is convected since it is null outside each structure. The convection

equation becomes:

αs
n+1
I − αs

n
I

∆t
ΩI +

∑

J∈NI

(αs
n
IJ − 1)φIJ = 0. (10)

Outside structures, one gets
∑

J∈NI
φIJ = 0. Given that αs is also null outside solid sub-domains,

the convection equation is thus formulated in an equivalent way in order to keep the minimum and

the maximum principles true:

αs
n+1
I − αs

n
I

∆t
ΩI +

∑

J∈NI

(αs
n
IJ − αs

n
I )φIJ = 0. (11)

Figure 3. Decomposition of the domain according to the position of each cylinder. In each subdomain, the
solid velocity is taken equal to the corresponding solid.

To minimize the numerical diffusion and keep positivity and maximum principles for porosity, a

θ-scheme is used to define the face porosity fraction, and each time step is subdivided in sub-time

step to approximate accurately the face porosity. An example of 2D configuration is given in Fig.4.

Using a θ-scheme, the porosity is expressed in terms of the current face function αsGEOM and a

decentered value αsUPWIND as follows :

αsIJ = θIJαs
GEOM
IJ + (1− θIJ)αs

UPWIND
IJ (12)

Using an upwind decentered scheme yields : αs
UPWIND
IJ = αsI for φIJ > 0

= αsJ for φIJ < 0. αs
UPWIND
IJ ∈ [0, 1]. As far as possible, θIJ is close to 1 in

order to preserve the highest geometric contribution. The UPWIND and geometric face porosity

computation are satisfied thanks to a Courant condition on the time step. Introducing the time step

subdivision, let i be an integer i ∈ [0, imax] and β the solid fraction during a sub-iteration such
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that βI = α I d βimax

I = αs
n+1
I . The sub-cycling time step becomes: dt =

∆t

imax

. Therefore, the

to define βi
IJ and leads to the αs

n
IJ thanks to the relation:

αs
n
IJ =

∑

i∈[0,imax]
βi
IJ

imax

. (13)

This relation is used to solve iteratively the mass balance equation (11). The derivation of the

Figure 4. Fluid-structure interface crossing a cell face. Sub-cycles are required in this case to approximate
step by step the value of the face-porosity.

is presented below. For a cell I, lets assume 0 ≤ βi
I ≤ 1 and derive 0 ≤ βi+1

I ≤ 1:

1. Positivity

βi+1
I − βi

I

dt
ΩI +

∑

J∈NI

(βi
IJ − βi

I)φIJ = 0

It is possible to formulate the expression by highlighting decentered terms according to the

flux sign:

βi+1
I − βi

I

dt
ΩI +

∑

J∈NI ,φIJ≥0

(θIJβ
i,GEOM
IJ + (1− θIJ)β

i
I − βi

I )φIJ)

+
∑

J∈NI ,φIJ<0

(θIJβ
i,GEOM
IJ + (1− θIJ )β

i
J − βi

I )φIJ) = 0

One defines A = −
∑

J∈NI ,φIJ<0(θIJβ
i,GEOM
IJ + (1− θIJ )β

i
J )φIJ) which is positive.

βI
dt

ΩI =
βi
I

dt
ΩI +A +

∑

J∈NI ,φIJ<0

βIφIJ −
∑

J∈NI ,φIJ≥0

θIJ (β
i,GEOM
IJ − βi

I )φIJ

he positivity of βi+1
I , the condition is:

∑

J∈NI ,φIJ≥0

θIJ (β
i,GEOM
IJ − βi

I )φIJ ≤
βi
I

dt
ΩI +A +

∑

J∈NI ,φIJ<0

βIφIJ (14)

2. Let assume βi+1
I = 1− εi+1

I . To ensure the positivity of εi+1
I (consequently

βI ≤ 1), the condition is similarly:

∑

J∈NI ,φIJ≥0

θIJ(ε
i,GEOM
IJ − εiI)φIJ ≤

εiI
dt

ΩI +A+
∑

J∈NI ,φIJ<0

εIφIJ (15)
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Therefore, θ has to ensure both conditions. θIJ is defined per cell (not per face) as a θI . Thus, the

conditions become for a cell I:























θI,1 ≤

βi
I

dt
ΩI + A+

∑

J∈NI ,φIJ<0 βIφIJ
∑

J∈NI ,φIJ≥0(β
i,GEOM
IJ − βi

I)φIJ

θI,2 ≤

εiI
dt
ΩI +A +

∑

J∈NI ,φIJ<0 εIφIJ
∑

J∈NI ,φIJ≥0(ε
i,GEOM
IJ − εiI)φIJ

(16)

First, as the priority is the geometric part of βIJ , θI has to be maximum:























θI,1 =

βi
I

dt
ΩI + A+

∑

J∈NI ,φIJ<0 βIφIJ
∑

J∈NI ,φIJ≥0(β
i,GEOM
IJ − βi

I)φIJ

θI,2 =

εiI
dt
ΩI +A +

∑

J∈NI ,φIJ<0 εIφIJ
∑

J∈NI ,φIJ≥0(ε
i,GEOM
IJ − εiI)φIJ

(17)

To satisfy both conditions with one value of θI , the minimum has to be taken between θI,1 and θI,2.

As these conditions have to be true for all cell around, consequently the θI has to satisfy conditions

from all cells around, therefore:

θI = MIN(θk, θI) = MIN(θk,MIN(θI,1, θI,2)) (18)

with k ∈ N . To determine A in each cell, its minimum is taken in order to not overestimate the

maximum value of θI . Consequently:

A =
∑

J∈NI ,φIJ<0

MIN(βGEOM
IJ , βJ)φIJ (19)

3.2. Momentum balance equation

3.2.1. Geometric parameter definitions To express the presence of a fluid-structure interface in a

cell, one requirement is to define structure geometric parameters: structure unit normal vector and

interface center of gravity. The interface is consequently considered as a new face in each cell.

Figure 5. Cell crossed by the fluid-structure interface, geometric characteristics re-shaping.
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Figure 5 represents a crossed-cell in 2D, where G is the interface center of gravity, and np the

structure unit normal vector. For a fully fluid cell, the following relation is satisfied:

∑

J∈NI

nIJ = 0 (20)

Consequently, for the interface cell presented in Figure 5, based on the different face porosities, the

relation becomes:
∑

J∈NI

εIJnIJ + np = 0 (21)

Then, G is defined as the solid face center of gravity. According to the finite volume discretization,

it can be expressed as :

εIΩ =
∑

J∈NI

εIJxGIJ,k
.nIJ,k + xGP ,k.nP,k (22)

with x the face centers of gravity and k = x, y or z. From (22), G coordinates are obtained.

When the volume of the cell is reduced because of the structure, cell centers of gravity are

recomputed depending on the solid face (like in cut-cell methods [5, 29]). For a fully solid cell,

the velocity is U . But, for a cut-cell, the velocity is the fluid one taking into account the presence

of the solid and its motion. According to the diffusion theorem, the center of gravity of a fully fluid

cell is written:

iG =
1

Ω

∑

J∈NI

i2IJ
2

SIJ,i (23)

with i = x, y, z. Therefore, for a cut-cell like in Figure 6, the porosity εI is taken into account:

iG =
1

εIΩ

∑

J∈NI

i2IJ
2

SIJ,i (24)

•
I

•
J

•
I∗

•
J∗

Figure 6. Sketch of the cell center displacements.

3.2.2. Pressure field A diffusion equation is solved inside the solid by taking into account the dual

of a Dirichlet boundary condition as:

∇2P = 0 with P = Pfluid at the fluid-structure interface. (25)

Initially, for a regular Cartesian grid, for two cells I and J , the pressure at the face joining them

is given by:

PIJ =
1

2
(PI + PJ). (26)
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Based on displaced cell centers of gravity (Figure 5), the face pressure is computed with a geometric

ponderation between PI and PJ at the intersection between the face and IJ . Consequently, the

approximation of pressure computed at the face is improved since it depends on the position of

each cell center of gravity around.

The pressure gradient reconstruction is required at the fluid-structure interface in order to not

disturb the flow around the structure. Based on the displaced cell center of gravity computed

previously, it is possible to write for an intersected cell I:

PG = PI + IG.∇PI . (27)

Using finite-volume method, the pressure gradient is written:

∫

ΩI

∇PIdΩ =
∑

J∈NI

εIJPIJnIJ + PGnp. (28)

As,
∑

J∈NI

εIJnIJ + np = 0 (29)

this yields the implicit formula:

∇P IεIΩ =
∑

J∈NI

εIJ(PIJ − PI)nIJ −
∑

J∈VI

εIJ(IGP .∇P I)nIJ . (30)

3.2.3. Diffusive terms According to the finite-volume discretization, for a cell I, the diffusion term

without the wall contribution is written as:

∑

J∈NI

αIJµIJ

UJ − U I

IJ
|| nIJ || . (31)

with α the phase face volumetric fraction between I and J.

To take into account the additional face, the diffusion term in I is projected on the fluid-structure

interface characterized by nP .

αIµI

UP − U I

IP
|| nP || . (32)

Here, U is defined as the cell velocity projected on the wall, and according to the solid velocity

with a non-slip condition:

UP = (Usolid.nP ).nP + UI − (UI .nP ).nP . (33)

Finally, the diffusion term for a cut-cell I is written as:

∑

J∈VI

αIJµIJ

UJ − U I

IJ
|| nIJ || +αIµI

UP − U I

IP
|| nP || . (34)

4. ROBUSTNESS OF THE METHOD

In order to evaluate the previously-mentioned Time and Space Dependent Porosity method, it is

necessary to validate it. Some of the configurations used to assess its consistency are given below.
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Figure 7. Geometric points representation for an inclined channel.

4.1. Test cases with no motion

4.1.1. Single-phase flow in an inclined channel The configuration involves a square domain

representing a channel conveying a single-phase flow. In the context of the TSDP method, the

channel walls are described by the porosity. The flow enters into the channel with a given

inclination. Several inclinations are tested. This elementary configuration is chosen because an

analytical formulation of the solution is available for comparison with numerical results. The square

dimensions are 1mx1m. Several two-dimensional grid refinements are considered.

First, with a 10x10x1 mesh, the center of gravity from the solid faces and the new cell centers

of gravity are computed for an inclined channel in Figure 7. The grid is represented in black dash

and the walls in black. Their computation has been validated for different cases such as a cylinder

for example. Then, several channel inclinations are computed to check the validity of the proposed

novelties defined previously and the interface reconstruction for a Poiseuille flow with wall crossing

cells (geometric parameters are fully used). Thanks to the different stated changes, results are in

agreement with analytical solutions for different inclinations. The L2 relative error is computed for

ure 8. Poiseuille flow: L2 relative error and order conservation graphics.

pressure, and velocity. Based on five mesh refinements, it attests the order conservation despite the

time and space porosity method implementation: 1.60 for pressure and 1.95 for velocity.

4.1.2. Taylor-Green vortices around an immersed body The configuration involves a square domain

containing Taylor-Green vortices with an immersed square solid in the center where a slip condition

is ensured at its walls. Therefore as shown in Figure 9 the vortices are not disturbed in this area.
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Domain borders have periodic conditions. The theoretical flow is characterized by flow velocity

components u and uy in both space directions x and y of the form :

{

ux(x, y, t) = −cos(πx)sin(πy)e−2π2µt

uy(x, y, t) = sin(πx)cos(πy)e−2π2µt
(35)

Figure 9. Sketch (left) of the Taylor-Green vortices around an immersed square solid with slip walls and
numerical results for 5 grid refinements (right).

The single-phase fluid flow is assumed to be incompressible. 5 grid refinements are considered

in this case. The fluid-structure interface does not cross any cells, consequently porosity in the

domain is 1 or 0. This choice reduces the approximation done when the structure has an angle in

one cell. This case highlights the correct reconstruction of a wall with slip condition, and the correct

implementation of the method which does not affect the order conservation. In Figure 9, the L2

relative error for velocity is plotted depending on the grid refinement. It is possible to see that the

coarse mesh is too coarse to follow the vortices. Then, for the others, depending on the chosen

algorithm, the order conservation is ensured.

4.1.3. Laminar wake of a cylinder, Re = 40 A non-moving cylinder is considered immersed in a

flow with a Reynolds number of 40. In this case, the flow at the wake of the cylinder is stable and

creates two symmetric recirculation zones as displayed in Fig.10.

A cylinder having a diameter D = 1 m and a center (4, 7.5) is immersed in a domain

[0, 15m][0, 15m] discretized such as ∆x = ∆y = 0.05m. The inlet velocity of the fluid is 1m/s.

The Reynolds number is 40.

The force acting on the cylinder is computed with cells having a porosity between 0 and 1 (cut

cells) by using the pressure and velocity gradient at wall :

F =

∮

n(−PI + µ(∇U+∇TU))dS (36)

Then, the drag and lift coefficients are defined by:

CD =
Fx

1
2ρU

2
0D

CL =
Fy

1
2ρU

2
0D

(37)

In Tab.1, the present method is in agreement with different other referenced works for each

characteristics variables. The correct wall reconstruction is therefore assessed.
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Figure 10. Definition of the characteristic wake dimensions for the steady flow over a stationary circular
cylinder (left) and numerical streamlines for Re = 40.

l/D a/D b/D θ CD

=
Tritton (1959)∗ [24] - - - - 1.59

Coutanceau & Brouard (1977)∗ [7] 2.13 0.76 0.59 53.8 -

Taira & Colonius (2007) [23] 2.30 0.73 0.60 53.7 1.54

Wang & Zhang (2011) [27] 2.36 0.72 0.6 53.8 1.54

Present study 2.25 0.746 0.597 53.7 1.56

Table I. Comparison between experimental results (with an “*”), other simulations and the present study
for a cylinder at Re = 40.

4.2. Test cases with motion

4.2.1. One dimensional body The case of an incompressible flow and a solid animated by a constant

acceleration in a one dimensional channel of length 10m using 4 grid refinements is considered. In

the fluid, the momentum balance equation gives ∂u
∂t

= −∇p, consequently this case allows to assess

the validity of the pressure gradient computation when cell are recovered or discovered by the solid,

since it is given by the solid acceleration. Moreover, it demonstrates the capacity of the θ-scheme to

provide the correct face porosity.

Figure 11. Pressure profile after discovering a cell (accelerating solid) after 1s (left) and 2s (right). The
solid is in green.

On Figure 11, for an acceleration of 0.5m/s2, after 1s and 2s, with 4 mesh refinements, the Time

and Space Dependent Porosity method predicts the correct pressure since the slope is 0.5.

4.2.2. Cylinder moving at fluid velocity In a square domain 2mx2m, cylinder and fluid(s) have the

same velocity ux = 0.1m/s and uy = 0.1m/s such as: For an incompressible flow, the pressure

must remain at its initial value. In the present study, the initial condition is Pdomain = 0 Pa.
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Figure 12. Geometry of cylinder at fluid velocity case (left) and velocity error for a cylinder at fluid velocity
in single and two-phase flow ( with 2 approaches : dispersed and continuous), (right).

Moreover, the velocity must remain unchanged. The aim is to validate the convection of the porosity

using single then two-phase flow. In fact, this case does not work if the porosity is not convected.

In Figure 12, with 5 mesh refinements, results are presented in terms of L2-norm error for velocity

in single phase-flow, dispersed-flow (α = 10%) and Large Interface model (liquid-gas interface

between (0,0) and (2,2)). Only 3 mesh refinements are presented with the Large Interface model

since the interface recognition function needs 5 cells.

The first mesh, having only 5 cells in each direction, is obviously too coarse. For the other, with

any approach, it is possible to see that the error is extremely low. From the second refinement, the

mean pressure in the domain is always under 10−12 Pa.
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4.3. Applications of the Time and Space Dependent Porosity method

Some applications of the method are here presented:

1. a cylinder moving in a fluid at rest at Re = 40 and suddenly stopped,

2. bubble impact on a cylinder,

3. a dam break on a wet bed,

4. a paddle oscillating on a free surface.

Numerical simulations are here performed in single or two-phase flow with moving body. The

displacement is still imposed by the user.

4.3.1. Suddenly stopped cylinder Based on Koumoutsakos & Leonard (1995) [15], 2D numerical

simulation of cylinder instantaneously moving and stopped for a laminar Reynolds number of 40

is performed. The cylinder is moving with a constant velocity during 5 seconds in a fluid at rest,

and stopped at t = 5 s. During 10 seconds, drag coefficients around the cylinder are recorded. The

geometry of the case is reported in Figure 13.

Figure 13. Geometry of the cylinder suddenly stopped case (left) and drag coefficient around the cylinder
moving with Re 40 and suddenly stopped. Numerical results are compared with other methods [15, 12]

(right).

As the Reynolds number is low, only the laminar part of the velocity gradient is relevant. The wall

pressure is detected thanks to the pressure gradient with a first order development. Consequently,

the global drag coefficients are in agreement over time. In Fig.13, at t = 5s, it is possible to see on

the drag coefficient tendency a strong change which is the results of the cylinder velocity becoming

0.

A slight discrepancy may be seen at t = 5s with other results, otherwise they are in a reasonable

agreement. In Figure 14, isolines of vorticity at 8 different instants are presented from the numerical

simulation (left) and from the experiment (right). First column is dedicated to instant before the

stop and the second to after. Obviously, the isolines represented are in excellent agreement with

experimental data.

4.3.2. Bubble impact on a cylinder The present 3D-application is a comparison between a

computation utilizing a body-fitted mesh and another one utilizing the Time and Space Dependent

Porosity. In Figure.15, the fluide is at rest. The large cylinder represents a solid obstacle and the

small one a bubble. The bubble goes up thanks to gravity.

The fully-developed regime gives a bubble Reynolds number of 3.57, an Eötvos number of

116 and a Morton number of 266. The gas is air and the liquid has the following properties:

ρ = 1350 kg/m3, µ = 2.02 Pa.s, and σ = 0.0785 N.m. The liquid is at rest and the gravity

is 9.81 m/s . A fully cartesian mesh is used with ∆x = ∆y = ∆z = 0.6mm. To body-fit the

cylinder, cells crossed by the cylinder or inside it are removed, then border nodes are extrapolated

on the cylinder. Hence, for both cases a cartesian grid is used. However, for the standard case, the

cells are not strictly cartesian since their node are moved to fit the cylinder.
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Figure 14. Vorticity isolines for 8 different times with numerical simulation (left) and experimental data
(right) from [15]

Figure 15. Geometry of the bubble impact on a cylinder case.

The present study is realized with the Large Interface model to follow the bubble. Drag and

surface tension forces from [9] are applied to the gas phase. Moreover, an interface sharpening

equation is required for this kind of simulation. According to Figure.17, both methods are in correct

agreement in terms of bubble break-up. However, slight discrepancies might be seen before the

cylinder. As it is an unsteady numerical simulation using 15 millions of cells, results are convincing

and attest the correct reconstruction of the wall. To clarify discrepancies, in one hand the wall is
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Figure 16. Snapshots of a bubble impacting a cylinder with the Time and Space Dependent Porosity method
at t = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 s.

fully reconstructed, on the other a mesh is generated by extrapolation of its nodes; in both cases

some errors are introduced which might explain the discrepancies on the figure. It is relevant to

specify that interface sharpening and surface tension models which are used in the present study,

are developed for cartesian cells only. Consequently, discrete forcing methods are useful for this

kind of simulation.

Figure 17. Contour comparison of a bubble impacting a cylinder between NEPTUNE CFD
with a body-fitted mesh and the Time and Space Dependent Porosity method at t =

0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 s.

4.4. Dam-break on wet bed

The schematic arrangement of the experimental tank [14] is shown in Figure 18. The bottom and

side walls are constructed from optically smooth glass, the lock gate is made from plexiglas. The

distance of the lock gate is x0 = 38 cm in the experiments presented here, the initial water height

in the lock is 15 cm. Another key parameter is the ambient fluid depth d in the channel before the

dam-break: 18 mm and 38mm. The lock gate is opened with a velocity: v0 = 1.5m/s.

In this experiment, the water height is measured during 1 s and snap shots are taken. Water coming

from the locked tank produces waves because of the progressive opening of the lock.
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Figure 18. Sketch of the tank.

In the following 2D-simulation, the lock gate is considered as the structure with a velocity v0.

Lock gate and walls are simulated with a slip condition. Results are compared with experimental

pictures for d = 18mm and with the water height along x for d = 38mm.

Figure 19. Experiment/Numerical simulation confrontation of a dam-break on wet bed for d = 18 mm.

In Figure 19, 7 snap-shots are presented according to the experiment (left) and numerical

simulation (right). The position of the free surface can be tracked on experimental records, it is

simple to compare with numerical simulation. For different times, results are in agreement with

experimental data. Waves are well predicted by the method which allows the conclusion that the

Time and Space Dependent Porosity method is a satisfying method in this case.

4.4.1. Paddle A 2D-paddle (presented in Figure 20) is animated by a sinusoidal motion with a

velocity:

v(t) = 0.15 min(1, t) cos

(

2πt−
3π

2

)

.
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Figure 20. Geometry of the wave tank case

In the wave tank, the initial water depth is hwater = 0.28m and its length L = 8.85m. As

the paddle vibrates, waves appear, the free surface consequently moves, its time-fluctuations are

recorded in 3 different positions: x = 0.65m, x = 3.55m and x = 5.45m.

On Figure 21, water height simulation results are compared with experimental data [10] on 2

mesh refinements for 2 positions. First, in front of the paddle, the beginning of the paddle motion

Figure 21. Free surface evolution for 2 different positions 0.65 m (left) and 5.45 m (right). Comparison
between experiment [10] and numerical results from TSDP.

is well captured by the simulation, there is no phase lag and the height amplitude is correct. For

the two others, the wave lag is well predicted, there is also no phase lag but slight differences are

present for the height amplitude.

5. DISCUSSION AND CONCLUSION

In the present work, a method to track fluid-structure interface thanks to a discrete forcing method

based on a porous media approach is proposed. Implemented in a finite-volume code based on a

two-fluid approach called NEPTUNE CFD [11], the method and the interface reconstruction are

detailed. To make the structure moving, a porosity convection is required; this is the key point of

the method. Then, each reconstructed or changed item is validated on elementary cases. Finally, the

Time and Space Dependent Porosity method is applied to two-phase flow applications. These 3 last

simulations lead to reasonable agreements with experimental data despite the solid is moving or not.

In fact, the aim of the method is to reproduce accurately a body fitted mesh on a cartesian grid.

Since the numerical method is validated, many future developments are possible with no limitation.

In terms of turbulence and wall laws, changes would be in:

• solid-cells: there is no turbulent viscosity generated,
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• cut-cells: by considering the new volume, the distance between the cell-center and the porous

wall, and the re-computed velocity gradient ; the turbulent terms are changed.

• fluid cells: by defining the distance to porous walls in each cell.

As shown in the validation, forces acting on a structure are well-predicted by the method. It would

be now possible to deal with fluid-structure interaction by implementing for example a Newmark

algorithm in order to generate the correct displacement based on forces acting on structures.

Another possible development is to take into account heat transfers as the solid is meshed. Without

external code or mesh, by implementing thermal laws in the porous media, this would reduce the

computational time. These steps would allow to work on industrial cases with complex geometries

and phenomenon like tube vibrations in steam-generator for example.
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