5th European Conference On Permafrost June 2018, Chamonix, France

Numerical investigation of evapotranspiration processes in a forested watershed of Central Siberia

Orgogozo L.¹, Prokushkin A.S.², Pokrovsky O.S.^{1,3}, Grenier C.⁴, Quintard M.^{5,6}, Viers J.¹, Audry S.¹.

¹ Géosciences Environnement Toulouse (GET), Observatoire Midi-Pyrénées, Université Paul Sabatier, Université de Toulouse, 14 avenue Edouard Belin, 31400 Toulouse, FRANCE

² V.N. Sukachev Institute of Forest, SB RAS, Akademgorodok, RUSSIAN FEDERATION

³ BIO-GEO-CLIM Laboratory, Tomsk State University, Lenina 35, Tomsk, RUSSIAN FEDERATION

⁴ Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Université Paris-Saclay, UMR 8212 CNRS-CEA-UVSQ, Orme des merisiers, 91191 Gif-sur-Yvette Cedex, FRANCE

Institut de Mécanique des Fluides de Toulouse (IMFT) - Université de Toulouse, CNRS-INPT-UPS, Toulouse, FRANCE

⁶ Centre National de la Recherche Scientifique (CNRS); IMFT, F-31400 Toulouse, FRANCE

Vegetation and active layer in boreal forests - evapotranspiration

Problematic: quantitative assessment of seasonal and spatial variabilities of evapotranspirative water fluxes from the active layer of forested, permafrost-dominated areas

Studied area:

- Central Siberia, sub-watershed of the Nizhnyaya Tunguska
- Vegetation cover: larch forest ; lithology: basalts and tuffs
- Main spatial variability: south aspected / north aspected slopes

Goals:

- Model accurately the thermohydrological transfers in soils of forested, permafrostdominated areas
- Study the impact of evapotranspiration conditions on active layer dynamics

Methodological approach :

Mechanistic modeling of thermal and hydrological transfers at the experimental watershed scale

→ Time scales : years Space scales : 10's of km²

Case of application: permafrost annual dynamics in Kulingdakan watershed

Mechanistic modeling of thermal and hydrological transfers

Numerical modelling of coupled transfers of water and energy with phase change within soils: complex problem, broad associated literature (e.g.: Guymon and Luthin, 1974, Sjöberg et al., 2016).

Large computation times may be encountered: need of HPC methods. Use of massively parallel computation is necessary (e.g.: Painter *et al.*, 2013, Walvoord and Kurylyk, 2016).

=> a devoted solver with the open source, generalist CFD tool OpenFOAM®: permaFoam

permaFoam: considered conservation equations

3D coupled heat and water transfers in variably saturated porous media, taking into account evapotranspiration and freeze/thaw of the poral water (Orgogozo et al., 2016, under review)

couplings, non linearities

Richards equation with evapotranspiration:

$$C_{H}(h) \frac{\partial h}{\partial t} = \nabla_{AET}(K_{H}(h, T) \nabla (h + z)) + Q_{AET}(h, T)$$

Thermal transfer equation with freeze/thaw:

$$\frac{\partial \left(C_{T_{eq}}\left(\begin{array}{c} h \\ , \end{array}\right) T \right)}{\partial t} + \nabla \left(\mathbf{v} \left(\begin{array}{c} h \\ , \end{array}\right) C_{T_{eq}}\left(\begin{array}{c} h \\ , \end{array}\right) = \nabla \left(K_{T_{eq}}\left(\begin{array}{c} h \\ , \end{array}\right) \nabla T \right) + L \frac{\partial \theta_{ice}\left(\begin{array}{c} h \\ , \end{array}\right)}{\partial t}$$

Stiff problems, non linearities, couplings, few references solutions: InterFrost Benchmark (Grenier *et al.*, 2018)

permaFoam: considered conservation equations

3D coupled heat and water transfers in variably saturated porous media, taking into account evapotranspiration and freeze/thaw of the poral water (Orgogozo *et al.*, 2016, under review)

couplings, non linearities

Richards equation with evapotranspiration:

$$\mathbf{C}_{H}\left(\boldsymbol{h}\right)\frac{\partial \boldsymbol{h}}{\partial t} = \nabla_{\boldsymbol{L}}\left(\boldsymbol{K}_{H}\left(\boldsymbol{h},\boldsymbol{T}\right)\nabla\left(\boldsymbol{h}+\boldsymbol{z}\right)\right) + \left(\boldsymbol{Q}_{AET}\left(\boldsymbol{h},\boldsymbol{T}\right)\right)$$

Thermal transfer equation with freeze/thaw:

$$\frac{\partial \left(C_{T_{i}eq} \left(\begin{array}{c} \boldsymbol{h} \end{array}, T \right) T \right)}{\partial t} + \nabla \left(\mathbf{v} \left(\begin{array}{c} \boldsymbol{h} \end{array}, T \right) C_{T_{i}dq} u d T \right) = \nabla \left(K_{T_{i}eq} \left(\begin{array}{c} \boldsymbol{h} \end{array}, T \right) \nabla T \right) + L \frac{\partial \theta_{iee} \left(\begin{array}{c} \boldsymbol{h} \end{array}, T \right)}{\partial t}$$

Stiff problems, non linearities, couplings, few references solutions: InterFrost Benchmark (Grenier *et al.*, 2018)

Term of evapotranspiration water uptake within soil

- Geometry of the root layers (rooting depth $\rightarrow V_{root zone}$), $\chi_{root zone}$ (x)) in Kulingdakan watershed slopes: Field survey (Viers *et al.*, 2013)
- Potential Evapotranspiration estimator: Hamon formula (e.g.: Lu et al., 2005) Already used in forested boreal areas (Frolking et al., 1996 ; Frolking 1997)

$$\operatorname{PET}_{d} = \begin{cases} 218,527 \, \frac{L_{d}}{(T_{air}+273.3)} \, \exp\left(17.26939 \, \frac{T_{air}}{T_{air}+237.3}\right) & if \, T_{air} > 0\\ 0 & if \, T_{air} \le 0 \end{cases}$$

- Field of actual evapotranspiration within soil with freeze/thaw (Modified from Orgogozo, 2015)

$$Q_{AET}(h, \mathbf{x}) = \begin{cases} Q_{PET}(\mathbf{x}) & if \quad \left(\frac{\left(\theta_{l}(h, \mathbf{x}) - \theta_{WP}(\mathbf{x})\right)}{\Delta t} - Q_{PET}(\mathbf{x})\right) \ge 0\\ \frac{\left(\theta_{l}(h, \mathbf{x}) - \theta_{WP}(\mathbf{x})\right)}{\Delta t} & if \quad -Q_{PET}(\mathbf{x}) < \left(\frac{\left(\theta_{l}(h, \mathbf{x}) - \theta_{WP}(\mathbf{x})\right)}{\Delta t} - Q_{PET}(\mathbf{x})\right) < 0\\ 0 & if \quad \left(\frac{\left(\theta_{l}(h, \mathbf{x}) - \theta_{WP}(\mathbf{x})\right)}{\Delta t} - Q_{PET}(\mathbf{x})\right) \le -Q_{PET}(\mathbf{x}) \end{cases}$$

with:

$$Q_{PET}\left(\mathbf{x}\right) = PET * \left(S_{soil}/V_{root\,zone}\right) * \chi_{root\,zone}\left(\mathbf{x}\right)$$

Kulingdakan: a catchment in a continuous permafrost area

Orientation and shape of the Kulingdakan watershed (e.g.: Prokushkin et al., 2005, Viers et al., 2015) well suited for a dual (N/S) 2D simplified representation

Kulingdakan: a catchment in a boreal larch forest

Strong vegetation cover variability between SAS and NAS:

- aerial biomass SAS: 3.02 kgC/m² NAS: 1.53 kgC/m²
- Leaf Area Index SAS: 0.69 m²/m² NAS: 0.2 m²/m²
- Rooting depth SAS: 60 cm **NAS: 10 cm**

Better insolation in SAS → fewer but higher, larger and healthier larch trees than in NAS

More details on Kulingdakan vegetation cover: Viers et al., 2013, 2015, Prokushkin et al., 2018.

Strong SAS/NAS variability in ALT (Gentsch, 2011):

- Maximum ALT SAS: 1.22 m NAS: 0.58 m

2D representation of the slopes of the catchment

~2500 m

Mesh: 2.5 millions of cells, thicknesses from 5.10⁻³m (top) to 0.2m (bottom), 0.2m width

2D representation of the slopes of the catchment

~2500 m

Mesh: 2.5 millions of cells, thicknesses from 5.10⁻³m (top) to 0.2m (bottom), 0.2m width

Climatic conditions

Multi-annual averages of the observed monthly forcings

Input data for a transient modeling in the N/S aspected slopes along an hydrological cycle. (initial conditions: multi-annual cycling)

Temperatures in the mineral horizon

Actual evapotranspiration

Rain, **PET**: forcings - **AET**: numerical results

Two limitations to AET: frost and dryness

South aspected slopes experienced 2 months of «drying conditions» (AET > rain)

Sensitivity to root layer thickness ?

Two test cases :

- the Actual Condition case (AC case): true rooting depths, case presented until now

- the Arbitrary Deeper Roots Case (ADR case): an arbitrary rooting depth equal to the global average rooting depth (1 m – according to Schenk and Jackson, 2002) is considered in both slopes

How compare AET, water fluxes and ALT in both cases ?

Is rooting depth an important parameter from a thermo-hydrological prospect ?

Sensitivity to root layer thickness ? AET

Sensitivity to root layer thickness ? Water fluxes, ALT

Concluding remarks

PermaFoam allows to model mechanistically coupled thermo-hydrological dynamics of permafrost at the slope scale (parallel performances), enables to catch the first order spatial variability observed in the field (N/S slopes).

Is rooting depth an important parameter for modeling thermo-hydrological transfers in permafrost-dominated, forested areas? Yes! Huge impact on spatial variability and temporal dynamics of water fluxes, strong impact also on ALT distribution.

Next steps

Modeling of the transfers within the moss layer

Back to the field with the understanding and issues raised from the simulation

Modeling of the permafrost dynamics in Kulingdakan under various scenarii of climate change

5th European Conference On Permafrost June 2018, Chamonix, France

Thank you for your attention.

Contact: laurent.orgogozo@get.omp.eu

OpenFoam®: an open source CFD tool box for HPC

Developed in C++ (Weller et al., 1998; openfoam.com)

Finite volumes

Allow multiphysics modelling

Enable to implement home-made solvers

Designed for High Performance Computing (especially massively parallel computing)

OF for hydrological transfers in soil: RichardsFoam (Orgogozo *et al.*, CPC 2014, Orgogozo, CPC 2015)

A RichardsFoam Test case :infiltration of rain in a parallelepipedic 3D slope

RichardsFoam parallel performances:

- 1.2 billion cells mesh
- From 400 to 3200 cores
- Scaling curve obtained on EOS (www.calmip.univ-toulouse.fr)

Couplings: - sequential operator splitting approach

- impedance factor approach for permeability in frozen state

Non linearities: - a Picard loop for each equation

- temporal shift of the latent heat term
- adaptive time steps based on Picard loops convergence

Richards equation with evapotranspiration:

$$\mathbf{C}_{H}\left(\mathbf{h}\right)\frac{\partial h}{\partial t} = \nabla_{\mathbf{A}}\left(\mathbf{K}_{H}\left(\mathbf{h},\mathbf{T}\right)\nabla\left(\mathbf{h}+\mathbf{z}\right)\right) + Q_{AET}\left(\mathbf{h},\mathbf{T}\right)$$

Thermal transfer equation with freeze/thaw:

$$\frac{\partial \left(C_{T - eq}\left(\frac{\mathbf{h}}{\mathbf{J}}, \mathbf{T}\right) T\right)}{\partial t} + \nabla_{\mathbf{J}} \left(\mathbf{v}\left(\frac{\mathbf{h}}{\mathbf{J}}, \mathbf{T}\right) C_{T - tiquid} T\right) = \nabla_{\mathbf{J}} \left(K_{T - eq}\left(\frac{\mathbf{h}}{\mathbf{J}}, \mathbf{T}\right) \nabla T\right) + L \frac{\partial \theta_{ice}\left(\frac{\mathbf{h}}{\mathbf{J}}, \mathbf{T}\right)}{\partial t}$$

Stiff problems, non linearities, couplings, few references solutions: InterFrost Benchmark (C. Grenier et al., AWR 2018)

Boundary conditions for the thermal equation

Boundary conditions for the hydrological equation

Water content in mineral horizon

Numerical results

As expected, south aspected slopes are dryer and thaw faster than north aspected slopes

Variability along slopes

Variability along slopes is detectable:

hotter conditions upslope than downslope