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As a first step towards modelling real time series, we study a class of real, bounded-variables processes {X n , n ∈ N} defined by a k-term recurrence relation X n+k = ϕ(X n , . . . , X n+k-1 ). These processes are noise-free. We immerse such a dynamical system into R k in a slightly distorted way, which allows us to apply the multidimensional techniques introduced by Saussol [SAU] for deterministic transformations. The hypotheses we need are, most of them, purely analytic and consist in estimates satisfied by the function ϕ and by products of its first-order partial derivatives. They ensure that the induced transformation T is dilating. Under these conditions, T admits a greatest absolutely continuous invariant measure (ACIM). This implies the existence of an invariant density for X n , satisfying integral compatibility conditions. Moreover, if T is mixing, one obtains the exponential decay of correlations.

Introduction

In this work, we are concerned with a deterministic k ≥ 2 terms induction rather than with the more classical study of a dynamical system x 0 , ϕ(x 0 ), . . . , ϕ n (x 0 ), . . .. We thus write the model in a probabilistic manner, X n+k = ϕ(X n , . . . , X n+k-1 ), where X 0 , . . . , X k-1 are real random variables. We aim at proving, for this model, the exponential decay of correlations, principally under analytic assumptions about the partial derivatives of the function ϕ.

The decay of correlations has been treated by many authors for the classical model. Among the most recents works we may refer to the works of Alves, Freitas, Luzzatto, Vaienti [AFLV], Gouëzel [GO], Sarig [SAR], Young [YOU] and Saussol [SAU]. We shall use, most particularly, the results of the last author.

In a first paper [JMN], we have proved the result for a two-terms induction, by studying a system imbedded into R 2 . We adopt here the same method and imbed our system into R k , in a non-canonical way and we introduce a transformation T : Z → T (Z), defined on a compact subset of R k . But the hypotheses which allowed us to conclude in the 2-terms case are not relevant for a general k. Indeed, the proof of the result requires to locate very precisely the eigenvalues of a real k dimensional matrix, which is quite easy when k = 2 and much less so for higher orders. We only consider here orders k greater than or equal to 3.

We first obtain (Theorem 2-4.) the existence of a greatest absolute continuous invariant measure (ACIM) µ for the transformation T . If T is mixing, one obtains (Theorem 2-7.) that, for well-chosen applications f and g, there exist constants C = C(f, h) > 0 and ρ ∈]0, 1[ such that :

Ω f • T n h dµ - Ω f dµ Ω hdµ C ρ n .
As a consequence, if a given R k -valued random variable Z 0 has distribution µ (the ACIM), if F and H are convenient real valued functions, one gets (Theorem 5 for r = s = 1) :

| Cov( F (X n ), H(X 0 ) ) | C ρ n .
The corresponding inequalities are more complicated when T is not mixing (Theorem 2-6., Lemma 4). Let us note, too, the existence of integral identities satisfied by the invariant measure (Theorem 3). We apply our results to a non linear example (Section 3).

Hypotheses and results

Let L ∈ R * + and let us consider an application ϕ : Suppose that all following conditions are fulfilled :

[-L, L] k → [-L, L], defined piecewise on [-L, L]
1. There exists d ∈ N * such that [-L, L] k = d j=1 O j ∪ N ,
where the O j are nonempty open subsets, N is Lebesgue negligible and the union is disjoint. The boundary of each

O j is contained in a compact, C 1 , (k -1)-dimensional submanifold of R k .
2. There exists ε 1 > 0 such that, for every j ∈ {1, . . . , d}, there exists a map ϕ j defined on

B ε 1 (O j ) = {(x 1 , . . . , x k ) ∈ R k , d((x 1 , . . . , , x k ), O j ) ≤ ε 1 } with values in R and satisfying ϕ j | O j = ϕ| O j .
3. The application ϕ j is bounded and C1,α on B ε 1 (O j ) for an α ∈]0, 1] 1 , which means that ϕ j is C 1 and that there exists C j > 0 such that, for all (u 1 , . . . , u k ), (v 1 , . . . , v k ) in B ε 1 (O j ), all i ∈ {1, . . . , k} :

∂ϕ j ∂x i (u 1 , . . . , u k ) - ∂ϕ j ∂x i (v 1 , . . . , v k ) ≤ C j ||(u 1 , . . . , u k ) -(v 1 , . . . , v k )|| α .
4. The maximal number of C 1 arcs of N crossing is Y ∈ N * . Moreover, one sets σ > 1 and imposes that

η := 1 √ σ α + 4 √ σ -1 Y γ k-1 γ k < 1 where γ k = π k/2 Γ( k 2 + 1)
is the volume of the unit sphere of R k .

Let

A > 1 and σ > 1 satisfy A 2/k > σ. Set γ = A -1/k and M 0 (σ, A) = -(k -1)γ k-1 + (k -1) 2 γ 2k-2 + 4(k -2)γ 2k+1 ( 1 γ 2 -σ) 2(k -2)γ 2k+1 > 0. Let M ∈ ]0, M 0 (σ, A)[. Assume that, for all 2 ≤ i ≤ k, all j ≤ d and all (u 1 , . . . , u k ) ∈ B ε 1 (O j ) : ∂ϕ j ∂x 1 (u 1 , . . . , u k ) ≥ A, ∂ϕ j ∂x 1 (u 1 , . . . , u k ) × ∂ϕ j ∂x i (u 1 , . . . , u k ) ≤ M.
(These very tight conditions are due to the loss of precision in the localization of the eigenvalues of the matrix B -see (8) -in the case when k > 2.)

6. The sets O j satisfy the following geometrical condition : 2 for all (u 1 , u 2 , . . . , u k ) and

(v 1 , u 2 , . . . , u k ) in B ε 1 (O j ), there exists a C 1 path Γ = (Γ 1 , . . . , Γ k ) : [0, 1] → B ε 1 (O j ) between (u 1 , u 2 , . . . , u k ) and (v 1 , u 2 , . . . , u k ), with nonzero gradient satisfying ∀ t ∈]0, 1[, Γ 1 (t) > M A 2 k i=2 Γ i (t) .
For every j ∈ {1, ..., d}, one denotes by U j (resp. W j , N ) the image of O j (resp. B ε 1 (O j ), N ) under the transformation which associates with (u 1 , . . . ,

u k ) ∈ R k the point (u 1 , γu 2 , . . . , γ k-1 u k ). The set Ω = [-L, L] × [-γL, γL] × . . . × [-γ k-1 L, γ k-1 L],
with which we shall work, is the image of [-L, L] k under the same transformation.

For every non-negligible Borel set S of R k , for every f ∈ L 1 m (R k , R), one sets :

Osc(f, S) = Esup S f -Einf S f
where Esup S et Einf S are the essential supremum and infimum on S with respect to the Lebesgue measure m. One then defines the norm

• α by |f | α = sup 0<ε<ε 1 ε -α R k Osc(f, B ε (x 1 , . . . , x k )) dx 1 . . . dx k , f α = f L 1 m + |f | α and the set V α = {f ∈ L 1 m (R k , R), f α < +∞}.
We introduce similar notions on Ω : for every 0 < ε 0 < γ k-1 L, for every g ∈ L ∞ m (Ω, R), we define :

N (g, α, L) = sup 0<ε<ε 0 ε -α Ω Osc(g, B ε (x 1 , . . . , x k ) ∩ Ω) dx 1 . . . dx k .
One then sets :

||g|| α,L = N (g, α, L) + 2K(Ω) ε 1-α 0 ||g|| ∞ + ||g|| L 1 m 2.
In favorable cases, the geometrical hypothesis can be replaced by the following one, stronger but much simpler : for all points (u1, u2, . . . , u k ) and(v1, u2, 

. . . , u k ) in Bε 1 (Oj), the segment [(u1, u2, . . . , u k ), (v1, u2, . . . , u k )] is contained in Bε 1 (Oj)
where

K(Ω) = 2 k+2 ( k i=1 2γ i-1 L) k-1 = 2 2k+1 L k-1 ( 1-γ k 1-γ ) k-1
. The function g is said to belong to V α (Ω) if this expression is finite. This set does not depend on the choice of ε 0 , but N and . α,L do. There exist relations between the sets V α (Ω) and V α . Indeed, one can prove the following result using Proposition 3.4 of [SAU] :

Proposition 1 1. If g ∈ V α (Ω) and if one extends g to a function f defined on R k , setting f (x) = 0 if x / ∈ Ω, then f ∈ V α and f α ≤ g α,L . 2. Conversely let f ∈ V α and set g = f 1 Ω . Then g ∈ V α (Ω)
and the following holds :

g α,L ≤ 1 + 2K(Ω) max(1, ε α 0 ) γ k ε k-1+α 0 f α .
Under the hypotheses 1-5 listed above, we obtain a first result :

Theorem 2 Let T be the transformation defined on Ω by : ∀u = (u 1 , . . . , u k ) ∈ U j :

T (u) = T j (u) = u 2 γ , . . . , u k γ , γ k-1 ϕ j (u 1 , u 2 γ , . . . , u k γ k-1 ) . ( 1 
)
The applications T j can be defined naturally on W j by the same formula. Then 1. The Frobenius-Perron operator P :

L 1 m (Ω) → L 1 m (Ω) associated with T has a finite num- ber of eigenvalues of modulus 1, λ 1 , . . . , λ r .
2. For every i ∈ {1, . . . , r}, the eigenspace E i = {f ∈ L 1 m (Ω) : P f = λ i f } associated with the eigenvalue λ i is finite-dimensional and contained in V α (Ω).

The operator P decomposes as

P = r i=1 λ i P i + Q,
where the P i are projections on the spaces

E i , |P i | 1 ≤ 1 and Q is a linear operator defined on L 1 m (Ω), such that Q(V α (Ω)) ⊂ V α (Ω), sup n∈N * |Q n | 1 < ∞ and |Q n | α,L = O(q n ) when n → +∞, for a given q ∈]0, 1[. Moreover, P i P j = 0 if i = j, P i Q = QP i = 0 for every i.
4. The operator P has the eigenvalue 1. Set λ 1 = 1, let h * = P 1 1 Ω and dµ = h * dm. Then µ is the greatest absolutely continuous invariant measure (ACIM) of T , which means that, if ν << m and if ν is T -invariant, then ν << µ.

5. The support of µ can be decomposed into a finite number of mutually disjoint measurable sets, on which a power of T is mixing. More precisely, for every j ∈ {1, 2, . . . , dim(E 1 )}, there exist a number L j ∈ N * and L j mutually disjoint sets W j,l (0 ≤ l ≤ L j -1), satisfying T (W j,l ) = W j,l+1 mod (L j ) , T L j being mixing on every W j,l . One denotes by µ j,l the normalized restriction of µ on W j,l , defined by

µ j,l (B) = µ(B ∩ W j,l ) µ(W j,l ) , dµ j,l = h * 1 W j,l µ(W j,l ) dm.
Saying that T L j is mixing on every W j,l means that, for every f ∈ L 1 µ j,l (W j,l ) and every

h ∈ L ∞ µ j,l (W j,l ), lim n→+∞ < T nL j f, h > µ j,l =< f, 1 > µ j,l < 1, h > µ j,l
with indifferently used notations : < f, g > µ = µ (f g) = f g dµ .

6. Moreover, there exist real constants C > 0 and 0 < ρ < 1 such that, for every h in V α (Ω) and f ∈ L 1 µ (Ω), the following holds :

Ω f • T n×ppcm(L i ) h dµ - dim(E 1 ) j=1 L j -1 l=0 µ(W j,l ) < f, 1 > µ j,l < 1, h > µ j,l ≤ C||h|| α,Ω ||f || L 1 µ (Ω) ρ n .
7. If, moreover, T is mixing, 3 the preceding result can be stated as : there exist real constants C > 0 and 0 < ρ < 1 such that, for every h in V α (Ω) and f ∈ L 1 µ (Ω), one has :

Ω f • T n h dµ - Ω f dµ Ω hdµ ≤ C||h|| α,Ω ||f || L 1 µ (Ω) ρ n .
Let us now come back to the initial system and let us try to deduce the invariant law associated with X n . If the sequence (X n ) n is defined by the initial terms X 0 , . . . , X k-1 , with values in [-L, L], and the recurrence relation X n+k = ϕ(X n , . . . , X n+k-1 ), one sets Z n = (γ j-1 X n+j-1 ) 1≤j≤k . Then (Z n ) n satisfies the recurrence relation Z n+1 = T (Z n ), which yields the following result :

Theorem 3 If the random variable Z 0 = (γ j-1 X j-1 ) 1≤j≤k has density h * , then, for every n ≥ 0, Z n has density h * . Computing the marginal distributions, we get as a consequence that for every n ∈ N, X n has a density h inv which has the following expressions : for every j ∈ {0, . . . , k

-1} ∀u ∈ [-L, L], h inv (u) = γ j R k-1 h * (z 1 , . . . , γ j u, . . . , z k ) dž j+1
where dž j+1 means that one integrates with respect to all coordinates of z but z j+1 .

Indeed, γ j X n is the (j + 1)-th coordinate of Z n-j if j = 0, . . . , k -1. Let us consider a Borel set A of R. Then, for j ∈ {0, . . . , k -1},

P (X n ∈ A) = P (Z n-j ∈ R j × γ j A × R k-j-1 ) = R j ×γ j A×R k-j-1 h * (z 1 , . . . , z k ) dz 1 . . . dz k = R j ×A×R k-j-1 h * (z 1 , . . . , γ j u, . . . , z k ) dž j+1 γ j du with z j+1 = γ j u = A R k-1
h * (z 1 , . . . , γ j u, . . . , z k ) dž j+1 γ j du, which gives the desired result.

If F is defined on [-L, L] and if s ∈ {1, . . . , k}, let us denote by T s F the function defined on Ω by

T s F (z) = T s F (z 1 , . . . , z k ) = F (z s γ 1-s ). ( 2 
)
The following Lemma is then a direct consequence of point 6 in Theorem 2, applied to T s F and T r H for s, r ∈ {1, . . . , k} :

Lemma 4 For every Borel set B of [-L, L] and every interval I of [-L, L], if Z 0 has the invariant distribution, one has :

P X n×ppcm(L i )+s-1 ∈ B, X r-1 ∈ I - dim(E 1 ) j=1 L j -1 l=0 µ(W j,l ) < T s 1 B , 1 > µ j,l < 1, T r 1 I > µ j,l ≤ (2L) k γ k(k-1)/2 + 4(2L) k-1 γ 1-r+k(k-1)/2 ε 1-α 0 + 2 2k L k-1 1-γ k 1-γ k-1 ε 1-α 0 Cρ n .
3. Which is equivalent to : if 1 is the only modulus-1 eigenvalue of P and if, additionnaly, it is simple

More generally, let F , defined and measurable on [-L, L], be such that

T s F belongs to L 1 µ (Ω). Let H ∈ L ∞ m ([-L, L]) be such that sup 0<δ<ε 0 γ 1-r δ -α [-L,L] Osc(H, ]x-δ, x+δ[∩[-L, L]) dx < +∞.
Then T r H ∈ V α (Ω) and

E(F (X n×ppcm(L i )+s-1 )H(X r-1 )) - dim(E 1 ) j=1 L j -1 l=0 µ(W j,l )µ j,l (T s F )µ j,l (T r H) ≤ C(F, H, L) ρ n with C(F, H, L) = C||T s F || L 1 µ (2L) k-1 γ k(k-1)/2 ||H|| L 1 m ([-L,L]) +(2L) k-1 γ (k(k-1)/2)-α(r-1) sup 0<δ<ε 0 γ 1-r δ -α [-L,L] Osc(H, ]x -δ, x + δ[∩[-L, L]) dx +2 2k L k-1 1 -γ k 1 -γ k-1 ε 1-α 0 ||H|| L ∞ m ([-L,L]) .
This last result, which gives the exponential decay of correlations, is a straightforward consequence of Lemma 4 and of the remark in point 7, Theorem 2.

Theorem 5 If, moreover, T is mixing, then for all r, s ∈ {1, . . . k}

|Cov(F (X n+s-1 ), H(X r-1 ))| ≤ C(F, H, L) ρ n .

A nonlinear example

We can state the result :

Theorem 6 Let σ > 1 be such that

η := 1 √ σ + 4 (k + 1) √ σ -1 γ k-1 γ k < 1. (3) Let A > σ k 2 . Set γ = A -1 k and M 0 (σ, A) = -(k -1)γ k-1 + (k -1) 2 γ 2k-2 + 4(k -2)γ 2k+1 ( 1 γ 2 -σ) 2(k -2)γ 2k+1 . Suppose M ∈]0, M 0 (σ, A)[. Let a 1 , . . . , a k , b 1 be nonnegative numbers such that a 1 ≥ 2A 2 , (4) b 1 ≥ 4LM √ k -1 + 2a 1 L, (5) √ a 1 a i < 2M ∀i ∈ {2, . . . , k}. (6) 
Set

ψ(x) = k i=1 a i x 2 i + b 1 x 1 + b 2 1 4a 1 . Then ψ is positive on [-L, L] k . Set ϕ 0 = √ ψ. Let ∈ [-L, L[. Define the transformation ϕ on [-L, L] k , piecewise, by ϕ(x) = + ϕ 0 (x) -2pL if + ϕ 0 (x) ∈ [2pL -L, 2pL + L[. (7) 
The application ϕ satisfies the hypotheses 1-6 of Theorem 2.

For example, for k = 3 and L = 1, one can take σ = 150, A = 1900, M = 260 and a 1 = 7250000, a 2 = 0, a 3 = 0.03, b 1 = 15000000.

Remark 7 Since this nonlinear transform admits, according to Theorem 2, a stationary density, it could be used as a pseudorandom number generator (cf [LM], [LY]).

The rest of this section will be dedicated to the proof. It appears in the proof that the parameters α and Y of the hypotheses satisfy α = 1 and Y ≤ k + 1.

Proof : One sees that

ψ(x) = 1 4a 1 (2a 1 x 1 + b 1 ) 2 + k i=2 a i x 2 i ≥ 1 4a 1 (-2a 1 L + b 1 ) 2 on [-L, L] k , since, by (5), 2a 1 x 1 + b 1 ≥ b 1 -2a 1 L ≥ 4LM √ k -1 > 0. Hence ψ is positive on the compact set [-L, L] k and consequently on an open neighbourhood U of [-L, L] k . The function ϕ 0 = √ ψ is well defined and C ∞ on U.
Hypothesis 2 is satisfied since, whatever the open subsets O j of [-L, L] k are, the expression (7) for ϕ makes sense on the neighbourhood U of [-L, L] k itself.

Since ϕ 0 is smooth, Hypothesis 3 is fullfilled with α = 1.

To prove that ϕ satisfies Hypothesis 5, we only have to prove it for ϕ 0 on a neighbourhood of [-L, L] k . One checks that

∂ϕ 0 ∂x 1 (x) = 2a 1 x 1 + b 1 2 ψ(x) ≥ 2a 1 x 1 + b 1 2 ψ(x 1 , L, . .

. , L) .

Denoting by g = g(x 1 ) the function appearing in the right side above, one sees that g has the sign of a 1 k i=2 a i L 2 , which means that g is an increasing function. To obtain the desired condition about ∂ϕ 0 ∂x 1 , it suffices that g(-L) > A on [-L, L] k (and hence on a neigbourhood of

[-L, L] k ). Now, g(-L) = -2a 1 L + b 1 2 ψ(-L, L, . . . , L) > A if and only if (-2a 1 L + b 1 ) 2 > 4A 2 1 4a 1 (-2a 1 L + b 1 ) 2 + k i=2 a i L 2 ⇐⇒ (-2a 1 L + b 1 ) 2 (a 1 -A 2 ) > 4A 2 a 1 k i=2 a i L 2 .
Using successively (4), ( 5) and ( 6), one gets

(-2a 1 L + b 1 ) 2 (a 1 -A 2 ) ≥ (-2a 1 L + b 1 ) 2 (A 2 ) ≥ 4A 2 (4M 2 )(k -1)L 2 > 4A 2 a 1 k i=2 a i L 2 ,
which shows that g(-L) > A and

∂ϕ 0 ∂x 1 (x) > A on [-L, L] k and on a neigbourhood of [-L, L] k .
One has

∂ϕ 0 ∂x 1 (x) ∂ϕ 0 ∂x i (x) = a i |x i |(2a 1 x 1 + b 1 ) 2ψ(x) ≤ a i |x i |(2a 1 x 1 + b 1 ) 2ψ(x 1 , 0, . . . , 0, x i , 0, . . . , 0)
.

This can be written as

∂ϕ 0 ∂x 1 (x) ∂ϕ 0 ∂x i (x) ≤ √ a i a 1 ( √ a i |x i |)( √ a 1 x 1 + b 1 2 √ a 1 ) ( √ a 1 x 1 + b 1 2 √ a 1 ) 2 + ( √ a 1 x 1 ) 2 ,
and it is easy to see that it is smaller than

√ a i a 1
2 , hence strictly smaller than M according to (6) on [-L, L] k and on a neigbourhood. This achieves the proof that Hypothesis 5 is verified.

To verify Hypothesis 1, we must explicit the open sets. For p ∈ Z, define the open sets O p by :

O p = {x ∈] -L, L[ k : + ϕ 0 (x) ∈]2pL -L, 2pL + L[}.
One sees that, for p ≤ -1, O p is empty and that, otherwise,

O 0 = {x ∈] -L, L[ k : ψ(x) < (L -) 2 }, O p = {x ∈] -L, L[ k : ((2p -1)L -) 2 < ψ(x) < ((2p + 1)L -) 2 }, p ≥ 1.
The sets O p are open and may be empty.

Put S p = {x ∈ R k : ψ(x) = ((2p -1)L -) 2 }. If S p ∩ [-L, L] k is not empty, ∂ψ ∂x 1 (x) > 0 is
valid for every point of S p ∩ [-L, L] k (because of ( 5)), so x 1 can be considered, locally, as a C ∞ function of the other x i and S p ∩ [-L, L] k is a finite union of C ∞ submanifolds. The edges of [-L, L] k are parts of hyperplanes, hence are C ∞ too. This gives Hypothesis 1.

A submanifold S p crosses at most k hyperplanes, which implies that the maximal crossing number, Y , is smaller than k + 1. This, together with (3), gives Hypothesis 4.

Hypothesis 6 is satisfied under its simple form. Indeed, let U = (u 1 , u 2 , . . . , u k ) and V = (v 1 , u 2 , . . . , u k ) be two points of the same set

O p ⊂ [-L, L] k . On [-L, L] k , ∂ψ ∂x 1 (x) > 0. Hence, for t ∈ [0, 1], if one assumes that -L < u 1 < v 1 < L, ψ(U ) ≤ ψ(tU + (1 -t)V ) ≤ ψ(V ),
since the only coordinate that changes is the first one. Therefore ψ(tU + (1 -t)V ) is in the same interval as ψ(U ) and ψ(V ). Consequently, tU

+ (1 -t)V is in O p .
This achieves the proof of the theorem.

Proofs

Theorem 2 is a consequence of Theorems 5.1 and 6.1 of [SAU], which rely on [ITM], as well as [HK] in the case when d = 1, where the use of bounded-variation functions is possible. The difficulty lies in verifying that T satisfies Hypotheses (PE1) to (PE5).

To prove that (PE2) is satisfied, we shall first establish that T j is a C 1 diffeomorphism on W j onto T j (W j ). Hypothesis 3 about ∂ϕ j ∂x 1 assures that T j is a local diffeomorphism. To check that it is injective, let us consider two different points u and v of W j , such that T j (u) = T j (v). Then u i = v i for every 2 ≤ i ≤ k and

ϕ j u 1 , u 2 γ , . . . , u k γ k-1 = ϕ j v 1 , u 2 γ , . . . , u k γ k-1 .
Using the geometrical hypothesis 6 and applying the fundamental theorem of calculus to t → ϕ j (Γ(t)) leads to a contradiction. The regularity hypotheses on the ϕ j (and hence on the T j ) allow to prove that det(DT -1 j ) is α-Hölder, provided the domain is conveniently restricted. One can see that there exist, for each β j > 0, an open and relatively compact set V j and a real constant c j such that the following holds -U j ⊂ V j ⊂ V j ⊂ W j ; -B β j (T j (U j )) ⊂ T j (V j ); -for every ε < β j , every z ∈ T j (V j ) and all x, y ∈ B ε (z) ∩ T j (V j ), det(DT -1 j (x)) -det(DT -1 j (y)) ≤ c j det(DT -1 j (z)) ε α .

Setting β = min j β j > 0 and c = max j c j > 0, one obtain constants which are convenient for every j ∈ {1, . . . , d}. Hence (PE2) is satisfied.

This allows us to specify the open sets on which we shall work. There exists ε 2 > 0 such that, for every j ∈ {1, . . . , d}, B 2ε 2 (U j ) ⊂ V j ⊂ W j . ¿From now on, one sets

V j = B ε 2 (U j ). Then T j (V j )
is open and T j (U j ) is compact and contained in T j (V j ). One can find a positive ε 0,1 such that B ε 0,1 (T j (U j )) ⊂ T j (V j ) for every j, which proves that Hypothesis (PE1) is satisfied.

Hypothesis (PE3) is clearly fulfilled since Ω = d j=1 U j ∪ N is a disjoint union of open sets
and of a negligible set.

For (PE4), we need two steps. We first prove that the map is locally expanding (when the preimages in V j are sufficiently near, Proposition 8). Then we prove the hypothesis itself (Proposition 9), in the case when the images in T j (V j ) are sufficiently near.

Proposition 8 Let u and v ∈ V j be such that the segment

[u, v] is contained in V j . Then ||T j (u) -T j (v)|| 2 ≥ σ||u -v|| 2 .
Proof : One applies the fundamental theorem of calculus to the map defined on [0,1] by t → ϕ

j (v 1 + t(u 1 -v 1 ), v 2 +t(u 2 -v 2 ) γ , . . . , v k +t(u k -v k ) γ k-1
), which yields a c ∈]0, 1[ such that

||T j (u) -T j (v)|| 2 = (v 1 -u 1 , . . . , v k -u k )B    v 1 -u 1 . . . v k -u k    where B = (b i,l ) 1≤i,l≤k is the matrix with coefficients                        b i,l = γ 2k-i-l ∂ϕ j ∂x i (M c ) ∂ϕ j ∂x l (M c ) if i = l, b 1,1 = γ 2k-2 ∂ϕ j ∂x 1 (M c ) 2 , b i,i = 1 γ 2 + γ 2(k-i) ∂ϕ j ∂x i (M c ) 2 if i > 1, (8) 
with

M c = v 1 + c(u 1 -v 1 ), v 2 + c(u 2 -v 2 ) γ , . . . , v k + c(u k -v k ) γ k-1 .
The matrix B is real and symmetrical. Its eigenvalues are contained in the Gershgörin disks and hence in the following domain

k i=1   b i,i - l =i |b i,l |, b i,i + l =i |b i,l |   .
We shall establish that all these intervals are contained in [σ, +∞[. To that aim, it is sufficient to prove that b i,il =i |b i,l | ≥ σ for every i.

According to Hypothesis 3 one has, for every l > 1, |

∂ϕ j ∂x l (M c )| ≤ M A , which implies that          b 1,1 - l =1 |b 1,l | ≥ γ 2k-2 A 2 -M l =1 γ 2k-1-l b i,i - l =i |b i,l | ≥ 1 γ 2 -M γ 2k-i-1 - M 2 A 2 l =i,l>1
γ 2k-i-l for i > 1.

Since γ < 1 and 2k -1 -l ≥ k -1 one eventually gets :

         b 1,1 - l =1 |b 1,l | ≥ γ 2k-2 A 2 -M (k -1)γ k-1 b i,i - l =i |b i,l | ≥ 1 γ 2 -M γ k-1 - M 2
A 2 (k -2)γ for i > 1.

Since γ = A -1/k , one derives the inequalities :

         b 1,1 - l =1 |b 1,l | ≥ 1 γ 2 -M (k -1)γ k-1 b i,i - l =i |b i,l | ≥ 1 γ 2 -M (k -1)γ k-1 -M 2 (k -2)γ 2k+1 for i > 1.
Therefore, the eigenvalues of B are all greater than or equal to 1 γ 2 -M (k -1)γ k-1 -M 2 (k -2)γ 2k+1 . Since M ∈]0, M 0 (σ, A)[, one has :

1 γ 2 -M (k -1)γ k-1 -M 2 (k -2)γ 2k+1 ≥ σ.
Consequently, the eigenvalues of B are all greater than or equal to σ, which gives the desired result. Notice that this last inequality compells us to choose 1 γ 2 > σ.

Compacity arguments give the existence of ε 0,2 > 0 such that, for every u ∈ V j , B ε 0,2 (T j (u)) ⊂ T j (B ε 2 (u)).

Proposition 9 Let ε 0 = min(ε 0,1 , ε 0,2 ) > 0. Recall that U j ⊂ V j ⊂ V j ⊂ V j ⊂ W j . As a consequence, -for all x, y ∈ T j (V j ) satisfying x -y < ε 0 , the following inequality is valid :

1 σ x -y > T -1 j (x), T -1 j (y) .
-B ε 0 (T j (U j )) ⊂ T j (V j ).

Proof : The second statement comes from the fact that ε 0 ≤ ε 0,1 and from the results we obtained in relation with (PE1).

Let us prove the first statement, which implies Condition (PE4) of Saussol. Let x, y ∈ T j (V j ) satisfy x -y < ε 0 . Set u = T -1 j (x) ∈ V j . According to the preceding remark, as ε 0 is smaller than ε 0,2 , y ∈ B ε 0 (T j (u)) ⊂ T j (B ε 2 (u)).

Hence v = T -1 j (y) ∈ B ε 2 (u) ⊂ V j . According to Proposition 8,

x -y 2 = ||T j (u) -T j (v)|| 2 > σ||u -v|| 2 ,

  k . Under conjugation by an affine function, similar results could be obtained for an application ϕ defined on [a, b] k , with values in [a, b]. Recall that k ≥ 3.

If ϕj is C 2 on Bε 1 (Oj), it is necessarily C 1,α on Bε 1 (Oj) with α = 1

which proves the result.

To conclude, Hypothesis (PE5) is a consequence of Lemma 2.1 of Saussol and of Hypothesis 4.

Since the hypotheses (PE1) to (PE5) are satisfied, Theorem 5.1 of [SAU] implies the properties 1 to 5 of Theorem 2 about V α and L

To prove point 6, we shall apply Theorem 6.1 of [SAU] on every subset W j,l , on which a suitable power of T is mixing. Adopting the notations of Point 5 of Theorem 5.2 of [SAU], there exist real constants C > 0 and ρ ∈]0, 1[ such that, for every (j, l) satisfying 1

Let us choose, then, h ∈ V α (Ω) and f ∈ L 1 µ (Ω) (with the result that f ∈ L 1 µ j,l (Ω) for every j, l). Taking the smallest common multiple L of the L j and summing the above inequalities, with n replaced with n L L j , we obtain that

Point 7 is a straightforward consequence of Point 6, since dim(E 1 ) = 1 and L 1 = 1. This concludes the proof of Theorem 2

Let us now turn to Lemma 4. If Z 0 = (X 0 , . . . , γ k-1 X k-1 ) has distribution µ, then this is the case for Z n = (X n , . . . , γ k-1 X n+k-1 ) as well. If f ∈ L 1 µ (Ω) and if h ∈ V α (Ω), one has :

Let r, s be in {1, . . . , k} and let F, H be measurable functions defined on [-L, L]. The application

One then has

Consequently, if H satisfies these conditions and if F is such that T s F belongs to L 1 µ (Ω), for example if F is measurable and bounded on [-L, L], one gets the second statement of Lemma 4

Osc(H, ]x -δ, x + δ[∩[-L, L]) dx

In particular, if H is the indicator function of an interval and F , that of a Borel set, we obtain the first assertion of Lemma 4.