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In this paper we establish explicit lower bounds for pseudodifferential operators with a radial symbol. The proofs use classical Weyl calculus techniques and some useful, if not celebrated, properties of the Laguerre polynomials.

Introduction.

If a function F defined on IR 2d is smooth and has bounded derivatives, the Weyl calculus associates with it a pseudodifferential operator Op W eyl h (F ) which is bounded on L 2 (IR d ) and satisfies, for all f and g in S(IR d ),

(1.1)

< Op W eyl h (F )f, g >= (2πh) -d IR 2d F (Z)H h (f, g, Z)dZ,
where H h (f, g, •) is the Wigner function

(1.2) H h (f, g, Z) = IR d e -i h t•ζ f z + t 2 g z - t 2 dt Z = (z, ζ) ∈ IR 2d .
For this form of the definition, see [U], [L] or [C-R], Chapter II, Proposition 14.

The different variants of Gårding's inequality prove that, if F ≥ 0, the operator Op W eyl h (F ) is roughly ≥ 0. More precisely, according to the classical Gårding's inequality (see [HO] or [L]), the non negativity of F implies the existence of a positive constant C, independent of h, such that, for all sufficiently small h and for all f in S(IR d ):

(1.3) < Op W eyl h (F )f, f > ≥ -Ch f 2 L 2 (IR d ) .
See [L-N] for other similar results. This inequality holds for systems of operators, whereas the more precise Fefferman-Phong inequality [F-P] is valid only for scalar operators. Fefferman-Phong's inequality states that, under the same hypotheses as Gårding's inequality, one has, for all h in (0, 1) and all f in S(IR d ):

(1.4)

< Op W eyl h (F )f, f > ≥ -Ch 2 f 2 L 2 (IR d ) .
See [MAR] for these semiclassical versions. Sometimes the non negativity of F implies the exact non negativity of the operator, for example in the simple case when F depends on x or on ξ only. It is possible, too, to apply Melin's inequality. To take only one example, let F ≥ 0 attain its minimum only once, for a nondegenerate critical point. In this case (and in other analogous situations), Melin's inequality ensures the exact non negativity of Op W eyl h (F ) for a sufficiently small h. See [B-N] or [L-L] for cases when the difference between F (x, ξ) and its minimum is equivalent to a power, greater than 2, of the distance between (x, ξ) and the unique point where the minimum is attained.

In this article we are interested in the case when F is radial. We assume that there exists a function Φ defined on IR such that

(1.5) F (x, ξ) = Φ(|x| 2 + |ξ| 2 ) (x, ξ) ∈ IR 2d .
Moreover, we suppose that Φ is nondecreasing on [0, ∞) and such that F is smooth, with bounded derivatives.

In this case, we aim at giving an explicit lower bound on the spectrum of the operator Op W eyl h (F ). The main result of this paper is the following theorem.

Theorem 1.1 Let F be a smooth function defined on IR 2d , bounded as well as all its derivatives. Assume that F is of the form (1.5), where Φ is a non decreasing function defined on [0, ∞). Then for all f in S(IR d ),

(1.6) < Op W eyl h (F )f, f > ≥ 1 h ∞ 0 Φ(t)e -t h dt f 2 L 2 (IR d ) .
Remarks 1 -We do not need to assume that Φ ≥ 0 to ensure the non negativity of the operator. The non negativity of the integral suffices. 2 -In the case when Φ is not flat at the origin, let m ≥ 1 be the smallest integer for which Φ (m) (0) = 0.

Then one can see that

1 h ∞ 0 Φ(t)e -t h dt = Φ(0) + Φ (m) (0)h m + O(h m+1 ).
3 -The result can be applied to symbols F depending on the distance from another point (x 0 , ξ 0 ) for, if

τ F (x, ξ) = F (x + x 0 , ξ + ξ 0 ) and T f (u) = e i(ξ0/h)(u-x0) f (u -x 0 ), then < Op W eyl h (τ F )f, g > =< Op W eyl h (F )T f, T g > .
We are greatly indebted to N. Lerner for the reference [A-G].

2. Proof of Theorem 1.1.

We denote by (H n ) (n≥0) the sequence of the Hermite functions. It is a Hermitian basis of L 2 (IR), satisfying

(2.1) (D 2 + x 2 )H n = (2n + 1)H n .
For each multi-index α = (α 1 , ...α d ), we set :

(2.2)

u α (x) = d j=1 H αj (x j ).
These functions form a Hermitian basis of L 2 (IR d ).

We shall need the Laguerre polynomials as well, which are defined by

(2.3) L n (x) = e x n! d n dx n x n e -x .
One has :

(2.4)

L 0 (x) = 1 L 1 (x) = 1 -x L 2 (x) = x 2 2 -2x + 1.
Theorem 1.1 is a consequence of the following proposition, in which the parameter h is equal to 1 and the Weyl operator Op W eyl 1 (F ) is denoted by Op W eyl (F ).

Proposition 2.1 Under the hypotheses of Theorem 1.1 one has, for all multi-indices α and β such that α = β:

(2.5) < Op W eyl (F )u α , u β >= 0.

For each multi-index α:

(2.6)

< Op W eyl (F )u α , u α >= 2 -d Φ(0)V α (0) + 1 2 ∞ 0 Φ ′ (t/2)V α (t)dt , with (2.7) V α (X) = 4e -X 2 d-1 k=0 C k d-1 T |α|+k (X),
where we set, for all integer n,

(2.8) T n (X) = n-1 k=0 (-1) k L k (X) + (-1) n 2 L n (X).
Proof of (2.5). Let α and β be two different multi-indices and let j ≤ d be such that α j = β j . Set P j = D 2 j + x 2 j . According to (2.1) we have :

2(α j -β j ) < Op W eyl (F )u α , u β >=< Op W eyl (F )P j u α , u β > -< Op W eyl (F )u α , P j u β > .
The fact that F is radial implies that x j ∂F ∂ξj -ξ j ∂F ∂xj = 0 which, in turn, implies that Op W eyl (F ) and P j commute, thanks to properties of the Weyl calculus. Consequently, the right term of the above inequality is equal to 0, which proves (2.5).

Proof of (2.6). For each multi-index α, the Wigner function H(u α , u α ) (where the parameter h, equal to 1, is omitted), satisfies:

(2.9)

H(u α , u α )(x, ξ) = 2 d (-1) |α| e -(|x| 2 +|ξ| 2 ) d j=1 L αj (2(x 2 j + ξ 2 j )).
See, for example, [FO] or

[J-L-V]. Hence, if F is as in Theorem 1.1, < Op W eyl (F )u α , u α >= (2π) -d 2 d (-1) |α| IR 2d Φ(|x| 2 + |ξ| 2 )e -(|x| 2 +|ξ| 2 ) d j=1 L αj (2(x 2 j + ξ 2 j ))dxdξ.
The change of variables t j = 2(x 2 j + ξ 2 j ) allows to write :

< Op W eyl (F )u α , u α >= (2π) -d 2 d (-1) |α| (π/2) d [0,∞) d Φ((t 1 + ... + t d )/2)e -1 2 (t1+...+t d ) d j=1 L αj (t j )dt 1 ...dt d .
This equality can be written as

< Op W eyl (F )u α , u α >= (2π) -d 2 d (π/2) d ∞ 0 Φ(X/2)U α (X)dX, 3 with : U α (X) = (-1) |α| e -X 2 Ω d (X) L α d (X -t 1 -... -t d-1 ) d-1 j=1 L αj (t j )dt 1 ...dt d-1 ,
where Ω d (X) = {(t 1 , ..., t d-1 ), t j > 0, t 1 + ... + t d-1 < X}.

The equality (2.6) will be a consequence of an integration by parts using the following lemma.

Lemma 2.2 We have:

(2.10)

U α (X) = -V ′ α (X)
where V α is defined by (2.7) and (2.8).

Proof of Lemma 2.2. One knows (cf [M-O-S], section 5.5.2) that (2.11)

X 0 L α1 (t)L α2 (X -t)dt = L α1+α2 (X) -L α1+α2+1 (X).
It follows, by induction on d, that

Ω d (X) L α d (X -t 1 -... -t d-1 ) d-1 j=1 L αj (t j )dt 1 ...dt d-1 = d-1 k=0 C k d-1 (-1) k L |α|+k (X). Hence U α (X) = e -X 2 d-1 k=0 C k d-1 (-1) |α|+k L |α|+k (X).
Using the recurrence relation The equality (2.10) of the Lemma follows from (2.7) and from the above identities.

L ′ k+1 (t) = L ′ k (t) -L k (t
End of the proof of Theorem 1.1. We shall begin by proving (1.6) for h = 1. Set (2.12)

S n (X) = n k=0 (-1) k L k (X).
Using the recurrence relation

L ′ k+1 (t) = L ′ k (t) -L k (t)
, one verifies, by induction, that for all n:

T ′ n (X) = 1 2 S n-1 (X).
Since L n (0) = 1 for all n, we see that T n (0) = 1/2 and that

T n (X) = 1 2 + 1 2 X 0 S n-1 (t) dt.
According to [A-G], Theorem 12 (see [F] as well ), S n (X) ≥ 0 for all n ≥ 0 and for all X ≥ 0. Therefore T n (X) ≥ 1/2 for all n and X, and, using (2.7):

(2.13) V α (X) ≥ 2 d e -X 2 .

Since T n (0) = 1/2, V α (0) = 2 d . Hence, if Φ ′ ≥ 0, one gets :

(2.14) Φ(0)V α (0) + 1 2

∞ 0 Φ ′ (t/2)V α (t)dt ≥ 2 d ∞ 0
Φ(t)e -t dt.

The inequality (1.6), for h = 1, follows from (2.5), (2.6) and (2.14). For an arbitrary h > 0, it suffices to apply the above result to the function F h (x, ξ) = F (h 1/2 x, h 1/2 ξ), that is to say, to the function Φ h (t) = Φ(th).