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SOME EXAMPLES OF DIRAC-HARMONIC MAPS

BERND AMMANN AND NICOLAS GINOUX

Abstract. We discuss a method to construct Dirac-harmonic maps developed
by J. Jost, X. Mo and M. Zhu in [5]. The method uses harmonic spinors and
twistor spinors, and mainly applies to Dirac-harmonic maps of codimension 1
with target spaces of constant sectional curvature. Before the present article,
it remained unclear when the conditions of the theorems in [5] were fulfilled.
We show that for isometric immersions into space forms, these conditions are
fulfilled only under special assumptions. In several cases we show the existence
of solutions.
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1. Introduction and main results

Let (Mm, g) and (Nn, h) be Riemannian manifolds of dimension m and n. We
assume that M carries a fixed spin structure. Note that in general we do not
require M and N to be complete. Denote by ΣM the corresponding spinor bundle
ofM . Given a smooth map f : M −→ N , one can define the twisted Dirac-operator
Df :=

∑m
j=1 ej · ∇ΣM⊗f∗TN

ej acting on C∞(M,ΣM ⊗ f∗TN), where (ej)1≤j≤m is
a local orthonormal frame on M and “ · ” denotes Clifford multiplication T ∗M ⊗
ΣM ⊗ f∗TN −→ ΣM ⊗ f∗TN . Here ΣM ⊗ f∗TN is to be understood as the real
tensor product of ΣM with f∗TN and is endowed with a natural Hermitian inner
product 〈· , ·〉 making the Clifford action of each tangent vector skew-Hermitian.
A pair (f,Φ) ∈ C∞(M,N)×C∞(M,ΣM ⊗ f∗TN) is called a Dirac-harmonic map
if and only if the identities ∣∣∣∣

DfΦ = 0
trg(∇df) = 1

2VΦ
(1)

hold on M , where VΦ ∈ C∞(M, f∗TN) is the section of f∗TN defined by requiring

h(VΦ, Y ) :=
m∑

j=1

〈ej · RNY,f∗ejΦ,Φ〉 for all Y ∈ f∗TN. (2)

Recall that, since the Clifford multiplication of each tangent vector to M and the
curvature tensor RN of (N, h) act in a skew-Hermitian (resp. skew-symmetric)
way, the sum

∑m
j=1〈ej ·RNY,f∗ejΦ,Φ〉 is real. Here and in the following the notation

Date: April 12, 2019.
Key words and phrases. Dirac harmonic maps, twistor spinors.
B. Ammann was partially supported by the DFG Graduiertenkolleg GRK 1692 “Curvature,

Cycles, and Cohomology” and by the DFG Sonderforschungsbereich 1085 “Higher Invariants —

Interactions between Arithmetic Geometry and Global Analysis”.
1



2 BERND AMMANN AND NICOLAS GINOUX

ej · RNY,f∗ejΦ stands for (ej · ⊗RNY,f∗ej )Φ. Our convention for curvature tensors is

RNX,Y = [∇N
X ,∇N

Y ]−∇N
[X,Y ] for all tangent vectors X,Y .

In the recent years, there was a considerable interest for Dirac-harmonic maps
in geometric analysis. The original motivation for studying Dirac-harmonic maps
comes from physics: Dirac-harmonic maps are the fermionic analogue of the har-
monic map equation. While harmonic maps are stationary points of the classical
(bosonic) energy functional f 7→ 1

2

∫
M |df |2 dvM , Dirac harmonic maps are station-

ary points of the functional (f,Φ) 7→ 1
2

∫
M (|df |2 + 〈Φ, DfΦ〉) dvM which is inter-

preted as the fermionic counterpart of the classical energy functional. In geometric
analysis Dirac-harmonic maps turn out to be an interesting area of investigation,
as on the one hand side these equations are simple enough to allow regularity state-
ments, removal of singularities, short-time existence of associated parabolic flows
and much more, and on the other they are involved enough to exhibit a rich struc-
ture.

The goal of the article [5], written by J. Jost, X. Mo and M. Zhu was to find
solutions (f,Φ) to the Dirac-harmonic map equations (1) in the form (f,Φ) where

Φ :=

m∑

j=1

ej · ψ ⊗ f∗ej + ϕ⊗ ν, (3)

such that ψ, ϕ ∈ C∞(M,ΣM) are untwisted spinor fields and such that ν ∈
C∞(M, f∗TN) is a vector field standing orthogonally onto df(TM) = f∗(TM)
at each point. The first motivation for considering Dirac-harmonic maps in the
form (3) is that it gives a simple way to produce Dirac-harmonic maps when M is
a surface: if we assume m = 2, that the map f is harmonic, that ψ is a twistor
spinor, ν = 0, and ϕ = 0, then the pair (f,Φ) is a Dirac-harmonic map, see [5, The-
orem 2] and Corollary 2.3 below. In particular, a lot of examples of Dirac-harmonic
maps can be exhibited when M is conformally equivalent to an open subset of
one of the model surfaces S2, R2 or H2 or conformally equivalent to a torus with
trivial spin structure, we refer to Examples 2.4 for more details. On the other
hand closed hyperbolic surfaces do not carry nontrivial twistor spinors and there-
fore this ansatz is not sufficient to construct Dirac-harmonic maps on such surfaces.

As in [5], we mainly focus in this article on the particular situation were f is an
isometric immersion and n = m+1. This allows us — as usual for isometric immer-
sions — to identify TM with a subbundle of f∗TN . The above ansatz then easily
generates nontrivial Dirac-harmonic maps with harmonic mapping component f out
of parallel spinors onMm, see Proposition 2.5. However, the existence of nontrivial
parallel spinors is very restrictive, making those examples actually very special. To
get examples of Dirac-harmonic maps with non-harmonic mapping component, we
furthermore assume N to be oriented with constant sectional curvature c ∈ R. Note
that in this case the orientations of M and N induce a global smooth unit normal
vector field ν on f(M); any sign convention for the choice of ν can be used, but
should be fixed throughout the article. Denote by W := −∇Nν the corresponding
shape operator of the immersed hypersurface M and by H := 1

mtr(W ) its mean
curvature.
We first characterize Dirac-harmonic maps of the form (3) in that setting (compare
[5, Thm. 1]):

Theorem 1.1. Let f : Mm −→ Nm+1 be an isometric immersion from a con-
nected Riemannian spin manifold (Mm, g) into an oriented Riemannian manifold
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(Nm+1, h) with constant sectional curvature c ∈ R. Let ν ∈ Γ(f∗TN) be a unit
normal vector field of f(M) ⊂ N with shape operator W and mean curvature H
as explained above. For ψ, ϕ ∈ C∞(M,ΣM) let Φ :=

∑m
j=1 ej · ψ ⊗ ej + ϕ ⊗ ν,

where (ej)1≤j≤m is any local orthonormal frame on M . We assume that Φ does
not vanish everywhere.

i) If m = 2, then (f,Φ) is a Dirac-harmonic map if and only if H = 0,
DMϕ = 0, c · ℜe(〈ψ, ϕ〉) = 0, and e1 · ∇ΣM

e1 ψ − e2 · ∇ΣM
e2 ψ = κ1ϕ, where

We1 = κ1e1. (The vector e1 is a pointwise eigenvector for W associated to
the principal curvature κ1, we do not require e1 to depend continuously on
the basepoint.)

ii) If m ≥ 3 and f is a totally umbilical immersion, then (f,Φ) is a Dirac-
harmonic map if and only if H = −cℜe(〈ψ, ϕ〉), DMϕ = mHψ, DMψ =
− mH
m−2ϕ and Pψ = 0. If furthermore M is closed, then (f,Φ) is a Dirac-

harmonic map if and only if W = 0, DMϕ = 0, ∇ΣMψ = 0, and c ·
ℜe(〈ψ, ϕ〉) = 0.

Remark 1.2. Note that the assumption that f is totally umbilical in ii) already
implies that H is constant, or more generally: any m(≥ 2)-dimensional totally
umbilical hypersurface in an Einstein manifold has constant mean curvature. This
is an elementary consequence of δW = −mdH + RicN (ν)T , which itself follows

from the Codazzi-Mainardi-identity (the 1-form RicN (ν)T ∈ T ∗M is defined by

RicN (ν)T (X) = h(RicN (ν), X) for all X ∈ TM). In particular, in the case m ≥ 3
the existence of a Dirac-harmonic map (f,Φ) with Φ 6= 0 given by ψ and ϕ as in

the above theorem implies D2
Mψ = −m2H2

m−2 ψ and D2
Mϕ = −m2H2

m−2 ϕ.

Remark 1.3. If we allowed for ϕ = ψ = 0, then this theorem would reduce to the
classical fact that an isometric immersion is harmonic, if and only if the image has
vanishing mean curvature.

Remark 1.4. Our above theorem also shows that the conditions in [5, Thm. 1]
are very restrictive in the case m ≥ 3: the authors assume the spinor field ϕ
to be harmonic, i.e. DMϕ = 0. In this case, Theorem 1.1 yields H = 0 and
cℜe(〈ψ, ϕ〉) = 0. Furthermore, DMψ = 0 and Pψ = 0 and this implies ∇ΣMψ = 0.
AsM is isometrically immersed into N with W = H · Id = 0, it is a totally geodesic
immersion, and 0 = mH ·ν = trg(∇df). In particular f is harmonic, so no example
with non-harmonic map f can be produced. Assuming ψ 6≡ 0, these conditions
imply that M is Ricci-flat, of special holonomy and ∇ΣMϕ = 0 as soon as M is
closed.

Theorem 1.1 allows for producing new explicit examples of Dirac-harmonic maps.
Denote by Nm+1(c) any Riemannian space form of constant sectional curvature c

and by Ñm+1(c) the simply-connected complete Riemannian space form of constant
sectional curvature c. Replacing the the metric h by λ2h with a constant λ > 0
does not change the Levi-Civita connection on the tangent bundle of the target,
and thus Df is unchanged as well. In the case c 6= 0 we can achieve by such a
rescaling with λ :=

√
|c| that the rescaled metric has sectional curvature ±1. Thus

we can assume without loss of generality c ∈ {−1, 0, 1}, i. e. Ñm+1(c) = Hm+1(−1),
Rm+1 and Sm+1(1) for c = −1, 0 and 1 respectively.

Theorem 1.5. Let f : Mm → Ñm+1(c) be a non-minimal totally umbilical iso-
metric immersion from a connected m ≥ 3-dimensional Riemannian spin manifold

into Ñm+1(c) for some c ∈ {−1, 0, 1}. Then there exists a not identically vanishing
Φ in the form (3) such that (f,Φ) is a Dirac-harmonic map if and only if f(M) is

an open subset of an umbilic hyperplane Hm(− 4
m+2 ) in Ñ

m+1(−1) = Hm+1(−1).
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The following is then an immediate consequence of the theorem by applying the

theorem to the lift f̃ : M̃ → Hm+1(−1).

Corollary 1.6. Let f : Mm → Nm+1 be a non-minimal totally umbilical isometric
immersion from a connected m ≥ 3-dimensional Riemannian spin manifold into a
complete connected manifold N of constant sectional curvature c. We assume that
(f,Φ) is a Dirac-harmonic map, where Φ is in the form (3). By Theorem 1.5 we
know that c < 0 and by rescaling the metric on N we can achieve c = −1. Let

f̃ : M̃ → Ñ = Ñm+1(−1) = Hm+1(−1) be a lift of f to the universal covers. Then

up to isometry f̃(M̃) is an open subset of a hyperplane Hm(− 4
m+2) in Hm+1(−1).

Note that any connected totally umbilical isometrically immersed hypersurface in
Hm+1(−1) is an open subset of some Mm(κ) with κ ≥ −1. Here Mm(κ) is the
canonically embedded complete hypersurface of constant curvature κ in Hm+1(−1),
that is, Mm(κ) is

• Hm(κ) for κ ∈ [−1, 0),
• a horosphere Rm if κ = 0,
• the boundary of a geodesic ball if κ > 0.

The nontrivial statement in Corollary 1.6 is that only the first case can arise and
that the value of κ is − 4

m+2 .

These notes started in 2011 as an informal comment to the authors of [5] in order to
lay the basis for our article [1]. The original title was “Examples of Dirac-harmonic
maps after Jost-Mo-Zhu”. As these informal notes were cited by several authors,
we decided in 2018 to transform them into a proper publication made accessible to
everyone.

2. Proof of main results

The proof starts with two calculations of central importance. Denote by

DM :=

m∑

j=1

ej · ∇ΣM
ej : C∞(M,ΣM) → C∞(M,ΣM)

the classical Dirac operator by Atiyah and Singer and by

P : C∞(M,ΣM) → C∞(M,T ∗M ⊗ ΣM), ψ 7→ ∇ΣMψ +
1

m
·
m∑

j=1

e♭j ⊗ ej ·DMψ

the Penrose (or twistor) operator on M .

Lemma 2.1. With the above notations, one has for f and Φ given by (3)

DfΦ =

m∑

j=1

(
2−m

m
ej ·DMψ − 2Pejψ

)
⊗ f∗ej − ψ ⊗ trg(∇df)

+ (DMϕ)⊗ ν +

m∑

j=1

ej · ϕ⊗∇N
ejν.

Proof. We set Ψ :=
∑m

j=1 ej · ψ ⊗ f∗ej and compute

DfΨ =

m∑

j=1

ej · ∇ΣM⊗f∗TN
ej (

m∑

k=1

ek · ψ ⊗ f∗ek)

=
m∑

j,k=1

(
ej · ∇M

ej ek · ψ ⊗ f∗ek + ej · ek · ∇ΣM
ej ψ ⊗ f∗ek
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+ ej · ek · ψ ⊗∇f∗TN
ej f∗ek

)

=−
m∑

j,k=1

ek · ej · ∇ΣM
ej ψ ⊗ f∗ek − 2

m∑

j,k=1

g(ej , ek)︸ ︷︷ ︸
=δjk

∇ΣM
ej ψ ⊗ f∗ek

+

m∑

j,k=1

ej · ek · ψ ⊗ (∇df)(ej , ek)

+

m∑

j,k=1

(
ej · ∇M

ej ek · ψ ⊗ f∗ek + ej · ek · ψ ⊗ f∗(∇M
ej ek)

)

︸ ︷︷ ︸
0

.

Here we used
∑m
k=1

(
ej · ∇M

ej ek · ψ ⊗ f∗ek + ej · ek · ψ ⊗ f∗(∇M
ej ek)

)
= 0. This can

either be seen by taking a frame with ∇M
ej ek|p = 0 for some p ∈M and all j, k, and

to calculate in p, or alternatively by writing ∇M
ej ek =

∑m
ℓ=1 Γ

ℓ
jkeℓ and using Γℓjk =

−Γkjℓ. Furthermore for j 6= k the expression ej ·ek ·ψ is antisymmetric for permuting

j and k while (∇df)(ej , ek) is symmetric, thus all terms ej · ek · ψ ⊗ (∇df)(ej , ek)
cancel for j 6= k. We continue the computation:

DfΨ = −
m∑

k=1

ek ·DMψ ⊗ f∗ek − 2
m∑

k=1

∇ΣM
ek

ψ ⊗ f∗ek −
m∑

k=1

ψ ⊗ (∇df)(ek, ek)
︸ ︷︷ ︸

=ψ⊗trg(∇df)

=
2−m

m

m∑

k=1

ek ·DMψ ⊗ f∗ek − 2

m∑

k=1

Pekψ ⊗ f∗ek − ψ ⊗ trg(∇df),

where we used the definition of P . On the other hand,

Df (ϕ⊗ ν) =

m∑

j=1

ej · ∇ΣM⊗f∗TN
ej (ϕ⊗ ν)

=

m∑

j=1

ej ·
(
∇ΣM
ej ϕ⊗ ν + ϕ⊗∇f∗TN

ej ν
)

= (DMϕ)⊗ ν +

m∑

j=1

ej · ϕ⊗∇N
ejν.

Using DfΦ = DfΨ+Df (ϕ⊗ ν) this yields the claimed formula for DfΦ. �

Lemma 2.2. Again we use the above notations, we assume that Φ is given by (3)
and that VΦ is given by (2). Then we have for all Y ∈ f∗TN ,

h(VΦ, Y ) = 2
m∑

j,k=1

h(RNY,f∗ejf∗ek, ν)ℜe(〈ej · ek · ψ, ϕ〉).

Proof. As in the proof of Lemma 2.2, let Ψ :=
∑m
j=1 ej · ψ ⊗ f∗ej and VΨ be the

associated vector field as in (2). Recall that Φ 7→
∑m

j=1 ej · RNY,f∗ejΦ is Hermitian,

in particular

h(VΦ, Y ) = h(VΨ, Y ) + h(Vϕ⊗ν , Y ) + 2ℜe




m∑

j=1

〈ej · RNY,f∗ejΨ, ϕ⊗ ν〉
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for all Y ∈ f∗TN . We compute each term separately. First,

h(VΨ, Y ) =

m∑

j,k,ℓ=1

ℜe
(
〈ej ·RNY,f∗ej (ek · ψ ⊗ f∗ek), eℓ · ψ ⊗ f∗eℓ〉

)

=

m∑

j,k,ℓ=1

ℜe
(
〈(ej · ek · ψ)⊗RNY,f∗ejf∗ek, eℓ · ψ ⊗ f∗eℓ〉

)

=

m∑

j,k,ℓ=1

h(RNY,f∗ejf∗ek, f∗eℓ)ℜe (〈ej · ek · ψ, eℓ · ψ〉)

= −
m∑

j,k,ℓ=1

h(RNY,f∗ejf∗ek, f∗eℓ)ℜe (〈eℓ · ej · ek · ψ, ψ〉) .

This sum contains different kinds of terms. For j = k we calculate

ℜe (〈eℓ · ej · ej · ψ, ψ〉) = −ℜe (〈eℓ · ψ, ψ〉) = 0

and with similar arguments all terms with k = ℓ or j = ℓ vanish, including j = k =
ℓ. Given a fixed triple (j, k, ℓ) with j 6= k 6= ℓ 6= j, consider the Z/3Z-action given
by the cyclic permutation sending j on k and k on ℓ. Then the sum corresponding
to the Z/3Z-orbit vanishes: by definition of the Clifford multiplication,

eℓ · ej · ek = ek · eℓ · ej = ej · ek · eℓ,
so that, using the first Bianchi identity for the curvature tensor of (N, h),

∑

σ∈Z/3Z

h(RNY,f∗eσ(j)
f∗eσ(k), f∗eσ(ℓ))ℜe

(
〈eσ(ℓ) · eσ(j) · eσ(k) · ψ, ψ〉

)

=
(
h(RNY,f∗ejf∗ek, f∗eℓ) + h(RNY,f∗ekf∗eℓ, f∗ej) + h(RNY,f∗eℓf∗ej, f∗ek)

)

· ℜe (〈eℓ · ej · ek · ψ, ψ〉)
= 0.

Therefore, VΨ = 0.
For ϕ⊗ ν, using h(RNY,f∗ejν, ν) = 0, we obtain

h(Vϕ⊗ν , Y ) =
m∑

j=1

ℜe
(
〈(ej · ϕ) ⊗RNY,f∗ejν, ϕ⊗ ν〉

)

=
m∑

j=1

h(RNY,f∗ejν, ν)ℜe (〈ej · ϕ, ϕ〉)

= 0,

so that Vϕ⊗ν = 0. As for the cross term, we obtain

ℜe




m∑

j=1

〈ej · RNY,f∗ejΨ, ϕ⊗ ν〉


 =

m∑

j,k=1

ℜe
(
〈(ej · ek · ψ)⊗RNY,f∗ejf∗ek, ϕ⊗ ν〉

)

=

m∑

j,k=1

h(RNY,f∗ejf∗ek, ν)ℜe (〈ej · ek · ψ, ϕ〉) .

The result follows. �

As a straightforward consequence of Lemmata 2.1 and 2.2, we reprove [5, Theorem
2] by J. Jost, X. Mo and M. Zhu.
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Corollary 2.3. Let m = 2, assume that the spinor field ψ is a twistor spinor,
that ϕ is the zero section and that the map f is harmonic. Then (f,Φ), defined by
(3), is a Dirac-harmonic map.

Proof. Lemma 2.1 implies DfΦ = 0. Furthermore VΦ vanishes since the Hermitian
inner product 〈ej · ek · ψ, el · ψ〉 is purely imaginary for all j, k, l ∈ {1, 2}. �

Examples 2.4.

(1) The two-dimensional round sphere S2 carries a 4-dimensional space of twis-
tor spinors; a twistor spinor on S2 is the sum of a 1

2 - and of a − 1
2 -Killing

spinor, see e.g. [2] or [4, App. A]. By Corollary 2.3, for any harmonic map
f : S2 → Nn, there exists a nonzero Φ ∈ C∞(S2,ΣS2 ⊗ f∗TN) such that
(f,Φ) is a Dirac-harmonic map.

(2) If M2 is the flat plane R2 or any open subset of it, then it carries an
infinite-dimensional space of twistor spinors; this space turns out to be
isomorphic to the sum of the space of holomorphic functions with that of
anti-holomorphic functions on M , see e.g. [4, Prop. A.2.3]. As a conse-
quence of Corollary 2.3, for any harmonic map f : M2 → Nn, there exists
a nonzero Φ ∈ C∞(M,ΣM ⊗ f∗TN) such that (f,Φ) is a Dirac-harmonic
map.

(3) Since the kernel of the Penrose operator as well as harmonicity of f is
conformally invariant, the former for every m, see [2], and the latter only
for m = 2, see [3], the examples described above are still valid when the
metric g is chosen in the conformal class of the standard metric on M . In
particular, the same kind of examples can be built on the hyperbolic plane
H2 since it is conformally equivalent to a flat disk.

(4) Nontrivial quotients of model surfaces may carry twistor spinors, this de-
pends on the group that is divided out but also on the spin structure chosen
on the quotient. For instance, the only compact quotients of model sur-
faces carrying nontrivial twistor spinors areM = S2 andM = T2 where the
latter carries the trivial spin structure, that is, the spin structure that is a
trivial 2-fold covering of the unit circle bundle overM . This spin structure
can also be characterized as the only spin structure on T2 which is not ob-
tained by restricting a spin structure on a solid torus to its boundary torus
T
2. Note in particular that no nontrivial twistor spinor exists on closed

hyperbolic surfaces, thus no example of the form above can be produced in
that case.

It is interesting to notice another consequence of Lemmata 2.1 and 2.2:

Proposition 2.5. With the above notations, assume that Mm carries a nontriv-
ial parallel spinor. Then for any Riemannian manifold Nm+1 and any harmonic
map f : Mm → Nm+1, there exists a non-identically-vanishing Φ ∈ C∞(M,ΣM ⊗
f∗TN) such that (f,Φ) is a Dirac-harmonic map.

Proof. We let ψ be a nonzero parallel spinor on M , ϕ = 0 and define Φ as in (3).
Because of ϕ = 0, DMψ = 0 and Pψ = 0 (any parallel spinor is both a harmonic
spinor and a twistor spinor) as well as trg(∇df) = 0 since f is harmonic, we have
DfΦ = 0. On the other hand, because of ϕ = 0, we have VΦ = 0 by Lemma 2.2, so
that VΦ

2 = 0 = trg(∇df). Thus (f,Φ) is a Dirac-harmonic map. �

We now reformulate Lemmata 2.1 and 2.2 when f : Mm → Nn is an isometric
immersion, n = m + 1, the manifold Nn is oriented. Again we identify in this
case TM with a subbundle of f∗TN . Further let ν be the unit normal vector field
induced by the orientations of M and N .
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Proposition 2.6. Assume f is an isometric immersion from Mm into an oriented
Riemannian manifold Nm+1, that Φ and VΦ are given by (3) and (2) respectively,
where ν is the unit normal vector field induced by the orientations of M and N .
Then one has

DfΦ =
m∑

j=1

(
2−m

m
ej ·DMψ − 2Pejψ −Wej · ϕ

)
⊗ ej

+ (DMϕ−mHψ)⊗ ν.

Moreover, if N has constant sectional curvature c ∈ R, then VΦ = −2mcℜe (〈ψ, ϕ〉) ν.

Proof. The identification mentioned above yields f∗ej = ej . Using ∇df = W ⊗ ν,
one has trg(∇df) = tr(W )ν = mHν. Moreover, since ∇N

Xν = −WX and W is
symmetric, Lemma 2.1 gives

DfΦ =

m∑

j=1

(
2−m

m
ej ·DMψ − 2Pejψ

)
⊗ ej −mHψ ⊗ ν

+ (DMϕ)⊗ ν −
m∑

j=1

ej · ϕ⊗Wej

=

m∑

j=1

(
2−m

m
ej ·DMψ − 2Pejψ

)
⊗ ej + (DMϕ−mHψ)⊗ ν

−
m∑

j,k=1

g(Wej, ek) ej · ϕ⊗ ek

=
m∑

j=1

(
2−m

m
ej ·DMψ − 2Pejψ

)
⊗ ej + (DMϕ−mHψ)⊗ ν

−
m∑

k=1

W (ek) · ϕ⊗ ek

=

m∑

j=1

(
2−m

m
ej ·DMψ − 2Pejψ −Wej · ϕ

)
⊗ ej

+ (DMϕ−mHψ)⊗ ν,

which proves the first identity. Assume now that (Nm+1, h) has constant sectional
curvature c. Then the curvature tensor of N is given for all X,Y, Z, T ∈ TN by
h(RNX,Y Z, T ) = c · (h(X,T )h(Y, Z)− h(X,Z)h(Y, T )). Lemma 2.2 yields for all
Y ∈ f∗TN :

h(VΦ, Y ) = 2

m∑

j,k=1

h(RNY,ejek, ν)ℜe(〈ej · ek · ψ, ϕ〉)

= 2c ·
m∑

j,k=1


h(Y, ν)h(ej , ek)︸ ︷︷ ︸

δjk

−h(Y, ek)h(ej , ν)︸ ︷︷ ︸
0


ℜe(〈ej · ek · ψ, ϕ〉)

= −2mch(ν, Y )ℜe(〈ψ, ϕ〉).

Thus

h(VΦ + 2mcℜe(〈ψ, ϕ〉) ν, Y ) = 0 ∀Y ∈ f∗TN

which concludes the proof. �
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Now we prove Theorem 1.1. As f is isometric,∇df is the vector-valued second
fundamental form of f(M) in N , and we have trg(∇df) = mH · ν. Proposition 2.6
implies that (f,Φ) is a Dirac-harmonic map if and only if DMϕ = mHψ,

2−m

m
ej ·DMψ − 2Pejψ −Wej · ϕ = 0 for all 1 ≤ j ≤ m (4)

and mH · ν = VΦ

2 = −mcℜe (〈ψ, ϕ〉) ν. Note that taking the Clifford product of ej
with (4) and summing over j gives, using the symmetry of W ,

0 =
2−m

m

m∑

j=1

ej · ej ·DMψ − 2

m∑

j=1

ej · Pejψ
︸ ︷︷ ︸

0

−
m∑

j=1

ej ·Wej · ϕ

= (m− 2)DMψ +mHϕ. (5)

Case m = 2: Then it follows from (5) that Hϕ = 0. Since on the open set
Ω := {x ∈ M |H(x) 6= 0} the spinor ϕ has to vanish, so does ψ on Ω because of
DMϕ = mHψ, so that Φ = 0 on Ω and therefore on M by the unique continuation
property for elliptic self-adjoint differential operators. Since we look for a pair
(f,Φ) with Φ 6= 0, we necessarily have Ω = ∅, that is, H = 0 on M . The
identitiesDMϕ = mHψ, H = −cℜe (〈ψ, ϕ〉) becomeDMϕ = 0 and cℜe (〈ψ, ϕ〉) = 0
respectively. Taking the Clifford product of ej with (4) and recalling the definition
of P , one obtains

ej ·Wej · ϕ = −2ej · Pejψ
= −2ej · ∇ΣM

ej ψ +DMψ

for both j ∈ {1, 2}. The difference of this equation for j = 1 and the one for j = 2
yields e2 ·We2 ·ϕ−e1 ·We1 ·ϕ = 2(e1 ·∇ΣM

e1 ψ−e2 ·∇ΣM
e2 ψ). Take now (ej)1≤j≤2 to

be a pointwise orthonormal basis of TxM made of eigenvectors forW for some fixed
x ∈ M . With the condition H = 0 one can write We1 = κ1e1 and We2 = −κ1e2,
therefore one obtains

2(e1 · ∇ΣM
e1 ψ − e2 · ∇ΣM

e2 ψ) = 2κ1ϕ. (6)

As (6) implies (4) trivially, this shows i).

Case m ≥ 3: It follows from (5) that DMψ = − mH
m−2ϕ. As a consequence, the

assumption W = H · Id (total umbilicity of f) makes (4) equivalent to Pψ = 0.
This proves the general case. We now specialize to the case thatM is closed. Then

D2
Mψ = −m2H2

m−2 ψ and D2
Mϕ = −m2H2

m−2 ϕ, see Remark 1.2. Since D2
M is a non-

negative operator, it does not have any negative eigenvalue on a closed manifold,
therefore ψ = ϕ = 0 unless H = 0, which is the only possibility because of Φ 6= 0.
Therefore H — henceW — has to vanish onM . Since both DMψ = 0 and Pψ = 0,
one obtains ∇ΣMψ = 0 (hence ψ is actually parallel). This shows ii) and concludes
the proof of Theorem 1.1.

We now prove Theorem 1.5. Let f : Mm → Ñm+1(c) be a totally umbilical immer-
sion with m ≥ 3 andW = H · Id 6= 0. Assume the pair (f,Φ) to be Dirac-harmonic.
Recall that then M has to be noncompact (Theorem 1.1). Since Pψ = 0, we know

that D2
Mψ =

mSg

4(m−1)ψ, where Sg is the scalar curvature of (Mm, g), see e.g. [2]

or [4, Prop. A.2.1]. Comparing with D2
Mψ = −m2H2

m−2 ψ and assuming ψ 6= 0 (oth-

erwise ϕ = 0 hence Φ = 0, as we have seen above), we obtain
mSg

4(m−1) = −m2H2

m−2

and the Gauß equation Sg = m(m − 1)c + m2H2 − |W |2 = m(m − 1)(H2 + c)
implies H2 = −m−2

m+2 c, in particular c must be negative, w.l.o.g. c = −1. Therefore
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Ñm+1(c) = Hm+1(−1). In that case, f(M) must be an open subset of a totally
umbilical (but non-totally geodesic) hyperbolic hyperplane of constant sectional
curvature H2+ c = 4

m+2c = − 4
m+2 < 0. Up to changing ν into −ν, one can assume

H to be positive, so that H =
√

m−2
m+2 . Now the space of twistor spinors on any hy-

perbolic space is explicitly known: it is the direct sum of the space of Killing spinors
for the opposite (imaginary) Killing constants. More precisely ker(P ) = Kp ⊕ Km
on M , where Kp := {ψ ∈ C∞(M,ΣM) | ∇ΣM

X ψ = i√
m+2

X · ψ ∀X ∈ TM} and

Km := {ψ ∈ C∞(M,ΣM) | ∇ΣM
X ψ = − i√

m+2
X · ψ ∀X ∈ TM}. Looking for ψ in

the form ψ = ψp + ψm with a priori arbitrary (ψp, ψm) ∈ Kp ⊕ Km, we write the
equations of Theorem 1.1 down: one has DMψ = − im√

m+2
(ψp − ψm), in particular

one has to choose ϕ := −m−2
mH DMψ = i

√
m− 2(ψp − ψm). The formulas for ψ and

ϕ immediately imply DMϕ = mHψ. The only remaining condition having to be
satisfied is H = −c · ℜe(〈ψ, ϕ〉), that is,

√
m− 2

m+ 2
=

√
m− 2 · ℜe(−i〈ψp + ψm, ψp − ψm〉)

=
√
m− 2 · ℑm(|ψp|2 − |ψm|2 + 〈ψm, ψp〉 − 〈ψp, ψm〉)

= −2
√
m− 2 · ℑm(〈ψp, ψm〉),

that is, ℑm(〈ψp, ψm〉) = − 1
2
√
m+2

. Note that the inner product 〈ψp, ψm〉 is anyway
constant on M (its first derivative vanishes). Evaluation at a point x ∈ M yields
linear maps evpx : Kp → ΣxM and evmx : Km → ΣxM that are both injective (an
imaginary Killing spinor is a parallel section w.r.t. a modified connection) and
surjective (the hyperbolic space has the maximal possible number of imaginary

Killing spinors). Let ψ̃p := evpx(ψp) and ψ̃m := evmx (ψm). So in order to classify

all admissible pairs (ψp, ψm) it is sufficient to classify all pairs (ψ̃p, ψ̃m) in ΣxM

with ℑm(〈ψ̃p, ψ̃m〉) = − 1
2
√
m+2

. This is easy: for each non-zero ψ̃p ∈ ΣxM , let

ψ̃m := i
2
√
m+2|ψ̃p|2

ψ̃p, then ℑm(〈ψ̃p, ψ̃m〉) = − 1
2
√
m+2

and obviously all admissible

pairs are of the form (ψ̃p,
i

2
√
m+2|ψ̃p|2

ψ̃p+χ) where χ runs over the real hyperplane

of ΣxM defined by the equation ℑm(〈ψ̃p, χ〉) = 0.
This concludes the proof of Theorem 1.5.

3. Concluding remarks

It may be interesting to know whether 2-dimensional examples with ϕ 6= 0 can
be obtained from Theorem 1.1. Namely if one considers the Clifford torus M2 :=
S1( 1√

2
)× S1( 1√

2
) sitting canonically in N := S3, then the inclusion map is minimal

(with principal curvatures 1 and −1), but the following short argument shows that
the only Dirac-harmonic maps (f,Φ) in the form (3) have vanishing ϕ-component.
Note at first that on the flat two-torus M the Schrödinger-Licherowicz formula
implies using DMϕ = 0 that ϕ is parallel. Thus the statement is immediate if
M carries one of the three spin structures that do not allow for nonzero parallel
spinor fields on the two-torus M . But even if the spin structure on M2 is the
one admitting parallel spinors, then any Dirac-harmonic map (f,Φ) in the form
(3) must have ϕ = 0 due to the following reason. We know from Theorem 1.1
that (f,Φ) is a Dirac-harmonic map if and only if H = 0 (which is the case here),
DMϕ = 0, c ·ℜe(〈ψ, ϕ〉) = 0, and e1 ·∇ΣM

e1 ψ−e2 ·∇ΣM
e2 ψ = κ1ϕ, whereWe1 = κ1e1.

As mentioned above DMϕ = 0 is equivalent to ϕ being parallel. But, taking into
account that, in the particular example of the embedding M2 →֒ S3, the principal
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curvature κ1 is constant and the vector fields e1, e2 are globally defined and parallel
on M2, we have, differentiating w.r.t. e1:

0 = e1 · ∇ΣM
e1 ∇ΣM

e1 ψ − e2 · ∇ΣM
e1 ∇ΣM

e2 ψ

and in the same way 0 = e1 · ∇ΣM
e2 ∇ΣM

e1 ψ − e2 · ∇ΣM
e2 ∇ΣM

e2 ψ. By RΣM = 0 and

[e1, e2] = 0, we have ∇ΣM
e2 ∇ΣM

e1 ψ = ∇ΣM
e1 ∇ΣM

e2 ψ, so that

0 = e1 · ∇ΣM
e1 ∇ΣM

e1 ψ − e2 · ∇ΣM
e2 ∇ΣM

e1 ψ

= e1 · ∇ΣM
e1 ∇ΣM

e1 ψ − e2 · (−e1 · e2 · ∇ΣM
e2 ∇ΣM

e2 ψ)

= e1 ·
(
∇ΣM
e1 ∇ΣM

e1 ψ +∇ΣM
e2 ∇ΣM

e2 ψ
)

= e1 · (∇ΣM )∗∇ΣMψ since ∇eiei = 0,

so that (∇ΣM )∗∇ΣMψ = 0, that is, ∇ΣMψ = 0. In turn, this implies κ1ϕ = 0 and
therefore ϕ = 0 because of κ1 6= 0. Actually we have shown that (f,Φ) in the form
(3) is a Dirac-harmonic map if and only if ϕ = 0 and ψ is parallel.
In the case where m = 2 no non-trivial example of Dirac-harmonic maps from a
closed hyperbolic surface can be obtained with Corollary 2.3, since those do not
carry non-zero twistor spinors. In that setting, examples can be produced with the
help of index-theoretical methods, see e.g. [1]. Curvature conditions implying the
vanishing of the Φ defined in (3) have been investigated by X. Mo [6] and confirm
that only few examples of that special form can be expected.

For higher codimensions the same approach can probably be carried out, the exis-
tence of a global unit normal ν already restricting the generality. On the other hand,
there are in that case obvious examples of Dirac-harmonic maps which are not in the
form (3): take e.g. M := S

2 = CP1 embedded totally geodesically into N = CP2,
then we know by the index theorem (see e.g. [1]) that dimC(ker(D

f )) ≡ 2 (4) and is
at least 4-dimensional by [5] (the space of twistor spinors on S2 injects into ker(Df )),
so that it is at least - actually exactly - 6-dimensional. Now if Φ ∈ ker(Df ), then
it is an easy remark that w.r.t. the canonical splitting Φ = Φ+ + Φ− one has
DfΦ± = 0 and VΦ±

= 0, in particular (f,Φ+) and (f,Φ−) are Dirac-harmonic

maps; since dimC(ker(D
f
±)) ≥ 3 and the space of pure twistor spinors is complex

2-dimensional, there are at least one non-trivial Φ+ ∈ ker(Df
+) and one non-trivial

Φ− ∈ ker(Df
−) such that (f,Φ±) are Dirac-harmonic but do not come from any

twistor spinor on S2.
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