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Generalized cross correlation with Eckart weight
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The generalized cross correlation technique mainly consists in computing the cross
correlation using Fourier transform and applying a weight to each frequency before
computing the inverse Fourier transform.
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There are various wildly used weights such as the PHAT weight which is mainly
used with speech signals in reverberant rooms.

The Eckart weighting function suppresses bands with low SNR, and gives zero
weight to bands with bad autocorrelation of the source signal, which are bands with FFT of the orignial signal
no signal.

Estimated noise levels

only one channel is shown)
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After the weighting is done, a pooling step with time-frequency dependent kernel
can be added. The coherence of the TDOA can then be computed for each kernel.
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i i in the middle.

Representations are the main informations that describe a signal. As an example, if
the network needs to reconstruct points distributed around a circle, it will learn the
radius of each input circle which are hidden behind each input distribution.

In our case, the network will try to learn what characterize each click. It could
learn things like the speaker, or something that could be analogous to a phoneme

dictionary.

A TSNE can then be apply to the embeddings (the representations) to study them.
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Latent representation of sperm whale clicks
using a siamese neural network on raw signals

Encoder 2

Siamese-nets are trained to maintain small distances between representations of
clicks belonging to a given group, and large distances with others.
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The distance can either be the usual euclidean distance between the embeddings, or
dense layers to let the network learn its own distance.

d(A,B)

Both inputs are encoded with the same encoder.

With this kind of network, embeddings of similar clicks will be close to each other,
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while being far from dissimilar clicks. The network is then used to look at the 4

similarities between all the clicks (relations between clicks are usualy known only >

for pairs of clicks close in time) and study the clusters formed by groups of similar 22
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