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Analytic model of a resistive magnetohydrodynamic shock without Hall effect

Introduction

The magnetohydrodynamic (MHD) interaction of an ionized flow with a magnetized body moving in the atmosphere at a hypersonic speed was modelled as early as the 1950s, initiated with theoretical approaches [START_REF] Bush | Magnetohydrodynamics-hypersonic flow past a blunt body[END_REF]Lévy 1963;[START_REF] Levy | Magnetohydrodynamically supported hypersonic shock layer[END_REF][START_REF] Jarvinen | On the use of magnetohydrodynamics during high speed re-entry[END_REF]) and afterwards complemented by numerical simulations stimulated by space flight and atmospheric entry problems (signal blackout, wall heating, drag monitoring…). Numerical resolution of the Euler equations for the aerodynamic blunt-body problem at supersonic speeds was developed in the 1960s [START_REF] Moretti | A time-dependent computational method for blunt body flows[END_REF][START_REF] Moretti | Three-dimensional flows around blunt bodies[END_REF][START_REF] Rusanov | A blunt body in a supersonic stream[END_REF]), soon followed by numerical resolution of the MHD equations [START_REF] Coackley | Time-dependent numerical analysis of MHD blunt body problem[END_REF], and has reached a high level of accuracy.

Nevertheless, analytical tools presently in development have renewed the understanding of phenomena and proved the necessity of a complementary approach to cope with nonlinear problems [START_REF] Maicke | Analytical methodologies for hypersonic propulsion[END_REF]). Moreover, system models require the instantaneous calculation of forces and heat fluxes along trajectories. Therefore, the analytic approach of the present paper, extending the classical Rankine-Hugoniot relations [START_REF] Rankine | On the thermodynamic theory of waves of finite longitudinal disturbance[END_REF][START_REF] Hugoniot | Mémoire sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits[END_REF], opens a prospect towards MHD shock fitting as an alternative to the shock-capturing approach broadly used in the many numerical models published and in progress. The respective advantages and drawbacks of shock fitting over shock capturing have been recently pointed out in aerodynamic applications [START_REF] Moretti | Thirty-six years of shock fitting[END_REF][START_REF] Bonfiglioli | Hypersonic flow computations on unstructured grids: shock-capturing versus shock-fitting approach[END_REF][START_REF] Pepe | Shockfitting versus shock-capturing modeling of strong shocks in nonequilibrium plasmas[END_REF].

In ideal MHD problems, frequently solved in various media, it is assumed that the electrical conductivity of the flowing medium is infinite -or, more accurately, the magnetic Reynolds number is infinite. This greatly simplifies the equations and, in solar physics for instance, enables one to eliminate the electric field. Owing to the large volumes involved, the magnetic Reynolds number is actually very large (~ 10 5 ) and causes the magnetic field to evolve, producing dynamo effects, for instance in solar active regions (Priest 1987, chap. 5;[START_REF] Berton | Consistent determination of quasi force-free magnetic fields from observations in solar active regions[END_REF].

In the present case of re-entry MHD problems, the conductivity is also finite, but the small volumes involved do not allow one to eliminate the electric field and let an applied magnetic field persist, since the magnetic Reynolds number is very small (~ 10 -3 ), so that the steady state can therefore be considered as a first approach. Moreover, symmetry considerations lead one to set the electrostatic field to zero. We shall assume a finite conductivity and derive in the next section the original jump equations.

First, an oblique MHD shock with real gas effects due to air dissociation will be considered. In this first task, viscous and thermal effects, as well as the Hall effect arising when the electric conductivity becomes a tensor (at altitudes above 50 km), have been neglected [START_REF] Levy | A simple MHD flow with Hall effect[END_REF][START_REF] Ericson | Investigation of magnetohydrodynamic flight control[END_REF]. The expressions thus obtained are compared with the existing hydrodynamic Rankine-Hugoniot formulae, which are also usually derived without viscous and thermal effects but also without jump of the isentropic exponent. As will be shown, the jump expressions depend not only on the usual hydrodynamic ratio ε of mass densities, but also on a new MHD parameter, denoted η, acting as a bending parameter of streamlines. Because of the ionizing action of the shock, the electric conductivity is assumed to be zero ahead of the shock.

In § 3, test cases are examined in order to check the jump equations for a plane shock in simple configurations. For this purpose, we make use of existing thermodynamic models of dissociated air and work out a shock-fitting method with the isentropic exponent. The problems arising from the assumptions are put into evidence, in parallel with aerodynamic situations. An important similarity rule is put into evidence and is confirmed in § 5.

In § 4, as an application, we describe the procedure of a detached spherical shock fitting, and for this purpose make use of the same models of dissociated air and a model of conductivity. The fitting procedure is extended to other parameters (conductivity, shock distance and thickness). The MHD results are compared with hydrodynamic solutions for the physical conditions at two altitudes along a re-entry trajectory.

In § 5, a simplified model of the flow behind the shock produced by a blunt body is proposed on the basis of stream functions matched with the corresponding one ahead of the shock and taking into account MHD and real gas effects. We consider a rotational flow taking into account a vorticity jump at the shock. Shock stand-off is estimated and compared with existing models. The overall approach is depicted in figure 1.

The similarity rule put into evidence in § 3, involving the hypersonic parameter M 1 cosχ 1 , shows a correspondence between the upstream Mach number M 1 and the velocity angle χ 1 . The model of shock thickness used appears to be limited to χ 1 < 50°.

In § 6, an assessment of the re-entry application is proposed. Magnetohydrodynamic effects inside the shock are compared with MHD effects in the shock layer.

Conclusions and prospects for trajectories in re-entry problems are discussed in the final section. The validity of our approximations is examined, and justifications and remedies are proposed. Notations used throughout the paper are defined in table 1.

Resistive MHD jump conditions

Basic equations

Let us consider a stationary plane oblique shock in a flow moving from left to right (figure 2). In the following sections, subscripts 1 and 2 respectively denote quantities ahead of the shock (upstream) and behind it (downstream). In hydrodynamics, the classical Rankine-Hugoniot relations giving the pressure and density ratios through such a shock are well known and are written respectively for a perfect gas with a constant isentropic exponent γ (Hugoniot 1889) as

( ) ( ) ( ) . 2 cos 1 cos 1 , 1 1 cos 2 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 + - + = + - - = χ γ χ γ ρ ρ γ γ χ γ M M M p p (1a,b)
The normal shock is retrieved when χ 1 = 0. The hypersonic hydrodynamic shock relations are obtained as
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The angle χ 2 of the downstream velocity satisfies the equation . tan tan

1 1 2 2 χ ρ ρ χ = (3)
It is important to notice that for a physically acceptable shock, we must have p 2 /p 1 > 0, and this implies that χ 1 must be smaller than a critical angle χ 1c solution of the equation . 2

1 1 cos 1 1 γ γ χ - = M c (4)
For a perfect gas with γ = 1.4 and at a hypersonic speed M 1 = 20, this gives a critical angle χ 1c = 88.9°.

In order to derive the resistive MHD jump conditions, let us write, in the frame of the moving body (and ambient air at rest), the partial differential equations expressing on one hand the conservation of mass, momentum and energy [START_REF] Sutton | Engineering Magnetohydrodynamics[END_REF], ( 
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and on the other hand Maxwell's equations [START_REF] Sutton | Engineering Magnetohydrodynamics[END_REF],
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The vectors V and B define the figure plane, and u, v denote velocity components along axes x and y, respectively normal and tangent to the shock. The vectors E and J are perpendicular to this plane. The relation defining the electric current J in (7) expresses Ohm's law. Notations are otherwise defined in the nomenclature (table 1).

The property of invariance assumed along y and z implies that
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This leads to recasting system (5) into the following system of ordinary differential equations: 
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Now, integration of the differential system (9) across the shock with discontinuous γ and σ 

yields [ ] [ ] [ ] [ ] [ ]                = =       + =       + -       - +       =       - -       = + = ∫ ∫ ∫ ∫
B x v v x u u V p m x v x u B x v mv x v x u B x u p mu u χ µ µ ρ γ γ σ χ σ χ χ µ σ χ σ χ χ µ ρ (10a-f)
where we have defined the normal mass flux m as .
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Consistently with the assumption of very small magnetic Reynolds number (R m ~ 10 -3 ), the equations (10e) and (10f) show that the magnetic field is continuous across the shock. Moreover, the magnetic contribution to the energy equation is zero because the transverse electric field E, causing the Joule effect, is zero.

Then, if we consider that the medium is stationary before and behind the shock, the velocity derivatives might be assumed to vanish at the front side and the back side of the shock, so that the viscous jumps are removed from the momentum and energy equations. This situation is similar to that occurring in the derivation of the Rankine-Hugoniot relations.

Derivation of the jump equations

In order to integrate magnetic terms, let us now express the velocity component u by means of the mass continuity equation in the system (5), ,
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wherever the mass density derivative is not zero, and define the characteristic length scale of

density L ρ such that . 1 1 x ∂ ∂ = ρ ρ ρ L (13)
On inserting this into (12), we obtain
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and likewise for the velocity component v, by defining a characteristic length scale L v , we assume that
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The plus sign in this case is justified by the fact that the transverse component of the velocity increases through the shock. The length scale L ρ is of the order of the mean free path l of particles inside the shock. We shall assume that L ρ and L v are constant within the shock and we shall later derive an expression for L ρ . It should be noted that the above formalism is equivalent to a first-order expansion of velocity components. Following the same formalism, we also assume that the same relation holds for the electrical conductivity,
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with a plus sign, since the conductivity increases across the shock in our problem. We shall derive an estimate for L σ in § 2.4. First, we derive the following relations by integrating the integrals by parts and using ( 14), ( 15) and ( 16):
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Then, defining the compound length scales
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we obtain the desired jumps from ( 17
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Considering from the equations (10e) and (10f) that the magnetic field is continuous, and consequently B 2 and χ b2 are no longer unknowns,
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This is a nonlinear system of four equations for four unknowns, namely ρ 2 , p 2 , u 2 , v 2 , depending on five parameters, namely γ 2 , σ 2 , B, L ρσ , L vσ . We notice that the tangential component v of velocity is not continuous in general, except in the case of a pure hydrodynamic shock (B = 0) or a perpendicular shock (χ b = π/2).

From the system (21) with jumπs of γ and σ, we obtain
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For standard clear sky atmospheric conditions, we shall assume that σ 1 = 0 and σ 2 ≠ 0, since the ambient conductivity is very low because of the scarce dissociation or ionization of air in the lower stratosphere (≈ 10 -6 S m -1 at 65 km) (Tran & Polk 1979a,b). On the other hand, the gas before the shock (non-dissociated air) and the air plasma behind it (dissociated air) are supposed to be perfect gases, but with different molar masses and specific heats; therefore, they are supposed to have different isentropic exponents γ 1 and γ 2 . Let us now define the interaction parameters

       = = . , 2 2 2 2 m B S m B S v v σ σ ρσ ρσ σ σ L L (23)
From the two equations of momentum conservation (22b) and (22c), we obtain the velocity components u 2 and v 2 behind the shock After some algebra, we derive the following relationship between the pressure and mass density ratios:
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where M 1 stands for the upstream Mach number, . ,
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We noticed that the modified Rankine-Hugoniot equations were derived for a normal shock by a simple average of the magnetic force within the shock thickness without a jump of γ [START_REF] Saeks | Analysis of the modified Rankine Hugoniot equations[END_REF]. As the purpose of this analysis is the influence of Ohmic dissipation, E ≠ 0 has been kept in (5). However, the shock thickness is also involved in the model, and it is estimated as being six times the mean free path l 1 (see § 2.4 below).

Simplification

In order to make calculations more straightforward, we make here an important simplification based on a theoretical argument. As shown by non-standard analysis of a onedimensional shock, pressure and velocity have approximately the same depth variations through the shock [START_REF] Salas | Entropy jump across an inviscid shock wave[END_REF]. This might suggest that the scale lengths of mass density and velocity components are all equal, and so we may assume that ,
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which implies that for characteristic length scales (18)
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Appendix A is devoted to the derivation of L σ .

Estimate of L ρ

Since L ρ is a key parameter in our model, we derive an analytic formula for this quantity, assimilated to the shock thickness. A usual rough estimate of the aerodynamic shock thickness is provided by the mean free path l 1 ahead of the shock, expressed as [START_REF] Shapiro | The Dynamics and Thermodynamics of Compressible Fluid Flow[END_REF][START_REF] Hayes | Hypersonic Flow Theory[END_REF] ,

1 1 1 s c ν = l (30)
where ν 1 denotes the kinetic viscosity (not to be confused with the v component of velocity), and c s1 the sound speed in the vicinity ahead of the shock. By equating the shear and normal stresses, another calculation leads to the expression (Zel'dovich & Raizer 1967) ,
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which is obviously much smaller than the former one, since in supersonic conditions V 1 /c s1 = M 1 >> 1. In appendix B, we derive a more appropriate formula taking into account the variations of the viscosity in the shock, , 3 3
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and we shall adopt this scale as L ρ . It should be noted that m is the mass flow rate normal to the shock, as defined by ( 11) or (49), which is a function of the incidence angle χ 1 . As the viscosity term is neglected in our jump derivation in § 2.2, we neglected the influence of the magnetic field on the shock thickness.

Summary and discussion

After some algebra, we finally obtain the following relations for an oblique shock with a real gas, with discontinuous isentropic exponent γ and electric conductivity σ across the shock, and without viscous, thermal or Hall effects. By eliminating the mass density ratio in (22), we obtain for the pressure ratio p 2 /p 1 the quadratic equation
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(33) where we have defined the coefficients
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and the unknown X,
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Provided that the discriminant is positive, the real solutions are written as
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The minus solution ('-' in '±') is chosen for the sake of continuity with the non-magnetic case as B → 0 (see below in § 3.1).

Likewise, for the mass density ratio ρ 2 /ρ 1 , by eliminating the pressure ratio in (22), we obtain the quadratic equation
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with the coefficients
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and the unknown Y, which is the compression ratio .
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Provided that the discriminant is positive, the real solutions are written as
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Here, the plus solution ('+' in '±') must be chosen for continuity with the non-magnetic case as B → 0 (see below in § 3.1).

It is fundamental to remark that (33) and (38) are not independent. Actually, from (26), we derive the compatibility relation
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For the velocity angle χ 2 , we get the equation , tan tan
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)
with the four constants a, b, c, d defined by ( 25), which depend on the magnetic field angle χ b and the interaction parameters S ρσ and S vσ defined by (128). These parameters are based on the scale lengths L ρσ and L vσ (127). The key parameter is the ratio ω, described by the formula (143), in which α is the exponent of relation ( 130). We can write (42) quite It is usual to notice that (43) looks like a refraction law for streamlines through the shock considered as a dioptre -except that it relates tangents instead of sines -and shows that η acts as a bending factor, compensating the effect of the mass density ratio ε. By using the definitions (25), η can be recast into the form We also derive the following relation between the two velocity amplitudes V 1 and V 2 :
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which is perfectly symmetric with respect to ε and η. The downstream Mach number M 2 can be expressed in the form . tan 1
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It should be noted that the normal mass flow rate (11) depends on the shock angle . cos 1

1 1 χ ρ V m = (49) 
Therefore, equations ( 37) and ( 34) basically depend on a set of six parameters, four of them being of purely aerodynamic origin, namely M 1 , χ 1 , γ 1 , γ 2 , and two of MHD origin, namely S ρ and χ b . It can be noticed that in the absence of magnetic field (S ρ = 0, a = d = 1, b = c = 0), we obtain η = 1, and ( 42) reduces to the hydrodynamic equation ( 3), and ( 47) alike.

In the following sections, we shall work out a fitting procedure for the air plasma behind the shock and apply the above jump relations (i) to a plane oblique hypersonic shock, for various relative configurations of V and B, at different Mach numbers M 1 and fixed values of S ρ ; (ii) to the curved detached shock formed ahead of the nose of a blunt body moving at hypersonic speed, at different angles χ 1 and using the dipolar magnetic field created by a magnet located beneath the nose.

Application to plane shock fitting

Theoretical considerations

Non-magnetic case

In this hydrodynamic situation (B 0 = 0, S ρ = 0, a = d = 1, b = c = 0, η = 1) we put into evidence basic features of the equations and limits which may be different from those usually encountered for a perfect gas. For the pressure ratio p 2 /p 1 we obtain from ( 33) and (34) the quadratic equation ( )
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where the minus solution ('-' in '±') should be kept in (36). Likewise, for the mass density ratio we obtain from ( 37) and ( 38) the quadratic equation ( )
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where the plus solution ('+' in '±') should be kept in (40). It should be noted that even in non-magnetic aerodynamics, our model shows an improvement over the classical perfectgas relations (1) since it involves the isentropic exponent γ 2 behind the shock and takes real gas effects due to air dissociation into account.

The reduced discriminant of the pressure equation ( 50) multiplied by γ 2 -1 is written as
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( ) . 1 cos 1 2 2 1 2 2 1 1 1 2 + ∆ ± - - - = γ γ χ γ X M p p (53)
Likewise, the reduced discriminant of the density equation ( 51) multiplied by γ 2 -1 is written as
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Like for the Rankine-Hugoniot relations (1), we can show, after some algebra, that the condition of positive pressure (p 2 > 0) yields a critical angle χ 1c solution of the equation , 2

1 1 cos 1 1 1 1 γ γ χ - = M c ( 56 
)
equivalent to (4) for a perfect gas. Actual values of γ 1 = 1.4 and M 1 = 20 yield a critical angle of χ 1c ≈ 89°. This means that in the hypersonic case our model cannot be used for χ 1 > 89°.

The fundamental relationship (41) between the pressure and the mass density ratios simplifies here as
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)
After these general considerations, we shall detail the following sub-cases.

(i) In the hypersonic limit, M 1 → +∞, equivalent to χ 1 = 0 for a re-entry trajectory (M 1 >>1), we obtain from ( 52) and ( 53) a kind of hypersonic solution (ii) In the quasitangential shock limit, χ 1 → 90°, equivalent to M 1 = 0, we obtain
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and, apart from the trivial solutions (X = 0 and Y = 0), we recover the solutions 1

1 2 2 1 2 + - - = γ γ p p (62) and . 1 1 2 2 1 1 1 2 - - = γ γ γ γ ρ ρ (63)
With γ 1 = 1.4 and γ 2 = 1.15, these relations yields the values X = -1.07, which is unphysical, and Y = 2.4. These results could be expected since the condition χ 1 < χ 1c is violated and the shock is supersonic (M 1 > 1).

(iii) Now, for a perfect gas (γ 1 = γ 2 ) we obtain from (50)

( ) , 0 1 cos 1 2 1 2 2 1 =       - + - χ γ γ M X X ( 64 
)
and from ( 51)

( ) { } ( ) ( ) . 0 cos 1 cos 1 2 cos 1 2 1 2 2 1 1 2 2 1 2 1 2 2 1 = + + + - - + χ γ χ γ χ γ M Y M Y M (65)
Since X ≠ 0, we obtain from (64)

(

).

1 cos 1 2 1 1 2 2 1 1 2 - + + = χ γ γ M p p (66)
Likewise, we notice that Y = 1 is a solution of (65), which therefore can be recast as

( ) ( ) [ ]( ) ( ) { } , 0 cos 1 2 1 cos 1 2 1 1 2 2 1 1 2 2 1 = + - + - + - χ γ χ γ M Y M Y (67) and eventually since Y ≠ 1 ( ) ( ) . cos 1 2 cos 1 1 2 2 1 1 2 2 1 1 2 χ γ χ γ ρ ρ M M - + + = (68) 
The relations ( 68) and ( 66) are identical to the Rankine-Hugoniot relations (1) recalled in § 2.1. It can be easily checked that the pressure and mass density solutions ( 66) and ( 68) satisfy the compatibility relation (57). Since η = 1, the 'refraction' law (43) reduces to the usual aerodynamic relation (3) of § 2.1. The influence of viscosity on the jump determination has been considered in a recent work [START_REF] Cavus | On the effects of viscosity on the shock waves for a hydrodynamical case -Part I: basic mechanism[END_REF]. A quadratic equation similar to our (51) is given, for a perfect gas (γ 1 = γ 2 ), with two additional terms involving upstream and downstream kinetic Reynolds numbers Re 1 and Re 2 .

Quasitangential shock

This case (χ 1 = 90°), formally equivalent to M 1 → 0, yields for the pressure ratio

0 1 2 1 2 2 2 2 2 2 2 =       - -         - - + γ γ γ γ a X a c a X ( 69 
)
and for the mass density ratio

. 0 1 2 1 1 2 2 2 2 1 1 2 1 1 =         - -                         - - + - γ γ γ γ γ Y M a bc d Y (70)
Rejecting the trivial solutions (X = 0 and Y = 0), we get the new solutions

a c a a X 1 2 1 2 2 2 2 2 2 2 - - + - = γ γ γ γ (71) and . 1 1 2 1 2 2 1 1 2 1 1 2 2 M a bc d Y γ γ γ γ γ                 - - + - - = (72)
The pressure ratio is therefore written as .

1 2 1 2 2 2 2 2 2 a c a c a X - - + + = + γ γ (73)
With typical values at 40 km, we obtain X < 0, so that case is unphysical, like in aerodynamics, since the shock is supersonic (M 1 > 1).

Normal and tangential magnetic field

For a normal magnetic field (χ b = 0 or 180°), the coefficients a, b, c, d defined by (25) become . 1

1 , 0 , 0 , 1 σ v S d c b a + = = = = (74a-d)
This implies that for (41) ( ),

1 cos 1 1 2 2 1 1 1 2 ε χ γ - = - M p p (75)
and for (45

) . d = η (76)
Therefore, we recover the same pressure-density relationship as in aerodynamics, but there is a jump of tangential velocity.

On the other hand, for a tangential magnetic field (

χ b = ± 90°), the coefficients a, b, c, d become . 1 , 0 , 0 , 1 1 = = = + = d c b S a ρσ (77) This implies that for (41) , 1 cos 1 1 2 2 1 1 1 2       - = - a M p p ε χ γ (78)
and for (45) . 1 = η (79) Therefore, there is continuity of the tangential velocity, like in aerodynamics, but the pressure-density relationship involves a correcting MHD factor.

In conclusion, these two particular cases are hybrid since they combine aerodynamic and MHD features. They are not encountered in the blunt body problem but they could be devised in shock-tube experiments.

Fitting procedure

This procedure requires knowledge of the air state at high temperature and moderate pressures since the downstream air is mainly dissociated by the shock as N, O atoms and ionized as positive NO + , N 2 + , O 2 + ions, thus yielding free electrons and producing electrical conductivity. We assumed equilibrium of the plasma and, since to calculate the pressure and density jump we need the isentropic exponent and conductivity behind the shock, we used a thermodynamic correlation model [START_REF] Srinivasan | Simplified curve fits for the thermodynamic properties of equilibrium air[END_REF], providing a thermal state equation T (p, ρ) and a caloric state equation, providing the isentropic exponent γ (p, ρ) (tables 7, 8, 9 for γ (p, ρ) and tables 10, 11, 12 for T (p, ρ) in [START_REF] Srinivasan | Simplified curve fits for the thermodynamic properties of equilibrium air[END_REF]). This model is an improved version of a former model [START_REF] Tannehill | Improved curve fits for the thermodynamic properties of equilibrium air suitable for numerical computation using timedependent or shock-capturing methods[END_REF].

The shock is fitted by iteration of the isentropic exponent γ 2 , and the algorithm is depicted in figure 3 with the interaction parameter S ρ fixed. The convergence test at step n is simply taken as

( ) ( ) ( ) , 1 2 1 2 2 ϖ γ γ γ < - - - n n n (80)
with the threshold value ϖ = 10 -8 . The initial value is chosen as γ 2 (0) = 1.4.

Numerical results

In order to show general features of resistive MHD shocks, we chose well suited situations combining the relative configurations of velocity and magnetic fields (χ 1 , χ b ) and the state of the upstream medium, characterized by the physical conditions at an altitude of 40 km. The shock itself is characterized by the Mach number M 1 ranging from 5 to 30 and the microscopic interaction parameter S ρ ranging from 0 to 0.1, since we must stay in the linear range (S ρ << 1), and this parameter is small in re-entry applications.

The two cases we consider, χ 1 = 20°, χ b = 170° and χ 1 = 60°, χ b = 150°, depict two situations encountered before a blunt body. The results for case 1 (figure 4) show on one hand that the pressure ratio p 2 /p 1 is practically independent of S ρ0 and increases quadratically with M 1 according to (58). On the other hand, the mass density ratio ρ 2 /ρ 1 increases and a hump occurs at M 1 ≈ 13. In case 2 (figure 5), the pressure ratio curves can be slightly distinguished, and the mass density ratio curves are much more separated than in case 1. A hump occurs at M 1 ≈ 23.5 in the aerodynamic situation (S ρ = 0). Moreover, the level is lower in case 2, since the relative angle of the velocity and magnetic field vectors is smaller, indicating a smaller MHD effect.

The hump appearing at M 1 ≈ 13 in case 1 is confirmed by earlier aerodynamic models of normal shocks in shock tubes [START_REF] Glass | Handbook of Supersonic Aerodynamics[END_REF]) behind the detached shock ahead of a stratospheric blunt body in hypersonic re-entry flight [START_REF] Huber | Tables and graphs of normal-shock parameters at hypersonic Mach numbers and selected altitudes NACA TN 4352[END_REF]. As stated in the reference papers, it reflects the resonance due to the dissociation of molecular oxygen and nitrogen in the temperature range 3500-4500 K. In case 2, the aerodynamic hump is shifted to M 1 ≈ 23.5, because the variation of the incidence angle χ 1 is equivalent to a shift of the critical Mach number, according to a similarity rule we shall explain in § 5.2, , cos cos As S ρ increases, the level of the density ratio is lowered and the abscissa of the hump is shifted to smaller Mach numbers (figure 5b). This suggests the following inverse problem: from such plots of the variations of the mass density ratio, it might be possible to determine the microscopic interaction parameter S ρ , and then, using measurements of the conductivity, magnetic field and normal mass rate, eventually estimate the length scale L ρ .

Application to blunt-body shock-fitting

Fitting procedure

Here, we address the problem of the blunt body and work out a more complex procedure for fitting the various parameters behind the bow shock by applying the model of § 2 and neglecting curvature effects. The state of the air plasma generated behind the shock is described by the same correlation model as in the elementary fitting procedure of § 3.2.

Following other modellers [START_REF] Bush | Magnetohydrodynamics-hypersonic flow past a blunt body[END_REF][START_REF] Coackley | Time-dependent numerical analysis of MHD blunt body problem[END_REF][START_REF] Otsu | Numerical validation of the magnetic flow control for reentry vehicles[END_REF]; Otsu, Konigorski & Abe 2010), we used a power law of temperature for the conductivity, namely relation ( 130), with the constants T 0 = 8000 K, σ 0 = 731 S m -1 . Otherwise, former models have used a power law of velocity [START_REF] Jarvinen | On the use of magnetohydrodynamics during high speed re-entry[END_REF]. We have checked that the conductivity obtained in this way is slightly overestimated compared with that produced by a plasma model [START_REF] Viegas | Electrical conductivity of ionized air in thermodynamic equilibrium[END_REF][START_REF] Sutton | Engineering Magnetohydrodynamics[END_REF][START_REF] Bisek | Numerical study of electromagnetic aerodynamic control of hypersonic vehicles[END_REF], although other calculations in the same range of altitudes for nearly the same velocity (V 1 = 8.5 km s -1 ) obtain several hundreds of S m -1 [START_REF] Ericson | Investigation of magnetohydrodynamic flight control[END_REF]). Nevertheless, it has the great advantage of providing a simple dependence of the shock jumps on the microscopic interaction parameter S ρ , as we showed in § 2.4.

Moreover, it is more accurate to use the magnetic field strength at the very location (r,θ) along the shock depending on the shock distance δ from the body nose, and, for this purpose, we also need to make iterations on δ in the MHD algorithm. The distance δ is related to the parameters ε and η once a flow model is found. This will be explained in § 4.5.

The shock thickness L ρ , involved in the interaction parameter S ρ , depends on the viscosity behind the shock through the expression (32) derived in appendix B and is therefore iterated since it depends on various parameters before and behind the shock. The resulting algorithm, depicted in figure 7, turns out to be more complex than the one in § 3, since electrical conductivity, shock distance and thickness are also iterated. The fourfold convergence test at step n is therefore taken as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , 1 1 1 1 1 2 1 2 2 1 2 1 2 2 ϖ ϖ δ δ δ ϖ σ σ σ ϖ γ γ γ < - < - < - < - - - - - - - - - n n n n n n n n n n n n L L L (83a-d)
with the same threshold value ϖ = 10 -8 . Initial values are chosen such that γ 2 (0) = 1.4, σ 2 (0) = 100 S m -1 , δ (0) = 0.1R b , L (0) = (4/3) µ 1 /m. The convergence depends on the angles of velocity χ 1 and of magnetic field χ b . In the pure aerodynamic case run for comparison, the convergence criterion reduces to the iteration on γ 2 since the absence of magnetic field drops the influence of the conductivity, the shock distance and the shock thickness.

The viscosity, which is necessary for the estimation of the scale length (32) and the MHD parameters ( 23) and ( 25), is calculated in front of the shock by means of Sutherland's formula for air (in Pl or kg m -1 s -1 ) (Sutherland 1893), ( )

, 10 7 . 1 2 / 3 0 0 5         + + × = - T T T T T T T S S µ (84)
with the reference temperature T 0 = 273 K and the Sutherland temperature for air T S = 110 K. Behind the shock, the viscosity has been assumed to be independent of pressure and linear as a function of temperature below 10000 K, on the basis of a published work for high-temperature air plasma [START_REF] Capitelli | Thermodynamic properties and transport coefficients of high-temperature air plasma[END_REF].

At each angular position θ along the shock (figure 6), we shall locally approximate the shock as being a plane, i.e. neglect the curvature, and apply the jump conditions derived in the previous section. The angle χ 1 of the upstream velocity is such that .

1 n θ χ = (85)
Moreover, the shock layer will be modelled in the vicinity of the symmetry axis with the approximation of a spherical shock. Therefore, we shall have the equivalence .

θ θ = n (86)
A simple analytical model of non-spherical shock assuming θ n = βθ (0 ≤ β ≤ 1) and matching with the Mach angle for M 1 = 23 at θ = 90° shows that β = 0.97 and thereupon proves the small deviation from sphericity. We shall now proceed to describe the topology of the magnetic, electric and velocity fields.

Magnetic and electric fields

A dipolar magnetic field B created by a magnet included in the body is applied to the spherical nose, with its axis parallel to the incident flow direction [START_REF] Ziemer | Magnetic field effects on bow shock stand-off distance[END_REF]

, . sin , 0 , cos 2 3 0 3 0 θ θ θ ϕ       = =       = r R B B B r R B B b b r (87a-c)
This field is solenoidal (∇ . B = 0) and vanishes at infinity. The magnetic strength B is θ θ

2 2 3 0 sin cos 4 +       = r R B B b (88)
and the moment M B of the generating magnetic dipole is such that .

4 3 0 0 b B R B π µ M = ( 89 
)
It can be shown that the above magnetic field is non-rotational everywhere (∇×B = 0). Several magnetic lines of force have been drawn in figure 8. We notice that these lines are more and more inclined as we move away from the symmetry axis. Equation (89) shows that a nominal induction B 0 = 0.5 T in relation (87) yields a magnetic field of 1 T at radius R b = 0.15 m at the stagnation point on the body, and can be obtained with a magnet possessing a magnetic moment of M B = 16 875 A m 2 . Using (87), we obtain that χ b is related to θ and θ n by the equation

( ) . 2 tan π tan θ θ θ χ = - + - n b (90)
The variations of χ b as function of θ are displayed in figure 10(b) for a spherical shock (θ n = θ). They are nonlinear, but can be approximated by expanding (90) to third order in θ,

. 3 1 2 π 2         + - ≈ θ θ χ b (91)
We shall verify that the radial dependence of B in (88) must be taken into account in the shock-fitting process.

As regards the electric field, without Hall effect, the condition E = 0 in the set (8) still holds because of the axisymmetry. To prove this, we consider a closed path C and a closed surface S admitting C as boundary. Then, taking the circulation of E along C, using Stoke's theorem and Maxwell's stationary equation of induction (∇ × E = 0), it is shown that the circulation of E vanishes. Since in axisymmetric geometry C may be chosen as a circle, we

conclude that E = 0.

Velocity field

We model the flow behind the shock as simply as possible in order to estimate how our jump relations generate the coupling of shock distance and thickness, which is a keyparameter. To describe this flow, assumed to be steady and laminar, we use a formalism based on streamlines, along which the stream function ψ is constant [START_REF] Oguchi | Blunt body viscous layer with and without a magnetic field[END_REF][START_REF] Maslen | Inviscid hypersonic flow past smooth symmetric bodies[END_REF][START_REF] Noori | An approximate engineering method for aerodynamic heating solution around blunt body nose[END_REF]. It is possible to define a ψ function even in compressible magnetohydrodynamics, since the continuity equation has the same form.

For the sake of simplicity, we consider a hypersonic motion with zero incidence, i.e. the incident flow is along the symmetry axis of the blunt body. In spherical coordinates suitable here for a blunt nose (figure 6), the velocity components are written as . sin 1 , sin

1 0 2 0 r r V r V r ∂ ∂ = ∂ ∂ - = ψ θ ρ ρ θ ψ θ ρ ρ θ (92a,b)
The normalizing mass density ρ 0 is a constant which makes ψ of dimension m 3 s -1 .

Jump conditions for the stream functions

In order to match upstream and downstream solutions at the shock, we derive jump conditions for the stream function, through their first derivatives. Let us relate the normal and tangential components of velocity to the magnitude V and angle χ with the axis,

       = = = = . sin , cos , sin , cos 2 2 2 2 2 2 1 1 1 1 1 1 χ χ χ χ V v V u V v V u (93)
On both sides of the shock, the spherical components V r and V θ are related to V and the angle χ with respect to the shock normal and tangent by the relations

( ) ( )        - + = - + - = = - = . sin , cos , sin

, cos

Using the upstream Mach number M 1 (27) and relation (41), we recast (24) into

           +       - = = . cos sin , cos 1 1 1 2 1 1 2 V a c a bc d v V u χ ε χ χ ε (95)
Then, making use of the magnetic parameter η defined by (45), we derive the following simple relations for the velocity projections on the normal and the tangent to the shock:

   = = . , 1 2 1 2 v v u u η ε (96)
Combining ( 93) and ( 96), we derive the important relations

   = - = . sin , cos 1 2 1 2 θ η θ ε θ V V V V r ( 97 
)
We notice the symmetrical roles played by ε and η. In the non-magnetic case (B = 0, a = d = 1, b = c = 0), η equals unity, and we recover the continuity of the tangential velocity. Now, relating normal and tangential components to spherical coordinates by eliminating the amplitudes V 1 and V 2 , on taking the ratio of ( 93) and ( 94), ( )

( )              - + = - + - = = - = , sin sin , cos cos , sin sin , cos cos 2 1 2 2 2 2 1 2 2 2 1 1 1 1 1 1 χ χ χ θ χ χ χ θ χ θ χ θ θ θ v V u V v V u V r r (98)
and making use of (92) we finally get the general relations ( )

( )        - +       ∂ ∂ =       ∂ ∂ - +       ∂ ∂ =       ∂ ∂ . sin sin cos cos , cos cos cos cos 1 2 2 1 1 2 1 2 2 1 1 2 θ χ χ θ χ χ ψ ψ θ χ χ θ χ χ θ ψ θ ψ c c c c r r (99)
For a spherical shock (χ 1 = θ), making use of (43), we can simplify this to

             ∂ ∂ =       ∂ ∂       ∂ ∂ =       ∂ ∂ . , 1 2 1 2 shock shock shock shock r r ψ ε η ψ θ ψ θ ψ (100)
We notice the continuity of the θ derivative of the stream function. The jump in the radial derivative is enhanced by the factor η. For the non-magnetic flow, we have η = 1, and so we retrieve the hydrodynamic expression.

It is important to notice that the relations (99) and ( 100) are valid for any kind of flow, potential or not, that is described by ψ 2 . Moreover, the relations (99) hold for magnetic and non-magnetic flows as well.

Stream function and stand-off

Since the upstream flow is uniform, it is potential, i.e. curl-free, and its stream function is simply written as [START_REF] Hayes | Hypersonic Flow Theory[END_REF] ( )

. sin 2 , 2 2 1 1 1 θ ρ θ ψ r V r = (101)
Using relations (92), we derive the velocity components before the shock, . sin , 0 , cos

1 1 1 1 1 θ θ θ ϕ V V V V V r = = - = (102) 
As a first approximation, the downstream flow behind the shock might be assumed to be potential and to be described by a stream function of the following form [START_REF] Kawamura | On the detached shock wave in front of a body moving at speeds greater than that of sound[END_REF](Kawamura , 1952(Kawamura , 1952-53)-53):

( )

, sin 1 3 2 2 , 2 2 3 3 1 1 2 θ ε ε η ρ θ ψ r r R V r b         - + = ( 103 
)
which we derived using boundary conditions (100). Without magnetic field (η = 1), the aerodynamic solution is recovered [START_REF] Kawamura | On the detached shock wave in front of a body moving at speeds greater than that of sound[END_REF](Kawamura , 1952(Kawamura , 1952-53)-53), which was formerly accepted as a good approximation, in agreement with the then observed supersonic flows (Van Dyke 1958). Nevertheless, vorticity is generated behind a curved aerodynamic shock [START_REF] Hida | An approximate study on the detached shock wave in front of a circular cylinder and a sphere[END_REF][START_REF] Hayes | The vorticity jump across a gasdynamic discontinuity[END_REF][START_REF] Lighthill | Dynamics of a dissociating gas. Part I -Equilibrium flow[END_REF], or even behind a plane MHD shock as we have shown in appendix C. An MHD vorticity jump has been calculated for a curved shock, but in ideal magnetohydrodynamics [START_REF] Sharma | The vorticity jump across a stationary magnetohydrodynamic discontinuity[END_REF]. Moreover the potential assumption fails at high Mach number and it leads to an underestimated shock stand-off.

Better approximations are provided by Lighthill's model in aerodynamics [START_REF] Lighthill | Dynamics of a dissociating gas. Part I -Equilibrium flow[END_REF]) and Wu's model in magnetohydrodynamics [START_REF] Wu | Hypersonic viscous flow near the stagnation point in the presence of magnetic field[END_REF]. This kind of model assumes inviscid flow and constant mass density behind the shock. The extension of Lighthill's model to magnetohydrodynamics with the assumption of constant conductivity leads to a vorticity jump of the following form at the shock [START_REF] Wu | Hypersonic viscous flow near the stagnation point in the presence of magnetic field[END_REF][START_REF] Poggie | Magnetic control of flow past a blunt body: numerical validation and exploration[END_REF]:

[ ] ( ) . 1 2 2 2 2 r s V F R V ρ ε ε θ θ ϕ - - - = Ω (104) 
From this expression, since the magnetic force component F θ is expressed as

( ) , r r r B B V B V F θ θ θ σ - = (105) 
assuming a spherical shock (χ 1 = θ), using the expressions (97) and the magnetic field components (87) on the shock (r = R s ), in a first step, we express the total vorticity behind the shock (Ω ϕ1 = 0) as

( ) ( ) . cos sin 2 2 sin 1 6 1 2 0 2 1 2 2 θ θ ρ σ ε η θ ε ε η ϕ         + - - - = s b s R R B R V Ω ( 106 
)
This expression is formally consistent with the non-dimensional result published in a reference work [START_REF] Poggie | Magnetic control of flow past a blunt body: numerical validation and exploration[END_REF]. Then, in a second step, following Lighthill's procedure, we derive the equation of the vorticity, ( )

. sin cos 1 2 2 1 sin 1 sin 2 2 2 5 2 2 1 1 2 2 2 θ θ ε η ε ε η ρ θ ψ θ θ θ ψ s b R r q S V r r             + + - =         ∂ ∂ ∂ ∂ + ∂ ∂ (107)
After defining the macroscopic interaction parameter S b built on the body nose radius R b , ,

1 1 2 0 2 V R B S b b ρ σ = (108)
and the ratio ,

s b R R q = (109)
we assume that the stream function solution ψ 2 can be cast as the sum of two terms, .

)

1 ( 2 ) 0 ( 2 2 ψ ψ ψ b S + = (110)
The first term ψ 2 (0) corresponds to Lighthill's solution of ( 107) with the first term of the right-hand side, involving the correcting magnetic factor η, such that

( ) ( ) ( ) ( ) . 5 1 1 3 1 2 1 2 1 3 1 10 1 sin , 2 2 2 2 2 4 2 2 2 2 1 1 ) 0 ( 2 r R R r R r R V r s s s s       - + - +               - - + +         - = ε ε η ε η ε ε η ε η ε ε η θ ρ θ ψ (111)
In the non-magnetic case (S b = 0, η = 1), this first term ψ 2 (0) yields exactly Lightill's solution,

( ) ( ) ( ) ( ) ( ) . sin 6 1 1 2 4 1 5 1 3 30 , 2 2 4 2 2 2 1 1 2 θ ε ε ε ε ε ρ θ ψ           - - +         - -         - = r R R r R r R V r s s s s (112) The shock distance δ defined by b b s R R R - = δ (113) is therefore such that , 1 1 - = q δ (114)
and q is a solution of the equation

( ) 0 2 = b R ψ , ( 115 
) that is, ( ) ( ) ( ) . 0 5 1 3 1 2 1 2 3 1 10 1 2 3 2 5 2 =       - + - +       - - + + - ε ε η η ε ε ε η η ε ε ε η q q (116)
Looking for a simple perturbation ψ 2 (1) in sin 2 θ by assuming cosθ ≈1 in the second term of the vorticity expression, equation ( 107), leads to a sixth-degree equation for q instead of ( 116), which has no real solution with the prescribed physical conditions at 40 and 65 km. This point is a question to be considered in future work.

Obtained by a different approach based on the Newtonian pressure relation, Lykoudis's MHD solution gives the following expression for the MHD distance δ (Lykoudis 1961):

, 32

3 1 8 3 2 2 0 b b S S ε ε δ δ + + ≈ (117)
with the non-magnetic distance δ 0 such that , 1

3 8 0 ε ε δ + = b R (118)
and the macroscopic interaction parameter S b defined by (108).

Lighthill's aerodynamical solution, assuming constant mass density behind the shock and a perfect gas, leads to the following expansion to second order [START_REF] Lighthill | Dynamics of a dissociating gas. Part I -Equilibrium flow[END_REF][START_REF] Hayes | Hypersonic Flow Theory[END_REF]:

. 3 3 8 1 0         + - ≈ ε ε ε δ b R (119)
It can be checked that the aerodynamic distance obtained by the formulae ( 118) and ( 119)

give results slightly smaller and larger than the solution given by ( 116) with η = 1. Therefore, we used the solution to (116) with η = 1 for δ 0 .

Since the ratio sinχ b /sinχ 1 is an indeterminate form 0/0 on the stagnation line (χ 1 = 0 and χ b = 0), the limit of η on the stagnation line (θ → 0) by ( 45) using the expansion (91) yields

, 2 1 1 1 0 0         - + ≈ ρσ σ ε η S S v (120)
with the 'normal' interaction parameters corresponding to χ 1 = 0, . , ,

1 1 0 0 2 2 0 0 2 2 0 V m m B S m B S v v ρ σ σ σ σ ρσ ρσ = = = L L (121a,b,c)

Application to atmospheric entry

Results

The calculation was made with γ 1 = 1.4 and B 0 = 0.5 T for a hypersonic shock at stratospheric heights of 40 and 65 km, where significantly different ambient physical conditions are found (table 2). The large discrepancies in the kinematic viscosity ν 1 result in very different mean free paths l 1 and shock thicknesses L ρ estimated by means of relations (30) and (32). In both cases, we assumed an exponent of α = 2 and a factor of ζ = 10.

As the spherical assumption is only valid not far from the symmetry axis, we use the complete scheme of figure 7 with all four test ratios (83) only for χ 1 = 0 on the symmetry axis. For χ 1 ≠ 0, we keep the shock distance δ constant and equal to its value at χ 1 = 0 and fit only γ 2 , σ 2 and L ρ . The aerodynamic behaviour is found with application of the fitting procedure only on γ 2 .

Plots displaying typical variations of convergence test ratios (86) as functions of iteration number at 65 km on the symmetry axis (figure 9) show that convergence is easily reached within around 10 iterations for γ 2 , σ 2 and L ρ , but only within around 20 iterations for δ.

The angular variations of the magnetic field strength are displayed in figure 10(a) for 0 < χ 1 < 80°. They depend upon the shock stand-off, and the field is therefore stronger on the shock at 40 km than at 65 km because the shock distance is larger at 65 km than at 40 km.

Figure 11 displays the variations of pressure, temperature, isentropic exponent, Mach number and velocity angle behind the shock as functions of χ 1 in the same range. The pressures profiles (figure 11a) have a classic cosine shape, the aerodynamic and MHD profiles being coincident at 40 km and 65 km, in agreement with the analysis of § 3 (figures 4a and 5a).

Temperature profiles (figure 11b), showing a kind of cosine shape, nearly coincide at 40 km, whereas at 65 km the MHD profile lies slightly above the aerodynamic profile (∆T 2 ≈ 111 K at χ 1 = 50°). Consequently, the mass density profiles (figure 11c) are coincident at 40 km, whereas the MHD profile lies beneath the aerodynamic one at 65 km (≈ 5.3 % at χ 1 = 50°).

The isentropic exponent (figure 11d) is of order 1.1 in the vicinity of the nose axis and increases as χ 1 increases, with a parabolic branch. As mentioned above, the inflexion at χ 1 ≈ 55° is due to the hump in the profile γ (T), reflecting the dissociation of oxygen and nitrogen molecules. As expected, the Mach number (figure 11e) increases with χ 1 , but it is lowered by MHD effects, according to the slowing down action of the magnetic force.

The deflection angle (figure 11f) is smaller with magnetic field than without, as could be guessed from relation ( 43) with η < 1. This means that the magnetic field slows down the flow and causes the streamlines to be less deflected through the shock by the body. This is also consistent with the fact that the shock is more repelled by MHD forces than without. We note also that the maximum of deflection occurs at a smaller inclination angle (χ 1 ≈ 15°) than for supersonic speeds (χ 1 ≈ 30°) [START_REF] Anderson | Hypersonic and High Temperature Gas Dynamics[END_REF].

Figure 12 shows the variation of the electrical conductivity σ 2 , the magnetic parameter η and the interaction parameter S ρ behind the shock. The conductivity variation has a larger amplitude at 40 km (150 S m -1 ) than at 65 km (100 S m -1 ), due to the temperature variation (figure 11b). The parameter η is constantly equal to unity at 40 km, indicating that the MHD effects are negligible in the shock, consistent with a very small S ρ , whereas it is goes down to 0.95 at 65 km, consistent with a larger S ρ of 6.2 % (table 3), indicating that MHD forces are more efficient within the shock at that altitude.

It is worth noticing that the MHD and aerodynamic profiles (pressure, temperature, mass density) are coincident on the axis since, at this location, the velocity and magnetic vectors are nearly aligned (opposite or reverse), so that the magnetic force is small and MHD effects are locally negligible. This can be compared with the ideal MHD fast-shock which degenerates to a gas-dynamic shock when the magnetic field is normal to the shock [START_REF] Cowling | Experimental activities on the MHD interaction in a hypersonic air flow around a blunt body[END_REF].

Discussion

The analysis of angular profiles as functions of χ 1 performed in § 5.1 leads us to make the following remarks.

(i) Lykoudis's and Lighthill's models, by means of which we calculate the shock standoff are valid in the vicinity of the stagnation line, i.e. near the symmetry axis, in the spherical approximation.

(ii) The actual non-spherical shape of the shock means that χ 1 < θ, as is shown by the simple exponential model of § 4.1. Since the shock front steepens as θ increases (dr/dθ > 0), θ n increases more slowly than θ (θ > θ n ). In the hypersonic case considered, the deviation is as small as 3 %. (iii) In the hypersonic regime, our model of jump relations cannot be used for incident angles such that χ 1 > 89°, and for a non-spherical bow shock this corresponds to an even smaller critical angle of θ c < χ 1c , depending on the Mach number. (iv) There is a hump in the χ 1 profile of certain quantities around 50° (mass density, isentropic exponent). The correlation of γ 2 and T 2 , respectively plotted in figures 11(b) and 11(d), clearly shows the same hump located at the same place (figure 17). Therefore, the hump is nothing other that the resonance of the dissociation of oxygen and nitrogen molecules in air in the range 3500-4500 K. This behaviour, due to the real gas effect resulting from air dissociation (γ 1 ≠ γ 2 ), points out the algorithmic complexity noticed in shock-fitting in argon flow [START_REF] Pepe | Shockfitting versus shock-capturing modeling of strong shocks in nonequilibrium plasmas[END_REF]. Moreover, we checked that this feature is present even in the non-magnetic case, and in the variation of γ 2 and ρ 2 /ρ 1 at constant χ 1 = 0 as the incident Mach number M 1 varies from 5 to 30. We note that a similar hump actually occurs at approximately M 1 = 14 (figure 18). Since the quantity γ 1 M 1 cos χ 1 , which represents the incident normal velocity, is involved as a whole in the jump equations ( 33) and ( 37), or ( 50) and ( 51 This quantity plays the same role in the present model as the hypersonic similarity parameter introduced by [START_REF] Anderson | Hypersonic and High Temperature Gas Dynamics[END_REF]. The hump at M 1 ≈ 14 actually appears in former models of normal shocks in shock tubes [START_REF] Glass | Handbook of Supersonic Aerodynamics[END_REF]. This suggests that there is a transition at a critical value χ 1t ≈ 50° in the angular domain, or M 1t ≈ 14 in the velocity domain, between a 'hypersonic regime' (0 ≤ χ 1 ≤ χ 1t ; M 1 ≥ M 1t ) and a 'supersonic regime' (χ 1t ≤ χ 1 ≤ χ 1c ; 1 < M 1 ≤ M 1t ), where the quantity γ 1 M 1 2 cos 2 χ 1 is respectively a leading or negligible term in the equations.

(v) The strong distortion of the profile of ρ 2 /ρ 1 (figure 11c) is due to the presence of the factor γ 2 -1 in the denominator of the solution (55), which enhances the resonance of γ 2 .

It must be stressed that the aerodynamic behaviour around 50° is independent of the shock thickness, since non-magnetic cases do not involve L ρ .

Shock thickness and vorticity

As pointed out above, the shock thickness L ρ is a fundamental quantity of our model of the MHD shock since all quantities depend on the microscopic interaction parameter (129), which is based on L ρ . The approximate expression (32) derived in appendix B shows that the magnetic correction vanishes on the symmetry axis (χ b = 180° or 0°), and the nonmagnetic value is roughly an increasing function of temperature.

Therefore, the profile of L ρ as a function of χ 1 displayed in figure 12(c) confirms that the increasing part between 0° and 45° is due to the reciprocal of the cosine dependence. The shock thickness would be expected to increase beyond 50°, so that the wavy part above 50° may be due to the velocity gradient being neglected behind the curved shock.

Actually, the total vorticity Ω ϕ2 behind the shock (106), due to curvature effects, can be considered as an estimation of the derivative dv/dx neglected in (10). Its variation as a function of χ 1 or θ (in the spherical approximation) is plotted in figure 13 and shows a flat maximum at approximately 40°-60° for the aerodynamic contribution at both altitudes and the total vorticity at 40 km, whereas the total vorticity at 65 km has a peaked maximum at approximately 35°. This is consistent with the analysis of the shock distance in § 5.2 below (figure 15a), which is larger at 65 km than 40 km and much larger with magnetic field than without. These angular variations suggest that curvature effects increase as one moves from the symmetry axis and must be taken into account beyond 50° in the bow shock we consider. It should be remembered that the shock thickness is not involved in the aerodynamic jump equations ( 50) and (51).

Assessment

Experimental

Our model requires hypersonic experimental data for direct testing, which are not available at the moment. These specific experiments should be devised in order (i) to validate the jump relations for a plane shock of § § 2 and 3; (ii) to check the shock fitting of a blunt-body shock of § § 4 and 5.

Experiments of the first type could be devised with an MHD shock tube embedded in a constant magnetic field, provided that one can produce stationary shocks with microscopic interaction parameters S ρ larger than 0.1, since we notice that in the situation of the blunt body, this parameter is smaller than 0.1.

Concerning the second type, hypersonic speeds in wind tunnel experiments (M 1 ≈ 15) are now reachable [START_REF] Cristofolini | Magnetohydrodynamics interaction over an axisymmetric body in a hypersonic flow[END_REF][START_REF] Cowling | Experimental activities on the MHD interaction in a hypersonic air flow around a blunt body[END_REF]. Values measured during NASA's RAM-C experiments [START_REF] Schexnayder | Calculation of electron concentration for a blunt body at orbital speeds and comparison with experimental data[END_REF][START_REF] Dunn | Theoretical and experimental studies of reentry plasmas[END_REF][START_REF] Evans | Boundary-layer electron profiles for entry of a blunt slender body at high altitude[END_REF]) provide values of electronic densities off the nose but enable the validation of numerical results on the nose (Candler & McCormack 1991;[START_REF] Josyula | Governing equations for weakly ionized plasma flow fields of aerospace vehicles[END_REF]) that we use below. Having a shape similar to that of the RAM-C body, the SARA microsatellite [START_REF] Santos | Aerothermodynamic analysis of a reentry Brazilian satellite[END_REF]) and the ESA's capsule EXPERT [START_REF] Muylaert | Aerothermodynamic reentry flight experiments EXPERT[END_REF] or IXV spacecraft would be good up-to-date re-entry vehicles for providing in situ MHD data.

Numerical

As detailed in § 3.2, our results on the plane shock are confirmed, at least in aerodynamic situations, by earlier models of normal shocks in shock tubes [START_REF] Glass | Handbook of Supersonic Aerodynamics[END_REF]) and ahead of a stratospheric re-entry blunt body [START_REF] Huber | Tables and graphs of normal-shock parameters at hypersonic Mach numbers and selected altitudes NACA TN 4352[END_REF]. The hump at Mach 14 is clearly produced in these models.

Turning to the curved shock, an indirect test consists of comparing electronic densities n e with published data on the RAM-C vehicle [START_REF] Huber | Hypersonic shock-heated flow parameters for velocities to 46 000 feet per second and altitudes to 323 000 feet[END_REF]Candler & McCormack 1991;[START_REF] Josyula | Governing equations for weakly ionized plasma flow fields of aerospace vehicles[END_REF]. These calculations were originally motivated by the radio blackout due to the plasma sheath around the space shuttle during Earth-space communications [START_REF] Takahashi | Analysis of radio frequency blackout for a blunt-body capsule in atmospheric reentry missions[END_REF]. For this purpose, let us consider the classical expression of Spitzer's scalar conductivity [START_REF] Sutton | Engineering Magnetohydrodynamics[END_REF], . This is an implicit equation for n e since the collision frequency f e resulting from electron-ion and electron-neutral contributions depends on n e and the temperature T 2 behind the shock. We fixed the collision cross-section of electrons with neutrals (nitrogen) according to tabulated values of approximately 8 × 10 -20 m 2 [START_REF] Itakawa | Cross sections for electron collisions with nitrogen molecules[END_REF]).

An iterative method converges in 30 steps and provides the curve of figure 14 for the variations of electronic collision frequency f e (a) and density n e (b) as functions of altitude. The hump at approximately 25 km is due to the fast decrease of Mach number caused by the deceleration. This result can be compared with former plasma calculations plotted in the same figure [START_REF] Huber | Hypersonic shock-heated flow parameters for velocities to 46 000 feet per second and altitudes to 323 000 feet[END_REF]Candler & McCormack 1991). The fact that these results are slightly below ours may confirm that our conductivity is larger, as already mentioned in § 4.1. However, the trend is similar except at low altitude where pressure effects, not considered by the power law (130), are very important.

The variation of the relative distance δ /R b with altitude is plotted in figure 15 As could be expected, our hypersonic results (M 1 ≈ 23) lie below the supersonic data (M 1 = 5), since the stand-off decreases as the Mach number increases. Moreover, the rule of thumb according to which the aerodynamic distance (S b = 0) varies as (γ -1)/(γ +1) yields a smaller distance in our case (γ 2 ≈ 1.13 ; δ /R b ≈ 0.06) than in the quoted work (γ = 1.2 ; δ /R b ≈ 0.09), as can be checked in figure 15(b).

The electrical conductivity σ 2 displayed in figure 16(b) is clearly overestimated with a power law of temperature at low altitude because below 40 km, high pressure actually causes the conductivity to decrease drastically. A simplified air plasma model with only five species describes the plasma correctly below 40 km, and underestimates σ 2 above.

The depth scale of the mean free path within the shock estimated by other authors at 61 km is approximately 1.2 mm [START_REF] Josyula | Governing equations for weakly ionized plasma flow fields of aerospace vehicles[END_REF]; this is about 3 times our estimate of the shock thickness (0.375 mm). The ratio l 1 /L 0 of mean free path before the shock (30) over shock thickness (32) on the symmetry axis is also a relevant test often displayed in models of shock structure. Its values at 40 km (0.832) and 65 km (0.959) in the hypersonic regimes considered here (tables 2 and 3) are in good agreement with several published results in supersonic aerodynamic regimes (M 1 < 10) [START_REF] Gilbarg | The structure of shock waves in the continuum theory of fluids[END_REF][START_REF] Paolucci | Shock structure in hypersonic flows[END_REF].

Conclusion and prospects

Results

The present work proposes a basis for an alternative approach to the usual shock-capturing schemes involved in numerical MHD models. We have derived original expressions for the jumps at a resistive MHD shock with real gas effects that depend on the upstream Mach number and a microscopic MHD interaction parameter based on the shock thickness.

A shock-fitting scheme involving an ionized-air plasma model has been worked out and applied to a plane oblique shock and to a detached bow shock (blunt body) with physical conditions before the shock corresponding to two given altitudes (40 and 65 km) along a typical re-entry trajectory in the stratosphere. In the case of the blunt body, the applied magnetic field is generated by a dipole magnet aligned with the symmetry axis.

We thus calculated the physical conditions behind the shock front at different angles from the axis. Cosine-like profiles are found for pressure and temperature. The MHD effect is stronger at 65 km in repelling the shock, and becomes practically inefficient at 40 km. This holds for zero incidence, i.e. incident velocity aligned with the symmetry axis; with non-zero incidence, tilting moments would develop.

We also derived general expressions for the jumps of the stream function derivatives at the blunt-body shock depending on the parameters ε and η, which play symmetric roles in the problem. As a by-product, we put into evidence a refraction of streamlines across the shock with a tangent law, instead of sine in the Snell-Descartes law of optics, the ratio η/ε playing the role of the refractive index.

Published expressions for the vorticity jump [START_REF] Truesdell | On curved shocks in steady plane flow of an ideal fluid[END_REF][START_REF] Wu | Hypersonic viscous flow near the stagnation point in the presence of magnetic field[END_REF][START_REF] Poggie | Magnetic control of flow past a blunt body: numerical validation and exploration[END_REF] usually neglect the jump of the transverse component of velocity, and our model shows that this is formally incorrect in resistive magnetohydrodynamics (appendix C), although the effect is small in the atmospheric situations investigated. The estimate of the shock thickness used near the symmetry axis is in good agreement with published values, but fails beyond 50°.

The application of our model of shock jumps together with a model of the shock layer actually shows that, for a strong shock, the MHD effect amounts to approximately 6 % in the shock front and 50 % in the shock layer in addition to the aerodynamic effect. This explains why the experimental check of our microscopic jump model is expected to be more difficult than the validation of the macroscopic effects. Indeed, published experimental results with error bars show that the accuracy is not better than 5 %, and more probably approximately 10 % [START_REF] Nagata | Experimental study on the magneto-aerodynamic force deflected by magnetic field interaction in a weakly-ionized plasma flow[END_REF]. The variation of the two interaction parameters S ρ and S b with altitude (figure 16a) confirms that this relative behaviour occurs up to the top of the stratosphere. At 100 km, the two effects may become of the same magnitude, but the molecular flow regime and the Hall effect should then be considered.

An important feature also put into evidence is a similarity rule involving the parameter M 1 cosχ 1 , which sets a correspondence between the upstream Mach number M 1 and the velocity angle χ 1 . This leads to a hypersonic regime and a supersonic regime being distinguished, these two regimes joining at a critical angle (χ 1 ≈ 55°) or a critical Mach number (M 1 ≈ 14), which lies within the temperature range where the resonance due the dissociation of oxygen and nitrogen molecules occurs. This transition is also located at the maximum of the vorticity jump across the shock.

Prospects

We now proceed to a review of the approximations made regarding the shock front and the aftershock flow, first for the basic plane oblique shock model and second for the application to the blunt-body re-entry problem.

(i) The electrical conductivity decreases strongly under high pressure at low altitude, so that in an improved model, equation ( 130) should be modified with a pressure dependence .
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In this situation, relation ( 143) defining ω should be revised. The Hall effect, which we have neglected here within the shock, should also be taken into account in a further work, since it can be shown that the Hall parameters β e (for electrons) and β i (for ions) increase with altitude. The Hall effect is most developed at 60-70 km height and is therefore most studied in that region [START_REF] Bityurin | Magnetohydrodynamic interaction in hypersonic air flow past a blunt body[END_REF]. (ii) The first-order rotational solution we used shows how the aftershock flow is impacted by our jump relations. An analytic solution ψ 2

(1) corresponding to the second term on the right-hand side of (107), the magnetic term in sin 2 θ cosθ, would lead us to calculate more consistently the shock stand-off and the pressure-temperature distributions (i.e. electrical conductivity) in the shock layer. A similar expansion has been looked for in terms of the small aerodynamic parameter ε [START_REF] Oguchi | Blunt body viscous layer with and without a magnetic field[END_REF]).

As the upstream velocity angle χ 1 with the plane shock increases, the actual depth followed by the flow through the shock deviates from the expected thickness, suggesting that curvature effects and velocity gradient become important. Therefore, it would be an improvement to include viscous and thermal effects neglected in (10) in the modelling of aerodynamic and MHD shock jumps.

According to the analysis based on the Damköhler number (appendix A), nonequilibrium is likely to arise behind the shock above 50 km and should also be taken into account [START_REF] Hall | Blunt-nose inviscid airflows with coupled nonequilium processes[END_REF][START_REF] De Crombrugghe | Design of test flows to investigate binary scaling in high enthalpy CO 2 -N 2 mixtures[END_REF]. We also showed that the shock stand-off is sensitive to non-equilibrium effects ( § 6.2). We assumed a spherical shock and showed that a small deviation from sphericity occurs, in consistency with former studies which suggest a kind of catenary shape [START_REF] Falanga | An inverse-method solution for radiating, nonadiabatic, equilibrium inviscid flow over a blunt body[END_REF]. Magnetic field asymmetry and flow incidence should be taken into account in future analytical works. It should be noted that magnetic configurations other than dipolar could be considered [START_REF] Chen | Numerical simulation of external MHD generator on board reentry vehicle[END_REF].

Specific experiments at hypersonic speeds not available at the moment are required in order to validate our theoretical work, on one hand the jump relations for a plane oblique shock and on the other hand the shock fitting of a blunt-body bow shock.

Magnetohydrodynamic shock tubes could provide a suitable benchmark for plane shocks and reciprocally could help to estimate the shock thickness from density profile functions of Mach number and interaction parameter. Dedicated measurements in wind tunnels like those actually in progress at Mach numbers 6 and 15 (Cristofolini et al. 2008, 2010) could provide material for bow shocks, knowing that the effect is 10 times smaller in the shock front than in the shock layer. The ratio ω defined by ( 126) requires the characteristic length scale L σ of electrical conductivity across the shock. As is usually assumed in published works [START_REF] Poggie | Magnetic control of flow past a blunt body: numerical validation and exploration[END_REF][START_REF] Otsu | Numerical validation of the magnetic flow control for reentry vehicles[END_REF][START_REF] Otsu | Influence of Hall effect on electrodynamic heat shield system for reentry vehicles[END_REF], let us assume here that σ is proportional to a power of temperature T, i.e. Combining relations ( 133), ( 137) and ( 139), we obtain
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Moreover, theoretical [START_REF] Conti | A theoretical study of non-equilibrium blunt-body flows[END_REF] and numerical (Pepe et al. 2015) works suggest that ionization, and therefore conductivity, develops in the shock, and beyond it, deeper than merely the shock thickness, so that molar mass might be supposed to have a somewhat larger characteristic length scale than mass density, i.e. )
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Since ω must be positive, we derive the following condition on ζ :

. 1

1 - > γ ζ (144)
With typically γ ≈ 1.15 behind the shock, we are led to choose ζ ≈ 10, confirming the above argument. Fixing ζ to a value larger than 10 does not change anything since γ -1 in ( 143) is of order 1/10. Moreover, with α = 2, relation (143) shows that ω is approximately 10, and consequently from (127) we shall have L ρσ ≈ -1.1L ρ and L vσ ≈ 0.9L ρ . This is therefore a multi-scale problem.

The equilibrium assumption can be tested on the basis of the Damköhler number N D , which is a non-dimensional number defined as the ratio of the leading reaction rate to the convective time. When N D >> 1, the medium is in chemical equilibrium, and when N D < 1, it is in non-equilibrium. Estimation of this number in the range dominated by the dissociation of N 2 [START_REF] Candler | On the computation of shock shapes in nonequilibrium hypersonic flows[END_REF], leads to N D of approximately 0.039 and 10.3 at 65 km and 40 km respectively. We therefore deduce that the air plasma is in equilibrium at 40 km but not at 65 km. the balance in order of magnitude of the inertia, viscous and magnetic terms, ( ) 
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the pressure and inertia terms being of same order. Using the mass conservation equation (10a), knowing that the magnetic field is not changed through the shock and taking the average of σ u and σ v, we obtain ( ) 
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Then, let us express the velocity derivatives du/dx and dv/dx and the viscous terms in magnitude using (145),
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and extracting v 2 from (150b), inserting it into (150a), then by factorizing and using the definition (44) of ε, the definitions of χ 1 and the Mach number M 1 , we obtain ( )
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On the axis (χ 1 = 0, χ b = 0 or π), this equation reduces to ( )
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and the physical solution is written as

(L > 0) . 4 1 1 2 0         + + - = B B L L L L (154)
When L 0 << L B , this yields, by expanding the square root to second order, . 1
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The interesting relation (155) shows that the shock thickness decreases as the magnetic field and the electrical conductivity increase. It should be noted that the mass flow rate m in (151) depends on the shock inclination through relation (49).

The magnetic correction term L 0 /L B amounts to 1.08 × 10 -4 at 40 km and 2.95 × 10 -2 at 65 km, yielding values of respectively 15.6 µm and 364 µm for the actual L (table 3). The values of the relative deviation L /L 0 -1 are thus 0.0 % and -2.93 % respectively.

By means of the microscopic interaction parameter S ρ defined by ( 129 where m p and q p denote respectively the mass and electric charge of the main charged particles, and u is the average normal velocity in the shock.

At low altitude, the Hall parameters for electrons and ions become larger than unity, but they are smaller than 1 below 50 km. This means that the plasma is collisional at low altitude and non-collisional above. Therefore, with m p = 2.7 × 10 -25 kg, u = 3.7 km/s, q p = 1.6 × 10 -19 C and B = 1 T, equation ( 157) yields a value of 620 µm at 65 km on the dipole axis (χ b = 0 or π) and thus confirms the orders of magnitude we obtain with our expression (151). Moreover, equation (157) shows that L c decreases as B increases and confirms the behaviour we put into evidence with (155).

These results justify a posteriori the fact that we neglected MHD effects on L.

Moreover, the magnetic Reynolds number estimated with the radius of the body nose (R b = 0.15 m) is found to be quite small (table 3) and this justifies the assumption that the applied magnetic field is not modified by the flow.

Appendix C

In this section, we calculate the vorticity jump at a resistive MHD plane shock using the jump relations we derived in § 2.2. With the formalism of § 2 for a plane shock, we write the velocity and vorticity components as
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The assumption of invariance along y and z implies that the vorticity reduces to its z component,

.

x v z ∂ ∂ = Ω (159) 
The jump of Ω z is written as
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Using the approximation (28), namely

L v ≈ L ρ , we conclude that [ ] [ ] . ρ L v z ≈ Ω (164) 
This relation shows that vorticity cannot appear behind a plane aerodynamic (B = 0) or perpendicular MHD (χ b = π/2) shock since [v] = 0 from (21c). The relation ( 164) is valid for any plane shock, either normal or oblique. Nevertheless, in the case of an oblique shock, there is a jump of the tangential velocity component that we calculated in § 2.2. From (24b), using the upstream Mach number (27) and the shock angle, and by use of (41), we can eliminate the pressure ratio and make the mass density ratio ε appear. Hence, the jump of transverse velocity becomes . tan 1
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In the non-magnetic case (a = 1, b = 0, c = 0, d = 1), we retrieve that the jump of v is zero. On substituting the normal component u 1 with its expression , cos 1
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we obtain the jump of tangential velocity, so that the vorticity jump (163) therefore is written as As can be expected, this expression vanishes for a normal shock (χ 1 = 0; χ b = 0). It should be noted also that this vorticity jump is due to the magnetic force alone and does not include curvature effects. Lighthill's aerodynamic expression involves curvature effects but for a perfect gas [START_REF] Lighthill | Dynamics of a dissociating gas. Part I -Equilibrium flow[END_REF]). Hida's hydromagnetic theory proposes an expression for a perfect gas, and it seems that it works for slightly supersonic shocks (M 1 ≤ 3) and fails in hypersonic cases [START_REF] Hida | An approximate study on the detached shock wave in front of a circular cylinder and a sphere[END_REF]. Our expression is consistent with Wu's theory [START_REF] Wu | Hypersonic viscous flow near the stagnation point in the presence of magnetic field[END_REF]. 

V 2 V 1 χ 1 χ 2 χ b V 2n V 2t V 1t V 1n

  relations reduce to the Rankine-Hugoniot equations (2) when γ 1 = γ 2 = γ. With M 1 = 21.7, γ 1 = 1.4 and γ 2 = 1.15 at 40 km, these relations yield the values X = 613 and Y = 14.3.

  ), we conclude that the angular and Mach-number behaviours are related by the

  (a). The ratio of the MHD (δ /R b ) to the aerodynamic (δ 0 /R b ) relative stand-off is approximately 1.2 at 40 km (δ /R b ≈ 0.0651 and δ 0 /R b ≈ 0.0528) and 3.9 at 65 km (δ /R b ≈ 0.180 and δ 0 /R b ≈ 0.0462). The results of non-equilibrium calculations[START_REF] Fujino | Numerical simulation of MHD flow control along super orbital reentry trajectory[END_REF]) also plotted on the same figure show that the stand-off distance is somewhat larger in this case, for either the aerodynamic or the MHD stand-off.The variation of δ /R b as a function of S b displayed in figure15(b) is nearly linear in the altitude range where the Mach number is roughly constant (M 1 ≈ 23). This behaviour can be compared with the results of a numerical model performed at a supersonic speed (M 1 = 5) with γ = 1.2[START_REF] Poggie | Magnetic control of flow past a blunt body: numerical validation and exploration[END_REF], which we have also plotted. The line slope (≈ 0.007) in our model is smaller than that found from the quoted work (≈ 0.01).

  characteristic lengths L σ and L T , analogous to (13) and (15), defined by here the equivalent molar mass of decomposed air and R the molar constant of perfect gas. Let us take the logarithmic derivative of (134of the characteristic lengths L ρ and L T defined above and the two of air causes M to decrease. Then, insertion of these relations into the characteristic lengths L p and L ρ , we can derive from (138) the relation .

  ) we cast the ratio L 0 /L B into the following form: confirmed in order of magnitude by a plasma physics approach based on the cyclotron or Larmor radius of charged particles moving in an applied magnetic field (
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FIGURE 9 .

 9 FIGURE 8. Magnetic lines of force (dashed lines). The shock (dotted line) is assumed to be spherical, at a distance 0.1R b from the sphere in its initial position.

FIGURE 11 .

 11 FIGURE 10. Magnetic field strength on the shock and on the body surface (a), and angle χ b of magnetic field vector with respect to the shock normal (b) as functions of the polar angle θ for a spherical shock and the axial dipolar magnetic field of figure 8 (B 0 = 0.5 T).

  FIGURE 12. Electrical conductivity σ 2 (a), magnetic parameter η (b), shock thickness L ρ (c) and microscopic interaction parameter S ρ (d) as functions of upstream velocity angle χ 1 behind a resistive MHD bow shock (B 0 = 0.5 T).

FIGURE 13 .

 13 FIGURE 13. The magnitude of the vorticity Ω 2 as a function of the upstream velocity angle χ 1 for a spherical shock (B 0 = 0.5 T).

  χ b = 0° or 180°) (B 0 = 0.5 T ; R b = 0.15 m ; α = 2 ; ζ = 10). The relative aerodynamic shock distance δ 0 /R b is also given in parentheses for reference. __________________________________________________________________________

  

TABLE 2 .

 2 Physical conditions on the axis before (1) and behind (2) the shock of a re-entry blunt body at 40 km and 65 km in our calculations (B 0 = 0.5 T ; γ 1 = 1.40). Magnetic and non-magnetic results are coincident on the symmetry axis. __________________________________________________________________________

	__________________________________________________________________________
	Parameter	1	40 km	2	1	65 km	2
	ρ (kg m -3 ) p (Pa)	3.85 × 10 -3 277	5.52 × 10 -2 1.71 × 10 5	1.36 × 10 -4 9.06	2.26 × 10 -3 6.27 × 10 3
	T (K) c s (m s -1 ) V (m s -1 )	251 317 6900			6809 1885 481	232 305 7000		5868 1768 421
	M γ µ (kg m -1 s -1 ) ν (m 2 s -1 ) Re	21.7 1.400 1.59 × 10 -5 0.00413 2.5 × 10 5	0.255 1.148 2.13 × 10 -4 0.00386 ___	22.9 1.400 1.49 × 10 -5 0.110 9.5 × 10 3	0.238 1.127 1.83 × 10 -4 0.0811 ___
	l (mm)	0.0130			0.00205	0.359		0.0459
	m (kg m -2 s -1 )	26.6			26.6	0.952		0.952
	__________________________________________________________________________
		Parameter		40 km	65 km	
		σ (S m -1 )			530	393	
		B (T) c A (m s -1 ) ν m (m 2 s -1 ) R m		0.835 1899 1503 4.80 × 10 -2	0.617 9382 2023 3.12 × 10 -2
		2µ 0 p 2 /B 2 ω ε η S ρ		0.616 10.3 0.0698 1.000 2.17 × 10 -4	0.0414 18.6 0.0602 0.949 5.90× 10 -2	
		S b δ /R b		2.08 0.0620 (0.0524) 0.1744 (0.0458) 23.6
		L B (mm)			143.9	12.7	
		L ρ (mm)		0.0156	0.375	
		L ρ /L B		1.08 × 10 -4	2.95 × 10 -2
		l 1 /L ρ			0.832	0.959	

TABLE 3 .

 3 MHD plasma parameters behind the shock on the symmetry axis (χ 1 = 0° ;
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Appendix A

This appendix is devoted to the derivation of an estimate for L σ . We first define the parameter ω as the ratio of length scales L σ and L ρ ,

Consequently, the characteristic lengths defined by ( 18) are such that

Appendix B

This calculation is a simplified approach to provide a useful expression for the shock thickness and to show the influence of the magnetic field on the shock thickness. A classical way to define it in one dimension, due to Prandtl, is the following:

where the derivative is taken in the core of the shock. Extending a classical aerodynamic approach [START_REF] Shapiro | The Dynamics and Thermodynamics of Compressible Fluid Flow[END_REF], we consider, in the equations of motion (9) of the oblique shock, u u x

and the averages

On substituting the average of µ, we obtain the expressions for the shear stress components, and on inserting them into (147) and using the fact that the conductivity is zero in front of the shock (σ 1 = 0), we obtain

Now, defining the scale lengths