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Time reversal by time-dependent perturbations

Guillaume Bal ∗ Mathias Fink†† Olivier Pinaud ‡‡

September 25, 2018

Abstract

We consider the time-reversal of waves in time-dependent media. The constitu-
tive parameters of a wave equation are assumed constant in time during intervals
(0, t−τ)∪(t+τ, 2t) for τ � t and time-varying during the time interval (t−τ, t+τ)
to model a quasi-instantaneous time mirror. We show that under appropriate hy-
potheses, a time-reversed signal is generated by such time-dependent fluctuations.
At time 2t, the time-reversed signal is an appropriate differentiation of the original
initial condition when the time-varying fluctuations are independent of space. In
the case of spatially varying fluctuations, we show that the time-reversed signal
enjoys stronger refocusing properties when propagation occurs in a highly hetero-
geneous environment, as in the case of classical time-reversal.

This paper offers additional theoretical justifications to the experimental re-
sults obtained in [1] and proposes potential extensions. We present numerical
simulations that also corroborate and quantify the theoretical predictions.

1 Introduction

This paper concerns time reversal phenomena of waves propagating in time-dependent
media. It is known that wave equations with time-independent coefficients are invariant
by time reversal in the sense that the wave propagation operator from time 0 to time t is
a unitary operator U(t) in an appropriate metric realizing energy conservation, and that
wave propagation from time t to time 0 is described by U∗(t) = U(−t), which involves
wave propagation in the same medium albeit with time-reversed initial conditions. As a
consequence, an initial fluctuation propagated by U(t), recorded at time t, time-reversed
and then propagating in the same medium for a duration t, and time-reversed one more
time, will be exactly equal to the original fluctuation. Said differently, if T is the
(bosonic) time-reversion operation (with T 2 = I), then U∗(t) = U(−t) = T U(t)T so
that T U(t)T U(t) = I the identity operator.
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A notable corollary to time-reversal is the refocusing properties of partially recorded
waves. Let χ(x) describe a spatial domain (a detector array) where a signal is recorded.
The operator modeling the time-reversed signal is T U(t)T χ(x)U(t). This is no longer
identity. A striking feature of classical time-reversal is that the latter operator ‘resem-
bles’ identity much more closely when propagation occurs in a heterogeneous medium
than when it does in a homogeneous one. Heuristically, heterogeneities create multiple
reflections (multi-pathing), and the recorded signal by χ(x) then involves a superposi-
tion of many more paths that will interfere coherently during the backpropagation stage
modeled by T U(t)T . We refer the reader to [4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] and
their multiple references for descriptions and background on time reversal in heteroge-
nous environments.

The main objective of this paper is to analyze time reversal phenomena where
the measurement/time reversal operator T χ(x) is ‘replaced’ by a short-duration large-
amplitude time-dependent fluctuation (‘instantaneous’ time mirror [1]) in the properties
of the underlying medium. For a convincing experimental realization of the phenomenon
when χ(x) ≡ 1, we refer the reader to the recent paper [1].

Let us consider time-dependent fluctuations on the support of χ(x) in the τ -‘vicinity’
of time t and call their effect on wave propagation as the operator Ft,χ. We then wish
to analyze the wave field T U(t)Ft,χU(t). Under appropriate hypotheses on the time-
dependent fluctuations, we have Ft,χ = I + α(δF)t,χ, where α models the fluctuations’
strength, and we will show that the latter operator decomposes into four components.
The first one is simply the unperturbed solution modeled by T U(2t). The second con-
tribution is another forward-propagating component proportional to α. The third con-
tribution is the main interest of this paper, and may heuristically be well-approximated
(when τ � 1) by αT U(t)DT U(t) = αDT U(t)T U(t) = αD, where D is a differentiation
operator described in detail in the text. In other words, we obtain a back-propagating
signal, which up to a scaling α and a (Fourier domain scaling) local differentiation, is
the original initial condition. The fourth component is a remainder, which we show is
of order τ � 1 (in an idealized setting).

In other words, if the solution is considered at time 2t on the support1 of the initial
condition, then what we observe is a local operator αD applied to the initial condition
up to negligible contributions. This is entirely consistent with the experimental obser-
vations in [1] of wave refocusing in the presence of instantaneous time mirrors. Note
that the wave field energy is not conserved (and here increases) in such a setting [1] or
in general in the presence of time-dependent variations of the underlying medium [17].

We model wave propagation by a system of acoustic equations. For appropriate
short-time fluctuations, we justify the above decomposition, first for spatially indepen-
dent time-dependent fluctuations (χ ≡ 1, which corresponds to the setting in [1]), and
second for spatially varying time-dependent fluctuations (with χ(x) a compactly sup-
ported function). In the latter case, we also consider wave propagation in spatially
heterogeneous media in order to observe the classical enhancement of the refocusing of
time reversed waves in rich multi-path environments. These results may be the most
promising from a practical point of view. Classical time-reversal requires measuring,

1Consider a localized support on a domain of diameter d with d� ct, where c is speed propagation
and t the central time of the localized time-dependent fluctuations.
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time-reversing, and back-propagating, which are measurement- and memory-intensive
procedures [13, 14]. Full domain time-dependent fluctuations as in [1] (corresponding to
χ(x) ≡ 1) may not be feasible. Our results show that even if the coefficients can be fluc-
tuated in time only on a small spatial zone (with χ(x) of small support), then provided
that propagation occurs in a sufficiently heterogeneous environments, the time-reversed
signal αDf(x) captures the main features of the initial signal f(x) without the more
complex apparatus of classical time-reversal.

The paper is structured as follows: in section 2, we introduce our model of wave
propagation and derive a decomposition of the wavefield that helps us understand the
properties of the propagating and refocusing fields. Section 3 focuses on the case of
spatially independent time-dependent perturbations. Several numerical simulations il-
lustrate the theoretical results. Section 4 generalizes the analysis to the setting of
spatially localized time-dependent perturbations. We characterize the refocusing signal
both in the settings of homogeneous and heterogenous underlying media of propagation.
All proofs are postponed to section 5. The paper is concluded by an appendix where
we consider several interesting cases of time-dependent fluctuations.

Acknowledgment. This paper was partially funded by the NSF, the ONR, and an
NSF CAREER grant DMS-1452349.

2 Acoustic system and time-dependent media

Our starting point is the acoustic wave equation, written as a first-order hyperbolic
system

ρ(t, x)
∂v

∂t
+∇p = 0, κ(x)

∂p

∂t
+∇ · v = 0, x ∈ Ω, (1)

where the unknowns are the velocity field v(t, x) and the acoustic pressure p(t, x), and
the known constitutive coefficients are the density ρ and the compressibility κ. The
system (1) is equipped with (smooth) initial conditions v(0, x) = v0(x) and p(0, x) =
p0(x) at t = 0. The domain Ω ⊂ R3 (or more generally Rd with d ≥ 1) can be bounded
or not. Appropriate boundary conditions on ∂Ω are added, say Dirichlet or Neumann
boundary conditions, if necessary.

We are interested in analyzing the effects of short and large variations (approximated
by a δ function in time) in the coefficients (ρ, κ) on wave propagation. Such terms are
compatible with the wave equation in only specific cases as we shall see. In this paper,
we mainly assume that density varies while compressibility remains time-independent,
and more precisely introduce the model:

ρ−1(t, x) = ρ−1
0 (x)

(
1 + V (t, x)

)
, (2)

where ρ0 is the background (i.e. unperturbed) density, while V (t, x) is a time-dependent
perturbation that may be spatially localized. V is chosen so that ρ remains strictly
positive while ρ0 and κ are smooth functions. For T > 0 and 0 < τ ≤ T given, and η a
positive function with integral one, we define

ητ (t) =
1

τ
η

(
t

τ

)
, supp η ⊂

[
−1

2
,
1

2

]
.
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The function ητ is an approximation of a delta function at t = 0. We consider spatially
independent perturbations V (t, x) = V (t) = αητ (t − T ) in section 3, and spatially
dependent ones of the form

V (t, x) = αητ (t− T )χ(x), (3)

in section 4. The parameter α > 0 models the strength of the perturbation, and χ is a
function on Ω representing the spatial location of the perturbation; see the end of this
section and the appendix for a discussion on more general choices of time-dependent
coefficients.

Note that the system (1) can be recast as the scalar second-order wave equation

∂2p

∂t2
= κ(x)−1∇ ·

(
ρ(t, x)−1∇p

)
, (4)

with initial conditions (p(t = 0), ∂tp(t = 0)) = (p0, p1), where p1 = −κ−1∇ · v0. It
is more convenient for us to work directly with the system (1) to obtain the following
expression.

Decomposition of the wavefield. We first recast the system (1) as

A(x)
∂u

∂t
+Dj ∂u

∂xj
= V (t, x)S, (5)

where V (t, x) is defined in (3) and u = (v, p), S = −(∇p, 0) (which are both considered
as column vectors), A = Diag(ρ0, ρ0, ρ0, κ), and (Dj)mn = δm4δnj + δn4δmj, with j =
1, 2, 3, and m,n = 1, · · · , 4. Here and below, we use the summation convention over
repeated indices. Equation (5) is equipped with the initial condition u0 = (v0, p0). It is
convenient to describe wave propagation in terms of the Green’s function of (5) and its
adjoint, defined respectively by

A(x)
∂G(t, x, y)

∂t
+Dj ∂G(t, x, y)

∂xj
= 0, G(0, x, y) = Iδ(x− y), (6)

where I is the 4× 4 identity matrix, and

∂G∗(t, x, y)

∂t
A(x) +

∂G∗(t, x, y)

∂xj
Dj = 0, G∗(0, x, y) = A−1(x)δ(x− y).

We will use the notation

Gt(u)(x) =

∫
Ω

G(t, x, y)u(y)dy. (7)

The unperturbed solution to (5), i.e. with V = 0, is denoted by U = (V, P ). The
main tool in our analysis is the following decomposition of the wavefield u into various
propagating and refocusing contributions.

Lemma 2.1 Let φ0 = −(ρ−1
0 ∇p0, κ

−1∇·v0) = ∂tU(t = 0) and Γ =Diag(−1,−1,−1, 1).
Then, the solution u admits the decomposition

u(t) = U(t) + uR(t) + uF (t) + Rτ (t), (8)
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where

uR(t, x) = −α
2

∫ t

0

∫
Ω

ητ (s− T )K(t, s, x, z)φ0(z)dsdz

K(t, s, x, z) =

∫
Ω

Gt−s(x, y)ΓGs(y, z)χ(y)dy,

and

uF (t) =
α

2

∫ t

0

Gt−s(Vs∂tUs)ds

Rτ (t) =

∫ t

0

Gt−s(VsA
−1(Ss − S0

s))ds with S0(t) = −(∇P (t), 0).

The (very classical) proof of the decomposition is postponed to section 5.
The first term in (8), U, is the unperturbed solution corresponding to V ≡ 0. The

next two terms are the leading contributions generated by the perturbation (3) when
α 6= 0. The contribution uR is the (time-reversed) refocusing signal and the main object
of interest in this paper. When evaluated at time t = 2T , where T is the centered time
of the time-dependent perturbation, we expect uR to be directly related to the initial
conditions U0 and more precisely to ∂tU(t = 0). The contribution uF is the forward-
propagating signal created by the perturbation, which as we will see is proportional
to α. Finally, the remainder Rτ captures the temporal ‘width’ of the time-dependent
fluctuation and will be shown to be of order τ � 1 in a simplified setting.

Remarks on the choice of time-dependent coefficients. Before analyzing the
above terms when χ ≡ 1 in the next section and χ with compact support in the following
section, we make a few comments on the choice of temporal perturbations.

First, let us remark that we perturb ρ−1 in (2) and not ρ. When the fluctuations
are smooth in time, there is no significant difference between these choices. However,
since the fluctuations of interest are supported in a narrow temporal window, which
coefficient we model as time-dependent and approximate by a delta function matters.

Suppose for simplicity that V (t, x) = δ(t − T ) with δ the Dirac delta function.
Perturbing ρ−1 leads to the term δ(t − T )∇p in the first equation in (1), which makes
sense mathematically only when∇p is continuous in the time variable. Heuristically, the
latter is true by the following arguments (we prove this fact later in a simple setting):
since ∂tv is proportional to a Dirac function according to (1), then its integral v is
a discontinuous function in time. The second equation in (1) shows in turn that p is
continuous in time, and it can be assumed that the continuity extends to ∇p when the
initial conditions are smooth. It follows that the term δ(t − T )∇p makes sense from a
mathematical standpoint.

Perturbing ρ would lead to the term δ(t− T )∂tv, which cannot be justified mathe-
matically as it does not seem possible to conclude from the wave equation that ∂tv is
continuous and this is probably incorrect. Hence the perturbation of ρ−1.

Although we do not pursue this in detail, we could similarly consider a system with
a time-dependent perturbation in the compressibility and not in the density, i.e.

ρ(x)
∂v

∂t
+∇p = 0, κ(t, x)

∂p

∂t
+∇ · v = 0, x ∈ Ω.
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Supposing that the initial velocity field v0 is irrotational, the first equation above shows
that v(t) remains irrotational at all times, and can then be expressed as v(t) = ∇φ(t),
where φ is the velocity potential. Then, the quantity w = ∆φ satisfies

∂2w

∂t2
= ∇ ·

(
ρ(x)−1∇(κ(t, x)−1w)

)
.

With κ−1(t, x) = κ−1
0 (x)(1 +V (t, x)), we obtain a similar theory to the one described in

the paper since it can be shown that w is continuous at time T where the jump occurs.

For the same reasons as explained above, we are not able to singularly perturb both
ρ−1 and κ−1 and give a meaning to (5). Indeed, as we show in the Appendix, it is
in general false that both ∇p and ∇ · v are continuous functions in time, and as a
consequence the definition of (at least one of) δ(t− T )∇p and δ(t− T )∇ · v is unclear.

When the fluctuations are spatially localized, for instance with χ(x) of compact sup-
port, the formalism described in (5), with fluctuations approximated by a delta-function,
is an essential ingredient in our analysis in section 4. It is nevertheless interesting to
understand the structure of the time-reversed signal when both coefficients ρ−1 and κ−1

are perturbed. This is done in some detail in the Appendix in the setting of global time
dependent perturbations (with χ(x) ≡ 1). It can then be shown that time-dependent
fluctuations may couple propagating modes only with their ‘time-reversed’ versions. In
particular, we show that fluctuations such that ρ(t)/κ(t) = ζ2 is constant (i.e., with con-
stant impedance) generate no time-reversed signals. We refer the reader to the appendix
for the details.

3 Spatially-independent perturbation

The perturbation V in (3) is assumed independent of position (with χ ≡ 1) and thus
has the form V (t) = αητ (t), for ητ an approximation of the delta function. We extend
the Green’s function Gt to negative values of t by solving (6) for t < 0, and have
G−tΓ = ΓGt with Γ =Diag(−1,−1,−1, 1); in other words the time-reversal operator T
of the introduction takes the form Γ for the acoustic system of equations. In the same
way, we extend ∂tU(t) to negative times by solving the wave equation for t < 0 with
initial condition φ0 = −(ρ−1

0 ∇p0, κ
−1∇ ·v0) = ∂tU(t = 0). It follows that, for all t ∈ R,

∂tU(t) = Gt(φ0). (9)

The main result of the section is the following analysis of the terms introduced in
the decomposition (8).

Theorem 3.1 The terms uR(2T ) and uF (t) for t ≥ T + τ
2

admit the expressions:

uR(2T ) = −α
2

∫ τ
2

− τ
2

ητ (s)Γ∂tU(2s)ds

and
uF (t) =

α

2
∂tU(t).
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Moreover, under smoothness assumptions on the initial conditions and constant coeffi-
cients ρ0 and κ0 with Ω = R3, then the remainder Rτ is of order τ (the temporal width
of the fluctuations) as described in (10) in Lemma 3.2 below.

Since the proof of the expressions for uR and uF describes the time reversal symmetry
of the wave equation that leads to the result, we present it here.

Proof. Starting from Lemma 2.1, we find, after the change of variables s→ s+ T ,

uR(2T, x) = −α
2

∫ τ
2

− τ
2

∫
Ω

ητ (s)K(2T, s+ T, x, z)φ0(z)dsdz,

with, when s ≥ 0,

K(2T, s+ T, x, z) =

∫
Ω

GT−s(x, y)ΓGT+s(y, z)dy

=

∫
Ω

∫
Ω

GT−s(x, y)ΓGT−s(y, z
′)G2s(z

′, z)dydz′ = ΓG2s(x, z).

Above, we used the time reversibility of the acoustic wave equation which yields that∫
Ω

ΓGT−s(x, y)ΓGT−s(y, z
′)dy = δ(x− z′)I.

When s ≤ 0, with obtain with a similar calculation that

K(2T, s+ T, x, z) = G−2s(x, z)Γ.

Using the fact that G−2sΓ = ΓG2s, ∀s ∈ R, we arrive at

uR(2T, x) = −α
2

∫ τ
2

− τ
2

∫
Ω

ητ (s)ΓG2s(x, z)φ0(z)dsdz,

which, together with (9), yields the expression stated in the theorem. Regarding uF (t)
for t ≥ T + τ/2, we have, since ∂tU solves (5) with V = 0,

uF (t) =
α

2

∫ t

0

ητ (s− T )Gt−s(∂tU(s))ds =
α

2

∫ t

0

ητ (s− T )∂tU(t)ds =
α

2
∂tU(t).

This ends the proof.

We now comment on the properties of the different terms that appear in the decom-
position of u(2T ) in (8). The first term U(2T ) is nothing but the unperturbed solution.
Suppose that the initial condition (v0, p0) has a bounded support and, for the moment,
that the background is constant. When Ω is unbounded, or when T is such that reflec-
tions at the boundary ∂Ω do not reach the support of (v0, p0) at t = 2T , the contribution
of U(2T ) on this support vanishes. In the general case where the background is not
constant, there could be some non-zero contributions of U(2T ) to u(2T ), but these are
expected to be small compared to uR provided the background is non-trapping around
the support of the initial condition. The third term uF is the forward solution created by
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the perturbation, and is proportional to ∂tU(2T ). Again, this contribution is expected
to be either zero or quite small on the support of the initial condition.

The last term Rτ is a remainder that is negligible when τ is small compared to a
quantity measuring wavenumbers in the initial condition. It is actually zero when the
perturbation is a delta function: suppose that ∇p is continuous in time since it is a
condition for the equations to make sense (this fact is proved below in a simple setting);
then Rτ is proportional to ∇p(T ) − ∇P (T ), which we rewrite as ∇p(T ) − ∇p(T−) +
∇p(T−) − ∇P (T ). The second part is zero since ∇p(T−) = ∇P (T−) as we are right
before the perturbation kicks in and ∇P is continuous, and the first part is zero as well
since ∇p is continuous. For a general function ητ , write the term S−S0 in the definition
of Rτ as, for any s ∈ [T − τ

2
, T + τ

2
],

∇(p(s)− P (s)) = ∇(p(s)− p(s− τ)) +∇(p(s− τ)− P (s)).

As we are before the perturbation, the second term in the r.h.s. is ∇P (s − τ) − ∇P .
Since P is smooth, this second term is negligible provided τ is small compared to a
parameter estimating the gradient of ∇P . The same applies to the first term provided
∇p is continuous in time.

When ρ0 and κ are constant, and Ω = R3, we are able to make these arguments
precise in the following lemma (f̂ denotes the Fourier transform with the convention

f̂(ξ) =
∫
R3 e

−ix·ξf(x)dx):

Lemma 3.2 Suppose that ρ0 and κ are constant, and that Ω = R3.
(i) Assume that V (t, x) = αδ(t−T ) and that the initial conditions verify (1+|ξ|3)p̂0(ξ) ∈
L1(R3) and (1 + |ξ|3)v̂0(ξ) ∈ (L1(R3))3. Then, ∂t∇p ∈ (L∞(R+ × R3))3.
(ii) Assume now that V (t, x) = αητ (t− T ), with ητ (t) = τ−1 on (T − τ/2, T + τ/2) and
zero otherwise. Decomposing the remainder Rτ as Rτ = (Eτ , wτ ), there is a constant
C such that

sup
t∈R+, x∈R3

(
|∂tEτ (t, x)|+ |wτ (t, x)|

)
≤ τC

(
‖|ξ|3p̂0‖L1 + ‖|ξ|3v̂0‖L1

)
. (10)

The proof of the lemma is postponed to section 5.2. The term in the parentheses
in the r.h.s. above measures the spatial frequencies in the initial condition. When τ is
small compared to these frequencies (up to a multiplicative dimensional factor), then
the term Rτ is negligible. The proof of Lemma 3.2 is based on the Fourier transform.
An extension to more general settings with spatially varying coefficients would require
a (non-trivial yet quite standard) microlocal analysis of (1) that is beyond the scope
of this work. The proof uses analytical expressions of the unperturbed and perturbed
solutions P and p.

The refocused signal. We now concentrate on the main term of the expansion given
by uR(2T ). We recall that the matrix Γ is defined by Γ =Diag(−1,−1,−1, 1). We list
a number of properties.

(i) When ητ (s) = δ(s), we obtain uR(2T ) = −α
2
Γ∂tU(0) and the refocusing is

‘perfect’ in the sense that ∂tU(0) is recovered exactly up to a multiplication factor.
This makes explicit the ‘differentiation’ operator D of the introduction.

8



(ii) When ητ is not a Dirac function, then waves are reversed at different but close
times, and refocusing is blurred and given by a weighted superposition of ∂tU(2s) around
s = 0. The term uR(2T ) can be written as

uR(2T, x) =

∫
Ω

Kτ (x, y)φ0(y)dy

Kτ (x, y) = −α
2

∫ τ
2

− τ
2

ητ (s)ΓG(2s, x, y)ds.

The kernel Kτ is an approximation of −αδ(x− y)Γ/2 since G(0, x, y) = δ(x− y)I.
(iii) When ρ0 and κ are constant and when Ω = R3, we can obtain a more precise

expression for uR(2T ). Indeed, we have in that case

∂tP (t) = ∂2
tGt(p0) + ∂tGt(p1),

where p1 = −κ−1∇ · v0 = ∂tP (t = 0). Above, we used notation (7) with G replaced by
G, where G is the Green’s function of the wave equation with constant coefficients. For
c2

0 = (ρ0κ)−1, we have G(t, x, y) = G(t, x− y) and its Fourier transform reads

Ĝ(t, ξ) =
sin c0t|ξ|
c0|ξ|

.

Then, the fourth component of uR(2T ) (the pressure part), is

(uR(2T ))4 = F0 ? p0 + F1 ? p1, (11)

where the filters F0 and F1 are defined by

F̂0(ξ) =
αc0|ξ|

2

∫ 1
2

− 1
2

η(s) sin(2c0τs|ξ|)ds

F̂1(ξ) = −α
2

∫ 1
2

− 1
2

η(s) cos(2c0τs|ξ|)ds.

When η is even, F̂0 = 0 and F̂1 is given by

F̂1(ξ) = −1

2
αη̂(2c0τ |ξ|). (12)

The above formula and (11) show that the refocusing signal is a low-pass filter of the
initial signal with a bandwidth proportional to τ−1. If M is the largest wavenumber in
u0, we thus obtain a good reconstruction of the original signal when 2c0τM � 1. In
that case, F1(x) ' −α

2
δ(x).

A similar calculation using

∂tV(t) = −ρ−1
0 ∇P (t) = −ρ−1

0 ∇
(
∂tGt(p0) +Gt(p1)

)
,

shows that the velocity part of uR(2T ) (i.e. the first three components) reads

−F1 ? (∂tV(t = 0)) + F2 ? (V(t = 0)),

with F̂2(ξ)v̂0(ξ) = F̂0(ξ)ξ̂(ξ̂ ·v̂0(ξ)) and ξ̂ = ξ/|ξ|. When η is not even, the kernel F0 does
not vanish, and therefore the term p0 contributes to the pressure part of uR(2T ) and v0

to the velocity part. We will explore this fact further numerically. When 2c0τM � 1,
these contributions are nevertheless small, although they increase with τ .
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Multiple perturbations. We now briefly consider the case of Np successive time-
dependent perturbations at multiples of T , that is

V (t) = α

Np∑
k=1

ητ (t− kT ).

For k = 1, the form of the refocused signal at t = 2T is given by Theorem 3.1. After
the first perturbation, there are two propagating waves: the unperturbed wave U, and
the forward wave created by the perturbation uF = α∂tU/2. Denote their sum by up.
The second perturbation creates a refocused signal at t = 4T equal to

−α
2

∫ τ
2

− τ
2

ητ (s)Γ∂tup(2s)ds,

with a total propagating wave for t ≥ 2T + τ/2 equal to up + α∂tup/2. Repeating the
procedure, we find that the refocused signal at t = kT is a linear combination of terms
of the form (α

2

)k ∫ τ
2

− τ
2

ητ (s)Γ∂
(k)
t U(2s)ds.

In particular, the pressure component of ∂
(k)
t U verifies

∂
(k)
t P (t) = ∂

(k+1)
t Gt(p0) + ∂

(k)
t Gt(p1).

Setting for instance k = 2 and p1 = 0, we have, when the background velocity c = c0 is
constant,

∂
(3)
t Gt(p0) = ∂

(2)
t P (t) = c2

0∂tGt(∆p0), and ∂tP (t) = c2
0Gt(∆p0).

Since ∂tG(t, x, y) ' δ(x − y) and G(t, x, y) ' 0 for t ' 0, the refocused signal is then
predominantly a mollified version of the Laplacian of the initial condition p0. We will
verify this numerically in the next paragraph (see Fig. 3). More generally, if c0 is
constant and if k = 2m, then

∂
(2m)
t P (t) = c2m

0 ∂tGt(∆
(m)p0) + c2m

0 Gt(∆
(m)p1)

' c2m
0 ∆(m)p0 for t ' 0 if p0 6= 0,

while if k = 2m+ 1,

∂
(2m+1)
t P (t) = c

2(m+1)
0 Gt(∆

(m+1)p0) + c2m
0 ∂tGt(∆

(m)p1)

' c2m
0 ∆(m)p1 for t ' 0 if p1 6= 0.

As a conclusion, multiple perturbations produce (when the background is constant)
time-reversed signals proportional to powers of the Laplacian of the initial condition.

The rest of the section is dedicated to numerical simulations.
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Simulations. We solve the wave equation (4) on a square of side 2 centered at the
origin. The equation is equipped with Dirichlet boundary conditions for simplicity. We
set T = 1.8, and the discretization step sizes are ∆x = 0.002 and h := ∆t = 0.00072.
The initial conditions are centered around the origin, and the background coefficients
ρ0 and κ are constant and such that c(x) = c0 = 1.

In figure 1, we investigate the blurring effect as τ increases. We set p0 = 0 and p1 a
smiley figure, and represent p(2T ) for several values of τ . The function ητ is modeled
numerically by a constant function over nτ+1 time steps with integral one. The strength
of the perturbation is α = 0.001. We clearly observe the blurring effect as nτ increases.

Figure 1: Refocused signal for p0=0 and p1 a smiley figure. Top left: perturbation
of duration h. Top right: perturbation of duration 5h. Bottom left: perturbation
of duration 7h. Bottom right: perturbation of duration 13h. The blurring becomes
apparent as the duration of the perturbation increases.

In figure 2, we investigate the effect of the evenness of the function ητ , and have seen
theoretically (in the case Ω = R3) that the contribution of p0 to the refocused signal is
zero when ητ is even. We keep the same p1 as before and set p0 as the function repre-
sented on the left panel (the sum of four Gaussians). The middle figure is the refocused
signal for a constant function ητ over 13 time steps, and we observe numerical effects
creating a non zero contribution of p0. As expected, the latter is strongly increased
when the function ητ is an uneven piecewise constant function as observed on the right
panel (ητ takes the value 4/C on the first 3 time intervals and 1/C on the others, for C

11



an appropriate normalization constant).
In figure 3, we verify that after two perturbations at t = T and t = 2T and with

initial conditions p0 and p1 = 0, the refocused signal at t = 4T is proportional to the
Laplacian of p0.

Figure 2: Refocused signal for p1 as in figure 1 and p0 given by the function represented
on the left panel. Left: initial condition p0. Middle: perturbation of duration 13h for
a constant function ητ . Right: perturbation of duration 13h for an uneven function ητ .
The strength of the contribution of p0 increases when ητ is not even.

Figure 3: Refocused signal after two perturbations of duration h. Left: a Gaussian
initial condition for p0. Right: refocused signal at 4T . We verify that the latter is
indeed proportional to the laplacian of p0.

We consider in the next section spatially dependent perturbations and compare with
the spatially independent case.

4 Spatially-dependent perturbation

We suppose in this section that Ω = R3 and that the time-dependent perturbation is
localized in space, that is V (t, x) = αητ (t − T )χ(x), where χ(x) is a (non-negative)
function with bounded support. As mentioned in the introduction, we wish to consider
an experimental setting for time reversal that (i) does not necessitate the heavy anten-
nas/transducers apparatus and memory requirements of classical time-reversal; and (ii)

12



assumes that the time-dependent fluctuations can be performed only on (a small) part
of the spatial domain.

We consider two situations: (i) homogeneous media, and in such a case only the
waves on the support of χ are reversed and the quality of refocusing will be limited by
classical diffraction; (ii) highly heterogeneous media (modeled here by random media
with appropriate statistics), with a much enhanced resolution as in the classical theory
of time reversal. The main result of the section is Theorem 4.1 below. It provides
a quantitative description of the time-reversal experiment as a band-pass filter and
explains why refocusing is much enhanced when propagation occurs in a rich multi-path
environment.

Scalings. We suppose that the initial condition (v0, p0) is centered at x0 with support
of order λ. Equivalently, the quantity 2π/λ can be seen as the largest spatial frequency.
We suppose that the sound speed c(x)2 = (ρ0(x)κ(x))−1 verifies

c− ≤ c(x) ≤ c+,

for two positive constants c− and c+. For T the time of the perturbation, let L = c−T ,
which is the minimum distance traveled by the wave at time T . We then assume that
L� λ, and introduce

ε =
λ

L
� 1.

Rescaling all position variables by L, we rewrite φ0 = ∂tU(t = 0) = −(ρ−1
0 ∇p0, κ

−1∇ ·
V0) as

φ0(Lx′) =
1

ε3
Q

(
x′ − x′0
ε

)
, x0 = Lx′0.

We model the heterogeneous medium by a random medium and assume the following
forms for the unperturbed (w.r.t. time) density and compressibility:

ρ0(x) = ρ̄(x)

(
1 + σρθρ

(
x

`c

))
, κ(x) = κ̄(x)

(
1 + σκθκ

(
x

`c

))
,

where θρ and θκ are mean-zero stationary random fields with correlation functions Rρ

and Rκ. The parameters σρ and σκ quantify the strength of the fluctuations and `c
their correlation length. Introducing δ = `c/L and rescaling x by Lx′, ρ0 and κ become
ρ0(Lx′) = ρ̄(Lx′)(1 + σρθρ (x′/δ)), and κ(Lx′) = κ̄(Lx′)(1 + σκθκ (x′/δ)). There are
essentially three interesting asymptotic regimes depending on the relationship between
σρ, σκ, δ and ε. In the stochastic homogenization regime, σρ ∼ σκ ∼ 1, and δ � ε.
In this situation, waves are asymptotically propagating in an effective medium and no
significant mixing occurs. It is therefore expected that refocusing will be similar to
the homogeneous case, and as a consequence this regime will not be considered. The
opposite situation where ε � δ, with σρ and σκ small (the appropriate relation with ε
can be found in [3]), is called the random geometrical optics regime, and exhibits some
mixing leading to super-resolution. The intermediate case, the radiative transfer regime
where σρ = σκ =

√
ε and δ = ε, leads to some mixing as well. We study then the

time-reversed wave in these last two regimes.

13



Asymptotic analysis. Let uεR(ξ) = uR(2T, L(x0 + εξ)). We nondimensionalize time
and position as t → Tt′ and x → Lx′ (so that the perturbation occurs at t′ = 1 in
nondimensional variables), drop primes, and with a slight abuse keep the same notations
for the various quantities of interest. The new matrix A is then the old one multiplied
by c−, and the old Green’s functions are divided by L3. We also introduce µε = τ/(εT ),
which we assume converges to µ ∈ [0,∞] as ε → 0. We will adapt the theory of time-
reversal introduced in [5, 6] and for this we need to appropriately decompose the term
Q. Let then

b±(x, k) =
1
√
c−

 ±k̂/√2ρ̄(x)

1/
√

2κ̄(x)

 , k̂ =
k

|k|
,

which are the two eigenvectors of the dispersion matrix E{A(x)}−1kjD
j associated with

the simple eigenvalues ±ω(x, k) with ω(x, k) = (c̄(x)/c−)|k| and c̄(x) = (ρ̄(x)κ̄(x))−1/2.
They are normalized such that b± · E{A(x)}b± = 1. The other (double) eigenvalue
is zero. Since the first three components of Q form an irrotational vector field, Q has
no contributions on the eigenspace associated with the zero eigenvalue, and its Fourier
transform can then be decomposed as

Q̂(k) = Q̂+(k) + Q̂−(k) := Q+(k)b+(x0, k) +Q−(k)b−(x0, k). (13)

The decomposition of Lemma 2.1 still holds here, with the difference that, in the
heterogeneous case, the contributions of the unperturbed solution U and the forward
solution uF to u(2T ) around the origin are non-zero due to multiple scattering. This
brings in some background noise in the reconstructions. Regarding the time-reversed
wave, we have the following result:

Theorem 4.1 The refocused signal uεR verifies

lim
ε→0

uεR(ξ) = (J + ?Q+)(ξ) + (J − ?Q−)(ξ),

where
Ĵ ±(k) = −α

2
η̂
(
± 2µω(x0, k)

)
a±(1, x0, k)Γ.

Above, a± is the solution to the transport equation
∂a±
∂t
±∇kω · ∇xa± ∓∇xω · ∇ka± = L(a±), (x, k) ∈ R3 × R3

a±(0, x, k) = χ(x),
(14)

where the operator L admits the following expressions:

L(a)(x, k) =



∫
R3

δ(ω(x, p)− ω(x, k))σ(x, k, p)(a(x, p)− a(x, k))dp

in the radiative transfer regime,

∂

∂km

(
|k|2Djm(x, k̂)

∂a(x, k)

∂kj

)
in the random geometrical optics regime.
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The definitions of the collision cross-section σ and of the diffusion matrix D above
depend on the Fourier transforms of E{θρ(x)θρ(0)}, E{θκ(x)θκ(0)} and E{θρ(x)θκ(0)},
and can be found in [3, 18].

Theorem 4.1 shows that, as in the classical theory of time reversal [6], the refocused
signal is the convolution between some filters J ± and an appropriate quantity (here
∂tU(t = 0), while it is U(t = 0) in [6], both after appropriate projections). For good
reconstructions, the kernels J ± have to decrease rapidly away from the origin, which is
equivalent to their Fourier transforms Ĵ ± being smooth functions.

Enhanced refocusing in heterogeneous media is explained as follows. Consider first
the term η̂

(
± 2µω(x0, k)

)
, which is smooth. Indeed, as soon as |k| > 0, ω(x0, k) is a

smooth function (zero frequency waves for k = 0 do not propagate and are therefore not
reversed), and η̂ is smooth as well since η as a compact support. The key parameter is
then µ: when µ = ∞, that is essentially when τ � εT , then J ± = 0 since η̂ is zero at
infinity by applying the Riemann-Lebesgue lemma. There is no refocused wave in this
case since the duration of the perturbation is too large and waves interfere destructively.
When µ is finite, the best refocusing is obtained for τ |k| � εT , that is when the duration
of the perturbation is sufficiently small compared to the largest wavenumber in the
initial condition. This is the same scenario as in the case of a spatially independent
perturbation addressed in section 3. The difference with the latter lies in the term a±.
The fact that a± is more regular in the heterogeneous case than in the homogeneous
case is explained in the same way as in the classical theory of time reversal developed
in [6]: in the homogeneous case where L = 0, a± is essentially as regular as χ, while in
the heterogeneous case, the transport equation (14) enjoys some regularizing effects.

In the random geometrical optics regime, the transport operator is hypoelliptic,
while in the radiative transfer regime, the solution a± can be written as a multiple
scattering expansion in which each term decays exponentially (reducing in particular
exponentially the contribution of the singular term χ) and where the (n + 1)-th term
is more regular than the n−th term, see [6] for more details. This explains the super-
resolution phenomenon in the heterogeneous case.

The proof of Theorem 4.1 is given in section 5.3. It is based on an adaptation of the
techniques of [6] and on the introduction of space-time Wigner transforms.

Note that when χ = 1, then a± = 1 and we recover the results for the spatially
independent case as follows: writing first

η̂
(
± 2µω(x0, k)

)
=

∫
R
η(s) cos(2µω(x0, k)s)ds∓ i

∫
R
η(s) sin(2µω(x0, k)s)ds

:= â(k)± ib̂(k),

we find from Theorem 4.1,

lim
ε→0

ΓuεR(ξ) = −α
2
a ?Q− α

2
ib ? (Q+ −Q−). (15)

A short calculation shows that Q̂+ − Q̂− is equal to the vector −i(|ξ| ξ̂ · v0, |ξ| p̂0). We
then compare with Theorem 3.1: rescaling variables and the initial condition as in this
section, we have that ∂tU(x0 +εξ) is well approximated for ε small by the solution to the
wave equation with frozen coefficients κ̄(x0), ρ̄(x0) and with the same (rescaled) initial
conditions. It suffices then to reproduce the analysis in the paragraph after Lemma 3.2
to recover expression (15).
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Simulations. We choose χ to be the smoothed characteristic function of disks centered
at (0.35, 0.35) with radii 0.1 and 0.3, see figure 4. The initial condition is centered at
zero as before. We solve the wave equation (4) both when the background is constant
and when it is random.

We start with the homogeneous case and represent in figure 5 the refocused signal
for perturbations on the small and large disks with p0 = 0 and p1 a smiley figure. We
set T = 0.5 so that the wavefront is at the center of the disks. We choose nτ = 0 (recall
that nτ + 1 is the number of time steps of the perturbation) and the perturbation is
then close to a delta function. The smiley figure can barely be recognized in the small
disk case and refocusing is very poor. It is better for the large disk, as expected. We
investigate this fact further in figure 6 where we set p0 = 0 and p1 as a peaked Gaussian
in order to characterize the point spread function. The resolution in the direction of the
disks is good (range resolution), while the cross-range resolution is poor in the case of
the small disk, and naturally better for the larger disk.

Figure 4: Depiction of the initial condition and the support of the function χ, which
is the smoothed characteristic function of either the small or the large disk where the
waves are perturbed.

Figure 5: Refocused signal in the homogeneous case (p0 = 0). Left: small disk. Right:
large disk. The reconstruction is better for the larger disk as expected.

We consider now the heterogeneous case with two random media with fluctuations
with different correlation lengths and similar amplitudes, see figure 7. The one on the
left is very rough and essentially spatial white noise, and corresponds to the radiative
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Figure 6: Point spread function in the homogeneous case. Left: small disk. Right: large
disk. The large disk offers a better cross-range resolution.

transfer regime as our initial condition (the smiley figure) is very singular. The one on
the right is smoother with a larger correlation length, and corresponds to the random
geometrical optics regime. Both have fluctuations of about the same amplitude and are
generated using random Fourier series.

Figure 7: Random media: background (i.e. average value) is one, with mean-zero ran-
dom perturbations. Left: rough medium close to spatial white noise. Right: smoother
medium with larger correlation length. The amplitudes of the fluctuations in both media
are similar.

We represent in figure 8 the refocused signal for the two random media and the two
disks of different radii. The time T is set to 1.8 for sufficient interaction between the
wave and medium, and the strength of the perturbation is increased to α = 0.01 in order
to increase the signal-to-noise ratio. The top row corresponds to the smooth random
medium that is on the right of figure 7, while the bottom row corresponds to the rough
medium. The left column corresponds to the small disk, and the right one to the large
disk.

Refocusing is spectacularly improved in the case of the rough medium compared to
the homogeneous case, both for the small and the large disks. Apart from the noise in
the background, the reconstruction of the initial condition is almost perfect. Refocusing
is enhanced in the smooth medium case compared to the homogeneous situation, but
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not as much as in the rough medium case. This is explained by the very singular nature
of our initial condition, which better interacts with the rough random medium than with
the smooth one, resulting in more mixing at the time of the perturbation. This fact is
further explored in figure 9, where we represent the point spread function (calculated
for T = 1.8 with p0 = 0 and p1 a peaked Gaussian). Again, the large disk and the rough
medium offer the best resolution and the best signal-to-noise (SNR) ratio. The SNR
decreases in the case of the small disk, but, when the medium is rough, the resolution
is comparable to that of the large disk. When the medium is smooth, the central peak
is wider than in the rough case, and can barely be observed when the disk is small.

Figure 8: Refocused signal in random media (with p0 = 0). Top row: smooth random
medium. Bottom row: rough random medium. Left column: small disk. Right column:
large disk. For the rough random medium, note the much better refocusing than in the
homogeneous case.

The rest of the paper is dedicated to the proofs of our main results.

5 Proofs

5.1 Proof of Lemma 2.1

Introducing the Green’s function G, we have the representation formula

u(t) = Gt(u0) +

∫ t

0

Gt−s(VsA
−1Ss)ds = U(t) +

∫ t

0

Gt−s(VsA
−1S0

s)ds+ Rτ (t) (16)
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Figure 9: Point spread function. Top row: smooth random medium. Bottom row:
rough random medium. Left column: small disk. Right column: large disk. The best
resolution and best signal-to-noise ratio are observed in the rough medium and large
disk case.

where

Rτ (t) =

∫ t

0

Gt−s(VsA
−1(Ss−S0

s))ds with S0(t) = −(∇P (t), 0) = ρ0(∂tV(t), 0),

and we recall (V,U) is the unperturbed solution. With the (column) vector ∂tU(t) =
(∂tV(t), ∂tP (t)) and the matrix Γ = Diag(−1,−1,−1, 1), the second term of the r.h.s.
of (16) above is recast as

−1

2

∫ t

0

Gt−s(VsΓ∂tUs)ds+
1

2

∫ t

0

Gt−s(Vs∂tUs)ds.

We call the first term above uR and the second one uF . The vector ∂tU is the solution to
the system (5) with V = 0 and initial condition ∂tU(t = 0) = φ0 = −(ρ−1

0 ∇p0, κ
−1∇·v0).

As a consequence, the term uR can then be written as

uR(t) = −α
2

∫ t

0

ητ (s− T )Gt−s(χΓGs(φ0))ds

= −α
2

∫ t

0

∫
Ω

∫
Ω

ητ (s− T )Gt−s(x, y)ΓGs(y, z)χ(y)φ0(z)dsdydz,

which ends the proof.
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5.2 Proof of Lemma 3.2

We start by showing that ∂t∇p ∈ (L∞(R+ ×R3))3 when V (t, x) = αδ(t− T ), assuming
the initial conditions are sufficiently smooth. Taking the Fourier transform of the wave
equation yields

∂2
t p̂+ c2

0|ξ|2
(
1 + αδ(t− T )

)
p̂ = 0, p̂(t = 0) = p̂0, ∂tp̂(t = 0) = p̂1.

The equation above can be solved exactly by imposing that p̂ is continuous and that
∂tp̂ jumps at t = T . We find:

p̂(t, ξ) =

 p̂0(ξ) cos
(
c0|ξ|t

)
+ p̂1(ξ) sin

(
c0|ξ|t

)
/(c0|ξ|) for t ≤ T

p̂0(ξ)F1(t, ξ) + p̂1(ξ)F2(t, ξ) for t ≥ T,

where, using the shorthand ωT = c0|ξ|T ,

F1(t, ξ) = (1 + αc0|ξ| cosωT sinωT ) cos(c0|ξ|t)− αc0|ξ| cos2 ωT sin(c0|ξ|t)

F2(t, ξ) =

(
1

c0|ξ|
− α cosωT sinωT

)
sin(c0|ξ|t) + α sin2 ωT cos(c0|ξ|t).

The explicit representation of p̂ then allows us to derive the following estimate, for all
t 6= T ,

|∂tp̂(t, ξ)| ≤ C|ξ|(1 + |ξ|)|p̂0(ξ)|+ C ′(1 + |ξ|)|p̂1(ξ)|.

Since ‖∂t∇p‖L∞(R+×R3) ≤ ‖|ξ|∂tp̂‖L∞(R+,L1(R3)), the result is obtained provided (1 +
|ξ|3)p̂0(ξ) ∈ L1(R3) and (1 + |ξ|2)p̂1(ξ) ∈ L1(R3).

We prove now the estimate on the remainder Rτ . For this, let w be the fourth
component of Rτ . It satisfies the equation

∂2
tw − c2

0∆w = αητ (t)c
2
0∆(p− P ), w(t = 0) = ∂tw(t = 0) = 0,

for p and P the perturbed and unperturbed pressures, respectively. We remark first
that w = 0 when t ≤ T − τ

2
and that for t ≥ T − τ

2
, w admits the representation formula

in the Fourier space:

ŵ(t, ξ) = −αc0|ξ|
∫ t∧ τ

2

− τ
2

ητ (s) sin
(
c0(t− s− T )|ξ|

)(
p̂(s+ T, ξ)− P̂ (s+ T, ξ)

)
ds.

Since ητ integrates to one, we have then, for all t ≥ T − τ
2
,

|ŵ(t, ξ)| ≤ αc0|ξ| sup
t∈[T− τ

2
,T+ τ

2
]

|p̂(t, ξ)− P̂ (t, ξ)|. (17)

It therefore remains to control p̂− P̂ on [T − τ
2
, T + τ

2
]. This is done as follows. First,

p̂ verifies (
∂2
t + c2

0|ξ|2(1 + αητ (t))
)
p̂ = 0, p̂(t = 0) = p̂0, ∂tp̂(t = 0) = p̂1.
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Since ητ is constant on the interval [T − τ/2, T + τ/2], p̂ can be calculated analytically.
Introducing t± = T ± τ/2 and ω = c0|ξ|

√
1 + α/τ , we find that p̂ reads, for t ∈ [t−, t+],

p̂(t, ξ) = G1(t, ξ)p̂0(ξ) +G2(t, ξ)p̂1(ξ)

where

G1(t, ξ) = cos(c0|ξ|t−) cos
(
ω(t− t−)

)
− c0|ξ|

ω
sin(c0|ξ|t−) sin

(
ω(t− t−)

)
G2(t, ξ) =

sin(c0|ξ|t−)

c0|ξ|
cos
(
ω(t− t−)

)
+

cos(c0|ξ|t−)

ω
sin
(
ω(t− t−)

)
.

Writing then, with Ĝ(t, ξ) = sin(c0|ξ|t)/(c0|ξ|),

P̂ (t, ξ) = ∂tĜ(t, ξ)p̂0(ξ) + Ĝ(t, ξ)p̂1(ξ),

we need to estimate G1 − ∂tĜ and G2 − Ĝ for t ∈ [t−, t+]. This is direct as, for all
t ∈ [t−, t+],

|G2(t, ξ)− Ĝ(t, ξ)| ≤
∣∣∣∣sin(c0|ξ|t−)− sin(c0|ξ|t)

c0|ξ|
cos
(
ω(t− t−)

)∣∣∣∣
+

∣∣∣∣sin(c0|ξ|t)
c0|ξ|

(
cosω(t− t−)− 1

)∣∣∣∣+

∣∣∣∣cos(c0|ξ|t−)

ω
sinω(t− t−)

∣∣∣∣
≤ τ + τ(τ + α)c0|ξ|/2 + τ,

and

|G1(t, ξ)− ∂tĜ(t, ξ)| ≤
∣∣( cos(c0|ξ|t−)− cos(c0|ξ|t)

)
cos
(
ω(t− t−)

)∣∣
+
∣∣cos(c0|ξ|t)

(
cosω(t− t−)− 1

)∣∣+

∣∣∣∣c0|ξ|
ω

sin(c0|ξ|t−) sinω(t− t−)

∣∣∣∣
≤ c0|ξ|τ + τ(τ + α)(c0|ξ|)2/2 + c0|ξ|τ.

Therefore,

sup
s∈[T− τ

2
,T+ τ

2
]

|p̂(t, ξ)− P̂ (t, ξ)| ≤ τ(2 + (τ + α)/2)(c0|ξ||p̂0(ξ)|+ |p̂1(ξ)|),

and, together with (17), we have arrived at

|ŵ(t, ξ)| ≤ ατc0|ξ|(2 + (τ + α)/2)(c0|ξ||p̂0(ξ)|+ |p̂1(ξ)|). (18)

Representing now Rτ by Rτ = (E, w), the vector E verifies

∂tE = −ρ−1
0 ∇w, E(t = 0) = 0,

which allows us to directly estimate ∂tE in the Fourier space in terms of w using (18).
We conclude the proof of the lemma by going back to the real space.
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5.3 Proof of Theorem 4.1

With the change of variable s→ εs/2 and z → x0 + εz, we find from Lemma 2.1,

uεR(ξ) = −α
4

∫ µε

−µε

∫
R3

ηµε(s/2)K(2, εs/2 + 1, x0 + εξ, x0 + εz)Q(z)dsdz,

where we recall that µε = τ/(εT ) and

K(2, εs/2 + 1, x0 + εξ, x0 + εz)

=

∫
R3

G1−εs/2(x0 + εξ, y)G∗1+εs/2(x0 + εz, y)ΓA(x0 + εz)χ(y)dy.

Above, we used the fact, proved in [6], that G∗(t, x, y)ΓA(x) = ΓG(t, y, x). Introducing
the space-time Wigner transform (see e.g. [2]),

Wε(t, ω, x, k) =
1

(2π)4

∫
R7

ei(ωs+k·z)Gt− εs
2

(x− εz/2, y)G∗t+ εs
2

(x+ εz/2, y)χ(y)dsdzdy,

we have, by an inverse Fourier transform,∫
R3

Gt− εs
2

(x0 + εξ, y)G∗t+ εs
2

(x0 + εz, y)χ(y)dy

=

∫
R4

e−i(ωs+k·(z−ξ))Wε(t, ω, x0 +
ε

2
(z + ξ), k)dωdk.

This allows us to recast uεR as

uεR(ξ) =

∫
R3

J ε(ξ, z)Q(z)dz,

with

J ε(ξ, z) = −α
2

∫
R4

eik·(ξ−z)η̂(2µεω)Wε(1, ω, x0 +
ε

2
(z + ξ), k)ΓA(x0 + εz)dωdk.

We now pass to the limit adapting the results of [6] and [2]. In particular, the function
f of [6] is a delta function here, and the function χ of [6] corresponds to square root of
our function χ. We then find that the limit of Wε is W + W1, where W1 is not needed
since Q is irrotational, and W reads

W(t, ω, x, k) =
1

(2π)3

∑
±

δ

(
ω ∓

(
c̄(x)

c−

)
|k|
)
a±(t, x, k) b±(x, k)⊗ b±(x, k),

where a± satisfy the transport equations stated in the theorem. We can then pass to
the limit in J ε and find

J ε(ξ, z)Q(z)→ J (ξ − z)Q(z) as ε→ 0,

where

J (v) = −α
2

∫
R4

eik·vη̂(2µω)W(1, ω, x0, k)ΓE{A(x0)}dωdk.

Integrating out the variable ω, and using (13) together with b± · E{A(x0)}b± = 1,
b± · E{A(x0)}b∓ = 0, Γb± = b∓, finally yield the desired result.
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A Modeling of time-dependent media

The main results of the paper are obtained thanks to the decomposition (8), which is
derived for acoustic systems of the form (5). As we remarked in section 2, this imposes
constraints on the structure of the time-dependent coefficients. This appendix revisits
such constraints and considers more general time-dependent fluctuations whose effect
can be computed in the simplified setting where χ(x) ≡ 1.

Many wave propagation problems with time-dependent coefficients may be modeled
by an equation of the form

∂tu = A1(t, x)A0(x,D)u. (19)

For the acoustic system in d dimensions, u(t, x) ∈ Rm with m = d+1, and A0(x,D) (the
symbol D stands for −i∇) is a (square) matrix-valued differential operator while A1(t, x)
a square matrix. Accounting for perturbations both in the density and compressibility
coefficients, denoted by Vρ and Vκ, respectively, we have

ρ−1(t, x) = ρ−1
0 (x)(1 + Vρ(t, x)), κ−1(t, x) = κ−1

0 (x)(1 + Vκ(t, x))

and

A1(t, x) =

(1 + Vρ(t, x))Id 0

0T 1 + Vκ(t, x)

 , A0(x,D) =
1

i

 0d ρ−1
0 (x)D

κ−1
0 (x)DT 0

 .

Above, Id (resp 0d) is the d-dimensional identity (resp. zero) matrix, and 0 is the zero
column vector of dimension d.

Let us first consider the setting of section 2, with time-dependent fluctuations local-
ized around a time T , leading in the limit τ → 0 to an equation of the form

∂tu = A0(x,D)u + δT (t)B(x,D)u, (20)

where δT is the Dirac function at T , B = B0A0 and A1 = I + δT (t)B0 for some matrix
B0. The above equation may be seen as the limit as τ → 0 of (5).

In order for the last term in the equation to be defined, we need Bu to be continuous
at time t = T . Integrating the above equation between T− and T+ gives

u(T+)− u(T−) = 0 + (Bu)(T ),

so that after applying the matrix operator B once more, we obtain that B2u(T ) = 0.
Since this needs to be valid for general vectors u(T ), we obtain that a quasi-necessary
condition for the above equation to make sense is that B2 = 0.

Constructing solutions to (20), at least formally, is central to our analysis in sections
3&4. Heuristically, the quality of refocusing and the possibility to properly define so-
lutions to (20) are related as follows. We have seen in section 3 that a key ingredient
for the error Rτ to be small as τ → 0 is for ∇p(s) − ∇p(s − τ) to be small around
the perturbation. In particular, Rτ is of order τ when ∇∂tp is bounded independently
of τ . The decomposition of the field u given in (8) can be generalized to the case of
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perturbations in both ρ and κ, with a new error term Rτ . The latter will be of order
τ if all components of the (spatial derivatives) of field admit uniformly bounded (in
τ) time derivatives. Failure to construct solutions to (20) indicates a lack of uniform
boundedness of the time derivatives of the field solution to the system with non-zero τ ,
which, as a consequence, yields a larger term Rτ that is not of order τ and pollutes the
refocused signal uR in (8).

In the case of a system of acoustic equations, we observe, with Vρ(t, x) = Vρ(t) =
αδT (t) and Vκ(t, x) = Vκ(t) = βδT (t), that

B = B0A0 where B0 =

αId 0

0T β

 ,

and as a consequence
B(x,D)2 = αβA0(x,D)2.

Thus, in order for B2 = 0 to hold, we need that either α = 0 or β = 0. The analysis
presented in this paper is based on the convenient form for u above. As we indicated in
the text, it imposes fast variations of either ρ−1 or κ−1 but not both at the same time.

It turns out that other (and important) classes of rapid temporal fluctuations can be
considered with some other quantities than u being discontinuous at time t = T . In the
next paragraph, we consider spatially-independent fluctuations leaving the impedance
constant. We show the physically expected result that no back-scattered signal is gen-
erated in such a situation. In the following paragraph, we generalize the analysis to still
spatially-independent fluctuations that generate couplings between propagating modes
and their time-reversed versions. Such an analysis is based on the existence of propagat-
ing modes and on fluctuations that generate couplings that can be computed explicitly.
This rules out the important case of spatially-varying fluctuations (for instance χ(x)
supported on a compact domain), whose effect on propagating modes is significantly
more complex. This was the main reason for the introduction of (5).

The case of time-independent impedance. To motivate the analysis, let us con-
sider the setting of constant coefficients (in space and time) and of plane wave solutions.
We verify that

u±(t, x) = u±e
i(c|k|t∓k·x)

is a solution with c = (κρ)−
1
2 and

u± =

∓ζ−1k̂

1

 , ζ = cρ =
1

κc
=

√
ρ

κ
, k̂ =

k

|k|
.

Here, ζ is the impedance, the ratio of pressure over velocity in propagating plane waves.
The reason for the presence of both signs ± is to present waves in pairs of forward- and
backward- (time-reversed) propagating signals. The main influence of time-dependent
fluctuations is to couple the two modes u± with each other and this is precisely how a
time-reversed signal is generated. Rapid variations in ρ−1 and κ−1 can easily be analyzed
within this framework of plane waves when the coefficients are spatially independent.
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It is expected physically that any temporal fluctuations of κ and ρ such that ζ
remains constant should not affect the dispersion relation and hence generate no coupling
between the modes u±(t, x). We now verify this in a slightly more general setting
than the constant coefficients (in space) case. For the acoustic system, suppose that
Vρ(t, x) = Vρ(t) = Vκ(t), so that the impedance ζ does not depend on time. Then the
matrix A1(t) in (19) is proportional to the identity matrix, and this leads to an equation
of the form

∂tu = a1(t)A0(x,D)u, (21)

with a1(t) a scalar, for instance constant (equal to 1) except in a small interval (T −
τ/2, T + τ/2), and A0 is the time-independent system. Now, let us assume the existence
of a (non-trivial) solution of the generalized eigenvalue problem

A0(x,D)u0 = iωu0, (22)

with ω real-valued since A0 is hyperbolic. These are simply generalized plane waves.
We then look for solutions of (21) of the form

u(t, x) = q(t)u0(x)

with an equation for q(t) then given by

q̇(t) = iωa1(t)q(t), so that q(t) = q(0) exp

{∫ t

0

iωa1(s)ds

}
.

When a1 is an approximation of 1 + αδT (t), we thus observe that the influence of the
temporal fluctuations is to induce a phase shift given by αω.

For acoustic waves with spatially invariant media, this corresponds to looking for a
solution of the form

u+(t) =

−ζ−1k̂

1

 q(t)e−ik·x

with q̇(t) = i|k|ζ−1κ−1(t)q when ζ is time-independent, i.e., when ρ(t)/κ(t) = ζ2 is
constant.

Note that in the above setting, q(t) is not continuous at time t = T , so that we
cannot write the equation q̇(t) = iω(1 + αδT (t))q(t) with a discontinuity in q̇. Instead,
it is q̇

q
that is discontinuous, with a resulting phase shift. Hence, equation (20) is not

satisfied as stated, but solutions can still be constructed provided the time fluctuations
in the density and the compressibility are the same.

Finally, since (21) is linear, one can consider linear combinations of modes satisfying
an equation of the form (22). They will remain uncoupled and each see an appropriate
phase shift at t = T . We address the simplest of non-trivial mode couplings in the next
paragraph.

Mode coupling with time-reversed mode. Consider the same equation for u as
above with this time two modes (forward and time-reversed) given by

A0(x,D)u± = ±iωu±.
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In this setting, we then look for solutions of (21) of the form

u(t, x) = u+(x)q+(t) + u−(x)q−(t).

This would generalize in the setting with polarization (higher-dimensional eigenspaces as
they appear in electromagnetism or elasticity) to u± given by matrices of eigenvectors.
In the acoustic case, write u+(x) = (v(x), w(x))T , for v a d-dimensional vector. It
follows directly that u− = (−v(x), w(x))T . Denote then by S the span of u+ and u−.
A short calculation shows that A1(t)S ⊂ S, i.e., the temporal fluctuations acting on u±
do not generate anything that cannot be decomposed over these two modes, and more
precisely

A1(t)A0(x,D)u(t, x) = A1(t)

(∑
±

±iωq±(t)u±(x)

)
=
∑
±

γ±(t)u±

where

γ+(t) = iω (Σ(t)q+(t) + ∆(t)q−(t)) , γ−(t) = iω (−Σ(t)q−(t)−∆(t)q+(t))

and

Σ(t) =
1

2
(2 + Vρ(t) + Vκ(t)) , ∆(t) =

1

2
(Vρ(t)− Vκ(t)) .

We thus obtain the differential equation

u+(x)q̇+(t) + u−(x)q̇−(t) = u+(x)γ+(t) + u−(x)γ−(t).

Writing q = (q+, q−)T , we find, after appropriate projection of the above equation, the
following system:

q̇(t) = M(t)q(t), M(t) = iω

 Σ(t) ∆(t)

−∆(t) −Σ(t)

 . (23)

The above system describes the coupling between the forward and time-reversed modes
for any bounded perturbations such that ρ(t, x) and κ(t, x) are positive. There is a
non-trivial coupling as soon as ∆(t) 6= 0, that is when the fluctuations of the density
and the compressibility are different. The case ∆(t) = 0 was addressed in the preceding
paragraph. Note that

d|q(t)|2

dt
= 4∆(t)=(q−(t)q∗+(t)),

and as a consequence the energy is conserved (only) when ∆(t) = 0.
Assuming the perturbations are supported in (T − τ

2
, T + τ

2
) as in section 2, we can

solve (23) on this interval and relate the initial and final amplitudes via a scattering
matrix Sτ such that

q(T + τ/2) = Sτq(T − τ/2).

We can obtain simple expressions of Sτ in the following cases: when the perturbations
are identical, when one is zero, or when they are constant in (T − τ/2, T + τ/2). In the
first case, we have, as already seen,

M(t) = iω

1 + Vρ(t) 0

0 −(1 + Vρ(t))

 and then Sτ =

sτ 0

0 s∗τ

 ,
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with sτ = exp(iω
∫ T+ τ

2

T− τ
2

(1 + Vρ(s))ds). When Vρ is an approximation of a delta function

at t = T with weight α, we then find Sτ → S0, where S0 is diagonal with entries
s0 = eiωα and s∗0.

For the second case, we have, with for instance Vκ = 0,

M(t) = iω

1 0

0 −1

+
Vρ(t)

2

 1 1

−1 −1

 := D +M0(t).

Writing q(t) = etDµ(t), we find

µ̇(t) = Vρ(t)M1(t)µ(t), M1(t) =
iω

2

 1 m∗(t)

−m(t) −1

 , m(t) = e2iωt.

Interestingly, while the above equation does not seem to be exactly solvable in general,
it is when Vρ(t) = αδT (t) since we can exploit the fact that (M1(T ))2 = 0. We then find

µ(T+) = (I2 + αM1(T ))µ(T−),

and the asymptotic scattering matrix is

S0 = I2 + αeTDM1(T )e−TD = I2 +
iαω

2

 1 1

−1 −1

 . (24)

Note that, while q(t) is discontinuous at t = T , it is possible to construct solutions to
(23) as τ → 0. These solutions do not satisfy (23) quite as stated but rather in a proper
weaker sense. To make the connection with the first paragraph of the appendix, note
that the relevant quantities to address the solvability of (20) are q+(t)± q−(t) since

u(t, x) =

(q+(t)− q−(t))v(x)

(q+(t) + q−(t))w(x)

 .

We then deduce from the scattering matrix (24) that q+(t) + q−(t) is continuous at T ,
and therefore that the last component of u is continuous, which is enough to make sense
of (20) when Vκ = 0.

When both perturbations are constant on (T −τ/2, T +τ/2) and of the form Vρ(t) =
αη((t − T )/τ) and Vρ(t) = βη((t − T )/τ), where η is defined in section 2, (23) can be
solved exactly in (T − τ/2, T + τ/2), and we find, with α0 = 1 + α, β0 = 1 + β,
θ = ωτ

√
α0β0, a =

√
α0/β0,

Sτ = 4

s1 s∗2

s2 s∗1

 , s1 = cos θ +
i

2

(
1

a
+ a

)
sin θ, s2 =

i

2

(
1

a
− a
)

sin θ.

The expressions above show in particular that the forward and the time-reversed modes
cannot be exchanged since s1 cannot vanish (since a is positive). The largest transfer
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(largest ratio |s2|/|s1|) is obtained for θ = π
2

and a either very large or very small, i.e.,
when only one of the coefficients varies.

Note that we can address the limit τ → 0 as follows: rescaling α and β as α/τ
and β/τ , we can take the limit of Sτ and find the same expression as above with now
θ = ω

√
αβ and a =

√
α/β. Again, q is discontinuous at T but still satisfies (23) in a

proper sense as τ → 0.
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