Time reversal by time-dependent perturbations

Guillaume Bal, Mathias Fink, Olivier Pinaud

To cite this version:

Guillaume Bal, Mathias Fink, Olivier Pinaud. Time reversal by time-dependent perturbations. 2018. hal-01881455

HAL Id: hal-01881455
https://hal.science/hal-01881455
Preprint submitted on 26 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Time reversal by time-dependent perturbations

Guillaume Bal * Mathias Fink ${ }^{\dagger} \quad$ Olivier Pinaud \ddagger

September 25, 2018

Abstract

We consider the time-reversal of waves in time-dependent media. The constitutive parameters of a wave equation are assumed constant in time during intervals $(0, t-\tau) \cup(t+\tau, 2 t)$ for $\tau \ll t$ and time-varying during the time interval $(t-\tau, t+\tau)$ to model a quasi-instantaneous time mirror. We show that under appropriate hypotheses, a time-reversed signal is generated by such time-dependent fluctuations. At time $2 t$, the time-reversed signal is an appropriate differentiation of the original initial condition when the time-varying fluctuations are independent of space. In the case of spatially varying fluctuations, we show that the time-reversed signal enjoys stronger refocusing properties when propagation occurs in a highly heterogeneous environment, as in the case of classical time-reversal.

This paper offers additional theoretical justifications to the experimental results obtained in [1] and proposes potential extensions. We present numerical simulations that also corroborate and quantify the theoretical predictions.

1 Introduction

This paper concerns time reversal phenomena of waves propagating in time-dependent media. It is known that wave equations with time-independent coefficients are invariant by time reversal in the sense that the wave propagation operator from time 0 to time t is a unitary operator $U(t)$ in an appropriate metric realizing energy conservation, and that wave propagation from time t to time 0 is described by $U^{*}(t)=U(-t)$, which involves wave propagation in the same medium albeit with time-reversed initial conditions. As a consequence, an initial fluctuation propagated by $U(t)$, recorded at time t, time-reversed and then propagating in the same medium for a duration t, and time-reversed one more time, will be exactly equal to the original fluctuation. Said differently, if \mathcal{T} is the (bosonic) time-reversion operation (with $\mathcal{T}^{2}=I$), then $U^{*}(t)=U(-t)=\mathcal{T} U(t) \mathcal{T}$ so that $\mathcal{T} U(t) \mathcal{T} U(t)=I$ the identity operator.

[^0]A notable corollary to time-reversal is the refocusing properties of partially recorded waves. Let $\chi(x)$ describe a spatial domain (a detector array) where a signal is recorded. The operator modeling the time-reversed signal is $\mathcal{T} U(t) \mathcal{T} \chi(x) U(t)$. This is no longer identity. A striking feature of classical time-reversal is that the latter operator 'resembles' identity much more closely when propagation occurs in a heterogeneous medium than when it does in a homogeneous one. Heuristically, heterogeneities create multiple reflections (multi-pathing), and the recorded signal by $\chi(x)$ then involves a superposition of many more paths that will interfere coherently during the backpropagation stage modeled by $\mathcal{T} U(t) \mathcal{T}$. We refer the reader to $[4,6,7,8,9,10,11,12,13,14,15,16]$ and their multiple references for descriptions and background on time reversal in heterogenous environments.

The main objective of this paper is to analyze time reversal phenomena where the measurement/time reversal operator $\mathcal{T} \chi(x)$ is 'replaced' by a short-duration largeamplitude time-dependent fluctuation ('instantaneous' time mirror [1]) in the properties of the underlying medium. For a convincing experimental realization of the phenomenon when $\chi(x) \equiv 1$, we refer the reader to the recent paper [1].

Let us consider time-dependent fluctuations on the support of $\chi(x)$ in the τ-'vicinity' of time t and call their effect on wave propagation as the operator $\mathcal{F}_{t, \chi}$. We then wish to analyze the wave field $\mathcal{T} U(t) \mathcal{F}_{t, \chi} U(t)$. Under appropriate hypotheses on the timedependent fluctuations, we have $\mathcal{F}_{t, \chi}=I+\alpha(\delta \mathcal{F})_{t, \chi}$, where α models the fluctuations' strength, and we will show that the latter operator decomposes into four components. The first one is simply the unperturbed solution modeled by $\mathcal{T} U(2 t)$. The second contribution is another forward-propagating component proportional to α. The third contribution is the main interest of this paper, and may heuristically be well-approximated (when $\tau \ll 1$) by $\alpha \mathcal{T} U(t) \mathcal{D} \mathcal{T} U(t)=\alpha \mathcal{D} \mathcal{T} U(t) \mathcal{T} U(t)=\alpha \mathcal{D}$, where \mathcal{D} is a differentiation operator described in detail in the text. In other words, we obtain a back-propagating signal, which up to a scaling α and a (Fourier domain scaling) local differentiation, is the original initial condition. The fourth component is a remainder, which we show is of order $\tau \ll 1$ (in an idealized setting).

In other words, if the solution is considered at time $2 t$ on the support ${ }^{1}$ of the initial condition, then what we observe is a local operator $\alpha \mathcal{D}$ applied to the initial condition up to negligible contributions. This is entirely consistent with the experimental observations in [1] of wave refocusing in the presence of instantaneous time mirrors. Note that the wave field energy is not conserved (and here increases) in such a setting [1] or in general in the presence of time-dependent variations of the underlying medium [17].

We model wave propagation by a system of acoustic equations. For appropriate short-time fluctuations, we justify the above decomposition, first for spatially independent time-dependent fluctuations ($\chi \equiv 1$, which corresponds to the setting in [1]), and second for spatially varying time-dependent fluctuations (with $\chi(x)$ a compactly supported function). In the latter case, we also consider wave propagation in spatially heterogeneous media in order to observe the classical enhancement of the refocusing of time reversed waves in rich multi-path environments. These results may be the most promising from a practical point of view. Classical time-reversal requires measuring,

[^1]time-reversing, and back-propagating, which are measurement- and memory-intensive procedures [13, 14]. Full domain time-dependent fluctuations as in [1] (corresponding to $\chi(x) \equiv 1$) may not be feasible. Our results show that even if the coefficients can be fluctuated in time only on a small spatial zone (with $\chi(x)$ of small support), then provided that propagation occurs in a sufficiently heterogeneous environments, the time-reversed signal $\alpha \mathcal{D} f(x)$ captures the main features of the initial signal $f(x)$ without the more complex apparatus of classical time-reversal.

The paper is structured as follows: in section 2, we introduce our model of wave propagation and derive a decomposition of the wavefield that helps us understand the properties of the propagating and refocusing fields. Section 3 focuses on the case of spatially independent time-dependent perturbations. Several numerical simulations illustrate the theoretical results. Section 4 generalizes the analysis to the setting of spatially localized time-dependent perturbations. We characterize the refocusing signal both in the settings of homogeneous and heterogenous underlying media of propagation. All proofs are postponed to section 5. The paper is concluded by an appendix where we consider several interesting cases of time-dependent fluctuations.

Acknowledgment. This paper was partially funded by the NSF, the ONR, and an NSF CAREER grant DMS-1452349.

2 Acoustic system and time-dependent media

Our starting point is the acoustic wave equation, written as a first-order hyperbolic system

$$
\begin{equation*}
\rho(t, x) \frac{\partial \mathbf{v}}{\partial t}+\nabla p=0, \quad \kappa(x) \frac{\partial p}{\partial t}+\nabla \cdot \mathbf{v}=0, \quad x \in \Omega \tag{1}
\end{equation*}
$$

where the unknowns are the velocity field $\mathbf{v}(t, x)$ and the acoustic pressure $p(t, x)$, and the known constitutive coefficients are the density ρ and the compressibility κ. The system (1) is equipped with (smooth) initial conditions $\mathbf{v}(0, x)=\mathbf{v}_{0}(x)$ and $p(0, x)=$ $p_{0}(x)$ at $t=0$. The domain $\Omega \subset \mathbb{R}^{3}$ (or more generally \mathbb{R}^{d} with $d \geq 1$) can be bounded or not. Appropriate boundary conditions on $\partial \Omega$ are added, say Dirichlet or Neumann boundary conditions, if necessary.

We are interested in analyzing the effects of short and large variations (approximated by a δ function in time) in the coefficients (ρ, κ) on wave propagation. Such terms are compatible with the wave equation in only specific cases as we shall see. In this paper, we mainly assume that density varies while compressibility remains time-independent, and more precisely introduce the model:

$$
\begin{equation*}
\rho^{-1}(t, x)=\rho_{0}^{-1}(x)(1+V(t, x)) \tag{2}
\end{equation*}
$$

where ρ_{0} is the background (i.e. unperturbed) density, while $V(t, x)$ is a time-dependent perturbation that may be spatially localized. V is chosen so that ρ remains strictly positive while ρ_{0} and κ are smooth functions. For $T>0$ and $0<\tau \leq T$ given, and η a positive function with integral one, we define

$$
\eta_{\tau}(t)=\frac{1}{\tau} \eta\left(\frac{t}{\tau}\right), \quad \text { supp } \eta \subset\left[-\frac{1}{2}, \frac{1}{2}\right] .
$$

The function η_{τ} is an approximation of a delta function at $t=0$. We consider spatially independent perturbations $V(t, x)=V(t)=\alpha \eta_{\tau}(t-T)$ in section 3, and spatially dependent ones of the form

$$
\begin{equation*}
V(t, x)=\alpha \eta_{\tau}(t-T) \chi(x) \tag{3}
\end{equation*}
$$

in section 4. The parameter $\alpha>0$ models the strength of the perturbation, and χ is a function on Ω representing the spatial location of the perturbation; see the end of this section and the appendix for a discussion on more general choices of time-dependent coefficients.

Note that the system (1) can be recast as the scalar second-order wave equation

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial t^{2}}=\kappa(x)^{-1} \nabla \cdot\left(\rho(t, x)^{-1} \nabla p\right) \tag{4}
\end{equation*}
$$

with initial conditions $\left(p(t=0), \partial_{t} p(t=0)\right)=\left(p_{0}, p_{1}\right)$, where $p_{1}=-\kappa^{-1} \nabla \cdot \mathbf{v}_{0}$. It is more convenient for us to work directly with the system (1) to obtain the following expression.

Decomposition of the wavefield. We first recast the system (1) as

$$
\begin{equation*}
A(x) \frac{\partial \mathbf{u}}{\partial t}+D^{j} \frac{\partial \mathbf{u}}{\partial x_{j}}=V(t, x) \mathbf{S} \tag{5}
\end{equation*}
$$

where $V(t, x)$ is defined in (3) and $\mathbf{u}=(\mathbf{v}, p), \mathbf{S}=-(\nabla p, 0)$ (which are both considered as column vectors), $A=\operatorname{Diag}\left(\rho_{0}, \rho_{0}, \rho_{0}, \kappa\right)$, and $\left(D^{j}\right)_{m n}=\delta_{m 4} \delta_{n j}+\delta_{n 4} \delta_{m j}$, with $j=$ $1,2,3$, and $m, n=1, \cdots, 4$. Here and below, we use the summation convention over repeated indices. Equation (5) is equipped with the initial condition $\mathbf{u}_{0}=\left(\mathbf{v}_{0}, p_{0}\right)$. It is convenient to describe wave propagation in terms of the Green's function of (5) and its adjoint, defined respectively by

$$
\begin{equation*}
A(x) \frac{\partial \mathbf{G}(t, x, y)}{\partial t}+D^{j} \frac{\partial \mathbf{G}(t, x, y)}{\partial x_{j}}=0, \quad \mathbf{G}(0, x, y)=I \delta(x-y) \tag{6}
\end{equation*}
$$

where I is the 4×4 identity matrix, and

$$
\frac{\partial \mathbf{G}^{*}(t, x, y)}{\partial t} A(x)+\frac{\partial \mathbf{G}^{*}(t, x, y)}{\partial x_{j}} D^{j}=0, \quad \mathbf{G}^{*}(0, x, y)=A^{-1}(x) \delta(x-y) .
$$

We will use the notation

$$
\begin{equation*}
\mathbf{G}_{t}(\mathbf{u})(x)=\int_{\Omega} \mathbf{G}(t, x, y) \mathbf{u}(y) d y \tag{7}
\end{equation*}
$$

The unperturbed solution to (5), i.e. with $V=0$, is denoted by $\mathbf{U}=(\mathbf{V}, P)$. The main tool in our analysis is the following decomposition of the wavefield \mathbf{u} into various propagating and refocusing contributions.

Lemma 2.1 Let $\boldsymbol{\phi}_{0}=-\left(\rho_{0}^{-1} \nabla p_{0}, \kappa^{-1} \nabla \cdot \mathbf{v}_{0}\right)=\partial_{t} \mathbf{U}(t=0)$ and $\Gamma=\operatorname{Diag}(-1,-1,-1,1)$. Then, the solution \mathbf{u} admits the decomposition

$$
\begin{equation*}
\mathbf{u}(t)=\mathbf{U}(t)+\mathbf{u}_{R}(t)+\mathbf{u}_{F}(t)+\mathbf{R}^{\tau}(t) \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{u}_{R}(t, x) & =-\frac{\alpha}{2} \int_{0}^{t} \int_{\Omega} \eta_{\tau}(s-T) \mathcal{K}(t, s, x, z) \phi_{0}(z) d s d z \\
\mathcal{K}(t, s, x, z) & =\int_{\Omega} \mathbf{G}_{t-s}(x, y) \Gamma \mathbf{G}_{s}(y, z) \chi(y) d y
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{u}_{F}(t) & =\frac{\alpha}{2} \int_{0}^{t} \mathbf{G}_{t-s}\left(V_{s} \partial_{t} \mathbf{U}_{s}\right) d s \\
\mathbf{R}^{\tau}(t) & =\int_{0}^{t} \mathbf{G}_{t-s}\left(V_{s} A^{-1}\left(\mathbf{S}_{s}-\mathbf{S}_{s}^{0}\right)\right) d s \quad \text { with } \quad \mathbf{S}^{0}(t)=-(\nabla P(t), 0)
\end{aligned}
$$

The (very classical) proof of the decomposition is postponed to section 5 .
The first term in (8), \mathbf{U}, is the unperturbed solution corresponding to $V \equiv 0$. The next two terms are the leading contributions generated by the perturbation (3) when $\alpha \neq 0$. The contribution \mathbf{u}_{R} is the (time-reversed) refocusing signal and the main object of interest in this paper. When evaluated at time $t=2 T$, where T is the centered time of the time-dependent perturbation, we expect \mathbf{u}_{R} to be directly related to the initial conditions \mathbf{U}_{0} and more precisely to $\partial_{t} \mathbf{U}(t=0)$. The contribution \mathbf{u}_{F} is the forwardpropagating signal created by the perturbation, which as we will see is proportional to α. Finally, the remainder \mathbf{R}^{τ} captures the temporal 'width' of the time-dependent fluctuation and will be shown to be of order $\tau \ll 1$ in a simplified setting.

Remarks on the choice of time-dependent coefficients. Before analyzing the above terms when $\chi \equiv 1$ in the next section and χ with compact support in the following section, we make a few comments on the choice of temporal perturbations.

First, let us remark that we perturb ρ^{-1} in (2) and not ρ. When the fluctuations are smooth in time, there is no significant difference between these choices. However, since the fluctuations of interest are supported in a narrow temporal window, which coefficient we model as time-dependent and approximate by a delta function matters.

Suppose for simplicity that $V(t, x)=\delta(t-T)$ with δ the Dirac delta function. Perturbing ρ^{-1} leads to the term $\delta(t-T) \nabla p$ in the first equation in (1), which makes sense mathematically only when ∇p is continuous in the time variable. Heuristically, the latter is true by the following arguments (we prove this fact later in a simple setting): since $\partial_{t} \mathbf{v}$ is proportional to a Dirac function according to (1), then its integral \mathbf{v} is a discontinuous function in time. The second equation in (1) shows in turn that p is continuous in time, and it can be assumed that the continuity extends to ∇p when the initial conditions are smooth. It follows that the term $\delta(t-T) \nabla p$ makes sense from a mathematical standpoint.

Perturbing ρ would lead to the term $\delta(t-T) \partial_{t} \mathbf{v}$, which cannot be justified mathematically as it does not seem possible to conclude from the wave equation that $\partial_{t} \mathbf{v}$ is continuous and this is probably incorrect. Hence the perturbation of ρ^{-1}.

Although we do not pursue this in detail, we could similarly consider a system with a time-dependent perturbation in the compressibility and not in the density, i.e.

$$
\rho(x) \frac{\partial \mathbf{v}}{\partial t}+\nabla p=0, \quad \kappa(t, x) \frac{\partial p}{\partial t}+\nabla \cdot \mathbf{v}=0, \quad x \in \Omega
$$

Supposing that the initial velocity field \mathbf{v}_{0} is irrotational, the first equation above shows that $\mathbf{v}(t)$ remains irrotational at all times, and can then be expressed as $\mathbf{v}(t)=\nabla \phi(t)$, where ϕ is the velocity potential. Then, the quantity $w=\Delta \phi$ satisfies

$$
\frac{\partial^{2} w}{\partial t^{2}}=\nabla \cdot\left(\rho(x)^{-1} \nabla\left(\kappa(t, x)^{-1} w\right)\right) .
$$

With $\kappa^{-1}(t, x)=\kappa_{0}^{-1}(x)(1+V(t, x))$, we obtain a similar theory to the one described in the paper since it can be shown that w is continuous at time T where the jump occurs.

For the same reasons as explained above, we are not able to singularly perturb both ρ^{-1} and κ^{-1} and give a meaning to (5). Indeed, as we show in the Appendix, it is in general false that both ∇p and $\nabla \cdot \mathbf{v}$ are continuous functions in time, and as a consequence the definition of (at least one of) $\delta(t-T) \nabla p$ and $\delta(t-T) \nabla \cdot \mathbf{v}$ is unclear.

When the fluctuations are spatially localized, for instance with $\chi(x)$ of compact support, the formalism described in (5), with fluctuations approximated by a delta-function, is an essential ingredient in our analysis in section 4. It is nevertheless interesting to understand the structure of the time-reversed signal when both coefficients ρ^{-1} and κ^{-1} are perturbed. This is done in some detail in the Appendix in the setting of global time dependent perturbations (with $\chi(x) \equiv 1$). It can then be shown that time-dependent fluctuations may couple propagating modes only with their 'time-reversed' versions. In particular, we show that fluctuations such that $\rho(t) / \kappa(t)=\zeta^{2}$ is constant (i.e., with constant impedance) generate no time-reversed signals. We refer the reader to the appendix for the details.

3 Spatially-independent perturbation

The perturbation V in (3) is assumed independent of position (with $\chi \equiv 1$) and thus has the form $V(t)=\alpha \eta_{\tau}(t)$, for η_{τ} an approximation of the delta function. We extend the Green's function \mathbf{G}_{t} to negative values of t by solving (6) for $t<0$, and have $\mathbf{G}_{-t} \Gamma=\Gamma \mathbf{G}_{t}$ with $\Gamma=\operatorname{Diag}(-1,-1,-1,1)$; in other words the time-reversal operator \mathcal{T} of the introduction takes the form Γ for the acoustic system of equations. In the same way, we extend $\partial_{t} \mathbf{U}(t)$ to negative times by solving the wave equation for $t<0$ with initial condition $\boldsymbol{\phi}_{0}=-\left(\rho_{0}^{-1} \nabla p_{0}, \kappa^{-1} \nabla \cdot \mathbf{v}_{0}\right)=\partial_{t} \mathbf{U}(t=0)$. It follows that, for all $t \in \mathbb{R}$,

$$
\begin{equation*}
\partial_{t} \mathbf{U}(t)=\mathbf{G}_{t}\left(\boldsymbol{\phi}_{0}\right) . \tag{9}
\end{equation*}
$$

The main result of the section is the following analysis of the terms introduced in the decomposition (8).

Theorem 3.1 The terms $\mathbf{u}_{R}(2 T)$ and $\mathbf{u}_{F}(t)$ for $t \geq T+\frac{\tau}{2}$ admit the expressions:

$$
\mathbf{u}_{R}(2 T)=-\frac{\alpha}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \eta_{\tau}(s) \Gamma \partial_{t} \mathbf{U}(2 s) d s
$$

and

$$
\mathbf{u}_{F}(t)=\frac{\alpha}{2} \partial_{t} \mathbf{U}(t) .
$$

Moreover, under smoothness assumptions on the initial conditions and constant coefficients ρ_{0} and κ_{0} with $\Omega=\mathbb{R}^{3}$, then the remainder R^{τ} is of order τ (the temporal width of the fluctuations) as described in (10) in Lemma 3.2 below.

Since the proof of the expressions for \mathbf{u}_{R} and \mathbf{u}_{F} describes the time reversal symmetry of the wave equation that leads to the result, we present it here.

Proof. Starting from Lemma 2.1, we find, after the change of variables $s \rightarrow s+T$,

$$
\mathbf{u}_{R}(2 T, x)=-\frac{\alpha}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \int_{\Omega} \eta_{\tau}(s) \mathcal{K}(2 T, s+T, x, z) \phi_{0}(z) d s d z
$$

with, when $s \geq 0$,

$$
\begin{aligned}
\mathcal{K}(2 T, s+T, x, z) & =\int_{\Omega} \mathbf{G}_{T-s}(x, y) \Gamma \mathbf{G}_{T+s}(y, z) d y \\
& =\int_{\Omega} \int_{\Omega} \mathbf{G}_{T-s}(x, y) \Gamma \mathbf{G}_{T-s}\left(y, z^{\prime}\right) \mathbf{G}_{2 s}\left(z^{\prime}, z\right) d y d z^{\prime}=\Gamma \mathbf{G}_{2 s}(x, z)
\end{aligned}
$$

Above, we used the time reversibility of the acoustic wave equation which yields that

$$
\int_{\Omega} \Gamma \mathbf{G}_{T-s}(x, y) \Gamma \mathbf{G}_{T-s}\left(y, z^{\prime}\right) d y=\delta\left(x-z^{\prime}\right) I
$$

When $s \leq 0$, with obtain with a similar calculation that

$$
\mathcal{K}(2 T, s+T, x, z)=\mathbf{G}_{-2 s}(x, z) \Gamma
$$

Using the fact that $\mathbf{G}_{-2 s} \Gamma=\Gamma \mathbf{G}_{2 s}, \forall s \in \mathbb{R}$, we arrive at

$$
\mathbf{u}_{R}(2 T, x)=-\frac{\alpha}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \int_{\Omega} \eta_{\tau}(s) \Gamma \mathbf{G}_{2 s}(x, z) \phi_{0}(z) d s d z
$$

which, together with (9), yields the expression stated in the theorem. Regarding $\mathbf{u}_{F}(t)$ for $t \geq T+\tau / 2$, we have, since $\partial_{t} \mathbf{U}$ solves (5) with $V=0$,

$$
\mathbf{u}_{F}(t)=\frac{\alpha}{2} \int_{0}^{t} \eta_{\tau}(s-T) \mathbf{G}_{t-s}\left(\partial_{t} \mathbf{U}(s)\right) d s=\frac{\alpha}{2} \int_{0}^{t} \eta_{\tau}(s-T) \partial_{t} \mathbf{U}(t) d s=\frac{\alpha}{2} \partial_{t} \mathbf{U}(t) .
$$

This ends the proof.
We now comment on the properties of the different terms that appear in the decomposition of $\mathbf{u}(2 T)$ in (8). The first term $\mathbf{U}(2 T)$ is nothing but the unperturbed solution. Suppose that the initial condition $\left(\mathbf{v}_{0}, p_{0}\right)$ has a bounded support and, for the moment, that the background is constant. When Ω is unbounded, or when T is such that reflections at the boundary $\partial \Omega$ do not reach the support of $\left(\mathbf{v}_{0}, p_{0}\right)$ at $t=2 T$, the contribution of $\mathbf{U}(2 T)$ on this support vanishes. In the general case where the background is not constant, there could be some non-zero contributions of $\mathbf{U}(2 T)$ to $\mathbf{u}(2 T)$, but these are expected to be small compared to \mathbf{u}_{R} provided the background is non-trapping around the support of the initial condition. The third term \mathbf{u}_{F} is the forward solution created by
the perturbation, and is proportional to $\partial_{t} \mathbf{U}(2 T)$. Again, this contribution is expected to be either zero or quite small on the support of the initial condition.

The last term \mathbf{R}^{τ} is a remainder that is negligible when τ is small compared to a quantity measuring wavenumbers in the initial condition. It is actually zero when the perturbation is a delta function: suppose that ∇p is continuous in time since it is a condition for the equations to make sense (this fact is proved below in a simple setting); then \mathbf{R}^{τ} is proportional to $\nabla p(T)-\nabla P(T)$, which we rewrite as $\nabla p(T)-\nabla p\left(T^{-}\right)+$ $\nabla p\left(T^{-}\right)-\nabla P(T)$. The second part is zero since $\nabla p\left(T^{-}\right)=\nabla P\left(T^{-}\right)$as we are right before the perturbation kicks in and ∇P is continuous, and the first part is zero as well since ∇p is continuous. For a general function η_{τ}, write the term $\mathbf{S}-\mathbf{S}^{0}$ in the definition of \mathbf{R}^{τ} as, for any $s \in\left[T-\frac{\tau}{2}, T+\frac{\tau}{2}\right]$,

$$
\nabla(p(s)-P(s))=\nabla(p(s)-p(s-\tau))+\nabla(p(s-\tau)-P(s))
$$

As we are before the perturbation, the second term in the r.h.s. is $\nabla P(s-\tau)-\nabla P$. Since P is smooth, this second term is negligible provided τ is small compared to a parameter estimating the gradient of ∇P. The same applies to the first term provided ∇p is continuous in time.

When ρ_{0} and κ are constant, and $\Omega=\mathbb{R}^{3}$, we are able to make these arguments precise in the following lemma (\widehat{f} denotes the Fourier transform with the convention $\left.\widehat{f}(\xi)=\int_{\mathbb{R}^{3}} e^{-i x \cdot \xi} f(x) d x\right)$:

Lemma 3.2 Suppose that ρ_{0} and κ are constant, and that $\Omega=\mathbb{R}^{3}$.
(i) Assume that $V(t, x)=\alpha \delta(t-T)$ and that the initial conditions verify $\left(1+|\xi|^{3}\right) \widehat{p}_{0}(\xi) \in$ $L^{1}\left(\mathbb{R}^{3}\right)$ and $\left(1+|\xi|^{3}\right) \widehat{\mathbf{v}}_{0}(\xi) \in\left(L^{1}\left(\mathbb{R}^{3}\right)\right)^{3}$. Then, $\partial_{t} \nabla p \in\left(L^{\infty}\left(\mathbb{R}^{+} \times \mathbb{R}^{3}\right)\right)^{3}$.
(ii) Assume now that $V(t, x)=\alpha \eta_{\tau}(t-T)$, with $\eta_{\tau}(t)=\tau^{-1}$ on $(T-\tau / 2, T+\tau / 2)$ and zero otherwise. Decomposing the remainder \mathbf{R}^{τ} as $\mathbf{R}^{\tau}=\left(\mathbf{E}^{\tau}, w^{\tau}\right)$, there is a constant C such that

$$
\begin{equation*}
\sup _{t \in \mathbb{R}^{+}, x \in \mathbb{R}^{3}}\left(\left|\partial_{t} \mathbf{E}^{\tau}(t, x)\right|+\left|w^{\tau}(t, x)\right|\right) \leq \tau C\left(\left\|\left|\left\|\left.\xi\right|^{3} \widehat{p}_{0}\right\|_{L^{1}}+\left\||\xi|^{3} \widehat{\mathbf{v}}_{0}\right\|_{L^{1}}\right)\right.\right. \tag{10}
\end{equation*}
$$

The proof of the lemma is postponed to section 5.2. The term in the parentheses in the r.h.s. above measures the spatial frequencies in the initial condition. When τ is small compared to these frequencies (up to a multiplicative dimensional factor), then the term \mathbf{R}^{τ} is negligible. The proof of Lemma 3.2 is based on the Fourier transform. An extension to more general settings with spatially varying coefficients would require a (non-trivial yet quite standard) microlocal analysis of (1) that is beyond the scope of this work. The proof uses analytical expressions of the unperturbed and perturbed solutions P and p.

The refocused signal. We now concentrate on the main term of the expansion given by $\mathbf{u}_{R}(2 T)$. We recall that the matrix Γ is defined by $\Gamma=\operatorname{Diag}(-1,-1,-1,1)$. We list a number of properties.
(i) When $\eta_{\tau}(s)=\delta(s)$, we obtain $\mathbf{u}_{R}(2 T)=-\frac{\alpha}{2} \Gamma \partial_{t} \mathbf{U}(0)$ and the refocusing is 'perfect' in the sense that $\partial_{t} \mathbf{U}(0)$ is recovered exactly up to a multiplication factor. This makes explicit the 'differentiation' operator \mathcal{D} of the introduction.
(ii) When η_{τ} is not a Dirac function, then waves are reversed at different but close times, and refocusing is blurred and given by a weighted superposition of $\partial_{t} \mathbf{U}(2 s)$ around $s=0$. The term $\mathbf{u}_{R}(2 T)$ can be written as

$$
\begin{aligned}
\mathbf{u}_{R}(2 T, x) & =\int_{\Omega} \mathbf{K}^{\tau}(x, y) \boldsymbol{\phi}_{0}(y) d y \\
\mathbf{K}^{\tau}(x, y) & =-\frac{\alpha}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \eta_{\tau}(s) \Gamma \mathbf{G}(2 s, x, y) d s
\end{aligned}
$$

The kernel \mathbf{K}^{τ} is an approximation of $-\alpha \delta(x-y) \Gamma / 2$ since $\mathbf{G}(0, x, y)=\delta(x-y) I$.
(iii) When ρ_{0} and κ are constant and when $\Omega=\mathbb{R}^{3}$, we can obtain a more precise expression for $\mathbf{u}_{R}(2 T)$. Indeed, we have in that case

$$
\partial_{t} P(t)=\partial_{t}^{2} G_{t}\left(p_{0}\right)+\partial_{t} G_{t}\left(p_{1}\right)
$$

where $p_{1}=-\kappa^{-1} \nabla \cdot \mathbf{v}_{0}=\partial_{t} P(t=0)$. Above, we used notation (7) with \mathbf{G} replaced by G, where G is the Green's function of the wave equation with constant coefficients. For $c_{0}^{2}=\left(\rho_{0} \kappa\right)^{-1}$, we have $G(t, x, y)=G(t, x-y)$ and its Fourier transform reads

$$
\widehat{G}(t, \xi)=\frac{\sin c_{0} t|\xi|}{c_{0}|\xi|}
$$

Then, the fourth component of $\mathbf{u}_{R}(2 T)$ (the pressure part), is

$$
\begin{equation*}
\left(\mathbf{u}_{R}(2 T)\right)_{4}=F_{0} \star p_{0}+F_{1} \star p_{1}, \tag{11}
\end{equation*}
$$

where the filters F_{0} and F_{1} are defined by

$$
\begin{aligned}
& \widehat{F}_{0}(\xi)=\frac{\alpha c_{0}|\xi|}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \eta(s) \sin \left(2 c_{0} \tau s|\xi|\right) d s \\
& \widehat{F}_{1}(\xi)=-\frac{\alpha}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \eta(s) \cos \left(2 c_{0} \tau s|\xi|\right) d s
\end{aligned}
$$

When η is even, $\widehat{F}_{0}=0$ and \widehat{F}_{1} is given by

$$
\begin{equation*}
\hat{F}_{1}(\xi)=-\frac{1}{2} \alpha \widehat{\eta}\left(2 c_{0} \tau|\xi|\right) \tag{12}
\end{equation*}
$$

The above formula and (11) show that the refocusing signal is a low-pass filter of the initial signal with a bandwidth proportional to τ^{-1}. If M is the largest wavenumber in u_{0}, we thus obtain a good reconstruction of the original signal when $2 c_{0} \tau M \ll 1$. In that case, $F_{1}(x) \simeq-\frac{\alpha}{2} \delta(x)$.

A similar calculation using

$$
\partial_{t} \mathbf{V}(t)=-\rho_{0}^{-1} \nabla P(t)=-\rho_{0}^{-1} \nabla\left(\partial_{t} G_{t}\left(p_{0}\right)+G_{t}\left(p_{1}\right)\right)
$$

shows that the velocity part of $\mathbf{u}_{R}(2 T)$ (i.e. the first three components) reads

$$
-F_{1} \star\left(\partial_{t} \mathbf{V}(t=0)\right)+F_{2} \star(\mathbf{V}(t=0))
$$

with $\widehat{F}_{2}(\xi) \widehat{\mathbf{v}}_{0}(\xi)=\widehat{F}_{0}(\xi) \hat{\xi}\left(\hat{\xi} \cdot \widehat{\mathbf{v}}_{0}(\xi)\right)$ and $\hat{\xi}=\xi /|\xi|$. When η is not even, the kernel F_{0} does not vanish, and therefore the term p_{0} contributes to the pressure part of $\mathbf{u}_{R}(2 T)$ and \mathbf{v}_{0} to the velocity part. We will explore this fact further numerically. When $2 c_{0} \tau M \ll 1$, these contributions are nevertheless small, although they increase with τ.

Multiple perturbations. We now briefly consider the case of N_{p} successive timedependent perturbations at multiples of T, that is

$$
V(t)=\alpha \sum_{k=1}^{N_{p}} \eta_{\tau}(t-k T)
$$

For $k=1$, the form of the refocused signal at $t=2 T$ is given by Theorem 3.1. After the first perturbation, there are two propagating waves: the unperturbed wave \mathbf{U}, and the forward wave created by the perturbation $\mathbf{u}_{F}=\alpha \partial_{t} \mathbf{U} / 2$. Denote their sum by \mathbf{u}_{p}. The second perturbation creates a refocused signal at $t=4 T$ equal to

$$
-\frac{\alpha}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \eta_{\tau}(s) \Gamma \partial_{t} \mathbf{u}_{p}(2 s) d s
$$

with a total propagating wave for $t \geq 2 T+\tau / 2$ equal to $\mathbf{u}_{p}+\alpha \partial_{t} \mathbf{u}_{p} / 2$. Repeating the procedure, we find that the refocused signal at $t=k T$ is a linear combination of terms of the form

$$
\left(\frac{\alpha}{2}\right)^{k} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \eta_{\tau}(s) \Gamma \partial_{t}^{(k)} \mathbf{U}(2 s) d s
$$

In particular, the pressure component of $\partial_{t}^{(k)} \mathbf{U}$ verifies

$$
\partial_{t}^{(k)} P(t)=\partial_{t}^{(k+1)} G_{t}\left(p_{0}\right)+\partial_{t}^{(k)} G_{t}\left(p_{1}\right)
$$

Setting for instance $k=2$ and $p_{1}=0$, we have, when the background velocity $c=c_{0}$ is constant,

$$
\partial_{t}^{(3)} G_{t}\left(p_{0}\right)=\partial_{t}^{(2)} P(t)=c_{0}^{2} \partial_{t} G_{t}\left(\Delta p_{0}\right), \quad \text { and } \quad \partial_{t} P(t)=c_{0}^{2} G_{t}\left(\Delta p_{0}\right)
$$

Since $\partial_{t} G(t, x, y) \simeq \delta(x-y)$ and $G(t, x, y) \simeq 0$ for $t \simeq 0$, the refocused signal is then predominantly a mollified version of the Laplacian of the initial condition p_{0}. We will verify this numerically in the next paragraph (see Fig. 3). More generally, if c_{0} is constant and if $k=2 m$, then

$$
\begin{aligned}
\partial_{t}^{(2 m)} P(t) & =c_{0}^{2 m} \partial_{t} G_{t}\left(\Delta^{(m)} p_{0}\right)+c_{0}^{2 m} G_{t}\left(\Delta^{(m)} p_{1}\right) \\
& \simeq c_{0}^{2 m} \Delta^{(m)} p_{0} \quad \text { for } t \simeq 0 \quad \text { if } \quad p_{0} \neq 0
\end{aligned}
$$

while if $k=2 m+1$,

$$
\begin{aligned}
\partial_{t}^{(2 m+1)} P(t) & =c_{0}^{2(m+1)} G_{t}\left(\Delta^{(m+1)} p_{0}\right)+c_{0}^{2 m} \partial_{t} G_{t}\left(\Delta^{(m)} p_{1}\right) \\
& \simeq c_{0}^{2 m} \Delta^{(m)} p_{1} \quad \text { for } t \simeq 0 \quad \text { if } \quad p_{1} \neq 0 .
\end{aligned}
$$

As a conclusion, multiple perturbations produce (when the background is constant) time-reversed signals proportional to powers of the Laplacian of the initial condition.

The rest of the section is dedicated to numerical simulations.

Simulations. We solve the wave equation (4) on a square of side 2 centered at the origin. The equation is equipped with Dirichlet boundary conditions for simplicity. We set $T=1.8$, and the discretization step sizes are $\Delta x=0.002$ and $h:=\Delta t=0.00072$. The initial conditions are centered around the origin, and the background coefficients ρ_{0} and κ are constant and such that $c(x)=c_{0}=1$.

In figure 1, we investigate the blurring effect as τ increases. We set $p_{0}=0$ and p_{1} a smiley figure, and represent $p(2 T)$ for several values of τ. The function η_{τ} is modeled numerically by a constant function over $n_{\tau}+1$ time steps with integral one. The strength of the perturbation is $\alpha=0.001$. We clearly observe the blurring effect as n_{τ} increases.

Figure 1: Refocused signal for $p_{0}=0$ and p_{1} a smiley figure. Top left: perturbation of duration h. Top right: perturbation of duration $5 h$. Bottom left: perturbation of duration $7 h$. Bottom right: perturbation of duration $13 h$. The blurring becomes apparent as the duration of the perturbation increases.

In figure 2, we investigate the effect of the evenness of the function η_{τ}, and have seen theoretically (in the case $\Omega=\mathbb{R}^{3}$) that the contribution of p_{0} to the refocused signal is zero when η_{τ} is even. We keep the same p_{1} as before and set p_{0} as the function represented on the left panel (the sum of four Gaussians). The middle figure is the refocused signal for a constant function η_{τ} over 13 time steps, and we observe numerical effects creating a non zero contribution of p_{0}. As expected, the latter is strongly increased when the function η_{τ} is an uneven piecewise constant function as observed on the right panel $\left(\eta_{\tau}\right.$ takes the value $4 / C$ on the first 3 time intervals and $1 / C$ on the others, for C
an appropriate normalization constant).
In figure 3, we verify that after two perturbations at $t=T$ and $t=2 T$ and with initial conditions p_{0} and $p_{1}=0$, the refocused signal at $t=4 T$ is proportional to the Laplacian of p_{0}.

Figure 2: Refocused signal for p_{1} as in figure 1 and p_{0} given by the function represented on the left panel. Left: initial condition p_{0}. Middle: perturbation of duration $13 h$ for a constant function η_{τ}. Right: perturbation of duration $13 h$ for an uneven function η_{τ}. The strength of the contribution of p_{0} increases when η_{τ} is not even.

Figure 3: Refocused signal after two perturbations of duration h. Left: a Gaussian initial condition for p_{0}. Right: refocused signal at $4 T$. We verify that the latter is indeed proportional to the laplacian of p_{0}.

We consider in the next section spatially dependent perturbations and compare with the spatially independent case.

4 Spatially-dependent perturbation

We suppose in this section that $\Omega=\mathbb{R}^{3}$ and that the time-dependent perturbation is localized in space, that is $V(t, x)=\alpha \eta_{\tau}(t-T) \chi(x)$, where $\chi(x)$ is a (non-negative) function with bounded support. As mentioned in the introduction, we wish to consider an experimental setting for time reversal that (i) does not necessitate the heavy antennas/transducers apparatus and memory requirements of classical time-reversal; and (ii)
assumes that the time-dependent fluctuations can be performed only on (a small) part of the spatial domain.

We consider two situations: (i) homogeneous media, and in such a case only the waves on the support of χ are reversed and the quality of refocusing will be limited by classical diffraction; (ii) highly heterogeneous media (modeled here by random media with appropriate statistics), with a much enhanced resolution as in the classical theory of time reversal. The main result of the section is Theorem 4.1 below. It provides a quantitative description of the time-reversal experiment as a band-pass filter and explains why refocusing is much enhanced when propagation occurs in a rich multi-path environment.

Scalings. We suppose that the initial condition $\left(\mathbf{v}_{0}, p_{0}\right)$ is centered at x_{0} with support of order λ. Equivalently, the quantity $2 \pi / \lambda$ can be seen as the largest spatial frequency. We suppose that the sound speed $c(x)^{2}=\left(\rho_{0}(x) \kappa(x)\right)^{-1}$ verifies

$$
c_{-} \leq c(x) \leq c_{+},
$$

for two positive constants c_{-}and c_{+}. For T the time of the perturbation, let $L=c_{-} T$, which is the minimum distance traveled by the wave at time T. We then assume that $L \gg \lambda$, and introduce

$$
\varepsilon=\frac{\lambda}{L} \ll 1
$$

Rescaling all position variables by L, we rewrite $\boldsymbol{\phi}_{0}=\partial_{t} \mathbf{U}(t=0)=-\left(\rho_{0}^{-1} \nabla p_{0}, \kappa^{-1} \nabla\right.$. \mathbf{V}_{0}) as

$$
\boldsymbol{\phi}_{0}\left(L x^{\prime}\right)=\frac{1}{\varepsilon^{3}} \mathbf{Q}\left(\frac{x^{\prime}-x_{0}^{\prime}}{\varepsilon}\right), \quad x_{0}=L x_{0}^{\prime}
$$

We model the heterogeneous medium by a random medium and assume the following forms for the unperturbed (w.r.t. time) density and compressibility:

$$
\rho_{0}(x)=\bar{\rho}(x)\left(1+\sigma_{\rho} \theta_{\rho}\left(\frac{x}{\ell_{c}}\right)\right), \quad \kappa(x)=\bar{\kappa}(x)\left(1+\sigma_{\kappa} \theta_{\kappa}\left(\frac{x}{\ell_{c}}\right)\right)
$$

where θ_{ρ} and θ_{κ} are mean-zero stationary random fields with correlation functions R_{ρ} and R_{κ}. The parameters σ_{ρ} and σ_{κ} quantify the strength of the fluctuations and ℓ_{c} their correlation length. Introducing $\delta=\ell_{c} / L$ and rescaling x by $L x^{\prime}, \rho_{0}$ and κ become $\rho_{0}\left(L x^{\prime}\right)=\bar{\rho}\left(L x^{\prime}\right)\left(1+\sigma_{\rho} \theta_{\rho}\left(x^{\prime} / \delta\right)\right)$, and $\kappa\left(L x^{\prime}\right)=\bar{\kappa}\left(L x^{\prime}\right)\left(1+\sigma_{\kappa} \theta_{\kappa}\left(x^{\prime} / \delta\right)\right)$. There are essentially three interesting asymptotic regimes depending on the relationship between $\sigma_{\rho}, \sigma_{\kappa}, \delta$ and ε. In the stochastic homogenization regime, $\sigma_{\rho} \sim \sigma_{\kappa} \sim 1$, and $\delta \ll \varepsilon$. In this situation, waves are asymptotically propagating in an effective medium and no significant mixing occurs. It is therefore expected that refocusing will be similar to the homogeneous case, and as a consequence this regime will not be considered. The opposite situation where $\varepsilon \ll \delta$, with σ_{ρ} and σ_{κ} small (the appropriate relation with ε can be found in [3]), is called the random geometrical optics regime, and exhibits some mixing leading to super-resolution. The intermediate case, the radiative transfer regime where $\sigma_{\rho}=\sigma_{\kappa}=\sqrt{\varepsilon}$ and $\delta=\varepsilon$, leads to some mixing as well. We study then the time-reversed wave in these last two regimes.

Asymptotic analysis. Let $\mathbf{u}_{R}^{\varepsilon}(\xi)=\mathbf{u}_{R}\left(2 T, L\left(x_{0}+\varepsilon \xi\right)\right)$. We nondimensionalize time and position as $t \rightarrow T t^{\prime}$ and $x \rightarrow L x^{\prime}$ (so that the perturbation occurs at $t^{\prime}=1$ in nondimensional variables), drop primes, and with a slight abuse keep the same notations for the various quantities of interest. The new matrix A is then the old one multiplied by c_{-}, and the old Green's functions are divided by L^{3}. We also introduce $\mu_{\varepsilon}=\tau /(\varepsilon T)$, which we assume converges to $\mu \in[0, \infty]$ as $\varepsilon \rightarrow 0$. We will adapt the theory of timereversal introduced in $[5,6]$ and for this we need to appropriately decompose the term Q. Let then

$$
\mathbf{b}^{ \pm}(x, k)=\frac{1}{\sqrt{c_{-}}}\binom{ \pm \hat{k} / \sqrt{2 \bar{\rho}(x)}}{1 / \sqrt{2 \bar{\kappa}(x)}}, \quad \hat{k}=\frac{k}{|k|}
$$

which are the two eigenvectors of the dispersion matrix $\mathbb{E}\{A(x)\}^{-1} k_{j} D^{j}$ associated with the simple eigenvalues $\pm \omega(x, k)$ with $\omega(x, k)=\left(\bar{c}(x) / c_{-}\right)|k|$ and $\bar{c}(x)=(\bar{\rho}(x) \bar{\kappa}(x))^{-1 / 2}$. They are normalized such that $\mathbf{b}^{ \pm} \cdot \mathbb{E}\{A(x)\} \mathbf{b}^{ \pm}=1$. The other (double) eigenvalue is zero. Since the first three components of \mathbf{Q} form an irrotational vector field, \mathbf{Q} has no contributions on the eigenspace associated with the zero eigenvalue, and its Fourier transform can then be decomposed as

$$
\begin{equation*}
\widehat{\mathbf{Q}}(k)=\widehat{\mathbf{Q}}^{+}(k)+\widehat{\mathbf{Q}}^{-}(k):=Q^{+}(k) \mathbf{b}^{+}\left(x_{0}, k\right)+Q^{-}(k) \mathbf{b}^{-}\left(x_{0}, k\right) \tag{13}
\end{equation*}
$$

The decomposition of Lemma 2.1 still holds here, with the difference that, in the heterogeneous case, the contributions of the unperturbed solution \mathbf{U} and the forward solution \mathbf{u}_{F} to $\mathbf{u}(2 T)$ around the origin are non-zero due to multiple scattering. This brings in some background noise in the reconstructions. Regarding the time-reversed wave, we have the following result:

Theorem 4.1 The refocused signal $\mathbf{u}_{R}^{\varepsilon}$ verifies

$$
\lim _{\varepsilon \rightarrow 0} \mathbf{u}_{R}^{\varepsilon}(\xi)=\left(\mathcal{J}^{+} \star \mathbf{Q}^{+}\right)(\xi)+\left(\mathcal{J}^{-} \star \mathbf{Q}^{-}\right)(\xi)
$$

where

$$
\widehat{\mathcal{J}^{ \pm}}(k)=-\frac{\alpha}{2} \hat{\eta}\left(\pm 2 \mu \omega\left(x_{0}, k\right)\right) a_{ \pm}\left(1, x_{0}, k\right) \Gamma .
$$

Above, $a_{ \pm}$is the solution to the transport equation

$$
\left\{\begin{array}{l}
\frac{\partial a_{ \pm}}{\partial t} \pm \nabla_{k} \omega \cdot \nabla_{x} a_{ \pm} \mp \nabla_{x} \omega \cdot \nabla_{k} a_{ \pm}=\mathcal{L}\left(a_{ \pm}\right), \quad(x, k) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \tag{14}\\
a_{ \pm}(0, x, k)=\chi(x),
\end{array}\right.
$$

where the operator \mathcal{L} admits the following expressions:

$$
\mathcal{L}(a)(x, k)=\left\{\begin{array}{c}
\int_{\mathbb{R}^{3}} \delta(\omega(x, p)-\omega(x, k)) \sigma(x, k, p)(a(x, p)-a(x, k)) d p \\
\text { in the radiative transfer regime } \\
\frac{\partial}{\partial k_{m}}\left(|k|^{2} D_{j m}(x, \hat{k}) \frac{\partial a(x, k)}{\partial k_{j}}\right) \\
\text { in the random geometrical optics regime. }
\end{array}\right.
$$

The definitions of the collision cross-section σ and of the diffusion matrix D above depend on the Fourier transforms of $\mathbb{E}\left\{\theta_{\rho}(x) \theta_{\rho}(0)\right\}, \mathbb{E}\left\{\theta_{\kappa}(x) \theta_{\kappa}(0)\right\}$ and $\mathbb{E}\left\{\theta_{\rho}(x) \theta_{\kappa}(0)\right\}$, and can be found in [3, 18].

Theorem 4.1 shows that, as in the classical theory of time reversal [6], the refocused signal is the convolution between some filters $\mathcal{J}^{ \pm}$and an appropriate quantity (here $\partial_{t} \mathbf{U}(t=0)$, while it is $\mathbf{U}(t=0)$ in [6], both after appropriate projections). For good reconstructions, the kernels $\mathcal{J}^{ \pm}$have to decrease rapidly away from the origin, which is equivalent to their Fourier transforms $\widehat{\mathcal{J}^{ \pm}}$being smooth functions.

Enhanced refocusing in heterogeneous media is explained as follows. Consider first the term $\hat{\eta}\left(\pm 2 \mu \omega\left(x_{0}, k\right)\right)$, which is smooth. Indeed, as soon as $|k|>0, \omega\left(x_{0}, k\right)$ is a smooth function (zero frequency waves for $k=0$ do not propagate and are therefore not reversed), and $\hat{\eta}$ is smooth as well since η as a compact support. The key parameter is then μ : when $\mu=\infty$, that is essentially when $\tau \gg \varepsilon T$, then $\mathcal{J}^{ \pm}=0$ since $\hat{\eta}$ is zero at infinity by applying the Riemann-Lebesgue lemma. There is no refocused wave in this case since the duration of the perturbation is too large and waves interfere destructively. When μ is finite, the best refocusing is obtained for $\tau|k| \ll \varepsilon T$, that is when the duration of the perturbation is sufficiently small compared to the largest wavenumber in the initial condition. This is the same scenario as in the case of a spatially independent perturbation addressed in section 3. The difference with the latter lies in the term $a_{ \pm}$. The fact that $a_{ \pm}$is more regular in the heterogeneous case than in the homogeneous case is explained in the same way as in the classical theory of time reversal developed in [6]: in the homogeneous case where $\mathcal{L}=0, a_{ \pm}$is essentially as regular as χ, while in the heterogeneous case, the transport equation (14) enjoys some regularizing effects.

In the random geometrical optics regime, the transport operator is hypoelliptic, while in the radiative transfer regime, the solution $a_{ \pm}$can be written as a multiple scattering expansion in which each term decays exponentially (reducing in particular exponentially the contribution of the singular term χ) and where the $(n+1)$-th term is more regular than the $n-$ th term, see [6] for more details. This explains the superresolution phenomenon in the heterogeneous case.

The proof of Theorem 4.1 is given in section 5.3. It is based on an adaptation of the techniques of [6] and on the introduction of space-time Wigner transforms.

Note that when $\chi=1$, then $a_{ \pm}=1$ and we recover the results for the spatially independent case as follows: writing first

$$
\begin{aligned}
\hat{\eta}\left(\pm 2 \mu \omega\left(x_{0}, k\right)\right) & =\int_{\mathbb{R}} \eta(s) \cos \left(2 \mu \omega\left(x_{0}, k\right) s\right) d s \mp i \int_{\mathbb{R}} \eta(s) \sin \left(2 \mu \omega\left(x_{0}, k\right) s\right) d s \\
& :=\hat{a}(k) \pm i \hat{b}(k),
\end{aligned}
$$

we find from Theorem 4.1,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \Gamma \mathbf{u}_{R}^{\varepsilon}(\xi)=-\frac{\alpha}{2} a \star \mathbf{Q}-\frac{\alpha}{2} i b \star\left(\mathbf{Q}^{+}-\mathbf{Q}^{-}\right) \tag{15}
\end{equation*}
$$

A short calculation shows that $\widehat{\mathbf{Q}}^{+}-\widehat{\mathbf{Q}}^{-}$is equal to the vector $-i\left(|\xi| \hat{\xi} \cdot \mathbf{v}_{0},|\xi| \hat{p}_{0}\right)$. We then compare with Theorem 3.1: rescaling variables and the initial condition as in this section, we have that $\partial_{t} \mathbf{U}\left(x_{0}+\varepsilon \xi\right)$ is well approximated for ε small by the solution to the wave equation with frozen coefficients $\bar{\kappa}\left(x_{0}\right), \bar{\rho}\left(x_{0}\right)$ and with the same (rescaled) initial conditions. It suffices then to reproduce the analysis in the paragraph after Lemma 3.2 to recover expression (15).

Simulations. We choose χ to be the smoothed characteristic function of disks centered at $(0.35,0.35)$ with radii 0.1 and 0.3 , see figure 4 . The initial condition is centered at zero as before. We solve the wave equation (4) both when the background is constant and when it is random.

We start with the homogeneous case and represent in figure 5 the refocused signal for perturbations on the small and large disks with $p_{0}=0$ and p_{1} a smiley figure. We set $T=0.5$ so that the wavefront is at the center of the disks. We choose $n_{\tau}=0$ (recall that $n_{\tau}+1$ is the number of time steps of the perturbation) and the perturbation is then close to a delta function. The smiley figure can barely be recognized in the small disk case and refocusing is very poor. It is better for the large disk, as expected. We investigate this fact further in figure 6 where we set $p_{0}=0$ and p_{1} as a peaked Gaussian in order to characterize the point spread function. The resolution in the direction of the disks is good (range resolution), while the cross-range resolution is poor in the case of the small disk, and naturally better for the larger disk.

Figure 4: Depiction of the initial condition and the support of the function χ, which is the smoothed characteristic function of either the small or the large disk where the waves are perturbed.

Figure 5: Refocused signal in the homogeneous case ($p_{0}=0$). Left: small disk. Right: large disk. The reconstruction is better for the larger disk as expected.

We consider now the heterogeneous case with two random media with fluctuations with different correlation lengths and similar amplitudes, see figure 7 . The one on the left is very rough and essentially spatial white noise, and corresponds to the radiative

Figure 6: Point spread function in the homogeneous case. Left: small disk. Right: large disk. The large disk offers a better cross-range resolution.
transfer regime as our initial condition (the smiley figure) is very singular. The one on the right is smoother with a larger correlation length, and corresponds to the random geometrical optics regime. Both have fluctuations of about the same amplitude and are generated using random Fourier series.

Figure 7: Random media: background (i.e. average value) is one, with mean-zero random perturbations. Left: rough medium close to spatial white noise. Right: smoother medium with larger correlation length. The amplitudes of the fluctuations in both media are similar.

We represent in figure 8 the refocused signal for the two random media and the two disks of different radii. The time T is set to 1.8 for sufficient interaction between the wave and medium, and the strength of the perturbation is increased to $\alpha=0.01$ in order to increase the signal-to-noise ratio. The top row corresponds to the smooth random medium that is on the right of figure 7, while the bottom row corresponds to the rough medium. The left column corresponds to the small disk, and the right one to the large disk.

Refocusing is spectacularly improved in the case of the rough medium compared to the homogeneous case, both for the small and the large disks. Apart from the noise in the background, the reconstruction of the initial condition is almost perfect. Refocusing is enhanced in the smooth medium case compared to the homogeneous situation, but
not as much as in the rough medium case. This is explained by the very singular nature of our initial condition, which better interacts with the rough random medium than with the smooth one, resulting in more mixing at the time of the perturbation. This fact is further explored in figure 9, where we represent the point spread function (calculated for $T=1.8$ with $p_{0}=0$ and p_{1} a peaked Gaussian). Again, the large disk and the rough medium offer the best resolution and the best signal-to-noise (SNR) ratio. The SNR decreases in the case of the small disk, but, when the medium is rough, the resolution is comparable to that of the large disk. When the medium is smooth, the central peak is wider than in the rough case, and can barely be observed when the disk is small.

Figure 8: Refocused signal in random media (with $p_{0}=0$). Top row: smooth random medium. Bottom row: rough random medium. Left column: small disk. Right column: large disk. For the rough random medium, note the much better refocusing than in the homogeneous case.

The rest of the paper is dedicated to the proofs of our main results.

5 Proofs

5.1 Proof of Lemma 2.1

Introducing the Green's function G, we have the representation formula

$$
\begin{equation*}
\mathbf{u}(t)=\mathbf{G}_{t}\left(\mathbf{u}_{0}\right)+\int_{0}^{t} \mathbf{G}_{t-s}\left(V_{s} A^{-1} \mathbf{S}_{s}\right) d s=\mathbf{U}(t)+\int_{0}^{t} \mathbf{G}_{t-s}\left(V_{s} A^{-1} \mathbf{S}_{s}^{0}\right) d s+\mathbf{R}^{\tau}(t) \tag{16}
\end{equation*}
$$

Figure 9: Point spread function. Top row: smooth random medium. Bottom row: rough random medium. Left column: small disk. Right column: large disk. The best resolution and best signal-to-noise ratio are observed in the rough medium and large disk case.
where
$\mathbf{R}^{\tau}(t)=\int_{0}^{t} \mathbf{G}_{t-s}\left(V_{s} A^{-1}\left(\mathbf{S}_{s}-\mathbf{S}_{s}^{0}\right)\right) d s \quad$ with $\quad \mathbf{S}^{0}(t)=-(\nabla P(t), 0)=\rho_{0}\left(\partial_{t} \mathbf{V}(t), 0\right)$,
and we recall (\mathbf{V}, \mathbf{U}) is the unperturbed solution. With the (column) vector $\partial_{t} \mathbf{U}(t)=$ $\left(\partial_{t} \mathbf{V}(t), \partial_{t} P(t)\right)$ and the matrix $\Gamma=\operatorname{Diag}(-1,-1,-1,1)$, the second term of the r.h.s. of (16) above is recast as

$$
-\frac{1}{2} \int_{0}^{t} \mathbf{G}_{t-s}\left(V_{s} \Gamma \partial_{t} \mathbf{U}_{s}\right) d s+\frac{1}{2} \int_{0}^{t} \mathbf{G}_{t-s}\left(V_{s} \partial_{t} \mathbf{U}_{s}\right) d s
$$

We call the first term above \mathbf{u}_{R} and the second one \mathbf{u}_{F}. The vector $\partial_{t} \mathbf{U}$ is the solution to the system (5) with $V=0$ and initial condition $\partial_{t} \mathbf{U}(t=0)=\boldsymbol{\phi}_{0}=-\left(\rho_{0}^{-1} \nabla p_{0}, \kappa^{-1} \nabla \cdot \mathbf{v}_{0}\right)$. As a consequence, the term \mathbf{u}_{R} can then be written as

$$
\begin{aligned}
\mathbf{u}_{R}(t) & =-\frac{\alpha}{2} \int_{0}^{t} \eta_{\tau}(s-T) \mathbf{G}_{t-s}\left(\chi \Gamma \mathbf{G}_{s}\left(\boldsymbol{\phi}_{0}\right)\right) d s \\
& =-\frac{\alpha}{2} \int_{0}^{t} \int_{\Omega} \int_{\Omega} \eta_{\tau}(s-T) \mathbf{G}_{t-s}(x, y) \Gamma \mathbf{G}_{s}(y, z) \chi(y) \boldsymbol{\phi}_{0}(z) d s d y d z
\end{aligned}
$$

which ends the proof.

5.2 Proof of Lemma 3.2

We start by showing that $\partial_{t} \nabla p \in\left(L^{\infty}\left(\mathbb{R}^{+} \times \mathbb{R}^{3}\right)\right)^{3}$ when $V(t, x)=\alpha \delta(t-T)$, assuming the initial conditions are sufficiently smooth. Taking the Fourier transform of the wave equation yields

$$
\partial_{t}^{2} \widehat{p}+c_{0}^{2}|\xi|^{2}(1+\alpha \delta(t-T)) \widehat{p}=0, \quad \widehat{p}(t=0)=\widehat{p}_{0}, \quad \partial_{t} \widehat{p}(t=0)=\widehat{p}_{1}
$$

The equation above can be solved exactly by imposing that \widehat{p} is continuous and that $\partial_{t} \widehat{p}$ jumps at $t=T$. We find:

$$
\widehat{p}(t, \xi)=\left\{\begin{array}{l}
\widehat{p}_{0}(\xi) \cos \left(c_{0}|\xi| t\right)+\widehat{p}_{1}(\xi) \sin \left(c_{0}|\xi| t\right) /\left(c_{0}|\xi|\right) \quad \text { for } \quad t \leq T \\
\widehat{p}_{0}(\xi) F_{1}(t, \xi)+\widehat{p}_{1}(\xi) F_{2}(t, \xi) \quad \text { for } \quad t \geq T
\end{array}\right.
$$

where, using the shorthand $\omega_{T}=c_{0}|\xi| T$,

$$
\begin{aligned}
& F_{1}(t, \xi)=\left(1+\alpha c_{0}|\xi| \cos \omega_{T} \sin \omega_{T}\right) \cos \left(c_{0}|\xi| t\right)-\alpha c_{0}|\xi| \cos ^{2} \omega_{T} \sin \left(c_{0}|\xi| t\right) \\
& F_{2}(t, \xi)=\left(\frac{1}{c_{0}|\xi|}-\alpha \cos \omega_{T} \sin \omega_{T}\right) \sin \left(c_{0}|\xi| t\right)+\alpha \sin ^{2} \omega_{T} \cos \left(c_{0}|\xi| t\right)
\end{aligned}
$$

The explicit representation of \widehat{p} then allows us to derive the following estimate, for all $t \neq T$,

$$
\left|\partial_{t} \widehat{p}(t, \xi)\right| \leq C|\xi|(1+|\xi|)\left|\widehat{p}_{0}(\xi)\right|+C^{\prime}(1+|\xi|)\left|\widehat{p}_{1}(\xi)\right|
$$

Since $\left\|\partial_{t} \nabla p\right\|_{L^{\infty}\left(\mathbb{R}^{+} \times \mathbb{R}^{3}\right)} \leq\left\||\xi| \partial_{t} \widehat{p}\right\|_{L^{\infty}\left(\mathbb{R}^{+}, L^{1}\left(\mathbb{R}^{3}\right)\right)}$, the result is obtained provided $(1+$ $\left.|\xi|^{3}\right) \widehat{p}_{0}(\xi) \in L^{1}\left(\mathbb{R}^{3}\right)$ and $\left(1+|\xi|^{2}\right) \widehat{p}_{1}(\xi) \in L^{1}\left(\mathbb{R}^{3}\right)$.

We prove now the estimate on the remainder \mathbf{R}^{τ}. For this, let w be the fourth component of \mathbf{R}^{τ}. It satisfies the equation

$$
\partial_{t}^{2} w-c_{0}^{2} \Delta w=\alpha \eta_{\tau}(t) c_{0}^{2} \Delta(p-P), \quad w(t=0)=\partial_{t} w(t=0)=0
$$

for p and P the perturbed and unperturbed pressures, respectively. We remark first that $w=0$ when $t \leq T-\frac{\tau}{2}$ and that for $t \geq T-\frac{\tau}{2}$, wadmits the representation formula in the Fourier space:

$$
\widehat{w}(t, \xi)=-\alpha c_{0}|\xi| \int_{-\frac{\tau}{2}}^{t \wedge \frac{\tau}{2}} \eta_{\tau}(s) \sin \left(c_{0}(t-s-T)|\xi|\right)(\widehat{p}(s+T, \xi)-\widehat{P}(s+T, \xi)) d s
$$

Since η_{τ} integrates to one, we have then, for all $t \geq T-\frac{\tau}{2}$,

$$
\begin{equation*}
|\widehat{w}(t, \xi)| \leq \alpha c_{0}|\xi| \sup _{t \in\left[T-\frac{\tau}{2}, T+\frac{\tau}{2}\right]}|\widehat{p}(t, \xi)-\widehat{P}(t, \xi)| \tag{17}
\end{equation*}
$$

It therefore remains to control $\widehat{p}-\widehat{P}$ on $\left[T-\frac{\tau}{2}, T+\frac{\tau}{2}\right]$. This is done as follows. First, \widehat{p} verifies

$$
\left(\partial_{t}^{2}+c_{0}^{2}|\xi|^{2}\left(1+\alpha \eta_{\tau}(t)\right)\right) \widehat{p}=0, \quad \widehat{p}(t=0)=\widehat{p}_{0}, \quad \partial_{t} \widehat{p}(t=0)=\widehat{p}_{1}
$$

Since η_{τ} is constant on the interval $[T-\tau / 2, T+\tau / 2], \widehat{p}$ can be calculated analytically. Introducing $t_{ \pm}=T \pm \tau / 2$ and $\omega=c_{0}|\xi| \sqrt{1+\alpha / \tau}$, we find that \widehat{p} reads, for $t \in\left[t_{-}, t_{+}\right]$,

$$
\widehat{p}(t, \xi)=G_{1}(t, \xi) \widehat{p}_{0}(\xi)+G_{2}(t, \xi) \widehat{p}_{1}(\xi)
$$

where

$$
\begin{aligned}
& G_{1}(t, \xi)=\cos \left(c_{0}|\xi| t_{-}\right) \cos \left(\omega\left(t-t_{-}\right)\right)-\frac{c_{0}|\xi|}{\omega} \sin \left(c_{0}|\xi| t_{-}\right) \sin \left(\omega\left(t-t_{-}\right)\right) \\
& G_{2}(t, \xi)=\frac{\sin \left(c_{0}|\xi| t_{-}\right)}{c_{0}|\xi|} \cos \left(\omega\left(t-t_{-}\right)\right)+\frac{\cos \left(c_{0}|\xi| t_{-}\right)}{\omega} \sin (\omega(t-t-))
\end{aligned}
$$

Writing then, with $\widehat{G}(t, \xi)=\sin \left(c_{0}|\xi| t\right) /\left(c_{0}|\xi|\right)$,

$$
\widehat{P}(t, \xi)=\partial_{t} \widehat{G}(t, \xi) \widehat{p}_{0}(\xi)+\widehat{G}(t, \xi) \widehat{p}_{1}(\xi)
$$

we need to estimate $G_{1}-\partial_{t} \widehat{G}$ and $G_{2}-\widehat{G}$ for $t \in\left[t_{-}, t_{+}\right]$. This is direct as, for all $t \in\left[t_{-}, t_{+}\right]$,

$$
\begin{aligned}
\left|G_{2}(t, \xi)-\widehat{G}(t, \xi)\right| \leq & \left|\frac{\sin \left(c_{0}|\xi| t_{-}\right)-\sin \left(c_{0}|\xi| t\right)}{c_{0}|\xi|} \cos \left(\omega\left(t-t_{-}\right)\right)\right| \\
& +\left|\frac{\sin \left(c_{0}|\xi| t\right)}{c_{0}|\xi|}\left(\cos \omega\left(t-t_{-}\right)-1\right)\right|+\left|\frac{\cos \left(c_{0}|\xi| t_{-}\right)}{\omega} \sin \omega\left(t-t_{-}\right)\right| \\
\leq & \tau+\tau(\tau+\alpha) c_{0}|\xi| / 2+\tau
\end{aligned}
$$

and

$$
\begin{aligned}
\left|G_{1}(t, \xi)-\partial_{t} \widehat{G}(t, \xi)\right| \leq & \left|\left(\cos \left(c_{0}|\xi| t_{-}\right)-\cos \left(c_{0}|\xi| t\right)\right) \cos \left(\omega\left(t-t_{-}\right)\right)\right| \\
& +\left|\cos \left(c_{0}|\xi| t\right)\left(\cos \omega\left(t-t_{-}\right)-1\right)\right|+\left|\frac{c_{0}|\xi|}{\omega} \sin \left(c_{0}|\xi| t_{-}\right) \sin \omega\left(t-t_{-}\right)\right| \\
\leq & c_{0}|\xi| \tau+\tau(\tau+\alpha)\left(c_{0}|\xi|\right)^{2} / 2+c_{0}|\xi| \tau .
\end{aligned}
$$

Therefore,

$$
\sup _{s \in\left[T-\frac{\tau}{2}, T+\frac{\tau}{2}\right]}|\widehat{p}(t, \xi)-\widehat{P}(t, \xi)| \leq \tau(2+(\tau+\alpha) / 2)\left(c_{0}|\xi|\left|\widehat{p}_{0}(\xi)\right|+|\widehat{p}(\xi)|\right)
$$

and, together with (17), we have arrived at

$$
\begin{equation*}
|\widehat{w}(t, \xi)| \leq \alpha \tau c_{0}|\xi|(2+(\tau+\alpha) / 2)\left(c_{0}|\xi|\left|\widehat{p}_{0}(\xi)\right|+\left|\widehat{p}_{1}(\xi)\right|\right) \tag{18}
\end{equation*}
$$

Representing now \mathbf{R}^{τ} by $\mathbf{R}^{\tau}=(\mathbf{E}, w)$, the vector \mathbf{E} verifies

$$
\partial_{t} \mathbf{E}=-\rho_{0}^{-1} \nabla w, \quad \mathbf{E}(t=0)=\mathbf{0}
$$

which allows us to directly estimate $\partial_{t} \mathbf{E}$ in the Fourier space in terms of w using (18). We conclude the proof of the lemma by going back to the real space.

5.3 Proof of Theorem 4.1

With the change of variable $s \rightarrow \varepsilon s / 2$ and $z \rightarrow x_{0}+\varepsilon z$, we find from Lemma 2.1,

$$
\mathbf{u}_{R}^{\varepsilon}(\xi)=-\frac{\alpha}{4} \int_{-\mu_{\varepsilon}}^{\mu_{\varepsilon}} \int_{\mathbb{R}^{3}} \eta_{\mu_{\varepsilon}}(s / 2) \mathcal{K}\left(2, \varepsilon s / 2+1, x_{0}+\varepsilon \xi, x_{0}+\varepsilon z\right) \mathbf{Q}(z) d s d z
$$

where we recall that $\mu_{\varepsilon}=\tau /(\varepsilon T)$ and

$$
\begin{aligned}
\mathcal{K}(2, \varepsilon s / 2+1, & \left.x_{0}+\varepsilon \xi, x_{0}+\varepsilon z\right) \\
& =\int_{\mathbb{R}^{3}} \mathbf{G}_{1-\varepsilon s / 2}\left(x_{0}+\varepsilon \xi, y\right) \mathbf{G}_{1+\varepsilon s / 2}^{*}\left(x_{0}+\varepsilon z, y\right) \Gamma A\left(x_{0}+\varepsilon z\right) \chi(y) d y
\end{aligned}
$$

Above, we used the fact, proved in [6], that $\mathbf{G}^{*}(t, x, y) \Gamma A(x)=\Gamma \mathbf{G}(t, y, x)$. Introducing the space-time Wigner transform (see e.g. [2]),

$$
\mathbf{W}_{\varepsilon}(t, \omega, x, k)=\frac{1}{(2 \pi)^{4}} \int_{\mathbb{R}^{7}} e^{i(\omega s+k \cdot z)} \mathbf{G}_{t-\frac{\varepsilon s}{2}}(x-\varepsilon z / 2, y) \mathbf{G}_{t+\frac{\varepsilon s}{2}}^{*}(x+\varepsilon z / 2, y) \chi(y) d s d z d y
$$

we have, by an inverse Fourier transform,

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} \mathbf{G}_{t-\frac{\varepsilon s}{2}}\left(x_{0}+\varepsilon \xi, y\right) \mathbf{G}_{t+\frac{\varepsilon s}{2}}^{*}\left(x_{0}+\varepsilon z, y\right) \chi(y) d y \\
&=\int_{\mathbb{R}^{4}} e^{-i(\omega s+k \cdot(z-\xi))} \mathbf{W}_{\varepsilon}\left(t, \omega, x_{0}+\frac{\varepsilon}{2}(z+\xi), k\right) d \omega d k
\end{aligned}
$$

This allows us to recast $\mathbf{u}_{R}^{\varepsilon}$ as

$$
\mathbf{u}_{R}^{\varepsilon}(\xi)=\int_{\mathbb{R}^{3}} \mathcal{J}_{\varepsilon}(\xi, z) \mathbf{Q}(z) d z
$$

with

$$
\mathcal{J}_{\varepsilon}(\xi, z)=-\frac{\alpha}{2} \int_{\mathbb{R}^{4}} e^{i k \cdot(\xi-z)} \hat{\eta}\left(2 \mu_{\varepsilon} \omega\right) \mathbf{W}_{\varepsilon}\left(1, \omega, x_{0}+\frac{\varepsilon}{2}(z+\xi), k\right) \Gamma A\left(x_{0}+\varepsilon z\right) d \omega d k .
$$

We now pass to the limit adapting the results of [6] and [2]. In particular, the function f of [6] is a delta function here, and the function χ of [6] corresponds to square root of our function χ. We then find that the limit of \mathbf{W}_{ε} is $\mathbf{W}+\mathbf{W}_{1}$, where \mathbf{W}_{1} is not needed since \mathbf{Q} is irrotational, and \mathbf{W} reads

$$
\mathbf{W}(t, \omega, x, k)=\frac{1}{(2 \pi)^{3}} \sum_{ \pm} \delta\left(\omega \mp\left(\frac{\bar{c}(x)}{c_{-}}\right)|k|\right) a_{ \pm}(t, x, k) \mathbf{b}^{ \pm}(x, k) \otimes \mathbf{b}^{ \pm}(x, k)
$$

where $a_{ \pm}$satisfy the transport equations stated in the theorem. We can then pass to the limit in $\mathcal{J}_{\varepsilon}$ and find

$$
\mathcal{J}_{\varepsilon}(\xi, z) \mathbf{Q}(z) \rightarrow \mathcal{J}(\xi-z) \mathbf{Q}(z) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

where

$$
\mathcal{J}(v)=-\frac{\alpha}{2} \int_{\mathbb{R}^{4}} e^{i k \cdot v} \hat{\eta}(2 \mu \omega) \mathbf{W}\left(1, \omega, x_{0}, k\right) \Gamma \mathbb{E}\left\{A\left(x_{0}\right)\right\} d \omega d k
$$

Integrating out the variable ω, and using (13) together with $\mathbf{b}^{ \pm} \cdot \mathbb{E}\left\{A\left(x_{0}\right)\right\} \mathbf{b}^{ \pm}=1$, $\mathbf{b}^{ \pm} \cdot \mathbb{E}\left\{A\left(x_{0}\right)\right\} \mathbf{b}^{\mp}=0, \Gamma \mathbf{b}^{ \pm}=\mathbf{b}^{\mp}$, finally yield the desired result.

A Modeling of time-dependent media

The main results of the paper are obtained thanks to the decomposition (8), which is derived for acoustic systems of the form (5). As we remarked in section 2, this imposes constraints on the structure of the time-dependent coefficients. This appendix revisits such constraints and considers more general time-dependent fluctuations whose effect can be computed in the simplified setting where $\chi(x) \equiv 1$.

Many wave propagation problems with time-dependent coefficients may be modeled by an equation of the form

$$
\begin{equation*}
\partial_{t} \mathbf{u}=A_{1}(t, x) A_{0}(x, D) \mathbf{u} \tag{19}
\end{equation*}
$$

For the acoustic system in d dimensions, $\mathbf{u}(t, x) \in \mathbb{R}^{m}$ with $m=d+1$, and $A_{0}(x, D)$ (the symbol D stands for $-i \nabla$) is a (square) matrix-valued differential operator while $A_{1}(t, x)$ a square matrix. Accounting for perturbations both in the density and compressibility coefficients, denoted by V_{ρ} and V_{κ}, respectively, we have

$$
\rho^{-1}(t, x)=\rho_{0}^{-1}(x)\left(1+V_{\rho}(t, x)\right), \quad \kappa^{-1}(t, x)=\kappa_{0}^{-1}(x)\left(1+V_{\kappa}(t, x)\right)
$$

and

$$
A_{1}(t, x)=\left(\begin{array}{cc}
\left(1+V_{\rho}(t, x)\right) \mathbf{I}_{d} & \mathbf{0} \\
\mathbf{0}^{T} & 1+V_{\kappa}(t, x)
\end{array}\right), \quad A_{0}(x, D)=\frac{1}{i}\left(\begin{array}{cc}
\mathbf{0}_{d} & \rho_{0}^{-1}(x) D \\
\kappa_{0}^{-1}(x) D^{T} & 0
\end{array}\right) .
$$

Above, $\mathbf{I}_{d}\left(\operatorname{resp} \mathbf{0}_{d}\right)$ is the d-dimensional identity (resp. zero) matrix, and $\mathbf{0}$ is the zero column vector of dimension d.

Let us first consider the setting of section 2, with time-dependent fluctuations localized around a time T, leading in the limit $\tau \rightarrow 0$ to an equation of the form

$$
\begin{equation*}
\partial_{t} \mathbf{u}=A_{0}(x, D) \mathbf{u}+\delta_{T}(t) B(x, D) \mathbf{u} \tag{20}
\end{equation*}
$$

where δ_{T} is the Dirac function at $T, B=B_{0} A_{0}$ and $A_{1}=I+\delta_{T}(t) B_{0}$ for some matrix B_{0}. The above equation may be seen as the limit as $\tau \rightarrow 0$ of (5).

In order for the last term in the equation to be defined, we need $B u$ to be continuous at time $t=T$. Integrating the above equation between T^{-}and T^{+}gives

$$
u\left(T^{+}\right)-u\left(T^{-}\right)=0+(B u)(T)
$$

so that after applying the matrix operator B once more, we obtain that $B^{2} u(T)=0$. Since this needs to be valid for general vectors $u(T)$, we obtain that a quasi-necessary condition for the above equation to make sense is that $B^{2}=0$.

Constructing solutions to (20), at least formally, is central to our analysis in sections $3 \& 4$. Heuristically, the quality of refocusing and the possibility to properly define solutions to (20) are related as follows. We have seen in section 3 that a key ingredient for the error \mathbf{R}^{τ} to be small as $\tau \rightarrow 0$ is for $\nabla p(s)-\nabla p(s-\tau)$ to be small around the perturbation. In particular, \mathbf{R}^{τ} is of order τ when $\nabla \partial_{t} p$ is bounded independently of τ. The decomposition of the field \mathbf{u} given in (8) can be generalized to the case of
perturbations in both ρ and κ, with a new error term \mathbf{R}^{τ}. The latter will be of order τ if all components of the (spatial derivatives) of field admit uniformly bounded (in τ) time derivatives. Failure to construct solutions to (20) indicates a lack of uniform boundedness of the time derivatives of the field solution to the system with non-zero τ, which, as a consequence, yields a larger term \mathbf{R}^{τ} that is not of order τ and pollutes the refocused signal \mathbf{u}_{R} in (8).

In the case of a system of acoustic equations, we observe, with $V_{\rho}(t, x)=V_{\rho}(t)=$ $\alpha \delta_{T}(t)$ and $V_{\kappa}(t, x)=V_{\kappa}(t)=\beta \delta_{T}(t)$, that

$$
B=B_{0} A_{0} \quad \text { where } \quad B_{0}=\left(\begin{array}{cc}
\alpha \mathbf{I}_{d} & \mathbf{0} \\
\mathbf{0}^{T} & \beta
\end{array}\right)
$$

and as a consequence

$$
B(x, D)^{2}=\alpha \beta A_{0}(x, D)^{2} .
$$

Thus, in order for $B^{2}=0$ to hold, we need that either $\alpha=0$ or $\beta=0$. The analysis presented in this paper is based on the convenient form for \mathbf{u} above. As we indicated in the text, it imposes fast variations of either ρ^{-1} or κ^{-1} but not both at the same time.

It turns out that other (and important) classes of rapid temporal fluctuations can be considered with some other quantities than \mathbf{u} being discontinuous at time $t=T$. In the next paragraph, we consider spatially-independent fluctuations leaving the impedance constant. We show the physically expected result that no back-scattered signal is generated in such a situation. In the following paragraph, we generalize the analysis to still spatially-independent fluctuations that generate couplings between propagating modes and their time-reversed versions. Such an analysis is based on the existence of propagating modes and on fluctuations that generate couplings that can be computed explicitly. This rules out the important case of spatially-varying fluctuations (for instance $\chi(x)$ supported on a compact domain), whose effect on propagating modes is significantly more complex. This was the main reason for the introduction of (5).

The case of time-independent impedance. To motivate the analysis, let us consider the setting of constant coefficients (in space and time) and of plane wave solutions. We verify that

$$
\mathbf{u}_{ \pm}(t, x)=\mathbf{u}_{ \pm} e^{i(c|k| t \mp k \cdot x)}
$$

is a solution with $c=(\kappa \rho)^{-\frac{1}{2}}$ and

$$
\mathbf{u}_{ \pm}=\binom{\mp \zeta^{-1} \hat{k}}{1}, \quad \zeta=c \rho=\frac{1}{\kappa c}=\sqrt{\frac{\rho}{\kappa}}, \quad \hat{k}=\frac{k}{|k|}
$$

Here, ζ is the impedance, the ratio of pressure over velocity in propagating plane waves. The reason for the presence of both signs \pm is to present waves in pairs of forward- and backward- (time-reversed) propagating signals. The main influence of time-dependent fluctuations is to couple the two modes $u_{ \pm}$with each other and this is precisely how a time-reversed signal is generated. Rapid variations in ρ^{-1} and κ^{-1} can easily be analyzed within this framework of plane waves when the coefficients are spatially independent.

It is expected physically that any temporal fluctuations of κ and ρ such that ζ remains constant should not affect the dispersion relation and hence generate no coupling between the modes $\mathbf{u}_{ \pm}(t, x)$. We now verify this in a slightly more general setting than the constant coefficients (in space) case. For the acoustic system, suppose that $V_{\rho}(t, x)=V_{\rho}(t)=V_{\kappa}(t)$, so that the impedance ζ does not depend on time. Then the matrix $A_{1}(t)$ in (19) is proportional to the identity matrix, and this leads to an equation of the form

$$
\begin{equation*}
\partial_{t} \mathbf{u}=a_{1}(t) A_{0}(x, D) \mathbf{u} \tag{21}
\end{equation*}
$$

with $a_{1}(t)$ a scalar, for instance constant (equal to 1) except in a small interval ($T-$ $\tau / 2, T+\tau / 2)$, and A_{0} is the time-independent system. Now, let us assume the existence of a (non-trivial) solution of the generalized eigenvalue problem

$$
\begin{equation*}
A_{0}(x, D) \mathbf{u}_{0}=i \omega \mathbf{u}_{0} \tag{22}
\end{equation*}
$$

with ω real-valued since A_{0} is hyperbolic. These are simply generalized plane waves. We then look for solutions of (21) of the form

$$
\mathbf{u}(t, x)=q(t) \mathbf{u}_{0}(x)
$$

with an equation for $q(t)$ then given by

$$
\dot{q}(t)=i \omega a_{1}(t) q(t), \quad \text { so that } \quad q(t)=q(0) \exp \left\{\int_{0}^{t} i \omega a_{1}(s) d s\right\} .
$$

When a_{1} is an approximation of $1+\alpha \delta_{T}(t)$, we thus observe that the influence of the temporal fluctuations is to induce a phase shift given by $\alpha \omega$.

For acoustic waves with spatially invariant media, this corresponds to looking for a solution of the form

$$
\mathbf{u}_{+}(t)=\binom{-\zeta^{-1} \hat{k}}{1} q(t) e^{-i k \cdot x}
$$

with $\dot{q}(t)=i|k| \zeta^{-1} \kappa^{-1}(t) q$ when ζ is time-independent, i.e., when $\rho(t) / \kappa(t)=\zeta^{2}$ is constant.

Note that in the above setting, $q(t)$ is not continuous at time $t=T$, so that we cannot write the equation $\dot{q}(t)=i \omega\left(1+\alpha \delta_{T}(t)\right) q(t)$ with a discontinuity in \dot{q}. Instead, it is $\frac{\dot{q}}{q}$ that is discontinuous, with a resulting phase shift. Hence, equation (20) is not satisfied as stated, but solutions can still be constructed provided the time fluctuations in the density and the compressibility are the same.

Finally, since (21) is linear, one can consider linear combinations of modes satisfying an equation of the form (22). They will remain uncoupled and each see an appropriate phase shift at $t=T$. We address the simplest of non-trivial mode couplings in the next paragraph.

Mode coupling with time-reversed mode. Consider the same equation for \mathbf{u} as above with this time two modes (forward and time-reversed) given by

$$
A_{0}(x, D) \mathbf{u}_{ \pm}= \pm i \omega \mathbf{u}_{ \pm}
$$

In this setting, we then look for solutions of (21) of the form

$$
\mathbf{u}(t, x)=\mathbf{u}_{+}(x) q_{+}(t)+\mathbf{u}_{-}(x) q_{-}(t) .
$$

This would generalize in the setting with polarization (higher-dimensional eigenspaces as they appear in electromagnetism or elasticity) to $\mathbf{u}_{ \pm}$given by matrices of eigenvectors. In the acoustic case, write $\mathbf{u}_{+}(x)=(\mathbf{v}(x), w(x))^{T}$, for \mathbf{v} a d-dimensional vector. It follows directly that $\mathbf{u}_{-}=(-\mathbf{v}(x), w(x))^{T}$. Denote then by \mathcal{S} the span of \mathbf{u}_{+}and \mathbf{u}_{-}. A short calculation shows that $A_{1}(t) \mathcal{S} \subset \mathcal{S}$, i.e., the temporal fluctuations acting on $\mathbf{u}_{ \pm}$ do not generate anything that cannot be decomposed over these two modes, and more precisely

$$
A_{1}(t) A_{0}(x, D) \mathbf{u}(t, x)=A_{1}(t)\left(\sum_{ \pm} \pm i \omega q_{ \pm}(t) \mathbf{u}_{ \pm}(x)\right)=\sum_{ \pm} \gamma_{ \pm}(t) \mathbf{u}_{ \pm}
$$

where

$$
\gamma_{+}(t)=i \omega\left(\Sigma(t) q_{+}(t)+\Delta(t) q_{-}(t)\right), \quad \gamma_{-}(t)=i \omega\left(-\Sigma(t) q_{-}(t)-\Delta(t) q_{+}(t)\right)
$$

and

$$
\Sigma(t)=\frac{1}{2}\left(2+V_{\rho}(t)+V_{\kappa}(t)\right), \quad \Delta(t)=\frac{1}{2}\left(V_{\rho}(t)-V_{\kappa}(t)\right) .
$$

We thus obtain the differential equation

$$
\mathbf{u}_{+}(x) \dot{q}_{+}(t)+\mathbf{u}_{-}(x) \dot{q}_{-}(t)=\mathbf{u}_{+}(x) \gamma_{+}(t)+\mathbf{u}_{-}(x) \gamma_{-}(t) .
$$

Writing $q=\left(q_{+}, q_{-}\right)^{T}$, we find, after appropriate projection of the above equation, the following system:

$$
\dot{q}(t)=M(t) q(t), \quad M(t)=i \omega\left(\begin{array}{cc}
\Sigma(t) & \Delta(t) \tag{23}\\
-\Delta(t) & -\Sigma(t)
\end{array}\right) .
$$

The above system describes the coupling between the forward and time-reversed modes for any bounded perturbations such that $\rho(t, x)$ and $\kappa(t, x)$ are positive. There is a non-trivial coupling as soon as $\Delta(t) \neq 0$, that is when the fluctuations of the density and the compressibility are different. The case $\Delta(t)=0$ was addressed in the preceding paragraph. Note that

$$
\frac{d|q(t)|^{2}}{d t}=4 \Delta(t) \Im\left(q_{-}(t) q_{+}^{*}(t)\right)
$$

and as a consequence the energy is conserved (only) when $\Delta(t)=0$.
Assuming the perturbations are supported in $\left(T-\frac{\tau}{2}, T+\frac{\tau}{2}\right)$ as in section 2, we can solve (23) on this interval and relate the initial and final amplitudes via a scattering matrix S_{τ} such that

$$
q(T+\tau / 2)=S_{\tau} q(T-\tau / 2)
$$

We can obtain simple expressions of S_{τ} in the following cases: when the perturbations are identical, when one is zero, or when they are constant in $(T-\tau / 2, T+\tau / 2)$. In the first case, we have, as already seen,

$$
M(t)=i \omega\left(\begin{array}{cc}
1+V_{\rho}(t) & 0 \\
0 & -\left(1+V_{\rho}(t)\right)
\end{array}\right) \quad \text { and then } \quad S_{\tau}=\left(\begin{array}{cc}
s_{\tau} & 0 \\
0 & s_{\tau}^{*}
\end{array}\right)
$$

with $s_{\tau}=\exp \left(i \omega \int_{T-\frac{\tau}{2}}^{T+\frac{\tau}{2}}\left(1+V_{\rho}(s)\right) d s\right)$. When V_{ρ} is an approximation of a delta function at $t=T$ with weight α, we then find $S_{\tau} \rightarrow S_{0}$, where S_{0} is diagonal with entries $s_{0}=e^{i \omega \alpha}$ and s_{0}^{*}.

For the second case, we have, with for instance $V_{\kappa}=0$,

$$
M(t)=i \omega\left[\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+\frac{V_{\rho}(t)}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)\right]:=D+M_{0}(t)
$$

Writing $q(t)=e^{t D} \mu(t)$, we find

$$
\dot{\mu}(t)=V_{\rho}(t) M_{1}(t) \mu(t), \quad M_{1}(t)=\frac{i \omega}{2}\left(\begin{array}{cc}
1 & m^{*}(t) \\
-m(t) & -1
\end{array}\right), \quad m(t)=e^{2 i \omega t} .
$$

Interestingly, while the above equation does not seem to be exactly solvable in general, it is when $V_{\rho}(t)=\alpha \delta_{T}(t)$ since we can exploit the fact that $\left(M_{1}(T)\right)^{2}=0$. We then find

$$
\mu\left(T^{+}\right)=\left(\mathbf{I}_{2}+\alpha M_{1}(T)\right) \mu\left(T^{-}\right)
$$

and the asymptotic scattering matrix is

$$
S_{0}=\mathbf{I}_{2}+\alpha e^{T D} M_{1}(T) e^{-T D}=\mathbf{I}_{2}+\frac{i \alpha \omega}{2}\left(\begin{array}{cc}
1 & 1 \tag{24}\\
-1 & -1
\end{array}\right)
$$

Note that, while $q(t)$ is discontinuous at $t=T$, it is possible to construct solutions to (23) as $\tau \rightarrow 0$. These solutions do not satisfy (23) quite as stated but rather in a proper weaker sense. To make the connection with the first paragraph of the appendix, note that the relevant quantities to address the solvability of (20) are $q_{+}(t) \pm q_{-}(t)$ since

$$
\mathbf{u}(t, x)=\binom{\left(q_{+}(t)-q_{-}(t)\right) \mathbf{v}(x)}{\left(q_{+}(t)+q_{-}(t)\right) w(x)}
$$

We then deduce from the scattering matrix (24) that $q_{+}(t)+q_{-}(t)$ is continuous at T, and therefore that the last component of \mathbf{u} is continuous, which is enough to make sense of (20) when $V_{\kappa}=0$.

When both perturbations are constant on $(T-\tau / 2, T+\tau / 2)$ and of the form $V_{\rho}(t)=$ $\alpha \eta((t-T) / \tau)$ and $V_{\rho}(t)=\beta \eta((t-T) / \tau)$, where η is defined in section 2, (23) can be solved exactly in $(T-\tau / 2, T+\tau / 2)$, and we find, with $\alpha_{0}=1+\alpha, \beta_{0}=1+\beta$, $\theta=\omega \tau \sqrt{\alpha_{0} \beta_{0}}, a=\sqrt{\alpha_{0} / \beta_{0}}$,

$$
S_{\tau}=4\left(\begin{array}{ll}
s_{1} & s_{2}^{*} \\
s_{2} & s_{1}^{*}
\end{array}\right), \quad s_{1}=\cos \theta+\frac{i}{2}\left(\frac{1}{a}+a\right) \sin \theta, \quad s_{2}=\frac{i}{2}\left(\frac{1}{a}-a\right) \sin \theta .
$$

The expressions above show in particular that the forward and the time-reversed modes cannot be exchanged since s_{1} cannot vanish (since a is positive). The largest transfer
(largest ratio $\left.\left|s_{2}\right| /\left|s_{1}\right|\right)$ is obtained for $\theta=\frac{\pi}{2}$ and a either very large or very small, i.e., when only one of the coefficients varies.

Note that we can address the limit $\tau \rightarrow 0$ as follows: rescaling α and β as α / τ and β / τ, we can take the limit of S_{τ} and find the same expression as above with now $\theta=\omega \sqrt{\alpha \beta}$ and $a=\sqrt{\alpha / \beta}$. Again, q is discontinuous at T but still satisfies (23) in a proper sense as $\tau \rightarrow 0$.

References

[1] V. Bacot, N. Labousse, A. Eddi, M. Fink, and E. Fort, Time reversal and holography with spacetime transformations, Nature Physics, 12 (2016), pp. 972-977.
[2] G. Bal, Kinetics of scalar wave fields in random media, Wave Motion, 43 (2005), pp. 132-157.
[3] G. Bal, T. Komorowski, and L. Ryzhik, Self-averaging of Wigner transforms in random media, Comm. Math. Phys., 242(1-2) (2003), pp. 81-135.
[4] G. Bal and O. Pinaud, Time-reversal-based detection in random media, Inverse Problems, 21 (2005), pp. 1593-1619.
[5] G. Bal and L. Ryzhik, Time Reversal for Classical Waves in Random Media, C. R. Acad. Sci. Paris, Série I, 333 (2001), pp. 1041-1046.
[6] __, Time Reversal and Refocusing in Random Media, SIAM J. Appl. Math., 63(5) (2003), pp. 1475-1498.
[7] G. Bal and R. Verástegui, Time Reversal in Changing Environment, SIAM Mult. Mod. Simul., 2(4) (2004), pp. 639-661.
[8] C. Bardos and M. Fink, Mathematical foundations of the time reversal mirror, Asymptotic Analysis, 29(2) (2002), pp. 157-182.
[9] P. Blomgren, G. Papanicolaou, and H. Zhao, Super-Resolution in TimeReversal Acoustics, J. Acoust. Soc. Am., 111(1) (2002), pp. 230-248.
[10] J. F. Clouet and J.-P. Fouque, A time-reversal method for an acoustical pulse propagating in randomly layered media, Wave Motion, 25 (1997), pp. 361-368.
[11] J. de Rosny and M. Fink, Overcoming the diffraction limit in wave physics using a time reversal mirror and a novel acoustic sink, Phys. Rev. Lett., 89(12) (2002), p. 124301.
[12] A. Derode, P. Roux, and M. Fink, Robust Acoustic Time-Reversal With HighOrder Multiple-Scattering, Phys. Rev. Lett., 75 (1995), pp. 4206-9.
[13] M. Fink, Time reversed acoustics, Physics Today, 50(3) (1997), pp. 34-40.
[14] M. Fink and C. Prada, Acoustic time-reversal mirrors, Inverse Problems, 17(1) (2001), pp. R1-R38.
[15] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave propagation and time reversal in randomly layered media, vol. 56 of Stochastic Modelling and Applied Probability, Springer, New York, 2007.
[16] D. Liu, S. Vasudevan, J. Krolik, G. Bal, and L. Carin, Electromagnetic time-reversal imaging in changing media: Experiment and analysis, IEEE Trans. Antenna Propag., 55 (2007), pp. 344-354.
[17] K. A. Lurie, An introduction to the mathematical theory of dynamic materials, vol. 15, Springer, 2007.
[18] L. Ryzhik, G. Papanicolaou, and J. B. Keller, Transport equations for elastic and other waves in random media, Wave Motion, 24 (1996), pp. 327-370.

[^0]: *Departments of Statistics and Mathematics, University of Chicago, Chicago, IL 60637, USA; guillaumebal@uchicago.edu
 ${ }^{\dagger}$ Institut Langevin, ESPCI, CNRS, PSL Research University, 75005 Paris, France; mathias.fink@espci.fr
 ${ }^{\ddagger}$ Department of Mathematics, Colorado State University, Fort Collins, CO 80525, USA; pinaud@math.colostate.edu

[^1]: ${ }^{1}$ Consider a localized support on a domain of diameter d with $d \ll c t$, where c is speed propagation and t the central time of the localized time-dependent fluctuations.

