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DYNAMICALLY ORTHOGONAL NUMERICAL SCHEMES
FOR EFFICIENT STOCHASTIC ADVECTION

AND LAGRANGIAN TRANSPORT

FLORIAN FEPPON AND PIERRE F.J. LERMUSIAUX.∗

Abstract. Quantifying the uncertainty of Lagrangian motion can be performed by solving a
large number of ordinary differential equations with random velocities, or equivalently a stochastic
transport partial differential equation (PDE) for the ensemble of flow-maps. The Dynamically Or-
thogonal (DO) decomposition is applied as an efficient dynamical model order reduction to solve for
such stochastic advection and Lagrangian transport. Its interpretation as the method that applies
instantaneously the truncated SVD on the matrix discretization of the original stochastic PDE is
used to obtain new numerical schemes. Fully linear, explicit central advection schemes stabilized
with numerical filters are selected to ensure efficiency, accuracy, stability, and direct consistency
between the original deterministic and stochastic DO advections and flow-maps. Various strategies
are presented for selecting a time-stepping that accounts for the curvature of the fixed rank manifold
and the error related to closely singular coefficient matrices. Efficient schemes are developed to dy-
namically evolve the rank of the reduced solution and to ensure the orthogonality of the basis matrix
while preserving its smooth evolution over time. Finally, the new schemes are applied to quantify the
uncertain Lagrangian motions of a 2D double gyre flow with random frequency and of a stochastic
flow past a cylinder.

AMS subject classifications. 65C20, 53B21, 15A23, 35R60

1. Introduction. Advection plays a major role in a wide variety of physical
processes and engineering applications of fluid mechanics [26, 3], neutronic transport,
chemical transports, atmospheric sciences [62] and ocean sciences [20, 53]. At its most
fundamental level, the pure advection process is commonly understood through the
transport partial differential equation (PDE),

(1)

{
(∂t + v(t,x) · ∇)ψ = 0

ψ(0,x) = ψ0(x),

that models the material transport of a passive (scalar or vectorial) tracer field ψ
under a velocity field v, having initially its values distributed as ψ0 over a physical
domain Ω ⊂ Rd of positions x. Another description of transport considers a parcel of
material initially located at the location x0 and transported to the position φt0(x0) =
x(t) with the instantaneous velocity v(t,x(t)). In this Lagrangian description, x(t)
is the solution of the ordinary differential equation (ODE)

(2)

{
ẋ =v(t,x(t))

x(0) =x0,

and φt0, i.e. the function mapping the initial positions x0 to those φt0(x0) = x(t) at
time t, is the flow-map of the ODE (2). Under sufficient regularity conditions on the
velocity field v [9, 2], the solution ψ of the advection eq. (1) relates to (2) as being
obtained by “carrying ψ0 values along particles’ paths”:

(3) ψ(t,x) = ψ0((φt0)−1(x)),

where (φt0)−1 is the backward or inverse flow-map (Figure 1).
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Fig. 1: Illustration of the action of the forward and backward flow-map on a subdomain
U ⊂ Ω of a spatial domain Ω ⊂ Rd. φt

0 maps initial particle positions x0 to their position
at time t, and (φt

0)−1 is the reciprocal map.

In fact, (1) and (2) are equivalent mathematical descriptions of material transport,
as setting ψ0(x) = x in (3) yields ψ(t,x) = (φt0)−1(x). Similarly, solving backward
in time the transport equation with a terminal condition,

(4)

{
(∂s + v(s,x) · ∇)ρ = 0

ρ(t,x) = ρt(x),

allows to retrieve the forward flow map from the relation ρ(s,x) = ρt(φts(x)) by
setting ρt(x) = x. This shows that the flow-map φt0 can be obtained from a solution of
the transport PDE (1) and vice versa. This property has been thoroughly investigated
on the theoretical side to provide a mathematical meaning to the solutions of the ODE
(2) for velocity fields v with weak regularity [9, 2, 4], and more recently in numerical
computations, as it offers an alternative method to direct particle advection for the
evaluation of the flow-map φt0 [44, 45].

A typical challenge encountered in environmental flow predictions is the need
for dealing with velocity data that include a certain level of uncertainty, resulting
from sparse data acquisitions, noise in direct measurements, or errors in the inferred
numerical predictions [41]. Uncertainty is modeled by including randomness in the
velocity field [39]: each realization v(t,x;ω) corresponds to a particular possible sce-
nario ω. An issue of great interest in hazard predictions [33], is to quantify how this
uncertainty reverberates in the Lagrangian motion [42]. A basic Monte-Carlo (MC)
approach would then solve either the stochastic ODE

(5)

{
ẋ =v(t,x;ω)

x(0) =x0,

or the stochastic partial differential equation (SPDE)

(6)

{
∂tψ + v(t,x;ω) · ∇ψ = 0

ψ(0,x) = x,

for a large number of realizations, ω. While performance of particle as well as MC
methods can be optimized through parallelism, such methodologies are computation-
ally demanding for cases requiring high resolution in both the spatial and stochastic
domains, i.e. large numbers of particles and realizations. Hence, while they have been
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useful in a variety of applications [6, 46], particle and MC methods are very expensive
for uncertain advection.

A substantial benefit of the PDE formulation (6) is its compatibility with dy-
namical model order reduction that take direct advantage of the spatial structures in
the solution. Classic reduced order methods aim to evolve low-rank decompositions
such as ψ(t,x;ω) '

∑rΨ
i=1 ζi(t;ω)ui(x) or ψ(t,x;ω) '

∑rΨ
i=1 ζi(ω)ui(t,x) at a cost

much smaller than the direct realization methods [76, 19] by independently evolving
a small number rΨ of spatial modes, ui, or stochastic coefficients, ζi. For model
order reduction of stochastic PDEs, classic methods ranging from Polynomial Chaos
[56, 28, 86, 13], Proper Orthogonal Decomposition (POD) [26, 60], Dynamic Mode
Decomposition (DMD) [61, 67, 79, 84, 31], or stochastic Galerkin schemes and ad-
joint methods [10, 7] assume a priori choices of time-independent modes ui(x) and/or
rely on gaussianity assumptions on the probability distribution of the coefficients ζi.
For example, the popular data POD [26] and DMD [67] methods suggest to extract
time independent modes ui(x) that respectively best represent the variability (for the
POD method) or the approximate linear dynamics (for the DMD method) of a se-
ries of snapshots u(tk,x, ω0), for a given observed or simulated realization ω0. These
modes allow to quickly obtain information about the dynamics of this time series,
and then to infer simple reduced order models for evolving the coefficients ζi(t;ω)
of a more general solution u(t,x;ω) by Galerkin projection. DMD and POD may
be very useful and efficient methods to analyze the given time series u(tk,x;ω0) and
infer information on its hidden dynamics, but the use of the inferred reduced order
model may be allowed only if the variability of the observed snapshot is sufficiently
representative, in both time and stochastic domains, of the non-reduced stochastic
solution u(t,x;ω). As it will be demonstrated hereafter, the DO equations overcome
this difficulty as they allow to predict both the variability and the time evolution of
the stochastic solution u(t,x;ω) solely from its non reduced dynamics.

In general, the above methods may not be well suited for capturing low-rank so-
lutions that do not decompose on a small number of time-invariant modes (e.g. as in
POD and DMD), or that exhibit spatial irregularities not easily captured by Fourier
modes (e.g. as in spectral methods), or multimodal and non-Gaussian behaviors of the
coefficients (e.g. as in Polynomial Chaos methods). This is especially the case with
material transport as advection tends to create fine features in the solution, with sharp
gradients or shocks that evolve in time and space. Capturing them requires careful
numerical schemes [55, 54, 72, 48]. Upwinding, total variation diminishing (TVD),
or Essentially Non Oscillatory (ENO) schemes use diverse rules depending on the
sign of the advecting velocity. How to adapt these schemes for reduced-order numeri-
cal advection, which cannot afford examining the realizations individually, is therefore
particularly challenging [78, 81, 66]. This explains in part why many stochastic advec-
tion attempts have essentially restricted themselves to one dimensional applications
[19, 28, 13, 56] or simplified 2D cases that do not exhibit strong shocks [82].

In contrast with these reduced order methods, the Dynamically Orthogonal (DO)
methodology [63, 65] solves dynamical equations to simultaneously evolve a time-
dependent basis of modes, ui(t,x), and coefficients, ζi(t;ω),

(7) ψ(t,x;ω) '
rΨ∑
i=1

ζi(t;ω)ui(t,x) .

This dynamic approach [37] can efficiently capture the evolving spatial flow features
and their variability at the minimal condition that such a modal approximation (7)
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exists for the non-reduced solution ψ(t,x;ω) [30, 52, 17]. Numerical schemes for DO
equations were derived for a variety of dynamics, from stochastic Navier-Stokes [81] to
Hamilton-Jacobi [75] equations. Recently, using differential geometry, the DO equa-
tions were shown [17] to be instantaneously optimal among any other reduced order
model. In fact, a non-intrusive matrix version of the DO approach was independently
introduced to efficiently evolve time-dependent matrices [30]. Dynamical systems
that continuously perform classic matrix operations [5, 8, 74, 12] or learn dominant
Kalman filter subspaces [34, 36] have also been derived. However, critical research
questions remained for stochastic DO transports. They relate to the consistency of
the direct MC integration with the numerical DO integration, to the ill-conditioning
of the coefficient matrix [49] (related to the curvature of the reduced-rank manifold),
to the need of capturing the sharp local gradients of the advected fields, and to the
issue of maintaining the numerical orthonormality of the dynamic modes.

The purpose of this article is thus to utilize the DO decomposition [63] and its
geometric interpretations [17] to obtain a systematic, optimal reduced-order method
for eq. (6) and to derive new numerical schemes that answer the above questions
for stochastic advection and Lagrangian transports. For the latter, as an immediate
benefit, a novel and efficient computational methodology for evaluating an ensemble
of flow-maps ψ(t,x;ω) = φt0(x;ω) of the ODE (5) with random velocity is obtained.
The issue of shock capturing is addressed by considering fully linear but stabilized
advection schemes. This provides deterministic-stochastic consistency and compatible
reduced–order schemes that rely on tensor decompositions of either the solution, ψ,
or of its time derivative −v · ∇ψ. The schemes obtained are not restricted to pure
transport, they are also applicable to stochastic PDEs with advection terms of the
form v · ∇, such as the Navier-Stokes equations.

A synopsis of the coupled DO PDEs for the dynamical evolution of the tensor
decomposition (7) is given in section 2. Numerical schemes for this set of PDEs
are obtained by applying the DO methodology directly onto the spatial discretiza-
tion of the stochastic transport PDE rather than its continuous version (6). In that
framework, the DO equations find a rigorous geometric justification, corresponding to
optimality conditions [17, 30, 52]. Section 3 focuses on the implementation in prac-
tice of the DO machinery to solve the stochastic transport PDE (6). Factorization
properties of the advection operator must be preserved at the discrete level to en-
sure deterministic-stochastic consistency and avoid additional approximations. This
is ensured through the selection of a fully linear advection scheme, whose accuracy
and stability is obtained by the use of high order spatial and temporal discretization
combined with linear filtering, a technique popular in ocean modeling [69, 34]. It
is explained how stochastic boundary conditions can be accounted for by the model
order reduced method in an optimal and convenient manner. Different possible time
stepping for the DO equations are discussed, as well as the issue of modifying dy-
namically the stochastic dimensionality rΨ of the tensor approximation (7). Finally,
as a requirement of both the DO method and multi-steps time marching schemes,
an efficient method is proposed for preserving the orthonormality of the modal basis
(ui) during the time integration, as well as the smooth evolution of this basis and
the coefficients ζi. Numerical results of the overall methodology are presented in
section 4 using the bi-dimensional stochastic analytic double-gyre flow and stochastic
flow past a cylinder, both of which include sharp gradients. The DO results are finally
contrasted with those of direct Monte-Carlo.

Notations. Important notations are summarized below:
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Ω ⊂ Rd Spatial domain
x ∈ Ω Spatial position
v(t,x;ω) Stochastic velocity field
ψ(t,x;ω) '

∑rΨ
k=1 ζk(t;ω)uk(t,x) Rank rΨ tensor approximation of the stochastic

solution of the transport PDE (6)
Ml,m Space of l-by-m real matrices
Ψi,α(t) ' ψ(t,xi;ωα) Full rank discrete approximation Ψ(t) ∈Ml,m

of the continuous solution ψ
Ui,k(t) = uk(t,xi), Zα,k(t) = ζk(t;ωα) Discrete approximation of the modes and the coefficients

with U ∈Ml,rΨ , UTU = I, Z ∈Mm,rΨ and rank(Z) = rΨ

M = {Ψ ∈Ml,m|rank(Ψ) = rΨ} Fixed rank matrix manifold
Ψ(t) = U(t)Z(t)T ∈M Rank rΨ approximation of the discretized solution Ψ(t)
T (Ψ) Tangent space at Ψ ∈M
N (Ψ) Normal space at Ψ ∈M
ΠT (Ψ) Orthogonal projection onto the plane T (Ψ)
ΠM Orthogonal projection onto M or rank rΨ-truncated SVD
I Identity mapping
AT Transpose of a square matrix A
< A,B >= Tr(ATB) Frobenius scalar product for matrices
< u,v > L2 scalar product for functions u,v over Ω ⊂ Rd
||A|| = Tr(ATA)1/2 Frobenius norm
σ1(A) ≥ . . . ≥ σrank(A)(A) Non zeros singular values of A ∈Ml,m

Ψ̇ = dΨ/dt Time derivative of a rank rΨ solution Ψ
ρΨ Retraction on the manifold M at Ψ ∈M

2. Dynamically Orthogonal stochastic transport equations.

2.1. Mathematical setting for the transport PDE. The stochastic trans-
port PDE (6) is set on a smooth bounded domain Ω of Rd where d denotes the spatial
dimension. The flow-map φt0 of the ODE (5) is defined for all time if particle trajec-
tories don’t leave the domain Ω, which is ensured if the normal flux v ·n vanishes on
the boundary ∂Ω, n denoting the outward normal of Ω. In the following, one deals
with the more general case where v · n may have an arbitrary sign on ∂Ω. Inlet and
outlet boundaries are denoted respectively

∂Ω−(t;ω) = {x ∈ ∂Ω|v(t, x;ω) · n < 0}
∂Ω+(t;ω) = {x ∈ ∂Ω|v(t, x;ω) · n ≥ 0},

Boyer [4] has shown that the transport eq. (6) is well posed (under suitable regularity
assumptions on v), provided a Dirichlet boundary condition is prescribed at the inlet
∂Ω−(t;ω). Following Leung [44], this work considers the Dirichlet boundary condition

(8) ψ(t,x;ω) = x on ∂Ω−(t;ω),

which ensures that the solution ψ(t,x;ω) carries the value of the initial entering
location of the particle that arrived in x at time t. Theoretically, no boundary condi-
tion is required on the outlet boundary ∂Ω+(t;ω), but some conditions may be used
for convenience, e.g. for numerical schemes that do not use upwinding rules. In the
applications of section 4, the Neumann boundary condition was considered:

(9)
∂ψ

∂n
(t,x;ω) = 0 on ∂Ω+(t;ω),

which is a boundary condition previously implemented in [44], and which naturally
arises when considering ψ as a viscous limits of eq. (6) (see Theorem 4.1 in [4]). Such
zero normal flux condition can be interpreted as due to artificial viscosity that instan-
taneously diffuses trajectories normally to the outlet. For simplicity, it is assumed
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that a dynamic modal decomposition of the stochastic velocity field v is available:

(10) v(t,x;ω) =

rv∑
k=1

βk(t;ω)vk(t,x),

which can be obtained by truncating the Karhunen-Loeve expansion [58].

2.2. The DO field equations. The DO field equations evolve adaptive modes
ui(t,x) and stochastic coefficients ζi(t;ω) considered both as time-dependent quan-
tities, so as to most accurately update the modal approximation (7). Such equations
can formally be found by replacing the solution ψ with its tensor approximation (7)
in the transport eq. (6) :

(11) (∂tζj)uj + ζj∂tuj + ζjβkvk · ∇uj = 0,

where the Einstein summation convention over repeated indexes is used. The family
of modes is assumed orthonormal, namely

(12) ∀1 ≤ i, j ≤ rΨ, < ui,uj >=

∫
Ω

(ui(t,x),uj(t,x))dx = δij ,

where <,> and (, ) denote the scalar products respectively on L2(Ω) and on the space
Rd. Furthermore, without loss of generality, the “dynamically orthogonal condition”

(13) ∀ 1 ≤ i, j ≤ rΨ, < ∂tui,uj >= 0

is imposed to remove the redundancy in (7), coming from the fact that the modal
decomposition is invariant under rotations of modes ui and coefficients ζi [64, 17].
Equations for the coefficients, ζi, are then obtained by L2 projection of (11) onto the
modes, ui:

(14) ∀ 1 ≤ i ≤ rΨ, ∂tζi + ζjβk < vk · ∇uj ,ui >= 0 .

Governing equations for the modes, ui, are obtained by L2 projection on the space
of the stochastic coefficients: multiplying (11) by ζi, replacing ∂tζj using (14) yields:

ζi(−ζlβk < vk · ∇ul,uj >)uj + ζiζj∂tuj + ζiζjβkvk · ∇uj = 0,

which allows obtaining, after taking the expectation and multiplying by the inverse
(E[ζiζj ])

−1 of the symmetric moment matrix (E[ζiζj ])1≤i,j≤rΨ :

(15) ∂tui + (E[ζiζj ])
−1E[ζiζjβk]vk · ∇uj = (E[ζiζj ])

−1E[ζiζlβk] < vk · ∇ul,uj > uj .

Deriving boundary conditions is slightly more delicate as (8) and (9) involve a stochas-
tic partition ∂Ω = ∂Ω−(t;ω) ∪ ∂Ω+(t;ω) of the boundary. They are obtained again
by inserting (7) into the original eqs. (8) and (9), which can then be rewritten

rΨ∑
j=1

[
ζjuj1v·n<0 + ζj

∂uj
∂n

1v·n≥0

]
= x1v·n<0 on ∂Ω,

where 1v·n<0(t,x;ω) is the random indicator variable equal to 1 when v · n < 0 and
0 otherwise, and 1v·n≥0 = 1 − 1v·n<0. Projecting again on the space of coefficients,
ζi, yields mixed boundary conditions for the modes, ui :

(16) E[ζiζj1βkvk·n<0]uj + E[ζiζj1βkvk·n≥0]
∂uj
∂n

= E[ζi1βkvk·n<0]x on ∂Ω.
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The reader is referred to [21] for further developments on DO boundary conditions.
So far, the coupled PDEs for DO modes and coefficients (14)–(16) have been

derived first [64, 75, 52] and numerical schemes developed thereafter [81]. In doing so,
the numerical consistency between the original SPDE (6) and the model order reduced
system (14)–(16) should be respected. In addition, since unadapted discretizations
of the convective terms v · ∇ψ in eq. (1) can lead to instability (blowing up) of the
numerical solution, a great deal of attention must be given to the discretization of the
modal fluxes vk · ∇uj . Popular advection schemes [47, 54] utilize up-winding, in the
sense that spatial derivatives are discretized according to the orientation of the full
velocity, v. When the velocity v becomes stochastic, this is not an issue for direct
MC solutions of (6), but for reduced order equations such as (14)–(16), special care
is needed to ensure stability without having recourse to expensive MC evaluations.
These difficulties were acknowledged in previous works dealing with stochastic Navier-
Stokes equations. For example, an empirical remedy consists of averaging numerical
fluxes according to the probability distribution of the velocity direction [81]. In the
following, it is shown that these issues can in fact be more directly addressed by using
the geometric matrix framework investigated in [17].

2.3. Geometric framework in matrix spaces and theoretical guarantees.
Instead of seeking numerical schemes for the continuous DO equations (14)–(16), it is
numerically useful to apply the DO methodology directly on the spatial discretization
chosen for the original SPDE (6). The results then indicate consistent discretiza-
tions of DO equations, assuming these are well-posed, i.e. DO discretizations that
still accurately simulate each discretized deterministic realizations.

At the spatially discrete level, realizations of the solution vector field are repre-
sented in computer memory by the entries of a l-by-m matrix Ψi,j(t) = ψ(t,xi;ωj),
where l denotes the total spatial dimension (typically l/d nodes xi are used for a
d-dimensional domain) and m realizations ωj are considered. The numerical solution
Ψ(t) of the SPDE (6) is obtained by solving the matrix ODE

(17)
.

Ψ = L(t,Ψ),

where L is a matrix operator that includes spatial discretizations of the realizations of
the fluxes −v · ∇ψ, and of the boundary conditions (8). In that context, model order
reduction consists in approximating the solution of the large l-by-m ODE system (17)
by a low rank decomposition

(18) Ψ(t) ' Ψ(t) = U(t)Z(t)T

similarly as in (7), where U(t) and Z(t) are respectively lower dimensional l-by-rΨ

and m-by-rΨ matrices containing the discretizations Uik(t) = uk(t,xi) and Zjk(t) =
ζk(t;ωj) of the modes and coefficients. The orthonormality of modes (12) and the DO
condition (13) then require that the columns of U are orthonormal and orthogonal to
their derivatives, namely

(19) UTU = I and UT U̇ = 0,

where I is the rΨ-by-rΨ identity matrix. In this matrix framework, the DO method-
ology can be rigorously formulated as a dynamical system on the manifold

M = {Ψ ∈Ml,m|rank(Ψ) = rΨ}
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of rank rΨ matrices embedded in the space Ml,m of l-by-m matrices. In all what
follows, the bold notation Ψ ∈Ml,m is used to refer to matrices of the ambient space
Ml,m whose rank, rank(Ψ), is in general greater than rΨ. The non-bold notation
Ψ ∈ M refers to rank rΨ matrices on the manifold. The DO approximation Ψ(t) is
defined to be the dynamical system on M geometrically obtained by replacing the
vector field L(t, ·) with its tangent projection [17, 30]:

(20)

{
Ψ̇ = ΠT (Ψ)(L(t,Ψ))

Ψ(0) = ΠM (Ψ(0)),

where the notation ΠM denotes the orthogonal projection onto the manifold M and
ΠT (Ψ) the orthogonal projection onto its tangent space at the point Ψ (see Figure 2).

Fig. 2: Geometric interpretation of the DO approximation and of the exponential map
expR. The time derivative L(t, R) is replaced by its best tangent approximation. Schematic
adapted from [83].

Given the choices (18) and (19), the ODE system (20) can be written as a set of
coupled evolution equations for the mode and coefficient matrices U and Z, that turn
to be exactly a discrete version of the continuous DO equations (14) and (15):

(21)

{
Ż = L(t, UZT )TU

U̇ = (I − UUT )L(t, UZT )Z(ZTZ)−1.

The orthogonal projection ΠM onto M used for the initialization of Ψ(0) is nothing
else than the application that maps the matrix Ψ onto its best rank rΨ approximation,
i.e. the truncated Singular Value Decomposition (SVD) [27] (such approach was used
to initialize ocean uncertainty predictions [40, 38]). The SVD of the original numerical
solution is the discrete analogous of the Karhunen-Loeve decomposition:

Ψ =

rank(Ψ)∑
i=1

σi(Ψ)uiv
T
i ,

where σ1(Ψ) ≥ · · · ≥ σrank(Ψ)(Ψ) > 0 are the singular values of Ψ and ui and vi
orthonormal families of left and right singular vectors. The truncated SVD is the
algebraic operation that removes modes of order higher than rΨ:

(22) ΠM (Ψ) =

rΨ∑
i=1

σi(Ψ)uiv
T
i ∈M .
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Feppon et Lermusiaux [17] have shown that the dynamical system (20) applies in-
stantaneously the truncated SVD to constrain the rank of the reduced solution Ψ at
all times. In other words, it is the continuous limit when ∆t→ 0 of the solution that
would be obtained by systematically applying the truncated SVD after any Euler (or
any other explicit time discretization) time step:

(23) ΠT (Ψ)(L(t,Ψ)) = lim
∆t→0

ΠM (Ψ + ∆tL(t,Ψ))−Ψ

∆t
.

Therefore (20) yields an optimal time-evolution of the modal decomposition Ψ = UZT

at least for small integration times. More theoretical guarantees have been obtained
in [17], where it is proven that the error of the DO approximation (20) is controlled
by the best truncation error ||Ψ(t)−ΠM (Ψ(t))|| as long as the original solution Ψ(t)
remains at a close distance to the set M of low rank matrices, which translates into
the algebraic condition

σrΨ(Ψ(t)) > σrΨ+1(Ψ(t)),

i.e. singular values of order rΨ and rΨ+1 do not cross (a condition previously observed
numerically in [30, 52]).

3. Implementation of the DO approximation for stochastic advection.
Exploiting the geometric framework, new schemes for the DO approximation (21)
of the stochastic transport equation (6) are obtained. High-order linear stabilized
advection schemes that maintain sharp spatial gradients and deterministic-stochastic
consistency are presented (subsection 3.1). Stochastic DO boundary conditions de-
rived from optimality criteria are discussed (subsection 3.2). Time-marching strategies
for the DO equations, using the truncated SVD and the retractions [1] for maintaining
the numerical solution on the low-rank manifold, are obtained and constrasted: direct
Euler, exponential map from geodesic equations, and algebraic and gradient-descent-
based time-marching (subsection 3.3). Finally, accurate methods for dynamically
evolving the rank of the DO subspace and for preserving the orthonormality of the
modes and their smooth evolution are derived (subsections 3.4 and 3.5).

3.1. Motivations for linear advection schemes. The DO approximation is
computationally attractive because (21) evolves a solution constrained to the low-rank
manifold of – small – dimension (l+m)rΨ−rΨ

2 (by evolving the lrΨ+mrΨ coefficients
of the matrices U and Z with U orthonormal), instead of the initial lm independent
matrix coefficients of the original high dimensional dynamical system (17). As a
consequence, the DO matrix system (21) offers a true gain of computational efficiency
only if the evaluation of l-by-m matrices can be avoided. This is not a priori achievable
in a direct non-intrusive scheme if the operator L needs to be evaluated on the l-by-m
matrix Ψ = UZT . If all lm coefficients of Ψ were needed to be computed from U
and Z, there would be no computational benefit other than a reduction of memory
storage in comparison with solving the original non-reduced system (17). The gain
of efficiency can be achieved if the operator L(t, ·) maps a rank rΨ decomposition
Ψ = UZT onto a factorization

(24) L(t, UZT ) = LUL
T
Z

of rank at most rL, where LU is a l-by-rL matrix, LZ a m-by-rL matrix, and rL an
integer typically largely inferior to l and m. In that case, the system (21) can be
computed efficiently as

(25)

{
Ż = LZ [LTUU ]

U̇ = [(I − UUT )LU ][LTZZ(ZTZ)−1].
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where brackets have been used to highlight products that allow computing the deriva-
tives U̇ and Ż without having to deal with l-by-m matrices. Such factorization occurs
for instance when L(t, ·) is polynomial of order d, for which rank rΨ matrices are
mapped onto rank rL ≤ (rΨ)d matrices.

In the spatially continuous view point, the differential operator ψ 7→ v · ∇ψ
satisfies this condition, as the rank rΨ decomposition (7) is mapped to one of rank
rL = rΨ × rv:

(26) v · ∇ψ =
∑

1≤j≤rΨ
1≤k≤rv

ζjβkvk · ∇uj .

This equation further highlights why adapting advection schemes to model order re-
duction is challenging, as popular discretizations of v · ∇ψ involve non-polynomial
nonlinearities in the matrix operator L. These schemes rely indeed on the use of
min-max functions required by upwinding or high order discretizations such as ENO
or TVD schemes that select a smooth approximation of the spatial derivative ∇ψ,
e.g. [78]. In theses cases, the nonlinearity of the operator L prevents the decompo-
sition (26) to hold at the discrete level without introducing further approximations,
which may alter drastically the stability of time integration and the accuracy of the
numerical solution. A very natural approach followed by [64, 81] is to assume that the
decomposition (26) holds before applying nonlinear schemes to discretize the fluxes
vk · ∇uj in (14) and (15). A key issue then is to maintain consistency between the
deterministic MC and stochastic DO solutions. Indeed, in the examples considered in
section 4 for which high gradients occur, such approaches were at times observed to
lead to either numerical explosion or significant errors for long integration times.

Consequently, this work investigated the use of linear central advection schemes
that do not require upwinding and that have the property to preserve the decompo-
sition (26). Therefore, the advection −v · ∇ψ is discretized as

(27) L(t,Ψ)i,α = −v(t,xi;ωα) ·DΨi,α

where D is a linear finite-difference operator approximating the gradient ∇. With
Ψ = UZT as in (18), this yields the decomposition L(t,Ψ) = LUL

T
Z as required in

(25), where LU and LZ are the l-by-rL and m-by-rL matrices

(LU )i,jk = vk(t,xi) ·Duj(t,xi), (LZ)α,jk = ζj(t;ωα)βk(t, ωα).

In one dimension, the gradient can be approximated by the second order operator

(28) DΨi,α =
Ψi+1,α −Ψi−1,α

2∆x
,

and this article will also consider the sixth order finite difference operator

(29) DΨi,α =
3

2

Ψi+1,α −Ψi−1,α

2∆x
− 3

5

Ψi+2,α −Ψi−2,α

4∆x
+

1

10

Ψi+3,α −Ψi−3,α

6∆x
,

where ∆x denotes the spatial resolution and a natural numbering is assumed for the
index i. These formula are adapted in a straightforward manner to discretize partial
derivatives in higher dimension [54]. This approach might seem unexpected, since
central schemes are known to be numerically unstable under Euler time integration.
In addition, the Godunov theorem expresses that it is not possible to devise a linear
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scheme higher than first order accuracy that do not create false extrema in numerical
solutions [18]. These extrema are produced by numerical dispersion and manifest un-
der the form of spurious oscillations. In fact, it is possible to contain this phenomenon
near shocks, and obtain high order accuracy where the solution is smooth. Stability
and the removal of part of the oscillations can be achieved by the introduction of a
right amount of numerical dissipation, either using artificial viscosity [73] or filtering
[69, 14, 32, 59, 11]. Shapiro filters are especially attractive because they are easy
to implement, fully linear, and designed to remove optimally the shortest resolvable
numerical frequency without affecting other wave components [69, 70, 71]. In one
dimension, denoting δ2 the operator δ2Ψi,α = Ψi+1,α − 2Ψi,α + Ψi+1,α, the Shapiro
filters F (i) of order i = 2, 4 and 8 are defined by the formulas (see [69])

(30)
F (2)Ψi,α = (1 + δ2/4)Ψi,α

F (4)Ψi,α = (1− δ2/4)(1 + δ2/4)Ψi,α

F (8)Ψi,α = (1 + δ4/16)(1− δ4/16)Ψi,α.

The order and frequency of applications can be tuned to the desired filter-spectrum
[34]. Their linearity allows to filter the decomposition ψ = ζiui efficiently by filter-
ing the discretization of the modes ui, or in other words, F (i)(UZT ) = (F (i)U)ZT .
Critically, this DO filtering is consistent with the filtering of MC realizations.

To achieve further stability, higher order discretizations of the temporal derivative
are generally used in complement to these filters. Popular linear multi-step methods
range from Leap-Frog [85], Runge-Kutta and Adam Bashforth [11]. For instance, for
a time increment ∆t, the second order Leap-Frog scheme evolves the value Ψn of the
numerical solution Ψ at time tn = n∆t according to the rule

(31)
Ψn+1 −Ψn−1

2∆t
= L(tn,Ψn),

while the third order Runge Kutta (RK3) method uses
(32)

Ψn+1 −Ψn

∆t
=
kn1 + 4kn2 + kn3

6
with

 kn1 = L(tn,Ψn)
kn2 = L (tn + ∆t/2,Ψn + kn1 ∆t/2)
kn3 = L(tn + ∆t,Ψn + ∆t(2kn2 − kn1 )).

A comparison of several combinations of these techniques is illustrated in Figure 3
for the one dimensional advection equation ∂tψ + v∂xψ = 0, a benchmark case for
selecting an appropriate linear scheme for the transport eq. (6) in higher dimension.
A boxcar function is advected to the right with a velocity v = 0.7 in the domain
[0, 1] until the time t = 10. The spatial resolution is set to ∆x = 0.002 and the CFL
condition ∆t ≤ 0.6v∆x is used to define the time increment ∆t. The figure illustrates
how accuracy and stability can be achieved by (i) using multi-step time marching
schemes, (ii) using high order spatial discretization and (iii) adding a proper amount
of numerical dissipation to remove spurious oscillations. We note that linear limiters
may also be combined with Shapiro filters [24], maintaining consistency.

3.2. Boundary conditions. Boundary conditions (BCs) of the reduced solution
have been formally obtained in section 2. They could be treated more rigorously
by incorporating original BCs (8) and (9) directly within the discretization of the
operator L. However, this approach can lead to a more complex implementation. In
this work, boundary nodes are stored in a lbc ×m “ghost” matrix and it is assumed
that the l-by-m matrix of realizations Ψ contains only the values at internal nodes.
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Fig. 3: Comparison of the numerical solution (dotted line) with the analytical solution (solid
line) of the 1D advection equation for different linear centered schemes. The text “Shapiro
filter [n1, n2]” indicates that the Shapiro filter of order 2n2 (see [69]) has been applied after
every n1 iterations. The initial box-car function is visible in dashed line on the first plot.

These ghost cells allow convenient evaluation of the differential operator D in the
definition (27) of L(t,Ψ). Their values are reinitialized at the beginning of each time
step according to the BCs (8) and (9). In the following, the operator which assigns the
values of these boundary cells at time t is denoted BC(t, ·), i.e. the discrete BCs are
then explicit (if implicit, they are solved for simultaneously with the interior solution,
e.g. see [21]). With this notation, the solution that includes both internal nodes and

boundary values is the block matrix Ψbc =

[
BC(t,Ψ)

Ψ

]
. For example, on the one-

dimensional domain Ω = [0, 1], the value of the boundary node x1 = 0 is determined
by the relation

BC(t,Ψ)1,α =

{
0 if v(t, 0;α) ≥ 0
(18Ψ2,α − 9Ψ3,α + 2Ψ4,α)/11 if v(t, 0;α) < 0,

if one uses a third order reconstruction for the Neumann BC (9). The difficulty of
determining how these BCs should be accounted for by the reduced solution Ψ = UZT

comes from the fact that assigning boundary values does in general not preserve the
rank: i.e. rank(Ψbc) > rΨ (in practice, the rank of this interior+boundary DO solution
should be large enough to represent both the reduced interior solution and reduced
BCs, see [21]). BCs may be enforced on the reduced solution while ensuring minimal
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error by solving the minimization problem

(33) min
rank(Ψbc)=rΨ

∣∣∣∣∣∣∣∣Ψbc −
[
BC(t,Ψ)

Ψ

]∣∣∣∣∣∣∣∣2 .
This yields the best rank rΨ approximation of the (l + lbc)-by-m matrix Ψbc, whose
decomposition Ψbc = UbcZ

T
bc allows to compute conveniently the discrete differential

operator D in (27) requiring boundary values. The minimization can for example be
achieved by using a gradient descent starting from the initial rank rΨ matrix Ψ, as
explained in the next subsection and in [17, 50].

When BCs are deterministic or homogeneous, they can be directly implemented
as BCs for the discretization of the modes, ui [63]. For example, zero Dirichlet or
Neumann BCs for all the realizations of ψ directly corresponds to the same BCs for
the modes, ui. For more general cases, it is usually desirable to avoid solving (33)
and to instead obtain BCs for the modes that optimally approximate the original
BCs. This is achieved by replacing the minimization problem (33) with that for the
lbc-by-rΨ ghost matrix Ubc containing boundary values for the matrix U :

(34) min
Ubc∈Mlbc,rΨ

||UbcZT − BC(t,Ψ)||2.

The solution of this linear regression problem is easily obtained by writing the sta-
tionarity condition

∀δU ∈Mlbc,rΨ , 2 < (δU)ZT , UbcZ
T − BC(t,Ψ) > = 0 ,

which eventually yields

(35) Ubc = BC(t,Ψ)Z(ZTZ)−1.

It turns out that this optimality condition is the discrete analogous of the original BCs
(16) obtained formally in section 2. The decomposition of the reduced solution in-

cluding boundary values considered is therefore Ψbc =

[
Ubc
U

]
ZT . Further discussions

on DO BCs are provided in [21].

3.3. Low-rank time-stepping. One issue commonly encountered in the time
discretization of dynamical systems is the fact that the discrete time stepping tends
to make the numerical solution exit the manifold M where the trajectories live. If
Ψn is a point on the manifold M at tn, and Ψ̇n ∈ T (R) is the time derivative, any
straight move Ψn + ∆tΨ̇n leaves the fixed rank manifold M . An application, called
retraction, must be used to convert the tangent direction X = ∆tΨ̇n ∈ T (Ψn) into a
point ρΨn(X) back onto the manifold. A retraction ρΨn : T (Ψn) → M (Figure 2)
is an application describing how to move on the manifold in a tangent direction
X ∈ T (Ψn) starting from Ψn ∈ M . By definition, it must satisfies the consistency
conditions that (i) a zero velocity results in a null move, i.e. ρΨn(0) = Ψn, and
(ii) a move in the X direction results in a trajectory on M with X as initial speed
: d

dtρΨn(tX)
∣∣
t=0

= X (see [1]). The ideal retraction is the exponential map that
follows geodesics or shortest paths on the manifold, but may be expensive to evaluate.
In practice, one uses approximations of this map that leads to several strategies of
implementations for the explicit discretization of (21).
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3.3.1. Direct time marching scheme for the matrix DO system (21).
As in [81, 52], a very intuitive idea for moving a rank rΨ matrix Ψn = UnZnT onto a
direction Ψ̇n = U̇nZnT +UnŻnT with a step ∆t is to update independently the mode
and coefficient matrices Un and Zn by using the following scheme, which is a direct
Euler time-discretization of the system (21):

(36)

{
Zn+1 = Zn + ∆tŻn

Un+1 = Un + ∆tU̇n,

where Żn and U̇n are the approximations of the time derivatives U̇ and Ż being used.
This corresponds to using the retraction ρUZT defined by

(37) ρUZT (U̇ZT + UŻT ) = (U + U̇)(Z + Ż)T = UZT + (U̇ZT + UŻT ) + U̇ ŻT .

3.3.2. The exponential map : geodesic equations in between time steps.
The ideal retraction is the exponential map ρΨn = expΨn (see [1]) computed from
geodesic paths γ(s) on M , which are the direct analogous of straight lines onto curved

manifolds. These curves, parametrized as γ(s) = expΨn(s
.

Ψn) (see Figure 2), indicate
the shortest way to “walk” onto the manifold from Ψn into the straight direction
.

Ψn = U̇n(Zn)T +Un(Żn)T . The value of expΨn(s
.

Ψn) is given by the solution γ(s) =
U(s)Z(s)T at time s of the geodesic equations [17]

(38)


Z̈ − ZU̇T U̇ = 0.

Ü + UU̇T U̇ + 2U̇ ŻTZ(ZTZ)−1 = 0
U(0) = Un, Z(0) = Zn

U̇(0) = U̇n, Ż(0) = Żn.

Without direct analytical solutions to (38), numerical schemes are used. Comput-
ing retractions that approximate well the exponential map is a challenge commonly
encountered in optimization on matrix manifolds with orthogonality constraints [50],
as discussed in [1]. One can show that the retraction ρUZT of equation (37) is ap-
proximating the exponential map only to the first order (see [1]), which can lead to
numerical errors at locations of high curvature on the manifold M . The curvature of
the rank rΨ manifold M at the point Ψn is inversely proportional to the lowest sin-
gular value σrΨ(Ψn) [17]. As a consequence, errors can be incurred by the direct time
stepping (36) when the matrix Zn is ill conditioned. Equations (38) can be solved
during the DO time integration in between time steps, to move more accurately on
the manifold without the need for recomputing values of the operator L. For instance,
Euler steps (36) can be replaced with

(39) Un+1(Zn+1)T = expΨn(∆t
.

Ψn).

This can be done using high order time marching schemes for the discretization of
(38). The intermediate time step δt < ∆t for these can be set adaptively: a rule of
thumb is to use steps in the ambient space having a length lower than the minimal
curvature radius σrΨ(Z) at the point UZT :

δt||U̇ZT + UŻT || < CσrΨ(Z),

where C ' 1 is a constant set by the user. Note that a lower order retraction such
as (37) is commonly used anyway in the time discretization of the geodesic equations
(38).
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3.3.3. Direct computation of the truncated SVD at the next time step.
As highlighted in section 2, DO eqs. (25) define a dynamical system that truncates the
SVD at all instants so as to optimally constrain the rank of the reduced solution (23).
Denoting Ψn = Un(Zn)T the DO solution at time tn, integrating the non-reduced
dynamical system (17) for a time step [tn, tn+1] yields a rank rL > rΨ prediction

(40) Ψn+1 = Ψn + ∆tL(tn,Ψn),

where L(tn,Ψn) represent the full-space integral for the exact integration or the incre-
ment function for a numerical integration. For the latter, it can be an approximation
of the time derivative L(tn,Ψ(tn)), e.g. L(tn,Ψn) = L(tn,Ψn) for explicit Euler.

One way to proceed for evolving the low rank approximation Ψn to Ψn+1 is to
compute directly the rank rΨ SVD truncation ΠM (Ψn+1) (eq. (22))

(41) Ψn+1 = Un+1(Zn+1)T = ΠM (Ψn + ∆tL(tn,Ψn))

so as to obtain modes and coefficients Un+1 and Zn+1 at time tn+1 = tn + ∆t. Such
scheme has been shown to be a consistent time-discretization of the DO equations
(20) (see [17]). For an Euler step, it corresponds to using the retraction ρΨ(X) =
ΠM (Ψ + X), a second-order accurate approximation of the exponential map [1] and
hence an improvement of the direct Euler time marching (36).

a. Computing algebraically the truncated SVD. The scheme (41) can be com-
puted efficiently and in a fully algebraic manner when the operator L factors as (24).
Indeed, the linear approximation of the time derivative then admits a decomposition
L(tn, Un(Zn)T ) = LnU (LnZ)T of rank at most rL = rL × pt, pt being the order of the
time integration scheme utilized. Therefore Ψn+1 factors as

(42)
Ψn+1 = Un(Zn)T + ∆tLnU (LnZ)T

= Ψn+1
U (Ψn+1

Z )T with Ψn+1
U = [Un LnU ] and Ψn+1

Z = [Zn ∆tLnZ ],

with LnU ∈Ml,rL
, LnZ ∈Mm,rL

. The rank of Ψn+1 is therefore at most rank(Ψn+1) =
rΨ < rΨ + rL which can be assumed to be largely inferior to l and m. This can be
exploited to compute the truncated SVD through an algorithm that avoids computing
large matrices of size l-by-m (see Algorithm 1a).

This first algorithm has some issues. First, reorthonormalizations and eigenvalue
decompositions such as in steps 1 and 2 do not allow to keep track of the smooth
evolution of the modes U(t) and coefficients Z(t) solutions of the system (21). Addi-
tional procedures are needed [81, 80]. Second, with the repeated use of such algebraic
operations, additional round off errors may be introduced.

b. Using gradient descent for continuous updates of the truncated SVD. Alterna-
tively, a gradient descent on the low-rank manifold M can be used to find the correc-
tion that needs to be added to modes Un and coefficients Zn, so as to evaluate the SVD
truncation Ψn+1 = ΠM (Ψn+1) (eqs. (41) and (42)). Indeed, Ψn+1 = Un+1(Zn+1)T

(eq. (41)) is the minimizer of

J(UZT ) =
1

2
||Ψn+1

U (Ψn+1
Z )T − UZT ||2,

where || · || is the Frobenius norm. The (covariant) gradient ∇J used for this mini-
mization must be aligned with the maximum ascent direction tangent to M at UZT .
Its value can be shown to be ∇J = (∇JU )ZT + U(∇JZ)T (see [17]), where ∇JU



16 F. FEPPON AND P.F.J. LERMUSIAUX

Algorithm 1a Rank rΨ truncated SVD of Ψ = ΨUΨ
T
Z with ΨU ∈Ml,rΨ , ΨZ ∈Mm,rΨ

and rΨ < rΨ = rank(Ψ) << min(l,m)

1: Orthonormalize the columns of the matrix ΨU (see the discussion in subsec-
tion 3.5), i.e find a basis change matrix A ∈MrΨ,rΨ such that (ΨUA)T (ΨUA) =
I and set

ΨU ← ΨUA, ΨZ ← ΨZA
−T

so as to preserve the product Ψ = ΨUΨT
Z .

2: Compute the “compact” SVD of the smaller m-by-rΨ matrix ΨZ :

ΨZ = V ΣPT ,

where Σ is a rΨ-by-rΨ diagonal matrix of singular are values, and V ∈ Mm,rΨ

and P ∈ MrΨ,rΨ orthogonal matrices of singular vectors. This is achieved by
computing the eigen decomposition of the “covariance” matrix ΨT

ZΨZ .
3: The SVD of Ψ = ΨUΨT

Z is given by Ψ = UΣV T with U = ΨUP an orthog-
onal l-by-rΨ matrix of left singular vectors. The truncated SVD of order rΨ is
straightforwardly obtained from the first rΨ columns of U, V and Σ.

and ∇JZ provide respective ascent directions for the individual matrices U and Z.
Their expression and the resulting gradient descent towards the updated truncated
SVD Un+1(Zn+1)T starting from the approximate initial guess Ψn = Un(Zn)T are
detailed in Algorithm 1b. Note that [17] proved that the procedure is convergent for
almost every initial data. If in addition, ∆t is small enough, the method is expected

Algorithm 1b Gradient descent for updating a rank rΨ truncated SVD of Ψ = ΨUΨ
T
Z

with ΨU ∈Ml,rΨ , ΨZ ∈Mm,rΨ and rΨ < rΨ = rank(rΨ) << min(l,m)

1: Initialize a rank rΨ guess U0Z
T
0 ' Ψ with U0 ∈Ml,rΨ , Z0 ∈Mm,rΨ , UT0 U0 = I.

2: To minimize J(U,Z) = J(UZT ) = ||Ψ−UZT || on M , compute the gradient step

(43)

{
Zk+1 = Zk − µ∇JU (Uk, Zk)
Uk+1 = Uk − µ∇JZ(Uk, Zk),

where µ is a small enough constant set by the user and the gradients (∇JU ,∇JZ)
are given by (see Proposition 36 in [17])

(44)

{
∇JZ(U,Z) = Z −ΨZ [(ΨU )TU ]

∇JU (U,Z) = −(I − UUT )ΨU [(ΨZ)TZ(ZTZ)−1],

where brackets highlight matrix products that render the computation efficient.
3: Orthonormalize the modes Uk+1 (see subsection 3.5) after each iteration and re-

peat step 2.–3. until convergence is achieved.

to converge after only a small number of iterations, while preserving the continuous
evolution of the mode and coefficient matrix U and Z. In comparison with the use of
geodesics, this method ensures the accuracy of the reduced solution, while being less
sensitive to the singularity of the matrix Z. Also, it is a direct extension of the DO
time stepping (36), as one step of (36) coincides with the first step of the gradient
descent (43) starting from the current value Un(Zn)T and with µ = 1 [17].
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3.4. Increasing dynamically the rank of the approximation. In the SPDE
(6), all realizations of the solution share the same initial value ψ(0,x;ω) = x. Hence
the DO approximation coincides with the exact solution at time t = 0 and is given
by the rank 1 decomposition Ψ = UZT where U is a normalized column vector
proportional to the discretization of the coordinate function x, and Z a column vector
identically equal to the normalization factor. Obviously, ψ(t,x;ω) becomes random
after t > 0 and hence the rank of the DO solution must be increased immediately
[65, 81] and modified dynamically to capture dominant stochastic subspaces that are
forming throughout the time evolution of the solution. This is a common issue in
model order reduction of stochastic PDEs.

Reducing the dimension rΨ of the DO stochastic subspace is straightforward: it
is sufficient to truncate the SVD of the current DO solution Ψ = UZT , using for
example Algorithm 1a, when the lowest singular value σrΨ(Ψ) < σ becomes lower
than a threshold σ [65]. Increasing the stochastic dimension from rΨ to rΨ

′ > rΨ is
more involved, as rΨ

′− rΨ new dominant directions ui supporting the decomposition
(7) must be found. The overall topic is linked to breeding schemes [29], directions of
maximum error growth e.g. [57] and non-normal modes [16, 15, 51], but our emphasis
here is on accurately capturing the present and evolving dominant uncertainties in the
SVD sense, as in [43, 35, 65]. One approach [65] consists of assuming that uncertain-
ties are small and uniform in the orthogonal complement of the present DO subspace
and then add modes aligned with the most sensitive directions of the operator L in
this complement, if their growth is fast enough. This computation is based on the
gradient of L in the ambient space Ml,m , and MC perturbations, but it does not
guarantee tracking the best rank rΨ

′ approximation at the next time step. An addi-
tional difficulty lies in the issue of detecting when the dimension of the DO subspace
should be increased. Sapsis and Lermusiaux [65] suggested to increase the rank rΨ

when σrΨ(Ψ) > σ reaches another threshold σ > σ.
Theses issues can be solved by examining the component of the time derivative

L(t,Ψ) that is normal to the manifold, i.e. N(UZT ) = (I − ΠT (UZT ))(L(t, UZT )) ∈
N (Ψ), and neglected by the DO approximation (see Figure 2). The value of this
component is given by (see Prop. 35 in [17])

(45) N(UZT ) = (I − UUT )L(t, UZT )(I − Z(ZTZ)−1ZT ).

Since the singular value σrΨ+1(Ψn + ∆tL(tn,Ψn)) after a step ∆t is of magnitude
σ1(N(Ψn))∆t (see [27]), this first and other singular values of N(UZT ) are related
to the speed at which the solution exits the rank rΨ matrix manifold M . Thus, a
quantitative criterion that can track the rank of the true original solution is

(46) σ1(N(Un(Zn)T ))∆t > σ.

A common value σ can be used for the threshold σ = σ = σ to detect when the rank
of the DO subspace must be decreased/increased, hence the setting of this single σ
provides a lower bound desired for the smallest singular value of the covariance matrix
Z. Singular vectors of N(Un(Zn)T ) contain the new dominant directions. They can
be combined with a gradient descent similar to (43), so as to compute the rank rΨ

′

(instead of rΨ) truncated SVD of Ψn+1 = Ψn + ∆tL(tn,Ψn), while preserving the
smooth evolution of the first rΨ modes and coefficients (in contrast with the direct
use of the algebraic Algorithm 1a). The procedure is summarized in Algorithm 2.

3.5. Preserving the orthonormality of the mode matrix U . As highlighted
in [81], an issue with time discretization, e.g. (36) or (43), is that in general, the l-
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Algorithm 2 Augmenting the rank of the DO solution

1: Compute Ψn+1 = Un(Zn)T + ∆LnU (LnZ)T with LnU ∈ Ml,rL
, LnZ ∈ Mm,rL

as in
(42).

2: Compute the normal component (of rank at most rL) at tn.

N(Un(Zn)T ) = [(I − Un(Un)T )LnU ][(LnZ)T (I − Zn((Zn)TZn)−1(Zn)T )].

3: Compute the rank rΨ
′− rΨ < rL truncated SVD of N(Un(Zn)T ) , i.e. Nn

U (Nn
Z)T ,

using Algorithm 1a.
4: Use the gradient descent (43) starting from the initialization values U0 = [UnNn

U ]
and Z0 = [ZnNn

Z ], so as to find the truncated SVD of rank rΨ
′ > rΨ of Ψn+1,

i.e. Un+1(Zn+1)T .

by-rΨ matrix Un+1 ∈ Ml,rΨ obtained after a discrete time step does not exactly

satisfy the orthogonality constraint Un+1TUn+1 = I. A numerical procedure must
therefore be used to reduce the truncation errors committed by the discretization,
even though the true trajectory U(t)ZT (t) on M and the DO equations (21) ensure
and assume UTU = I at all instants. This procedure must be accurate as numerical
orthonormalization may also introduce round off errors that can lead to significant er-
ror over large integration times. For example, standard and modified Gram Schmidt
orthonormalization present numerical instabilities when UZT becomes close to be-
ing rank deficient (see [77]). For this reason, [80, 81] used the following procedure:
compute the eigendecomposition of the Gram matrix K = UTU ,

(47) PKPT = Σ.

Then rotate and scale accordingly modes and coefficients by setting

(48)

{
U ← UPΣ−1/2

Z ← ZPΣ1/2.

The eigenvalue problem (47) can be solved using Householder factorization which is
known to be numerically stable in comparison with Gram Schmidt orthonormaliza-
tion [77]. An issue is that this procedure may introduce permutations or sign changes,
leading to artificial discontinuities in the time evolution of the mode and coefficient
matrices U and Z. Figure 4 illustrates the problem by plotting the typical evolution
of a coefficient of the matrix Z with this orthonormalization procedure. Even though
sign checks alleviate the problem [81], they are a burden. Hence, to reinforce orthog-
onality between time steps and provide smooth evolutions for both U and Z (21), one
can employ a gradient flow, as was done in the DO time-stepping (43). Reorthonor-
malization is then performed by finding an invertible matrix A ∈ MrΨ,rΨ such that
(UA)T (UA) = ATKA = I and by setting U ← UA and Z ← ZA−T . Such matrix A
is actually the minimizer over MrΨ,rΨ of the functional

G(A) =
1

4
||ATKA− I||2.

Therefore, one can find a reorthonormalization matrix A close to the identity by
solving the gradient flow

(49)
dA

ds
= −dG

dA
= −KA(ATKA− I),
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Fig. 4: Evolution of a coefficient of the matrix Zn obtained by the time integration of (21)
as a function of the iteration number. On the left, reorthonormalization of the matrix Un is
performed by solving the eigenvalue problem (48), while on the right, the gradient flow (49)
was used. Eigenvalue decompositions introduce sign flips and permutations, that results in
artificial discontinuities in the individual matrices Un and Zn if dealt algebraically [81].

with the initial value A(0) = I. The inverse A−1 of A can be simultaneously tracked
by solving the ODE

dA−1

ds
= −A−1 dA

ds
A−1.

The resulting numerical procedure is summarized in Algorithm 3. Typically, one
expects A = I +O(||UTU − I||) and hence both corrections UA ' U and ZA−T ' Z
will have an order of magnitude identical to the initial error, hence ensuring the
smooth evolution of U and Z. Figure 4 shows the time evolution of a coefficient of
the matrix Z using this method. Only a few number of Euler steps are necessary
to obtain convergence, which makes the method efficient. The matrix A ' I is well
conditioned and the Algorithm 3 has small round off errors.

Algorithm 3 Reorthonormalization procedure of UZT ∈M with UTU ' I

1: Define a tolerance parameter ε and a time step µ (typically µ ' 1)
2: K ← UTU
3: A← I, A−1 ← I
4: while ||ATkKAk − I||2 > ε do
5: dAk ← −KAk(ATkKAk − I)
6: Ak+1 ← Ak + µdAk
7: A−1

k+1 ← A−1
k − µA

−1
k (dAk)A−1

k

8: k ← k + 1
9: end while

10: U ← UAk and Z ← ZA−Tk

4. Numerical results.

4.1. Stochastic double gyre flow. The double gyre is the classic 2D bench-
mark flow for the study of Lagrangian coherence of particle motions [68, 44, 25]. The
idealized flow consists of two vortices oscillating horizontally. Presently, the above
new schemes are utilized to analyze how the Lagrangian motion of particles is af-
fected by the oscillation angular frequency ω. Hence, a range of initial ω values is
considered and ω is modeled as an unknown random parameter. The classic analytical



20 F. FEPPON AND P.F.J. LERMUSIAUX

deterministic flow [68], then becomes stochastic (Figure 5b):

v(t,x;ω) = (−∂yφ, ∂xφ) with φ(x, t;ω) = A sin[πf(x, t;ω)] sin(πy),

where f(x, t;ω) = ε sin(ωt)x2 + (1− 2ε sin(ωt))x, x = (x, y), and ω initially random.
The fixed parameter values are here A = 0.1 and ε = 0.1 The goal is to provide
solutions to the SPDE (6), up to time t = 10 and for ω uniformly distributed within
[π/10, 8π/10].

(a) Four dominant DO spatial modes vi(x) of
the velocity field

(b) Realization ω = 2π/10 at t = 10

Fig. 5: Stochastic double gyre flow with an initially random oscillation angular frequency.
Streamlines are overlaid on the colored intensity of the vorticity.

For the DO computations, the spatial domain [0, 2] × [0, 1] is discretized using
a 257 × 129 grid with lbc = 2 × 768 boundary nodes, and the stochastic domain
[π/10, 8π/10] with m = 10, 000 realizations ωα uniformly distributed according to

ωα =
π

10
+

(
α− 1

m− 1

)
7π

10
, 1 ≤ α ≤ m.

Hence, in this example, l = 2 × (257 × 129 − 768) = 64, 770. The threshold used for
increasing the stochastic dimensionality (eq. (46)) is set to σ = 10−2. The retraction
used in the DO time-marching is that of section 3.3.3, computed with the gradient
descent of Algorithm 1b.

The stochastic velocity is decomposed onto 4 time-independent modes vi(x) (Fig-
ure 5), and coefficients βi(t;ω) =< vi(x),v(t,x;ω) > are obtained by orthogonal pro-
jection. They force the SPDE (6). The initial value ψ(0,x;ω) = x of the flow-map
solution is shown on Figure 6.

To first validate the fully linear 6th-order-central–RK3–Shapiro-filter scheme se-
lected in subsection 3.1, the PDE (6) is first solved directly backward in time (forward
flowmap) for a fixed value of ω = 2π/10 until t = 10, and contrasted with the popular
5th order WENO scheme combined with the TVDRK3 time stepping [54]. The two
solutions and their differences are shown on Figure 7. As it is expected from the 1D
example (Figure 3), the fully linear scheme induces very small numerical errors near
shocks, either by smearing or overshooting small details. Indeed, the two flow-map
solutions obtained are very comparable, which demonstrates the broad applicabil-
ity of this fully linear scheme for advection (e.g., they are used in ocean modeling
[34, 23, 22]). It is therefore employed next to solve the DO equations (21) as dis-
cussed in section 3.
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(a) x coordinate (b) y coordinate

Fig. 6: Initial value ψ(0,x;ω) = x of the advection eq. (6)

(a) x coordinate (b) y coordinate

Fig. 7: Comparison between linear 6th-order-central–RK3–Shapiro-filter (top) and non lin-
ear WENO–TVDRK3 (middle) advection schemes for the deterministic solutions of (6) run
backward in time (without model order reduction), for the realization ω = 2π/10, the differ-
ence being plotted below (bottom).

The stochastic (forward) flow-map DO simulation (21) is run with rΨ = 20 modes.
For numerical stability, the 8th order Shapiro filter F (8) (eq. (30)) is applied at every
time step instead of every 10 as in Figure 7. The first 4 DO modes obtained from the
truncated SVD at t = 10 are displayed on Figure 8. This figure illustrates the ability
of the DO solution to capture dominant modes that are spatially localized and that
include shocks (hence far from being Fourier modes), and multi-modal distributions
of the coefficients that are far from being Gaussian.

Three deterministic flow-map realizations, obtained by solving directly the trans-
port PDE (6) for ω ∈ {2π/10, 5π/10, 8π/10}, are compared to the corresponding DO
solutions on Figure 9. The figure shows an excellent agreement which is a key result.
The approximation of the solution by 20 modes incurs the loss of some sharp features,
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(a) x coordinate (b) y coordinate

(c) Coefficient distributions

Fig. 8: Dominant four first SVD modes ψi (from top to bottom) and histogram of the
corresponding distributions of the coefficients ζi (from left to right) of the forward flow-map
DO solution ψ for the Double Gyre example at t = 10.

but the agreement between Monte-Carlo and DO realizations shows that the stochas-
ticity of the flow-map is well captured by the low dimensional time-dependent DO
basis. The CPU time (with Matlab) required by the DO simulation for m = 10, 000
realizations is CPUDO = 3, 530. That of each Monte-Carlo realization requires
CPUMC = 135. The observed computational speed-up is therefore CPUMC×m

CPUDO
' 382.

This is consistent with the prediction given by the ratio lm
(l+m)rΨ−rΨ2 ' 433 between

the dimension of the ambient space and that of the manifold M .
The mean and the standard deviation fields of the stochastic flow-map are com-

puted efficiently in a straightforward manner from the DO decomposition and dis-
played on Figure 10. These results highlight the mean behavior of the flow-map
(Panels a and b) and the regions characterized by an increased level of uncertainty
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(a) ω = 2π/10

(b) ω = 5π/10

(c) ω = 8π/10

Fig. 9: Evaluation of the DO results (above) by comparison with direct MC simulations
(below) for three double-gyre frequencies ω and for both x ( left column) and y (right column)
coordinates for the forward flow-map. The color scale is identical to that of Figure 6.

(Panel c). They confirm that neither the mean fields nor the standard deviation field
are symmetric with respect to the y-axis at t = 10 because ω is uniformly distributed
within [π/10, 8π/10]. At that time, positions with the largest flow-map uncertainties
are located at low y-values, near the two extreme x-values. These results critically
illustrate the applicability of the new DO schemes for the study of Lagrangian trans-
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ports under a stochastic velocity field.

(a) Mean E[ψ] at t = 10: x coordinate. (b) Mean E[ψ] at t = 10: y coordinate.

(c) Standard deviation field σΨ = E[||Ψ−E[Ψ]||2]1/2 for the stochastic flow-map of the double
gyre flow at t = 10. Red highlights initial positions characterized with the most uncertainty.

Fig. 10: Statistical quantities of the stochastic forward flow-map for the double-gyre flow at
t = 10, as computed from the stochastic DO simulation. For (a) and (b), the color scale is
identical to that of Figure 6.

4.2. Stochastic flow past a cylinder. The stochastic flow past a cylinder is
now considered, as a more realistic uncertain flow field. The non-dimensional flow is
set on a domain of size 16-by-6 and discretized on a 240× 90 grid with lbc = 2× 176
boundary or obstacle nodes. The Reynolds number is Re=100. The cylinder is a disc
of center (xc, yc) = (4.5, 3) and of radius R = 0.5. The flow enters at the left side on
the domain with a velocity v = (1, 0). Neumann boundary conditions are considered
at the top and bottom walls, while the second normal derivative is set to ∂2v/∂n2 = 0
at the outlet on the right. A random perturbation is used to initiate a stochastic flow
v(t,x;ω) with periodic regime.

For the DO flow-map computations (6), m = 10, 000 realizations of the flow are
obtained from a DO simulation of the Navier Stokes equations with the numerical
schemes described in [81]. The time window considered is [0, 10] and the initial time
t = 0 is started once the periodic regime is established. Hence, in this example, l =
2(240×90−176) = 42, 848. The threshold for increasing the stochastic dimensionality
(eq. (46)) is again set to σ = 10−2 and the retraction is that of section 3.3.3 computed
with Algorithm 1b.

The stochastic DO velocity initialization is illustrated on on Figure 11. The first
four dominant modes of this flow along with one particular realization are shown. The
stochastic (forward) flow-map is computed analogously to the previous example with
rΨ = 20 modes and the Shapiro filter F (8) being applied at every time step. Figure 12
displays the values of the first 4 dominant modes and the corresponding coefficient
distributions of the SVD (eq. (22)) of the flow-map solution at time t = 10.

Three particular deterministic forward flow-map realizations ω1, ω2, and ω3 are



DO NUMERICAL SCHEMES FOR EFFICIENT STOCHASTIC ADVECTION 25

(a) Four dominant spatial modes vi(0,x) of
the SVD (eq. (10)) of the stochastic velocity
field at t = 0.

(b) Initial conditions of a particular Navier-
Stokes flow realization at t = 0.

Fig. 11: Stochastic flow past of a cylinder: stochastic DO velocity initialization. Streamlines
are overlaid on the colored intensity of the vorticity.

(a) x coordinate (b) y coordinate

(c) Coefficient distributions

Fig. 12: Dominant four first SVD (eq. (22)) modes ψi and histogram of the corresponding
distributions of the coefficients ζi of the forward flow-map DO solution ψ for the Flow Past
a Cylinder example at t = 10.

evaluated directly and compared to the corresponding DO solution on Figure 13.
Again, an excellent agreement is observed between the MC realizations and the DO
reconstructed solutions.
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(a) ω1

(b) ω2

(c) ω3

Fig. 13: Evaluation of the DO results (above) by comparison with direct MC simulations
(below) for three forward flow-map realizations for ω1, ω2, ω3 and for both x ( left column)
and y (right column) coordinates. The color scale is identical to that of Figure 6.

Similarly as above, the mean and standard deviation fields of the resulting La-
grangian motion are shown on Figure 14. Since particles may exit the domain, the
value of ψ(10,x;ω) is the final position occupied by a particle initially located at x
at time t = 0 if this particle does not leave the domain, or the position of where the
particle left the domain otherwise. Recall that here l = 42, 848 and m = 10, 000.
The observed CPU times required for the forward flow-map DO simulation and one
Monte-Carlo realization are respectively CPUDO = 940 and CPUMC ' 32. This
yields an effective computational speed-up of CPUMC×m

CPUDO
' 340, still consistent with

the prediction lm
(l+m)rΨ−rΨ2 ' 405.
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(a) Mean E[ψ] at t = 10: x coordinate. (b) Mean E[ψ] at t = 10: y coordinate.

(c) Standard deviation field σΨ = E[||Ψ−E[Ψ]||2]1/2 for the stochastic DO forward flow-map
of the flow past a cylinder at t = 10. Red highlights initial positions characterized with the
most uncertainty.

Fig. 14: Statistical quantities of the stochastic DO forward flow-map corresponding to the
stochastic flow past a cylinder at t = 10, itself computed from a stochastic DO Navier-Stokes
simulation. For (a) and (b), the color scale is identical to that of Figure 6.

5. Conclusion. The Dynamically Orthogonal (DO) decomposition and its geo-
metric interpretations were utilized to obtain systematic optimal reduced-order dis-
crete equations and novel numerical schemes for stochastic advection and Lagrangian
transport. The implementation of the DO methodology was thoroughly reviewed and
improved by exploiting its relation to the dynamically truncated Singular Value De-
composition. Its broad applicability to treat advection was illustrated, offering a novel
efficient method for computing a large number of realizations of the flow-map of an
ODE with stochastic velocity. Fully linear, high-order stabilized advection schemes
were shown to provide deterministic-stochastic consistency and compatible reduced-
order schemes for dynamic linear model order reduction. A set of schemes were
provided and utilized to account for the curvature of the fixed rank manifold, to dy-
namically evolve the rank of the reduced solution, and to ensure the smooth evolution
of the orthonormal modes. The effectiveness of the novel time-marching DO equations
and numerical schemes for uncertain Lagrangian transport was demonstrated on the
analytic stochastic double gyre flow, a benchmark for Lagrangian Coherent Structures
studies, and on stochastic velocity data obtained from a numerical simulation of the
flow past a cylinder, a sensitive test for advection schemes.

Acknowledgments. We thank the MSEAS group at MIT for insightful dis-
cussions. We are grateful to the Office of Naval Research for support under grants
N00014-14-1-0725 (Bays-DA) and N00014-14-1-0476 (Science of Autonomy – LEARNS)
and to the National Science Foundation for support under grant EAR-1520825 (Haz-
ards SEES – ALPHA), each to the Massachusetts Institute of Technology.



28 F. FEPPON AND P.F.J. LERMUSIAUX

REFERENCES

[1] P.-A. Absil and J. Malick, Projection-like retractions on matrix manifolds, SIAM Journal
on Optimization, 22 (2012), pp. 135–158.

[2] L. Ambrosio, Transport equation and cauchy problem for non-smooth vector fields, in Calculus
of variations and nonlinear partial differential equations, Springer, 2008, pp. 1–41.

[3] A. Bennett, Lagrangian fluid dynamics, Cambridge University Press, 2006.
[4] F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport

equation, Differential and integral equations, 18 (2005), pp. 891–934.
[5] R. W. Brockett, Dynamical systems that sort lists, diagonalize matrices and solve linear

programming problems, in Decision and Control, 1988., Proceedings of the 27th IEEE
Conference on, IEEE, IEEE, 1988, pp. 799–803.

[6] G.-H. Cottet and P. D. Koumoutsakos, Vortex methods: theory and practice, Cambridge
university press, 2000.

[7] D. N. Daescu and I. M. Navon, Efficiency of a pod-based reduced second-order adjoint model
in 4d-var data assimilation, International Journal for Numerical Methods in Fluids, 53
(2007), pp. 985–1004.

[8] J. Dehaene, Continuous-time matrix algorithms systolic algorithms and adaptive neural net-
works, PhD thesis, 1995.

[9] R. J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and sobolev
spaces, Inventiones mathematicae, 98 (1989), pp. 511–547.

[10] A. Doostan, R. G. Ghanem, and J. Red-Horse, Stochastic model reduction for chaos repre-
sentations, Computer Methods in Applied Mechanics and Eng., 196 (2007), pp. 3951–3966.

[11] D. R. Durran, The third-order adams-bashforth method: An attractive alternative to leapfrog
time differencing, Monthly weather review, 119 (1991), pp. 702–720.

[12] A. Edelman, T. A. Arias, and S. T. Smith, The Geometry of Algorithms with Orthogonality
Constraints, SIAM Journal on Matrix Analysis and Applications, 20 (1998), pp. 303–353.

[13] M. A. El-Beltagy, M. I. Wafa, and O. H. Galal, Upwind finite-volume solution of stochastic
burgers’ equation, AM, 03 (2012), pp. 1818–1825.
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[73] B. Sjögreen, High order centered difference methods for the compressible navier-stokes equa-

tions, Journal of Computational Physics, 117 (1995), pp. 67–78.
[74] S. Smith, Dynamical systems that perform the singular value decomposition, Systems & Control

Letters, 16 (1991), pp. 319–327.
[75] D. Subramani and P. F. J. Lermusiaux, Energy-optimal path planning by stochastic dynam-

ically orthogonal level-set optimization, Ocean Modeling, (2016). In press.
[76] D. Tang, F. W. Schwartz, and L. Smith, Stochastic modeling of mass transport in a random

velocity field, Water Resources Research, 18 (1982), pp. 231–244.
[77] L. N. Trefethen and D. Bau III, Numerical linear algebra, vol. 50, Siam, 1997.
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