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Abstract

In the last two decades, building detection and reconstruction from remotely sensed

data has been an active research topic in the photogrammetric and remote sensing

communities. Recently, effective high level approaches have been developed, i.e., the

ones involving the minimization of an energetic formulation. Yet, their efficiency has

to be balanced by the required amount of processing power required to obtain good

results.

In this paper, we introduce an original energetic model for buildings footprint

extraction from high resolution digital elevation models (≤1 m) in urban areas. Our

goal is to formulate the energy in an efficient way, easy to parametrize and fast to

compute, in order to get an effective process still providing good results.

Our work is based on stochastic geometry, and in particular on marked point

processes of rectangles. We therefore try to obtain a reliable object configuration

described by a collection of rectangular building footprints. To do so, an energy

made up of two terms is defined: the first term measures the adequacy of the objects

with respect to the data and the second one has the ability to favour or penalize

some footprint configurations based on prior knowledge (alignment, overlapping, ...).
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To minimize the global energy, we use a Reversible Jump Monte Carlo Markov

Chain (RJMCMC) sampler coupled with a simulated annealing algorithm, leading

to an optimal configuration of objects. Various results from different areas and

resolutions are presented and evaluated. Our work is also compared with an already

existing methodology based on the same mathematical framework that uses a much

more complex energy. We show how we obtain similarly good results with a high

computational efficiency (between 50 and 100 times faster) using a simplified energy

that requires a single data-independent parameter, compared to more than 20 inter-

related and hard-to-tune parameters.

Key words: Digital Elevation Model, Building footprint, Energetic modeling,

Marked point processes, RJMCMC

1 Introduction

Building extraction and reconstruction from remotely sensed images has been

a motivating topic for many researchers in the past years. Indeed, 3D urban

models can be very useful in various applications: virtual tourism, models of

wave propagation for telecommunication operators or realistic environments

for video games among others. However, before providing a volumetric repre-

sentation of the buildings, most automatic methods need to focus on their 2D

outlines (Haala et al., 1998; Brunn and Weidner, 1997; Lafarge et al., 2008).

This is the problem we propose to address in this paper, without any prior
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knowledge on the buildings location and only loose constraints on shape.

The work presented here is centered on footprint extraction. In 3D recon-

struction tools, these region of interest (ROI) usually come from cadastral

maps, manually delineated outlines, or from some manual or automatic pro-

cessing on a digital elevation model or an orthoimage. However, such data are

costly to create “by hand” and not always available, may be outdated and

can suffer of discrepancies with ground truth. Thus it appears necessary to

have a rapid, robust and reliable methodology to extract buildings footprint

automatically. To do so, we use the framework of Ortner et al. (2007), and

propose improvements to make it useful in an operational context, that is to

say with reasonable computation times and simple parametrization, without

lost, neither in terms of quality, nor robustness, nor generality.

1.1 State of the art

Today, a tremendous variety of approaches exists in the literature. By the way,

with the growing amount of data to process due to the increasing resolution

of data and extent of areas to cover, automatic methods need to be considered

with a particular attention.

Haithcoat et al. (2001) use size, height and shape characteristics to differen-

tiate buildings from other objects on a Lidar digital elevation model (DEM,

rasterized heights on a regular grid). Thresholds discriminate small objects

like cars and differential geometries quantities eliminate trees. The result is

rasterized and footprints are simplified. However, this simplification assumes

orthogonality of the building main directions, a too restrictive hypothesis in

dense urban areas.
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With a similar approach based on simple thresholds, Alharthy and Bethel

(2002) evaluate the potential of Lidar data for 3D building extraction. This

first analysis provides blobs which need to be converted into intersection free

polygons. A coarse representation is then obtained using restrictive hypothesis

of orthogonality of buildings parts.

From high-resolution commercial satellite data, Shackelford et al. (2004) in-

volve mathematical morphology operators in a multi-scale framework for the

delineation of buildings. This method is however sensitive to errors, as they

are propagated from one level of analysis to the next.

In an optimization framework and with lidar data, Wang et al. (2006) first

chain boundary points detected on Lidar data and simplify them to obtain an

estimate of the building footprint. A Bayesian Maximum a Posteriori (MAP)

estimation then allows to improve the footprint. The distance of the bound-

ary points to the polygon and a prior favouring particular directions of the

building edges are embedded

In a more recent work, Frédéricque et al. (2008) first detect building footprints

before a reconstruction step to populate a database. Their approach focuses

on a ROI and extracts its skeleton. A set of rectangle hypotheses is then gener-

ated with the principal directions at given points of the skeleton. An iterative

algorithm then allows to obtain a simplified graph of rectangles, providing the

representation of a building block as a set of rectangles (computation time for

the whole process is about 20 seconds for a building block).

In this paper, we use the marked point process framework presented in Ortner

et al. (2007). It proposes an energetic formulation and states the problem as

a minimization of a functional made up of a data attachment term and a reg-

ularizing term. The sampling of this objective function is conducted thanks

to a RJMCMC sampler and coupled with a simulated annealing to find its
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optimum. This approach is very interesting as it allows us to find an opti-

mal configuration of objects, namely rectangles representing buildings parts,

without initialization prior on the object localizations or even their number.

External knowledge can also be introduced, which allows the modeling of the

layout of the buildings.

The main drawback of this approach is its computational efficiency. Ortner’s

energy is composed of many terms, thus computationally intensive and leading

to a very long time to obtain good results. There are also many parameters.

Some of them are related to physical values (resolution, lengths, ...), some

other are not (weighting factors, number of profiles, ...). As all these parame-

ters have to be tuned simultaneously, this is a major pitfall of the approach.

We focus in this paper on a way to simplify this energy, parameters tuning

and to improve the computation time without loss of quality. This point is

crucial when large areas have to be processed in a reasonable amount of time.

1.2 Global strategy and organisation of the paper

As aforementioned, our work is based on an already existing methodology.

Our aim is to propose an efficient way to use it and the rest of the paper is

dedicated to the resolution of this problem. First, we remind the foundations

of the mathematical framework involved in the process and the optimization

outline (section 2). In section 3, we give the essential details of Ortner’s energy

and propose our new formulation to solve the problem. Section 4 presents the

choices we made to implement our approach: they concern geometric imple-

mentation details and the data structures involved. Section 5 presents a wide

variety of results. They cover different areas, and show the ability of the ap-
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proach to deal with various resolutions and data sources. As input data, we

will use a DEM, computed either from high resolution images or from a 3D

point cloud acquired with an aerial lidar. Finally, section 6 concludes our work

and proposes future directions.

2 Mathematical background

In our work, buildings footprint are extracted from digital elevation models

with various resolutions (from 10 cm to 1 m). For buildings, a good geomet-

ric shape descriptor covering this range of resolutions is the rectangle. Even if

buildings are more complicated than a simple rectangle, they can be described

by an union of rectangles which is able to generate complex structures and

thus handle most of urban built areas (figure 1).

This section presents the mathematical background on which relies the method-

Fig. 1. Examples of buildings on a DEM (left) and on an image (right), 25 cm,

Amiens, France c©IGN 2009. In the bottom of the images, buildings can be mod-

eled by a group of 3 separate rectangles; on the top, the city-hall building can be

represented by an union of rectangles (in this case, depending on the generalization,

3 or 5 rectangles are required).

ology developed in this paper. We begin with generalities (sections 2.1 to 2.3)
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and then focus on the key points of the framework, namely the sampler and

the optimizer (sections 2.4 and 2.5).

2.1 Generalities

The principle of the approach presented in this work is based on marked point

processes, an object oriented approach. Let a configuration of objects be a col-

lection of rectangles in image space, each of them representing a building part.

Our aim is to find the best configuration. To do so, an energy is built, using

2 terms: the data attachment term measures the consistency of the objects

with respect to the image, the regularization term favors specific layouts of

rectangles. To optimize the global energy, we use a RJMCMC sampler (Hast-

ings, 1970; Green, 1995) and couple it with a simulated annealing (Salamon

et al., 2002). This last point is important because our problem lies in a high

dimensional space of unknown dimension and is also non convex. Thus, this

global optimization tool is well adapted to our case as it finds the minimum

of the functional without being trapped in local minima.

Stochastic models have shown their versatility in various domains of image

processing and computer vision (van Lieshout, 2000; Winkler, 2003). A par-

ticular family of stochastic approaches, namely marked point processes, origi-

nally developed in response to various physical or biological problems, is very

useful to detect objects modeled with geometric shapes. First of all, they can

handle geometric constraints on the objects of interest and are able to manage

very high dimension spaces, as this is the case in our application. They also

allow an energetic formulation of the problem which can be seen as a func-

tional minimization. In remote sensing, they have been used by Lacoste et al.
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(2005) to detect linear structures like roads and rivers in satellite images. In a

forestry context, Perrin et al. (2006) uses ellipses as objects of a marked point

process to delineate tree crowns from high resolution aerial images. Lafarge

et al. (2008), using building footprints as an input, proposes a stochastic mod-

eling for 3D urban environments reconstruction.

The mathematical background on which relies all those works has already been

well presented in the literature. We remind here only the basis of those prin-

ciples. The reader interested in more details will find theoretical and practical

aspects of marked point processes in Cressie (1993) or Stoyan et al. (1996).

2.2 Definitions

Informally, a point process is a stochastic model governing the locations of

some events {xi} in a bounded set X . More formally, this a measurable appli-

cation of a probability space into [N, P ]. Here, N represents the set of sequences

of points in an image P = [0, Xmax]× [0, Ymax] locally finite (each finite subset

of P must contain only a finite number of points) and simple (xi 6= xj if i 6= j).

Such a sequence will be called a configuration and denoted Ck ⊂ N where

k is the number of elements in the configuration(figure 2:a). A marked point

process is a point process where each {xi} has an associated mark {mi} in a

set M , thus allowing to define a geometric object. A marked point process is

as a point process on P ×M (figure 2:b).

Building footprints in a DEM can be seen as the realization of a marked point

process of rectangles. For performance purposes (see section 4.3), we choose a

parametrization of the rectangle which differs from the classical representation

(center, width, height, orientation; see figure 2:c). Formally, it is described by
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Fig. 2. a) A realization of a point process on P ; b) A realization of a marked point

process of rectangles on P × M ; c) An object oi of our marked point process is

described by its center ci = (xi, yi), its semi-major axis
→
vi and its aspect ratio

ri = li
Li

.

its center ci = (xi, yi), a vector −→vi for the semi-major axis (i.e. ‖−→vi ‖ = Li

2
)

and its aspect ratio ri = li
Li
≤ 1 where Li (resp. li) is the rectangle dimension

along (resp. across) −→vi . As we are only interested in rectangles contained in

the DEM image support P , the compact set M of the marks is:

M =
[−Xmax

2
,
Xmax

2

]
×
[−Ymax

2
,
Ymax

2

]
︸ ︷︷ ︸

−→vi

× ]0, 1]︸ ︷︷ ︸
ri

(1)

2.3 From a density to an energy

Les us consider a marked point process x defined through its probability den-

sity f with respect to the law πν(.) of a Poisson process known as the reference

process. f (.) can be defined in two ways: in a Bayesian framework, which

requires to have a model of heights in the whole DEM or through a Gibbs en-

ergy. We choose the second form because of the complexity required to build

a height model valid for the whole area of interest. Thus, for a configuration

C , the density f (.) is:

f (C) =
1

Z
exp−U (C) (2)

where Z =
∫

exp−U (C) ensures normalization. Moreover, the energy U (.) can

be expressed as a weighted sum of an internal energy measuring the spatial

quality of the collection of objects (prior or internal field) and an external
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energy which qualifies the quality of the objects with respect to the underlying

DEM (external field). The unnormalized formulation is then:

f (C) = exp− [U prior (C) + U data (C)] (3)

Extracting buildings footprint consists in finding the configuration of objects

x̃ maximizing the posterior probability x̃ = argmax f (.). This will be done

thanks to a RJMCMC sampler and a simulated annealing algorithm which

offers convergence towards the global optimum of the density.

2.4 RJMCMC sampler

Classical MCMC methods such as Metropolis-Hastings cannot handle dimen-

sion jumps, i.e., changes in dimension between samples. RJMCMC, which con-

sists in simulating a Markov Chain on the configuration space, is an extension

which allows the modeling of a scene with an unknown number of objects.

(Green, 1995) proposed to use reversible jumps, i.e., a transition from one

step of the chain to another is guided through a set of proposition kernels,

the jumps. They enable to build a new configuration from a starting config-

uration, with the modification of an already existing object, or with adding

or removing an object of the current configuration, thus involving a change

in the dimension space. Algorithm 1 describes the overall process (a complete

description can be found in Robert and Casella (2004)).

2.5 Simulated annealing

The RJMCMC sampler is coupled with a simulated annealing in order to find

the optimum of the density f (.). Instead of f (.), we use in the optimization
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Algorithm 1: RJMCMC sampler

Input: An initial configuration X0 (empty or random configuration)

• Randomly choose a proposition kernel Qi according to a defined law

• Build a new configuration y from Xt w.r.t. the selected kernel

• Compute the acceptance ratio R
(
Xt, y

)
• Compute the acceptance rate α = min

(
1, R

(
Xt, y

))

• With probability


α set Xt+1 = y

(1− α) set Xt+1 = Xt

process f (.)
1

Tt , where Tt is a sequence of decreasing temperatures which tends

to zero as t tends to infinity. Theoretically, convergence is guaranteed whatever

the initial configuration X0 is if the decrease of the temperature follows a

logarithmic scheme. In practice this is impossible to use such a scheme since

it is too slow. Thus, it is generally replaced with a geometric decrease which

gives a good solution close to the optimal one. To estimate initial and final

temperatures, we sample the configuration space and consider the variance of

the global energy (Salamon et al., 2002).

3 Energetic modeling

Formulation of the energies is the core of our work. This is one of the major

aspect of the simplicity and computational efficiency of our implementation.

Before presenting our modeling (section 3.2), we describe how Ortner builds

the terms of its energy (section 3.1). Classically, it is made-up of a regularizing

term (section 3.1.1) and a data attachment term (section 3.1.2).
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3.1 Ortner’s energy

3.1.1 Regularizing term

Ortner’s energy for the internal field is decomposed into 4 different interac-

tions, computed thanks to the relative positions of interacting rectangle cor-

ners. The first interaction regards alignment of objects. Based on 2 thresholds,

it aims at favouring small angular differences between neighbouring objects.

The associated energy is defined through a weighted sum of distances between

the corners and the angular difference. The second term is related to comple-

tion. As the data term detects discontinuities along two opposite sides of the

rectangle, its goal is to detect discontinuities in the orthogonal directions. It

is also based on the previous thresholds and favours orthogonal orientations

between the objects. Another term favours paving interactions, i.e. arrange-

ments of objects along the side were the discontinuity lies. Finally, the last

term aims at avoiding redundant objects, i.e., objects with a high intersection

surface.

Once all these terms are defined, the final external energy is made up of a

weighted sum of the interactions. This involves 7 parameters.

3.1.2 Data attachment term

The global data term is defined as a sum of 4 energies, each one associated

with a set of objects. To do so, a candidate rectangle is sliced orthogonally to

the main direction to study profiles. Three measures are then used to compute

the data term. First, a hit length counts the number of high gradients along

profiles. A volume rate taking into account the number of profiles, their width
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and length is also computed. Finally, a moment rate measures the average

distance between a rectangle hypothesis and hit points.

These measures are based on physical parameters and thresholds. However, a

lot of parameters generally imply a fine tuning. When the input data change,

the parameters need to be tuned again individually and in interaction. It is also

quite uneasy to weigh the relative importance of the 3 terms in the final data

term. As for the internal field, 7 parameters are involved in the computation

of the external field.

3.2 Proposed energy

We now present our choices to define in a simple and efficient fashion our

energetic terms. To avoid parameters tuning and sensitive thresholds setting,

we have drastically simplified the energetic terms. The remaining parameters

are also related to physical quantities, which eases their tuning.

3.2.1 Regularizing term

The regularizing energy U prior, is used to favor some configurations of rectan-

gles and to penalize some others. It requires the definition of a neighborhood

system. Let us remind the general definition of a neighborhood. If ∼ is a sym-

metric relation on P × M , the neighborhood N (u, C) of an object u in C is

defined as the set of objects in relation with u:

∀u ∈ C , N (u, C) = {v ∈ C | u ∼ v, u 6= v} (4)
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We choose to define the neighborhood system thanks to a geometric criterion.

For an object u ∈ C , it is simply the set of objects intersecting u:

u ∼ v ⇔ u ∩ v 6= ∅ (5)

This choice is really natural, because a single building can be represented

by a single rectangle, that is to say, without any interacting object and thus

an empty neighborhood. In the case of buildings blocks, the arrangement of

rectangles required to represent such a structure is composed of contiguous or

slightly overlapped objects (figure 1).

To obtain the desired configurations, our energy is very simple and has only

a repulsive term. For a pair of neighboring objects ui and uj, it is simply the

weighted intersection area S inter of the associated rectangles oi and oj:

U prior (ui, uj) = β.S inter (oi, oj) (6)

So, this regularizing term is only repulsive. β is a weighting parameter which

tunes the importance of prior energy versus data energy. In our work, the

attractiveness is only given through the data attachment term. Furthermore, in

order to avoid accumulation of objects where the internal energy is favourable,

the external energy defined through equation 6 is perfectly designed. Indeed,

the higher the overlap area between objects is, the higher the energy is, and

therefore, this kind of configuration tends to be rejected as the process evolves.

Furthermore, intersection area is not normalized as we want to have a physical

interpretation of the energy (and not a proportion); this is also interesting as

small objects are less relevant than bigger ones (small ones should take into

account the position of big ones).

We think that it is not necessary to design a complex system of interactions

and, in fact, experience has proven that if the external term is well designed,
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a simple internal term is sufficient and models the problem quite well. For

instance, it is not necessary to introduce an alignment interaction, because

the modeling of the data term already includes this property (section 3.2.2)

Finally, for a given configuration C , the global internal energy is given by the

sum of individual terms for each pair of neighboring objects:

U prior (C) =
∑
i 6=j

U prior (ui, uj) (7)

3.2.2 Data attachment term

We now focus on the external energy term which aims at measuring the ade-

quacy of objects with respect to the DEM. This section explains the choices

we made in order to detect building footprints, that is to say how we define

an attractive object.

As we aim at finding building footprints from DEMs, which are rasterized

height data, we are naturally looking for altimetric discontinuities. The higher

the discontinuity is, the more likely the probability to find the edge of a build-

ing at this place is. From this, we obviously use a measure based on the DEM

gradient and define it in order to align rectangles edges with the highest height

variations in the DEM. Large height variations are represented by high values

of the gradient magnitude. To test if a rectangle matches DEM discontinuities,

we use the dot product of the gradient vector and the normal vectors attached

with the edges of the rectangle.

Considering a rectangle edge segment [a, b], its outgoing normal −→n =
−→
ab⊥

‖ab‖

from a to b (where ⊥ denotes a π
2

vector rotation), its external energy is:

U data (a, b) =
∫ ‖ab‖
0

−→n · −→∇
a+ s

−→
ab

‖ab‖

 ds (8)
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where
−→∇ (p) is the gradient magnitude at pixel p. This can be reformulated,

using orthogonal vectors:
−→∇ · −→n =

−→∇⊥ · −→n ⊥ =
−→∇⊥ · −→ab‖ab‖ .

U data (a, b) =
−→
ab ·

(∫ 1

0

−→∇
(
a+ s

−→
ab
)
ds
)⊥

(9)

For efficiency, the integral is discretized using a nearest neighbor scheme, where

the (si) correspond to the segment [a, b] crossing a pixel boundary at a point

pi = a+ si
−→
ab, such that si is increasing, s0 = 0 and sn+1 = 1.

−→∇ i denotes the

constant value approximation of
−→∇ along the segment [pi, pi+1] (see Figure 3):

U data (a, b) =
−→
ab ·

(
n∑
i=0

(si+1 − si)−→∇ i

)⊥
(10)

Udata (a, b) is the dot product of the edge vector
−→
ab and the average gradient

along the edge
∫ −→∇ . It is thus linear with the edge length, and with the mean

gradient magnitude (corresponding to the average façade height), yielding a

measure of a façade surface. Note that the integral formulation and the dis-

cretized (si+1 − si) weighting ensures that the measure is isotropic. It further

takes into account that the orientations of the vectors to only measure the gra-

dient outgoing the rectangle edges. It thus favours rectangle edges alignment

with large height variations in the DEM. For an object ui, its external energy

is the sum of the external energies of the four individual segments [pji , p
j+1
i ]

subtracted from a constant wdata:

U data (ui) = wdata −
3∑
j=0

max
(
0,U data

(
pji , p

j+1
i

))
(11)

This constant wdata is used in order to give to each rectangle an initial weight.

This weight can be considered as the minimal façade surface required for a

building to be detected and it depends on the desired level of generalization.

The data term thus becomes negative when there is enough gradient across the
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p0
i = p4

i

p1
i

p2
i

p3
i

Fig. 3. Explanation of the external energy for a segment [pji , p
j+1
i ] of a given rect-

angle. The grid stands for the DEM pixels; the segment [pji , p
j+1
i ] begins at pji , ends

at pj+1
i and crosses 8 pixels of the DEM (represented with a dark grey outline).

rectangle edges. However, setting this parameter, as it has a straightforward

physical interpretation, is easier than setting an obscure weighting parameter.

In this sense too, our energy is simple and easy to compute.

Another notable aspect of this energy is that, using the max(0, ·) expression,

only segments of the rectangles that have a positive discontinuity support

U data (a, b) are taken into account, i.e., the orientation of the discontinuity

must match the segment outgoing normal. Finally the global external term of

the energy for a configuration C is:

Udata (C) =
∑
{ui}∈C

Udata (ui) (12)

3.3 Contributions of our energy definition

Before ending this section, we would like to sum up the contribution of our

work with regard to that of Ortner. This simply consists in comparing our

energies, the overall number of parameters to adjust and their meaning.

Our regularizing term is only based on the overlapping area of the neighbor-

ing objects. This is a real simplification since this formulation has a physical

meaning. Thus, our prior energy is only repulsive and aims at avoiding super-

position of objects. In fact, it is not necessary to develop a complex system of

interactions, because if the data term is well designed, it fulfills the attractive
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part of the global energy. However, as buildings are not composed of parts per-

fectly aligned or perpendicular, slightly overlapping objects must not be too

much penalized. This is the purpose of the β parameter defined in equation 6.

It allows to tune, with respect to the surface of the intersection area, the level

of penalization for an overlapping configuration. More precisely, it weights the

overlapping surface versus the façade surface. So a value of 10 means that a

rectangle needs 10m2 of façade to compensate 1m2 of overlapping.

The other part of the global energy, the data attachment term is only based on

a simple observation: building edges are orthogonal to the high gradient of the

DEM. Thus, it can be simply defined as a quantity depending on the amount

of gradient orthogonal to each edge of the rectangles. Moreover, we also have

simplified the definition and the tuning of the parameters since there is only

one physical parameter, wdata, which allows to tune the level of generalization.

The necessary highlighted points in Ortner et al. (2007) for its data term are:

• an object is attractive if it has enough gradient along its edges,

• a non attractive object is slightly repulsive,

• the better the object is aligned with discontinuities, the better its energy is.

In our implementation, they are all respected with an efficient to compute and

simple definition of the energy. Moreover, both terms express areas related to

building: its footprint and its façade surface. We thus do not have heteroge-

neous quantities which are uneasy to compare and to weigh each other.
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4 Implementation

Previous sections were dedicated to an energy-based definition of our marked

point process for buildings outline detection. We now express our choices for

its effective and generic implementation which relies on two crucial points:

data-processing structure and geometric optimization.

Although we are looking for an effective approach, we want it to be totally

generic as we use marked point process in other contexts. Based on Boost

libraries, the code is portable and fully C++ compliant. No assumptions have

been made on the geometric properties of objects (this code would work for

segments or circles) nor on the dimensions of the exploration space (this code

would work for studying a point cloud). Changing an energy definition only

requires to code the corresponding method. The total code size is less than

1 500 lines, which makes it rather easy to understand and use.

4.1 Proposition kernels

We first detail the simple transition kernels we use. The first ones, birth and

death kernels are necessary to change to higher or lower dimension and guar-

antee that the Markov Chain visits the whole configuration space (Geyer and

Møller, 1994). Birth (resp. death) simply consists in adding (resp. removing)

a random object from (resp. to) the current configuration.

The perturbation kernel, allows to modify the mark of an object. Although it

is not necessary to ensure convergence, its use is strongly recommended in the

optimization process to avoid consecutive birth and death steps. It not only
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increases computational efficiency but also enables to finely position objects

at the end of the process when all of them are detected but just need to be

adjusted in shape or position.

Our implementation uses only 2 perturbations. The left perturbation of fig-

p0

p1

p3

p2

p0
p1 = p′1

p3 p2

p′3

p′0

p′2

Fig. 4. Examples of some perturbations of a rectangle (the original rectangle is in

black, the transformed one is in dashed red). (left) Translation of an edge. (right)

Combination of rotation and similitude around one of the corner. The translation

vector (see section 4.3.1) is applied to the red corner.

ure 4 translates an edge of the rectangle: 2 corners remain fixed, while the

center and the aspect ratio are modified. The right perturbation combines a

rotation and a similarity around a rectangle corner: the chosen corner and

the aspect ratio remain fixed whereas the center and the 3 other corners are

modified.

4.2 Data-processing structure

Remember that an object configuration is made up of interacting objects,

i.e., each object has a set of neighbours (which could be empty). The Markov

property naturally leads to use a graph as data-processing structure to store a

configuration and maintain the ∼ relation between the objects (see figure 5).

Indeed, an object ui of a configuration can be seen as a node, and a neighbor-

hood relation between 2 objects is easily represented by an undirected edge
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(the ∼ relation is symmetric).

In a more detailed way, we use a valued graph, i.e., each edge carries the reg-

Fig. 5. The neighborhood system. Each rectangle is associated to a node (red). Each

rectangle has a set of neighbours connected by the graph’s edges (blue). c©IGN 2009

ularizing energy. From the nodes point of view, each has a set of attributes:

the associated object, i.e., its position in image coordinates, marks and data

energy. Given such a structured graph, we exactly have all the required infor-

mation about the associated configuration.

On this matter, one of the main advantage of the graph structure is that we do

not need to recompute the whole energy at each modification of the configura-

tion: only local changes are sufficient. The data term is only impacted by the

external energy of the node which undergoes the modification (one addition

(resp. subtraction) for birth (resp. death), an addition and a subtraction for

perturbation); the regularizing term is updated thanks to the new energies

carried by the edges adjacent to the impacted node and the possible new or

removed edges (new interacting objects or objects not anymore interacting).

4.3 Geometry

The computational bottleneck of the algorithm is its geometric routines. We

thus have to find an optimized parametrization of the rectangle to be efficient.
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−r~v⊥
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l
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r = l

L

Fig. 6. The rectangle (c,
→
v , r).

4.3.1 Rectangle representation

A rectangle is represented (figure 6) by its center point c, a vector −→v from

the center to the middle of one of its smaller sides and its aspect ratio r (i.e.

the ratio of the length l of the side orthogonal to −→v to the length L of the

side parallel to −→v ). Contrary to the usual representation with the center, an

orientation angle and the two side lengths L and l, which is also minimal,

our representation avoids the time consuming square roots and trigonomet-

ric functions, limits the use of divisions, and otherwise only use additions,

subtractions and multiplications, which is the key of an efficient handling of

2D rectangles. Using the notations v2 = −→v · −→v and −→v ⊥ = (−vy, vx) for a π
2

rotation:

corners = c±−→v ± r−→v ⊥ and area = rv2

4.3.2 Rectangle Perturbations

The proposed representation enables low cost perturbations that do not re-

quire any square root or trigonometric operation. Pure translations affect only

c, while combinations of rotations and isotropic scaling only involve −→v . The

proposed perturbations involve translating a rectangle edge while keeping its

opposite edge fixed, and a composition of a isotropic scaling and a rotation

of the rectangle around one of its corners as illustrated on figure 4. They are

conveniently performed on a rectangle (c,−→v , r) using the following transfor-
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mations, where (ε, ε′) ∈ {−1, 1}2 selects the fixed corner or edge :

Rotation/scaling → (c+ ε−→w + ε′r−→w⊥,−→v +−→w , r) (13)

Edge translation →
ε′=−1

(c+ ε(t− 1)−→v , t−→v , r
t
) (14)

→
ε′=1

(c+ ε(t− 1)r−→v ⊥,−→v , rt) (15)

Note that translating an edge using one of the equations above may yield an

aspect ratio r > 1. This is simply fixed by using the alternative equivalent

representation (c, r−→v ⊥, 1
r
). The translation perturbation moves 2 corners by

2ε(t− 1)−→v or 2ε(1− t)r−→v ⊥ and the rotation/scaling one moves the 3 unfixed

rectangle corners by 2−→w and/or 2r−→w⊥. It is then straightforward to limit

the magnitude of the corner translations. This upper bound on the corner

translation magnitude is expressed in meters, and is therefore not sensible

to changes in resolution. The experiments we carried out have shown that

these perturbations are sufficient, so that, for instance, pure rotations and

translations are not needed.

4.3.3 Intersection test

The proposed representation allows to efficiently test whether a point −→p is

inside a rectangle (c,−→v , r). First, the point is expressed in a frame centered

at c and oriented along −→v : x = (−→p − c) · −→v and y = (−→p − c) · −→v ⊥. Then −→p is

inside the rectangle if and only if |x| ≤ v2 and |y| ≤ rv2. The energy functional

needs to check efficiently whether 2 rectangles R1 and R2 intersect and, if so,

compute their intersection area. Since rectangles are convex polygons, the

Separating Axis Theorem states that they do not intersect if and only if a line

supporting one of the 8 sides of the 2 rectangles separates the 2 rectangles. A

naive implementation tests, for each side s of a rectangle, whether the 4 points
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of the other rectangle are on the other side of the supporting line of s. The

symmetries of the problem allow a more efficient implementation: computing

only once the vector −→c12 = c2 − c1 between rectangle centers, the absolute

values: λ = |−→v1 · −→v2 |, µ = |−→v1 · −→v2
⊥|, and the squared norms v2

1 and v2
2 (the

latter 2 quantities may be cached in each rectangle). For instance, the corners

of R2 are on the side of the line segment [c1 + −→v1 − r1−→v1
⊥, c1 + −→v1 + r1

−→v1
⊥]

opposite to R1 if and only if ∀(ε, ε′) ∈ {−1, 1}2:

(
c2 + ε−→v2 + ε′r2

−→v2
⊥) · −→v1 > (c1 +−→v1) · −→v1

⇔ −→c12 · −→v1 > v2
1 + λ+ r2µ (16)

The opposite edge of R1 yields the similar expression (−−→c12) ·−→v1 > v2
1 +λ+r2µ,

so that they can be tested together using the absolute value |−→c12 · −→v1 |. Finally,

the rectangle intersection is tested using only 4 quantities, for separating axes

along ±−→v1 , ±−→v2 , ±−→v1
⊥ and ±−→v2

⊥:

Intersects(R1, R2) = | −→c12 · −→v1 | ≤ v2
1 + λ+ r2µ

& | −→c12 · −→v2 | ≤ v2
2 + λ+ r1µ

&
∣∣∣−→c12 · −→v1

⊥
∣∣∣ ≤ r1v

2
1 + µ+ r2λ

&
∣∣∣−→c12 · −→v2

⊥
∣∣∣ ≤ r2v

2
2 + µ+ r1λ

(17)

The efficiency of this rectangle intersection test is measured by the low number

of operations involved and more importantly the absence of square roots or

trigonometric operations (table 1).

24



Table 1

Cumulative operation counts, assuming (v2
i ) and (riv2

i ) values are cached, which

saves 2 additions and 6 multiplications. The intersection test returns as soon as a

separating axis is found, so that the exact operation count among the last 4 columns

depends on the which axis, if any, is found to be a separating axis.

Operation counts λ, µ,−→c12
−→v1? −→v2? −→v1⊥? −→v2⊥?

| · | absolute values 2 3 4 5 6

+ additions 4 7 10 13 16

× multiplications 4 7 10 13 16

4.3.4 Intersection area

To compute the intersection area of 2 rectangles R1 and R2, the bounding

box R3 of R2 aligned with R1 is considered. Figure 7 shows how R3 may

be partitioned into 4 right triangles Ti and the rectangle R2. The area of

intersection between 2 aligned rectangles R1 and R3 is trivial. Likewise, the

ones between the rectangle R1 and a right triangle Ti, which edges adjacent

to the right angle are aligned with R1 may be computed efficiently, using

techniques similar to the rectangle intersection test of the previous section.

(R2, T1, T2, T3, T4) being a partition of R3, the intersection area of R1 and R2

is computed as:

area(R1 ∩R2) = area(R1 ∩R3)−
4∑
i=1

area(R1 ∩ Ti) (18)

If area(R1 ∩ R3) = 0 (R1 and R3 do not intersect) or if area(R1 ∩ R3) −∑k
i=1 area(R1 ∩ Ti) vanishes before k = 4, then the area(R1 ∩ Ti) terms for

i > k have to be zero and their computation is thus avoided, yielding a faster

answer to simpler (more separated) problems.
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R1
R2

T1

T2

T3

T4

R3

Fig. 7. Intersection area of R1 and R2 is eased by considering the bounding box R3

of R2 aligned with R1.

4.3.5 Segment iteration

Figure 8 illustrates that the segment length between 2 vertical (resp. hor-

izontal) line crossings is a constant dtx (resp. dty). The iteration over the

pixels crossed by a segment can be computed efficiently by computing various

quantities as a preprocess. For instance, after crossing a vertical line, the next

vertical line crossing is computed by adding dtx. The next line crossed is along

the direction that has the closest line crossing length t.

Such a scheme is particularly interesting to compute efficiently the data term

dty

dty

dtx

dtx

dtx

dtx

t=1

t=0

Fig. 8. Iterating over the pixels crossed by a segment.

of the energy.

5 Experimental results

In our experiments, we used aerial (50 cm GSD 1 ; figure 14) satellite (50 cm GSD; fig-

ure 10) and lidar (50 cm GSD; figure 11) DEMs. Satellite and aerial DEMs were

obtained with a graph-cut optimization approach in a multiview framework

1 Ground Sampling Distance
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(Roy and Cox, 1998; Pierrot-Deseilligny and Paparoditis, 2004). Images were

acquired by the 16 mega-pixels Institut Géographique National (IGN) digital

camera. Inter and intra stripes overlaps are about 60%. The Toposys R© lidar

scanner was used for the acquisition of 3D lidar point clouds. DEMs have then

been computed from the 3D lidar points using a simple rank filter. In this sec-

tion, all given computation times were obtained on a linux Ubuntu 8.10 PC,

with an Intel R© CoreTM 2 Duo CPU T7700 @ 2.50GHz.

Fig. 9. The blue curve shows the evolution of the energy. The samples denoted by

red points correspond to the superimposed configurations.

5.1 Qualitative results

We first illustrate the evolution of the detection at different steps of the algo-

rithm on a sample building (figure 9). At the beginning of the process, there

are many objects, not well located. 500 000 iterations later (a few seconds),

some objects begin to find their correct location. Then, as long as the temper-

ature decreases, more and more objects are accurately positioned, and finally,

all objects are well detected and located, until convergence. The associated

energy graph is presented on the same figure with highlighting representative
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samples.

Figure 10 compares our results with Ortner’s ones on a bigger area. In both

Fig. 10. Comparison of the results obtain with our strategy (left) and with Ortner’s

strategy (right). The middle image is a direct comparison: in blue, our results alone,

in magenta, Ortner’s results alone, in green the common part of both results. 41%

of the pixels are classified as buildings with our approach, while Ortner’s one gives

a result of 46%.

cases, all building parts are well detected and rectangle edges correspond most

of the time to true buildings limits. False alarms exist in both results and are

mainly due to tree alignments or trees in courtyards, but, could be avoided

for instance by computing a vegetation mask based on NDVI index (Iovan

et al., to appear). Both approaches also exhibit that some rectangles straddle

the streets or embrace 2 buildings. However, this is not prejudicial, because a

further step can deal with these cases to obtain a more relevant description of

the buildings by splitting existing footprints. More generally our results tends

to be less broken up, that is to say that for a given building part, we have only

one rectangle, whereas Ortner’s results tend to superimpose some rectangles

or divide a coherent building part in several rectangles. This is due to the

attractive paving interaction that we removed from our regularization term

formulation. The last point to notice concerns the undetected buildings. Most

of the time, they are the small ones in inner courtyards: the height disconti-
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nuity between the roof and the ground is too weak to be detected. They also

exist in our approach when a building part is too small (”9”-shaped building

at the center of the image) and can be explained by a too high value of wdata.

Figure 11 shows a result on some common buildings as the ones of figure 10.

Fig. 11. Result obtained with a lidar DEM c©IGN 2009. The result is completely

comparable with the result of the satellite DEM (figure 10) on the common buildings

(around the ”9”-shaped building).

However, the DEM comes from an aerial based lidar point cloud (disconti-

nuities are sharper and there is less noise on the ground). The results are

not significantly different, which demonstrates the ability of the algorithm to

successfully operate on various data sources. The aforementioned problems

are also encountered: missing small buildings, straddling of the streets, single

rectangle for multiple buildings, trees, ... In a more detailed way, figure 12

compares both results on a particular building. They are slightly different,

but can be considered as equivalent since nearly the same discontinuities are

detected.

The last test is on a building with a complex shape (figure 13). Indeed, it

is not regular and only a few parts are rectangular, while the higher part is

curved.
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Fig. 12. Comparison of the results obtained with a lidar (left) and an satellite DEM

(right) c©IGN 2009

Fig. 13. Comparison of both approaches on a complex building c©IGN 2009

5.2 Quantitative results

Figures 14 and 15 are detailed areas on an aerial DEM with a 20 cm GSD

(St-Mandé, France). We used the result presented on figure 14 as a basis for a

comparison with a ground truth (coming from a digitized cadastral map) and

with Ortner’s results. Both approaches are compared in table 2 using classical

indicators 2 . They show that both compared approaches are equivalent. The

high false alarm rate can mostly be explained by the detection of the trees,

which can be avoided with a vegetation mask. Indeed, we do not have such

a mask and the ground truth is more accurate than the DEM itself. Thus,

these results are relevant for comparing both methods, but not to evaluate

2 detection rate = TP
total , false alarm rate = FP

total and quality rate = TP
FP+total , where

TP denotes pixel-wise true positive, TP false positive and total is the number of

building pixels in the reference.
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the general quality of the approach. To test the reliability of the method, we

have manually removed the rectangles corresponding to trees in our result (last

line of table 2). False alarm and quality rates are clearly improved. The small

decrease of the detection rate corresponds to a rectangle which embraced trees

and small buildings in the original result.

On the building block presented on figure 15, our approach successfully detects

Fig. 14. Result obtained with a 20 cm aerial DEM c©IGN 2009.

its main parts. However, some small parts and some other with a low height

above the ground are undetected. This can be explained by the definition of

our data energy which measures the total amount of gradient outgoing the

rectangle edges. The small parts that our approach does not detect do not

have enough gradient. If w data is decreased, buildings will be detected but as

an unexpected aggregate of multiple small rectangles. However, if we accept

a small generalization, the results are still reliable.

5.3 Timing and parameters

Table 3 compares computation times of both approaches for the presented

results. Our approach clearly provides faster results. The ratio can achieve a

factor of 100 in our favour. We have also run a test on a 1 km2 area to have

an idea of the computation time needed for processing a whole city. The com-

putation complexity is more dependant on the number of objects than on the
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Table 2

Quantitative comparison between our work and Ortner’s approach on the result

presented on figure 14. Results are clearly equivalent.

Rates (%)

Detection False alarm Quality

Our methodology 86.1 34.9 63.8

Ortner’s methodology 88.3 45.8 60.5

Our methodology (without trees) 83.8 14.3 73.3

Fig. 15. Result obtained with a 20 cm aerial DEM c©IGN 2009. See also table 2.

image size. However, such a large area contains enough buildings to provide

a relevant idea of what we could expect while processing a whole city. In our

test, we used a 50 cm GSD aerial DEM (2000×2000 pixels) on a dense urban

area with almost 1100 objects. The result was obtained in about 50 minutes.

In our implementation, only a few parameters have to be set. Regarding

the energies, the weighting β of the intersection area between 2 objects (equa-

tion 6) has always been set to 10 in our tests. A higher value avoids intersection

but does not change the final result: objects overlap less, but the general lay-

out of the results is similar (see figure 16).
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Table 3

Computation times of the compared approaches. Our methodology provides a gain

factor varying from 80 to 100.

Image size ] objects Computation times

Our methodology Ortner’s methodology

654×665 (figure 10) '100 '180 s '4 h

435×263 (figure 11) '70 '60 s N/A

758×1359 (figure 14) 30 '100 s '3 h

978×1149 (figure 15) 11 '100 s '3 h

A more important parameter is wdata (equation 11) which gives the minimal

Fig. 16. Influence of β parameter (left, β = 10; right, β = 100). Results are strictly

equivalent in terms of energy, even if the layout is not the same.

façade surface that a building must have to be detected by our algorithm. In-

deed, it must be large enough to avoid the detection of very small structures

mainly due to noise in the DEM, or isolated trees. However, if it is too large,

it is more robust to the previous problems, but, small buildings parts will not

be detected. The effects of different values of wdata on the results are presented

on figure 17.
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Fig. 17. Influence of wdata parameter. From left to right and top to bottom, wdata

value is 25, 100, 250 and 1000. For a too small value, too many rectangles are

detected (noise in the DEM), and, as the value increase, the level of generalization

becomes higher.

6 Conclusion and future works

We have presented in this paper a reliable method to extract building foot-

prints from DEM. Our aim is to provide an efficient implementation with

regards to the quality of the results, the computation time and the simplicity

of parametrization. Results and their associated computation times clearly

show that the goals are reached.

This efficiency relies on 2 aspects. The first one is the definition of the energy

to minimize, the second one are the choices and the efforts made in the im-

plementation. Regarding the energy, we choose a very simple definition while

protecting the essential aspects allowing to describe what a building footprint

in a DEM is. The simplicity of our definitions leads to very efficient compu-

tation times and simple parametrization, what is our primary goal. The effi-

ciency of our approach also comes from our implementation of the algorithm.

On the one hand, we have an original parametrization of the base object of

the process, the rectangle, allowing to transform each object with a minimum

of operations and avoiding the high costs of square roots and trigonometric

functions. On the other hand, the underlying graph structure of a configura-
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tion allows to effectively apply the changes involved in the algorithm.

It is also important to note that the both terms of our energy are homoge-

neous in the sense that they both measure a surfacic quantity. This gives our

formulation an easy interpretation and avoids mixing several quantities such

as angles, distance or areas.

Extracting footprints is the first step towards building 3D reconstruction. How-

ever, there is between these two stages an intermediate step in order to obtain

a fine representation of the roof ridge tiles. An approach has already been pre-

sented in Lafarge et al. (2006) which consists in detecting discontinuities in

the rectangles and merging rectangles into connected polygons. However, the

algorithm is only based on the geometric properties of the objects. This could

be improved by using the DEM to find polygon edges corresponding to DEM

discontinuities.It could also be interesting to improve the simulated annealing

parametrization. In fact, at the beginning of the process, when temperature

is high, most of the moves are accepted. As long as the process evolves, birth

and death are less and less accepted, and perturbations become dominant.

To further improve computation times and propose only relevant modifica-

tions of the configuration at the end of the process, we could detect when

the optimization only consists in finely positioning the objects (for example

when the acceptation ratio are small enough for both birth and death on the

past iterations). Hence, once this step detected, we will be able to propose

only data-driven modifications, i.e., objects close to already detected objects,

without intersection. We think this approach could be efficient for our purpose.

Stochastic annealing or jump diffusion could also be interesting orientations.
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