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Abstract: Portfolio management based on mean-variance portfolio optimization is subject to different
sources of uncertainty. In addition to those related to the quality of parameter estimates used in
the optimization process, investors face a portfolio implementation risk. The potential temporary
discrepancy between target and present portfolios, caused by trading strategies, may expose investors
to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm
aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable.
The proposed approach incorporates a user’s preference and seeks a fine-grained approximation
of the most relevant efficient region. The computational experiments performed in this study are
based on a cardinality-constrained problem with investment limits for eight broad-category indexes
and 15 years of data. The obtained results show the ability of the proposed approach to address the
robustness issue and to support decision making by providing a preferred part of the efficient set.
The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in
asset returns and variance–covariance matrix.

Keywords: evolutionary computation; multiobjective optimization; portfolio optimization; robustness

1. Introduction

The problem of identifying the best potential combinations of assets has been present in the
academic financial literature for a long time. Among the efforts made, the seminal framework
introduced by Harry Markowitz [1,2] has been especially influential. Markowitz suggested analyzing
sets of assets, also known as financial portfolios, in terms of risk and return. These two issues are
contradictory in nature, since the desired higher returns usually come at a price of higher risks.
The portfolio selection problem formulated by Markowitz addresses the minimization of portfolio
return variance subject to a minimum expected value of return. The best combinations of assets for
certain degrees of risk define a line, the efficient frontier. Portfolios along this line have the best
properties as, for each level or risk, there is no alternative that offers a higher return. Under some
assumptions, these combinations can be identified by repeated use of quadratic programming.

Unfortunately, simplistic assumptions of the classical Markowitz model usually do not hold in the
real world. Problems faced by practitioners might include complex constraints or definitions of risk
that differ from the canonical portfolio standard deviation of returns, among others. For this reason,
there has been a need to find alternative ways to handle the optimization process.
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Among the recent advances in optimization algorithms [3], evolutionary algorithms (EAs)
have proven successful in overcoming difficulties with traditional optimization techniques either
in their standard version, or hybridized [4–6].

EAs work with a set of solutions, called population. This feature is particularly suitable for
solving multiobjective problems, as it enables approximating the efficient frontier in a single run.
As a result, multiobjective evolutionary algorithms (MOEAs) have received growing attention to
financial applications [7]. In fact, portfolio optimization was one of the first successful applications of
MOEAs in economics and finance. The body of literature devoted to the topic has grown significantly
over the last years [8]. The interest in the general subject, stronger than ever, can be illustrated by
recent innovations on algorithms [9–11] and evolutionary operators [12]. However, the problem of
robustness has been subject to a much lower amount of research.

In the context of mean-variance portfolio optimization, the term of robustness can refer to
different sources of uncertainty, such as the accuracy of future asset returns or the nature of the
variance–covariance matrix [13,14]. The portfolio performance will not be optimal if incorrect parameter
values are used. The risk due to parameter uncertainty is commonly referred to as estimation risk.
Another source of uncertainty is portfolio implementation risk. With the latter, we make reference to
the possibility of temporary deviations form a target allocation that could result in undesired exposure.
The aim of this paper is to show how to limit this problem by means of a robustness-based S-metric
evolutionary multiobjective optimisation algorithm [15] (SMS-EMOA).

As of today, most of the efforts made to mitigate uncertainty during the optimization process
have been focused on parameters and the ability of the solutions to tolerate a certain degree of noise.
Some examples of these efforts are [16–18]. Among the few works that deal with this issue using
evolutionary algorithms, we can mention some that rely on the basic principle of picking solutions
based on a number of future potential scenarios instead of a single prediction. For instance, in [19],
profitable trading strategies are found by means of genetic programming. In [20], a portfolio modeling
approach that considers uncertainty in returns of risky asset is presented and solved with a genetic
algorithm (GA).

We can also mention [21], which plays with modifications and extensions of common
robust optimization techniques by using an hybrid heuristic as solver, or [22], that introduces
a single/multiobjective inverse robust evolutionary approach based on non-probabilistic methods
that tries to deal with uncertainty in parameters. Lastly, in [23], the authors explored the possibility of
increasing the robustness of the solutions obtained by a multiobjective genetic algorithm, exposing the
system to several markets.

On the other hand, in [24,25], the focus is more on the single-period portfolio optimization problem
described above. In [26], a time-stamped resampling strategy is introduced along with a variant
that extends the basic two-objective framework by explicitly adding a third robustness objective.
A similar problem is tackled in [27] by a different strategy for a multiperiod setup. More specifically,
the integration of an anticipatory learning method using Kalman Filters is proposed. However,
the scenario considered in this work is different.

When asset managers identify allocations of interest, the process of rebalancing existing portfolios
or creating new ones is not always immediate. Once the decision regarding the target portfolio has
taken, some considerations should be made before implementation. Is the market deep enough to
meet the order at current price or is likely to move prices? Is it desirable to conceal temporarily the
structure of the target portfolio? Similar questions might result in different trading strategies, some
of which require building the desired position over time. During this period, especially in the later
stages, the portfolio will be similar to the chosen one, but different. This deviation in the structure can
result in properties in terms of risk and return that differ from the expected one. If the intermediate
portfolio is especially sensitive, this can lead to undesired risk exposure. In this view, a portfolio would
be considered robust to implementation risk if small deviations in its composition result in similar
risk–return profiles.
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This desirable trait for portfolios is closely related to robust design optimization focusing on
finding solutions that are reliable under given uncertainties. There are two closely related aspects:
the feasibility and performance robustness. The robustness against performance deterioration is
referred as to the performance robustness. It can be addressed either by optimizing the expectation and
variance [28,29] or by introducing additional constraints [28]. Different types of robustness measures for
multiobjective optimization were investigated in [30]. A methodology for incorporating the robustness
measure into fitness values of population members in MOEAs were developed in [31]. On the other
hand, the robustness of solutions against failure is a subject of reliability-based optimization techniques.
They usually address a stochastic optimization problem in which the constraints are converted into
probabilistic constraints. The probability of a solution being feasible is determined by a reliability
index. The solution reliability can be determined by either a Monte Carlo simulation that generates
a number of samples and estimates the probability of failure or optimization-based procedures that
estimate the distance from the solution to the constraint [32]. For good surveys on robust optimization,
an interested reader is kindly referred to [33,34].

This study follows the methodology developed in [31] and suggests a robustness-based
S-metric selection evolutionary multiobjective optimization algorithm (R-SMS-EMOA) for portfolio
optimization to account for inherit uncertainties. The approach also allows the user to express
and incorporates a preference information in terms the desirable degree of solutions robustness.
This information is used to adjust the optimization and to focus on the most preferred regions of the
search space. The experimental results indicate that thereby obtained solutions are more robust with
respect to: (i) implementation risk, and (ii) uncertainty in the estimates for future asset returns and
variance–covariance matrix (estimation risk).

The rest of the paper is organized as follows. First, in Section 2, we formally describe the financial
portfolio optimization problem. In addition to that, we discuss the characterization of implementation
risk and the evolutionary multiobjective optimization algorithm to be used. This is followed by the
introduction to the sample and the experimental setup. Section 3 will be used to report the results and
Section 4 to their discussion. Finally, the last one will be devoted to summary and conclusions.

2. Materials and Methods

We will start this section providing a brief description of the traditional portfolio optimization
problem under the Modern Portfolio Theory framework.

2.1. Portfolio Optimization Problem

Markovitz suggested that the aggregate behavior of the components should be analyzed according
to two dimensions: risk and return.

Given the linear nature of portfolio structure, the first of them is just the weighted average of
the expected return for the assets. Defining risk, however, is more complicated. Markovitz suggested
modeling this component through the variance or the standard deviation of returns, bearing in mind
that the pattern of returns for the assets included in portfolios could be such that the movements could
be negatively correlated, hence providing diversification benefits.

There are different ways to characterize the risk, such as semivariance and expected shortfall.
In this work, the risk is determined by the standard deviation of the returns σp, which is the most
prevalent way in the literature.

The problem, therefore, can be considered as multiobjective with two conflicting objectives
formally defined as follows.

Maximize total expected return:

E(Rp) = Σn
i=1wiµri, (1)

Minimize portfolio risk:
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σ =
√

Σn
i=1Σn

j=1wiwjσij, (2)

subject to:

Σn
i=1wi = 1, (3)

0 ≤ wi ≤ 1 ∀i ∈ {1, . . . , n}, (4)

where n is the number of investment alternatives, µri is the expected return of the asset i, σij is the
covariance between assets i and j, and wi are the relative weights of the components of the portfolio
that represent the decision variables.

The first constraint, modeled in Equation (3), requires full investment whereas the second, given
in Equation (4), prevents the investor from shorting. In addition to that, we will also consider two real
world constraints:

Cardinality: there is a maximum Cmax and minimum Cmin number of assets in which it is possible
to invest simultaneously:

Cmin ≤ Σn
i=1ci ≤ Cmax, (5)

ci ∈ {0, 1} , i = 1, . . . , n, (6)

where ci is a binary variable. If asset i is held in the portfolio (wi 6= 0) the ci = 1. Otherwise, ci = 0.
Investment limits: in case an investment alternative is present in the portfolio, its relative weight

wi > 0 should be in the interval [li, ui], where:

0.0 ≤ li ≤ wi ≤ ui ≤ 1.0. (7)

The addition of these constraints, especially the cardinality one, increases the complexity of
the problem very significantly. In addition to these, investors might be subject others imposed by
regulators or internal processes. In this paper, we do not intend to consider all the possible constraints.
Given that the set that might be relevant would depend on the specific circumstances of the investor,
we just added a few that complicate the basic problem enough to justify the use of heuristics instead of
standard quadratic programming.

As we mentioned before, given the multiobjective nature of the problem, the solution is not
a single portfolio but a set of them. They define a curve in the risk–return space that represents the
dominating portfolios as, for every risk level, no portfolio offers a higher expected return.

It is worth noting that there are several well-known alternatives to characterize portfolio risk.
In addition to variance/standard deviation, one could consider value-at-risk, risk of loss,
shortfall risk, etc. The algorithm introduced in this paper could work with any of them just as easily.
However, we will stick to the most popular characterization for the experimental work.

2.2. Proposed Approach

This subsection presents the details of the proposed multiobjective evolutionary algorithm for
a portfolio optimization that uses a robustness-based preference information to focus on a desired
regions of the Pareto set. As a core framework for performing the search, SMS-EMOA [15] is selected
due to its competitiveness, popularity and frequent use in the literature. In addition, SMS-EMOA has
already proven effective in the context of portfolio optimization [35], with both the basic and modified
versions being used.

2.2.1. General Framework

SMS-EMOA is a hypervolume-based algorithm with a steady-state selection. It falls into
a general framework of evolutionary algorithms, where, after a random initialization, a population
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of individuals is evolved by successively applying mating selection, variation and environmental
selection procedures.

The algorithm starts by randomly generating an initial populating of size N. Each population
member ai i ∈ {1, . . . , N} is characterized by the decision vector x ∈ Rn, the objective vector f ∈ Rm

and the robustness measure R ∈ R. Every portfolio w is encoded by a vector of real numbers x ∈ Rn in
which each variable represents the percentage of investment per asset. Since there is a set of constraints
involved in selecting investment portfolios, each population member must satisfy these constraints in
order to represent a feasible investment strategy. Therefore, each time a new individual is generated,
it is then repaired to ensure its feasibility. Since the individual reparation procedure is complex,
we present a simplified version of it in Algorithm 1.

Algorithm 1 Reparation

1: Input: x = [x0...xn], Cmin, Cmax, l = [l0...ln], u = [u0...un], ∀i ∈ {1, . . . , n},
2: while ∑i 1xi 6=0 < Cmin do

3: randomly select i such that xi = 0
4: xi ← li
5: end while
6: while ∑i 1xi 6=0 > Cmax do

7: select the smallest xi 6= 0 of the set
8: xi ← 0
9: end while

10: while ‖x‖1 6= 1 do

11: while (∑i li/xi 6=0 > 1) or (∑i ui/xi 6=0 < 1) do

12: if ∑i li/xi 6=0 > 1 then

13: randomly select i such that xi 6= 0
14: xi ← 0
15: end if
16: if ∑i ui/xi 6=0 < 1 then

17: randomly select i such that xi = 0
18: xi ← ui
19: end if
20: end while
21: if ‖x‖1 6= 1 then

22: randomly select i such that xi ∈ [li, ui]
23: introduce ∆xi to make ‖x‖1 = 1
24: end if
25: end while
26: Output: x

The mating selection procedure selects two parents for producing an offspring. The selection can
be performed in various ways. In the original study [15], two population members are picked uniformly
at random from the current population. In this work, a binary tournament selection is used, based on
the fitness values of population members, to provide a selection strategy in which fitter individuals
have more chance for reproduction, thereby propagating useful characteristics among the population.
The fitness assignment strategy, which is a crucial feature of the proposed approach, is described in
detail later in this section. The variation procedure recombines two parents by the simulated binary
crossover (SBX) [36] followed by applying the polynomial mutation [37]. Since the recombination
results in a pair of offspring, one randomly selected offspring is discarded. After the evaluation, the
offspring is added to the populating and the environmental selection procedure determines, on the
basis of fitness values, which individuals must form the population of the next generation. This is
done by removing an individual having the worst fitness value among the population.
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2.2.2. Fitness Assignment

Contrary to single-objective optimization, where an individual’s fitness usually results directly
from the objective function value, the fitness assignment in multiobjective optimization is not so
straightforward as individuals are compared against multiple typically conflicting objectives. Since the
fitness is the basis for selection, the effectiveness of any EMO algorithm largely depends on this
design issue. Additionally to the convergence and diversity (two primary goals of multiobjective
optimization), which must be reflected by the fitness value assigned to each population member, in this
study, we propose a fitness assignment strategy that incorporates the robustness issue. The outline of
the fitness assignment procedure is shown in Algorithm 2.

Algorithm 2 Fitness assignment

1: Input: P
2: sort P into non-domination fronts (F1, F2, . . .)
3: a∗ ← argmina∈F1

R(a)
4: for a ∈ F1 do

5: r(a)← R(a)
R(a∗)τ

6: end for
7: F0 ← {a ∈ F1 : r(a) < ε}
8: F1 ← F1 \ F0
9: for F ∈ {F0, . . . ,Fl} do

10: for a ∈ F do

11: ∆S (a)← S(F )− S(F\a)
12: end for
13: end for
14: for F ∈ {F0, . . . ,Fl} do

15: sort F in descending order of ∆S
16: sort F in ascending order of R
17: for a ∈ F do

18: assign a with rank∆S based on sort in line 15
19: assign a with rankR based on sort in line 16
20: end for
21: end for
22: for a ∈ P do

23: F(a)← rank≺(a) + ε
rank∆S (a)

rank∆S (a)+1 + (1− ε) rankR(a)
rankR(a)+1

24: end for
25: Output: P

The calculation of fitness values involves ranking the population with respect to dominance,
diversity and robustness. These ranks are denoted as rank≺, rank∆S and rankR, respectively.
An individual’s fitness results from the aggregation of these ranks. The process starts with a fast
nondominated sorting procedure [38] that assigns each population member to the corresponding
non-domination front (F1, F2 and so on), according to the Pareto dominance relation. Next, in the
first non-domination front F1, an individual with the best robustness measure is identified (line 3).
Thereafter, individuals exhibiting promising characteristics with respect to the robustness are
emphasized. To this end, the robustness ratio is calculated for each individual in the first front
(lines 4–6). This calculation involves a scaling factor τ, determined experimentally. Individuals having
the robustness ratio lower than the dispersion parameter ε are retrieved from F1 to form a distinct
front F0. The ranks of the remaining individuals remain unchanged (lines 7–8). This completes the
calculation of rank≺ of each population member.
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Afterwards, in each identified front, a hypervolume contribution of each individual is calculated.
In line 11, S is a metric that measures the amount of the objective space dominated by the set F and
bounded by the reference point r = (r1, . . . , rm)T [39]. It can be defined as the Lebesgue measure Λ of
the union of hypercuboids in the objective space:

S(F ) = Λ

( ⋃
a∈F

[ f1(a), r1]× · · · × [ fm(a), rm]

)
(8)

before calculating hypervolume contributions of individuals in the corresponding front, the objective
values, to be minimized, are normalized as:

f̄ j =
f j − f min

f max − f min ∀j ∈ {1, . . . , m}, (9)

where f̄ j is the normalized objective value, f min and f max are the minimum and maximum objective
values of the j-th objective in the corresponding front, respectively. This way, the objective values are
mapped into the domain [0, 1], whereas the reference point is

−→
1 . The extreme points are emphasized

by assigning a maximum possible value of ∆S .
The fitness assignment procedure calculates ranks for individuals in each front based on the

values of hypervolume contribution ∆S and robustness R (lines 14–21). The use of rank values
allows for coping with different magnitudes of measures incorporated into the fitness. With rank
values, it is easy to aggregate the convergence, diversity and robustness measures, regardless
of whether increase or decrease in their values leads to a better performance. In the case of ∆S ,
higher values are preferred. Thus, an individual with the largest value of ∆S is assigned rank∆S = 1.
Next, the remaining individuals are considered, with rank∆S = 2 being assigned to an individual
having the largest value of ∆S and so on. On the other hand, lower values of R correspond to more
robust solutions. Thus, the ranking based on the robustness measure values is performed in ascending
order. An individual with the smallest value of R is assigned rankR = 1, an individual having the
second smallest value of R being assigned rankR = 2 and so on.

Finally, the global fitness value F is computed for each population member. This is done by
aggregating the three ranks as shown in line 23. Thus, the resultant fitness value reflects the quality
of a given individual with respect to convergence, diversity and robustness. The extent to which the
robustness influences the fitness of population members is determined by the dispersion parameter ε,
which is a control parameter set by the user in the range [0, 1]. Increasing ε will weak the role of
robustness, with the population diversity in the objective making more important. On the contrary,
reducing ε will put more emphasis on the solution robustness. As a result, selection is expected
favor more robust individuals and to focus the search on regions with higher robustness of solutions.
For ε = 1, the selection reduces to the original procedure of SMS-EMOA [15], which can be viewed as
a particular case of the proposed selection procedure.

The dispersion parameter ε is an important feature of the proposed approach. It enables the user
to express his preferences about the robustness of solutions, thereby determining the focus of the
search in advance. This way, a high-grained approximation of the preferred part of the efficient set can
be obtained. This is a useful property, as, in practice, many Pareto optimal solutions are not relevant for
the decision maker. Typically, the decision maker is only interested in a subset of optimal solutions that
exhibit certain characteristics. Moreover, a single solution is eventually selected by incorporating some
high-level preferences. By enabling the user to integrate his preferences before the search, the proposed
approach aims to support decision-making when determining an optimal strategy for investment in
a portfolio of assets.
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2.2.3. Internal Robustness Measure

Addressing the issue of robustness requires a formal definition. The measure presented in this
study encompasses the variations of the objective functions and the decision variables.

The robustness measure R is formulated as:

R =
1
ns

ns

∑
i=0

ρ
f
i

ρx
i

, (10)

with

ρ
f
i =

1
m

m

∑
j=1
| fij − f j(a)| ∀i ∈ {1, . . . , ns}, (11)

ρx
i =

1
n

n

∑
j=1
|xij − xj(a)| ∀i ∈ {1, . . . , ns}, (12)

where xij and fij are the j-th variable and objective of the i-th sample point, respectively, ns is the
number of sample points, xj(a) and f j(a) refer the j-th variable and objective of population member a.

The robustness measure R estimates how robust a given portfolio is, based on the ratio between the
deviations in its neighborhood in the decision and objective spaces. As the objective space is defined
by risk and return, the average between two variations is considered, as shown in Equation (11).
Since risk is taken as the standard deviation, both risk and expected return deviations are expressed in
the same scale. The average value of deviations is also considered for multiple weights in portfolio,
as given in Equation (12). The neighborhood of a given portfolio is explored by a number of sample
points. The value of R is obtained by averaging over the ratios of deviations, as shown in Equation (10).
The smaller the value of R, the more robust the solution.

The estimation of the robustness measure depends largely on the sample of points involved in
its calculation. A common approach to sampling consists in generating a number of points in the
neighborhood of the given solution. For the portfolio optimization problem, this process is complicated
by a set of cardinality constraints that must be satisfied by every sampling point to obtain a feasible
portfolio. The outline of the developed sampling procedure is shown in Algorithm 3.

Algorithm 3 Sampling

1: Input: x(a), lj, uj ∀j ∈ {1, . . . , n}, Cmin, Cmax, δ
2: for j ∈ {1, . . . , n : xj(a) 6= 0} do

3: if xj(a)− lj < δ then

4: r ∼ U(0, δ)
5: else if uj − xj(a) < δ then

6: r ∼ U(−δ, 0)
7: else

8: r ∼ U(−δ, δ)
9: end if

10: xj ← xj + r
11: end for
12: x← x/‖x‖1, ensuring ∀j ∈ {1, . . . , n : xj 6= 0} : xj ∈ [lj, uj]
13: Output: x

For every investment greater than zero, the perturbation is performed in a feasible direction.
To ensure that the budget constraint 3, the decision vector x is projected onto the unit hyperplane,
which, in turn, corresponds to a feasible portfolio investment scenario.
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2.2.4. Complexity Analysis

The complexity of one generation of the algorithm is governed by the selection procedure.
It involves finding the worst fitness value among N population members that takes O(N) time.
The computation of fitness values involves the nondominated sorting that runs in O(m N2) where
all population members are compared with each other with respect to m objectives. In the worse
case scenario, all individuals are nondominated. The fitness assignment also involves sorting
the hypervolume contributions and robustness values with the time complexity of O(N log N).
When computing the hypervolume contributions for two objectives, the time complexity is governed
by the sorting algorithm, which is O(N log N). In the fitness assignment, the robustness of offspring is
estimated by sampling and evaluating ns points as well as computing deviations for n variables and m
objectives. This has the time complexity of O(ns n2) and governs the selection procedure because ns

and n are expected to be larger than a population size in the real world scenario. Nonetheless, from the
analysis, it can be seen that the overall algorithm remains efficient.

2.3. Data

The experimental analysis is performed to validate the suggested approach. The analysis is based
on the evolution of eight broad financial indexes representing different asset classes. The sample
covers monthly returns for the time period from January 2000 to December 2014. That is, we rely on
180 monthly returns per series. Table 1 reports the list of indexes and their Datastream mnemonic.

Table 1. Indices used in the experimental work. S&P GSCI Commodity Total Return is the Standard
& Poor’s former Goldman Sachs Commodity Index and MSCI EAFE is the Morgan Stanley Capital
International large and mid-cap securities index for Europe, Australasia and Far East.

Name Code

Frank Russell 1000 Growth FRUS1GR
Frank Russell 1000 Value FRUS1VA

Frank Russell 2000 Growth FRUS2GR
Frank Russell 2000 Value FRUS2VA

S&P GSCI Commodity Total Return GSCITOT
MSCI EAFE MSEAFEL

Barclays Corporate Intermediate S95758
Barclays Intermediate US GVT/CREDIT Y04946

The Russell 1000 Growth Index tracks the growth segment among the US equities with larger
capitalization, that is, it is focused on large companies with higher price-to-book ratios and higher
expected growth. Conversely, the value index covers companies with lower price-to-book ratios and
lower expected growth values. The main difference among these two and the Russel 2000 variants is
the size of the companies considered. The latter considers only small-caps. The remaining three track
commodities, corporate and government bonds, respectively.

The selection of these indexes is not meant to be a comprehensive representation the universe
of investment alternatives, which has much larger scale, but a mere representative set of broad asset
categories. The suggested approach can handle significantly larger instances, but, given the number of
experiments, we decided to test the performance of the approach on a smaller one.

2.4. Experimental Setup

Given that solving a single optimization problem would not be enough to evaluate the approach,
a sliding window is used. This way, instead of using all the data at once to estimate a single vector of
future returns and a variance–covariance matrix, we define several subsets of returns for consecutive
dates. This creates a number of partially overlapping single-period optimization problems that include
a wide range of market conditions that are tackled one by one.
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More specifically, we start by defining a 10-year window consisting of the n = 120 consecutive
months between January 2000, t1, and December 2009, tn. This data is subsequently used to estimate
the parameters required to find the efficient frontier for January 2010, tn+1. Once this first problem is
solved, we generate a second one that considers t2 to tn+1 to estimate the vector of returns and the
variance–covariance matrix for February 2010, tn+1. It is worth noting that the approach is agnostic
to the parameter estimation method, as these are part of the problem specification, not the solution
strategy. For convenience, we used the standard approach of forecasting returns using the sample
average, but the algorithm would be the same if we used Black–Litterman, a perfect forecast, or any
other alternative.

The previous process is repeated 60 times to generate 60 different optimization problems,
finding the efficient frontiers for the January 2010 to December 2014 period. That is, we define 60
different single-period problem instances using the sliding window. For each of them, we search for
the robust efficient frontier relying on training samples of 10 years worth of data. The estimated robust
solutions for the following unobserved time period are subsequently assessed.

For each sliding window, 20 independent runs are performed with a population size of µ = 100,
running for 70 × µ function evaluations. The further parameter settings are as follows. The real
representation of the decision variables is used. The variation operator involves the SBX crossover and
polynomial mutation applied with the probability of pc = 0.9 and pm = 1/n (where n is the number
of decision variables), respectively. The crossover and mutation distribution indexes are ηc = 20 and
ηm = 20, respectively.

Regarding the constraints of the optimization problem, in addition to requiring full investments,
and long-only positions, the cardinality of the portfolios was limited by investing in a minimum of
two indexes, and a maximum of 6. The relative weight of the investment in every index considered in
the asset allocations was also required to be between 10% and 90%.

2.5. Evaluation Metrics

Quantitative metrics for evaluating the outcomes produced by different runs of stochastic
algorithms provides a basis for their comparison and statistical inference. Given that a portfolio
optimization is a multiobjective problem, one could tempt applying quality indicators, such as
hypervolume or spread [40], widely used in the field of evolutionary multiobjective optimization.
The use of such indicators would be inappropriate in the context of the present study, whose main
concern is to obtain reliable portfolios with respect to different definitions of robustness. Moreover,
even for a well-converged approximation to the efficient front, more diverse solutions in the objective
space do not necessarily mean the better results, as a preference information is considered to focus on
the most relevant regions.

This study investigates the robustness of portfolios to implementation and estimation risks.
The latter is estimated by a herein suggested metric, whereas the former is evaluated using metrics
introduced in [24]. The description of these metrics is provided below.

• Implementation Risk This metric estimates the robustness of a given portfolio structure taking
into consideration the changes in risk and return due to deviations in an initially adopted
investment strategy. The portfolio robustness is estimated based on the ratio between deviations
in risk–return values and portfolio weights. This metric is calculated as shown in Equation (10).
Smaller values of this metric correspond to more robust portfolios.

• Stability This metric measures the sensitivity of the portfolios included in the efficient frontier to
a number of potential scenarios where asset returns and their variance–covariance matrix deviate
from the expected values. The stability of a portfolio is measured by averaging the Mahalanobis
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distances between the expected pair of risk–return in the efficient frontier and the expected
risk–return in S different scenarios. The metric is calculated as follows:

ST =
1
S

S

∑
i=1

1
N

N

∑
p=1

dM(x̄p, ¯xpi)
2, (13)

where dM(x̄p, ¯xpi) is the Mahalanobis distance between (E(Rnp), σ2
np) and (E(Rnpi), σ2

npi), the risk
and return for portfolio p in the period tn computed using the parameters for the scenario i. A set
of 500 likely alternative scenarios is generated from historical data by using a nonparametric
bootstrap. The higher the average dispersion, the less reliable the expected behavior of the
current solution.

• Extreme Risk This metric evaluates the sensitivity of the solutions to worst-case scenarios.
It is closely related to the measure of Stability. The difference is that, instead of considering the
average for all S scenarios, a small subset is only taken into account. Specifically, the computation
uses 1% of most problematic scenarios. These scenarios are identified by resampling historical
returns 500 times, computing the average returns and the variance–covariance matrix for each of
them, and including in the computation five scenarios for which the behavior of the portfolios in
the solution differ more from the expected ones. The higher the metric, the higher the risk.

3. Results

The results in terms of the three performance metrics are summarized in Table 2. This table
presents the mean and median values over the 60 scenarios and 20 runs per scenario for both the
non-robust and the robust versions of the algorithm. The latter is studied with different values of
the dispersion parameter ε. The presented results clearly show connection between the choice of the
algorithm and the quality of the output. The robustness-based SMS-EMOA systematically provides
better results than the base version with respect to the considered metrics.

The statistical significance of all the differences between the median values for the non-robust
version of the algorithm versus the robust one was tested with the Mann–Whitney test, and they were
significant at the 1% level.

Table 2. Results for baseline and robustness-based S-metric selection evolutionary multiobjective
optimization algorithms (SMS-EMOA). Differences in percentage vs. standard version.

SMS-EMOA Implem. Risk Stability Extr. Risk

Version ε Mean Diff. (%) Mean Diff. (%) Mean Diff. (%)

Mean

Standard 0.0770 68.56 2984.71

Robust

0.99 0.0356 −53.8% 53.44 −22.0% 2289.04 −23.3%
0.9 0.0148 −80.7% 50.14 −26.9% 2124.96 −28.8%
0.6 0.0069 −91.1% 47.55 −30.6% 1996.60 −33.1%
0.4 0.0043 −94.5% 45.07 −34.3% 1862.10 −37.6%
0.2 0.0021 −97.3% 43.77 −36.2% 1788.66 −40.1%
0.1 0.0015 −98.0% 43.40 −36.7% 1769.18 −40.7%

Median

Standard 0.0769 39.30 4276.12

Robust

0.99 0.0327 −57.5% 32.25 −17.9% 3000.91 −29.8%
0.9 0.0144 −81.3% 30.40 −22.6% 2918.74 −31.7%
0.6 0.0062 −92.0% 29.29 −25.5% 2705.15 −36.7%
0.4 0.0036 −95.4% 27.27 −30.6% 2550.84 −40.3%
0.2 0.0016 −97.9% 26.39 −32.8% 2448.58 −42.7%
0.1 0.0010 −98.7% 26.12 −33.5% 2442.56 −42.9%

As expected, the quality of obtained solutions with respect to robustness is highly related to the
dispersion parameter. As the value of ε is decreased, the algorithm provides solutions with a higher
robustness to both estimation and implementation risks measured by the corresponding metrics.
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It is an interesting observation, as the definition of a robustness measure used in the fitness assignment
procedure only relies on the notion of implementation risk. The calculation of fitness does not explicitly
involve a measure for estimation risk. This way, the experimental results suggest that there is some
sort of connection between the two risks, as solutions more tolerant to implementation risk appear to
be more tolerant to estimation risk as well. The advantage of the proposed approach lies in its ability
to address both risks.

Given that experiments involved 60 optimization problems with 20 independent runs for each
problem, Figure 1 illustrates, in the form of boxplots, the connection between the dispersion parameter
ε and the distribution of the results regarding performance metrics. The presented plots show how the
dispersion across metrics tends to grow for larger values of the parameter ε.
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Figure 1. Influence of the dispersion parameter ε on the distribution of robustness metrics. Boxplots depict
the quartile distribution of robustness for the sets of experiments.

A better insight into the nature of the found solutions can be obtained by analyzing Figure 2.
The plots presented in this figure show the efficient frontiers with the best value of the robustness metric
over 20 runs, found by the algorithm for the optimization parameters derived from the first window.
In these plots, the dots represent the solutions obtained by the non-robust algorithm. The peculiar
structure of the upper-right section of the curve is due to the constraints considered in the problem.
The circles show the solutions found by the robustness-based variant with different settings of the
dispersion parameter ε. The influence of this parameter on the produced results can be easily observed.
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Figure 2. Influence of the dispersion parameter ε on the size of the robust region in portfolio selection.

4. Discussion

The algorithm converges to the efficient frontier, focusing on its specific regions. The focus is
determined by the robustness of solutions. By setting ε, the user can express his/her preferences
for robustness and obtain a set of solutions with desirable features. Increasing the value of ε leads
to a larger extent of the efficient frontier covered by the population. On the other hand, for a small
value of ε, the population converges to the most robust region of the efficient frontier. Such region
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exhibits a higher tolerance to deviations in asset allocations. Furthermore, we can observe that the
robust regions do not need to be contiguous. This results demonstrate that, changing the parameter ε,
the user can effectively focus the search on the regions with the preferred degree of robustness. This is
a useful characteristic of the algorithm, as, in practice, not all solutions in the efficient frontier are
relevant to the investor. If the investor is adverse to the risk in portfolio implementation, a low value
of dispersion parameter can translate this preference. Alternatively, if the investor is indifferent to this
type of risk, the value of ε can be increased. As the above results show, as a byproduct of managing
robustness to implementation risk, we obtain solutions are also more robust with in terms estimation
risk, which is a clear benefit for the investor.

It is also important to emphasize that a fine-grained approximation of the preferred portion of
the efficient frontier is useful for decision making. This is particularly relevant to asset managers
considering a large number of assets for investment. This is because apparently small differences
between portfolios in the objective space would correspond to large distances in the decision space,
i.e., differences between investment strategies.

The results make apparent another two interesting trends. On one hand, the portfolios that
are more prone to implementation risk are on both extremes of the efficient frontier, especially on
the high risk-high return area. On the other hand, we observe how the extension required to cover
a small number of portfolios can have a sizable impact on the metrics. Figure 2f shows how a few
extreme values cause the differences observed in Table 2. Such results are also consistent with much
of professional practice. Asset allocations involving portfolios close to the extremes of the efficient
frontier are rarely recommended, as investors find that either returns are too low, or they are too risky.
As we can see, in addition to these problems, we can add higher implementation risk.

In terms of the convergence pattern for the algorithm, Figure 3 shows the evolution of the
robustness to implementation risk as a function of the number of fitness evaluations for different
values of ε. The data shows the average measure over 20 runs for the first time period. Larger tolerances
to uncertainty regarding risk implementation require a more exhaustive search and, therefore,
more evaluations. The improvement of the metric over time is quite dramatic. For lower values
of ε, the indicator tends to stabilize around 3000 to 4000 fitness calls. When ε = 0.9, the required
number goes up to 6000–7000. This plot confirms the ability of the proposed fitness assignment
procedure to continuously evolve the population with regard to robustness.
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Figure 3. Evolution of the robustness metric over the number of function evaluations. The plot refers
to the mean values over 20 runs.

Finally, we look into an additional aspect, the structure of the found portfolios. Figure 4 presents
the composition maps for the portfolios across different risk levels for the non-robust algorithm, Baseline,
and the robust version with ε = 0.4. More specifically, it represents the portfolios found for the first
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window, in the run already shown in Figure 2c. Instead of considering the whole range, we make the
results more easily comparable focusing the attention on the central area between the lowest and the
highest point in terms of risk where there is an overlap. Because the portfolios included in the solution
are not evenly distributed and there is no perfect overlap in terms of risk, the comparison is performed
based on the closest pairs of portfolios.
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Figure 4. Composition of the best portfolios identified by the standard algorithm and the
robustness-based one for the overlapping range of risks.

It can be seen that the portfolios offering the best returns for these levels of risk require only
a fraction of the available investment alternatives. The non-robust strategy provides solutions relying
only on three assets (the initial portfolio consists of 32.46% FRUS2GR, 17.45% GSCITOT and 51.72%
Y04946). Conversely, the robust version includes a 10.56% investment in S95758 for the lowest risk
level that remains at a similar point for most portfolios in the range. Although the composition map is
presented for the robust version with ε = 0.4, a similar general pattern is observed for other values
of the dispersion parameter. The choice is justified by a balance of robustness and a number of
overlapping portfolios that are significantly higher than for ε = 0.1 or ε = 0.2.

These results show that more diversified portfolios are obtained when seeking robust solutions in
mean-variance portfolio optimization. This observation is consistent with those reported in the financial
literature. For instance, a similar pattern was observed in [41,42] when using a resampling technique
to obtain portfolios tolerant to uncertainty related to future asset returns and variance–covariance
matrix. The advantage of the proposed approach is that it enables the optimization to focus on robust
and diverse portfolios, thereby providing a fine-grained approximation of the most preferred region.

We consider that there is no technical reason to think that suggested approach could not solve
large-scale problems. However, the computational cost involved is likely be very high. Operators like
the reconstruction one would probably have to be redesigned, as the algorithm is not developed for
large-scale portfolio optimization and the implementation would also have to be optimized to be
parallelized. Finally, working on these large-scale problems would also require considering additional
steps. Among them, a key one would be the shrinkage of the variance–covariance matrix. Depending on
sample size, the sample variance matrix is likely to be unsuitable, due to the estimation error, or singular.
However, this problem has to do with the domain, no with the approach introduced here.

Finally, the method introduced in this paper might be successfully adapted to be used in other
fields of application. We feel that the exploration of the applicability of the algorithm in domains like
assembly line balancing [43]; design of energy supply systems [44]; compressed sensing [45,46] or
support vector machines [47] are likely to be fruitful.



Appl. Sci. 2017, 7, 1079 16 of 18

5. Conclusions

This paper proposed an approach to address the issue of robustness in a portfolio optimization.
This approach extends a popular SMS-EMOA by incorporating the robustness measure into the fitness
of population members. The degree to which the robustness influences the fitness is determined by
the dispersion parameter. This parameter translates the user preferences for robustness and enables to
direct the population towards the most preferred regions of the search space.

The experimental validation of the technique was performed through 60 asset allocation exercises
for eight broad financial indexes that represent different asset classes, with a sample covering 15-years
of market data. The results show that the portfolios obtained by the robustness-based approach are
significantly more robust to estimation and portfolio implementation risks than those obtained by the
standard algorithm. The obtained solutions are highly affected by the desirable degree of robustness
specified before the search. The lower the value of the dispersion parameter, the higher the robustness
of solutions. The structure of the robust portfolios differs from the non-robust ones. While they
share the same basic composition, they tend to be more diversified. This feature of robust portfolios
is considered very positive and is consistent with past findings regarding resampled portfolios
designed to tolerate noisy optimization parameters. Thus, our findings show that the robustness-based
SMS-EMOA is an effective tool for coping with uncertainties in portfolio optimization and can be used
to support decision-making by providing the most relevant solutions with respect to the expressed
preference information.

Among the remaining open questions that could make future extension of this work, we could
mention scalability studies to evaluate and enhance the performance of the algorithm to a large number
of investment alternatives. Others would be the implementation of parallel versions of the approach;
a study of the sensitivity of results to the use of other evolutionary operators; or the hybridization with
other strategies, like the fuzzy gravitational search algorithm, would also be an option [48].
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