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Abstract
The delay is a very important element in modeling hardware behavior, that realised in hardware description languages
as ADLIB-SABLE, Verilog and VHDL, in the literature delay may be organized into four classes. The first class, mean
values are used such a precise delay element in the simulation; we found it in VHDL (VHSIC (Very High Speed
Integrated Circuit) Hardware Description Language ) where a single value is utilised to characterize transport delays,
DEVS proposes to use a precise delay element. Under the second class, the delay is represented by an interval min-
max, causes that the delay value is precisely unknown and every value in the interval can represent such a possible
value for the actual delay. The third class, a delay is expressed in the form of a stochastic distribution. The fuzzy models
of delay constitute the last class.
In reality, it is very difficult, if not impossible to obtain a precise value of the delay; there are many reasons for that:
temperature, voltage, variation in the manufacturing process and other environment parameters.
The Min-Max DEVS formalism allows an efficient design of the min-max delay by proposing a life time function definition
based on time interval. Moreover, its simulation semantics allows the simulation of Min Max DEVS models with only
one replication, allowing us to conclude on the min-max delay if it is too large or no to obtain exact simulations.
In this paper, we propose to highlight the Min Max DEVS through examples from digital circuits, after having recalled
its basic definitions and simulation semantics. Then, we compare the obtained simulation results with those provided of
the well known tool in the field of digital circuits Verilog, using the same examples.

Keywords
Logic Gates, DEVS, Modeling and Simulation, Verilog.

Introduction

Digital circuits are electronic components that have been
introduced massively in our daily life, there are some
decades, i.e., from the invention of transistors. These
components participate in the design of a lot of objects
(calculator, vehicle, peace maker, cellular phone, etc.). The
scientists have been investigate the field of digital circuits
by proposing language to design these digital circuits, to
analyze and synthesize them, to detect faults, to simulate
them, etc.

Norbert Giambiasi was one of these active scientists that
contribute to the field of digital networks and a pioneer
(with his colleagues of Languedoc university) by proposing
the concept of logic-temporal design and analysis of such
networks. His works were recognized by the community
as shown by his publications at the last of 70ś Giambiasi
et al. (1979) and Giambiasi et al. (1980). Moreover, he has
developed in collaboration with D. Muriach and A. Miara a
simulation tool for design and verify digital networks called
SILOG Muriach et al. (1979).

In the beginning of 2000, Norbert contributed to the
well-known formalism called DEVS (Discrete EVent system
Specification) developed by Zeigler (1976). First, he pro-
posed the formalism GDEVS (Generalized DEVS) Giambi-
asi et al. (2000) in order to enhance to state trajectory func-
tion of dynamic systems by representing it with a polynomial
function instead of a piece-wise constant function. The

second contribution is the Min-Max DEVS Giambiasi and
Gosh (2002) and Hamri et al. (2006) in which the time life
function is defined with a temporal window (time interval)
to represent efficiently the knowledge of designers on time,
on one hand. On the other hand, the simulation semantics
on which this formalism is based and that introduces the
unknown state, distinguishes it from the existing discrete
event formalisms. These specific characteristics make these
two formalisms so rewarding for the literature of DEVS and
opening serious issues to investigate.

Therefore, I discussed (Amine) with Norbert to start a
research around the modeling and simulation of digital
circuits using GDEVS. The proposition was accepted, and
we carried out significant works that were published in
Hamri et al. (2014), Hamri et al. (2015) and Driouche et al.
(2016).

However, it remains to explore the Min Max DEVS
formalism using real applications and that we did not explore
enough in the past. We chose the digital circuits due to its
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ambiguous delay element that fit perfectly to be modeled
and simulated using this formalism. The designers of such
circuits express often the delay with a time interval. These
points motivate the work as a tribute to our colleague Norbert
and highlight his formalism the Min Max DEVS.

The paper is organized as follows: Section 1 recalls the
Min Max DEVS, its simulation semantics and the formal
property closure under coupling. Section 2 recalls in its turn
definitions on logic gates and briefly the different kinds of
delay used in digital circuits. In Section 3, we propose a set of
models designing basic components in digital circuits using
the Min Max DEVS formalism and they may be coupled.
Note that we focus only on the inertial delay for a seek
of simplicity. Then, in Section 4, we carry out a series of
simulations on simple gates and we compare the results with
those provided by Verilog c©(a leader tool to design and
simulate digital circuits). As a result of this comparison, the
advantages of the Min Max DEVS formalism are highlighted
and new issues are expected. Finally, Section 5 concludes on
this work by recalling the power of this formalism and the
future works that we expect.

Recall on Min Max DEVS Formalism
The Min Max DEVS formalism consists of two algebraic
structures: one for modeling the indivisible behavior which
allows defining outputs according to some inputs and taking
into account the current state of the model and the second
one for modeling the inner structure of the whole model by
reusing some submodels from those modelled and saved in
user libraries, by making a coupling over them.

A Min Max DEVS atomic is an augmented DEVS with
the unique difference for the modeller is that the time life
function for active state is specified with temporal windows.
Thus a Min Max DEVS atomic model is:

M =< X,Y, S, δint, δext, λ,D >

The time interval specified for a given active state allows
us to the model to send out an output inside the equivalent
temporal window, then to transit to a new state. Note that the
elapsed time after such a transition is reset to 0 .

However a Min Max DEVS coupled model is identical to
a DEVS coupled one, that we recall its structure:

MC =<
XMC , YMC , DMC ,Md|d∈D, EIC,EOC, IC, Select >

In Giambiasi et al. (2008), we showed that the Min Max
DEVS formalism is closed under coupling, that means each
for Min-Max DEVS coupled exists its equivalent Min Max
DEVS atomic. Thus, such a coupled model is valid and
eligible for simulation.

Internal Semantics
By looking to the user specification of a Min-Max DEVS
that we call an external model, there is an infinity of
possible DEVS models. Because of the temporal window
that specifies the duration of an active state, there is an
infinity of real possible values. That means an infinity
number of replications to make a decision. This is impossible
and only partial significant conclusions based on simulation
results can be made by the user.

However, the Min Max DEVS formalism proposes an
original semantics to make simulations that consists of the
following assumptions :

1. All possible systems may be enclosed by two
significant models : the first one is the faster model
which represents the faster system in which for each
active state s its duration is defined by the minimum
time of the equivalent state s′ in the user specification
(min(ta(s′)); and the second one is the slower model
which represents the slower system in which for
each active its duration is defined by the maximum
time of the equivalent state in the user specification
(min(ta(s′)).

2. Each occurred event makes a single transition in the
slower or faster model. If an event occurs for the
faster model, then the next event should be oriented
to the slower model. Such a rule guarantees that the
gap between the slower and faster models is at most
one transition and let the slower model some laps of
time reaching the faster one. Otherwise, the modeled
system may have more than two possible states for a
given date.

From these two principal assumptions, rules are described
in order to define how a Min-Max DEVS behavior evolves
through time.

Let us consider a given user specification for a Min-Max
DEVS :

EM =< X,Y, S, δint, δext, λ,D >

We construct the internal model IM that defines how a
simulation should simulate a user specification EM , as
follows:

EM =< XI, Y I, SI, δIint, δIext, λI,DI >

The sets XI, Y I and SI are defined from the sets X,Y and
S respectively specified in the user specification EM :

• XI = X × {fast, slow}

– The event (x, fast) ∈ XI is interpreted as an external
event with the value x ∈ X destinated to the faster model.
This event represents the beginning of the temporal window
in which the system may receive the event x ∈ X that may
occur at each time depending on the real delay. – The state
(si, sj , a) ∈ SI such as si, sj ∈ S and a ∈ A represents the
current state of the internal model IM . si and sj represent
the state of the slower and faster model respectively. a returns
an information on the next transition to do by the internal
model IM . If si = sj means that all possible real systems
are in the same state si; otherwise some fast real systems
are in state sj and the slow real systems remain in state si
waiting to reach the state sj . The state (φ, φ, passive) is a
particular state of the internal model IM , it indicates that
there are more than two possible states for the existing real
systems and that the internal model IM cannot keep.

The benefit of the internal model IM is its ability to
return information about the possible current state of the real
systems ; whereas the external modelEM for some temporal
windows transients to the unknown state, due to the interval
defined by the min-max life time function D() and that the
modeler can not define with exact values.
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Moreover these extended sets, the construction of the
different functions δIint, δIext(), λI() and DI() is as
follows :

• The Internal transition function δIint()

δIint() : SI = S ∪ {φ} × S ∪ {φ} ×A→ S ∪ {φ} × S ∪
{φ} ×A

With the following rules:

δIint(si, si, autonomous) = (si, δint(si), autonomous)
with DI(si, si, autonomous) =Min(D(si)) The second
element of the triplet (si, si, autonomous) represents the
current state of the faster model which is a candidate for
an internal state change. For that, this internal transition
is applied to it. However, the external model is in state si
and its duration is Min(D(si)). After this transition, the
internal model IM transients to (si, sj , autonomous) and
waits that an internal state change occurs for the slower
model. However, the external model EM transients to the
unknown state, because it is not sure that the real system
makes or not a transition at this moment. The duration of
this unknown state is Max(D(si))−Min(D(si)), after
this time the two models (slower and faster) had made the
corresponding state change to sj with the condition that
Max(D(si))−Min(D(si)) ≤Min(D(sj)). Otherwise,
the internal model transients, in its turn, to the totally
unknown state (φ, φ, passive). Thus, the next possible
internal transition is :

δIint(si, sj , autonomous)
(sj , sj, passive) if sj is passive
(sj , sj , autonomous)

if Max(D(si))−Min(D(si)) ≤Min(D(sj))
(φ, φ, passive) otherwise

In order to understand these rules, we have to consider
that we model simultaneously the state change of all possible
real systems. We consider the faster and slower models that
represent respectively the faster and slower systems. The
state (si, sj , autonomous) represents that some systems
are in state sj until all slow systems reach this state (see
Figure 1).

  

FM1

FM

time0

Si

Min(D(Si))

Sj

(a) Faster system.

  

SM1

SM

time0

Si

Max(D(Si))

Sj

(b) Slower system.

  

EM

time0

Si

Min(D(Si))

Sj

EM1

Unknown 
state

(c) External Model.

  

IM

time0

(Si, Si)

Min(D(Si))

Sj

IM1

(Si,Sj)

MaxD(Si)) – Min (D(Si))

(d) Internal model.

Figure 1. Internal state change occurring in each model:
FM, SM, EM and IM.

The Figure 1 shows how internal and external tran-
sitions are conducted for the states si and sj . The
external model EM transients to si at time t = tl +
Min(D(si)), and we have : δIint(si, si, autnomous) =
(si, δint(si), autonomous) = (si, sj , autonomous).
at time t = tl +Max(D(si))−Min(D(si)), we have :
δIint(si, sj , autonomous) = (sj , sj , autonomous)
because DI(si, sj , autonomous) =Max(D(si))−

Min(D(si)) and sj is active.

• The output function λI()

As in classical DEVS, the output event is emitted before
firing an internal state change, so we have:
λI(si, si, A) = (λ(si), fast)
λI(si, sj , A) = (λ(si), slow)

The interpretation of these output events for the internal
model IM :

– The event (λ(si), fast) occurs when the faster model
transients to state sj . At the same time, it sends out the event
λ(si).

– The event (λ(si), slow) occurs when no external event
occurs in the internal model IM and the slower model
transients to the state sj . At the same time, it sends out the
output event (λ(si)).

For the external model EM , the interpretation is different.
The fast event, emitted by the faster model, starts a temporal
window in which any real system may send out an output
event. The slow event, emitted by the slower model, ends the
temporal window. It informs that all existing systems have
sent out their output event λ(si).

• The external transition function δIext()

In order to define the external transition function δIext()
related to the internal model IM , we have to analyse
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the different possible cases in which an external event x
may occur. Note that the internal model IM represents all
possible systems, so the fast external event (x, fast) should
be applied to the faster model in state sj and the slow external
event (x, slow) should be applied to the slower model, in the
state sj . Let us consider the different cases :

– First case: for an input x, the present state of the external
model EM is the state si which is passive and the next state
sj = δext(si, e, x) is passive too. Thus, the current state of
the internal model is (si, si, passive). At the occurrence of
the fast event (x, fast), we apply it to the faster model, as
follows :

δIext((si, si, passive), e, (x, fast)) =
(si, δext(si, e, x), fast) = (si, sj , passive)

where e is the elapsed time from the last transition
occurred in the internal model IM .

DI(si, si, passive) =∞ and DI(si, si, fast) =∞.

After this transition, the external model transients to the
unknown state, because some slow systems do not transient
yet whereas the fast ones have transited. However, the
internal model IM transients to the state (si, sj , fast) which
will wait for the next event (x, slow) for the slower model.
Once, this event occurs the internal model IM applies the
external transition δIext() as follows:

δIext((si, sj , fast), e, (x, slow)) = (sj , sj , passive)

Consequently, all systems have transited to the state sj .
The temporal window that is defined by the occurrence of the
fast and slow events, allows the occurrence of the external
event x at any time to be received by the external modelEM
due to the imprecision on the lifetime function D().

– Second case : si is a passive state and sj is an active
one. Firstly, we consider the occurrence of the fast external
event (x, fast) at time ti followed by the slow external
event (x, slow) at time tj such as tj − ti ≤Min(D(sj)).
Because the slow event (x, slow) occurs before the internal
state change of the faster model, we have:

δIext((si, sj , autonomous), e, (x, slow)) =
(sj , sj , autonomous) where
DI(sj , sj , autonomous) = DI(sj , sj , autonomous)− e.

Now we consider the fact that tj − ti ≥Min(D(sj)).
From this analysis, for a present state si of the external
model EM and a next active state sj = δIext(si, e, x), we
define the following rule for the external transition function
δIext() of the internal model IM . So, we apply the fast event
(x, fast) to the faster model as follows :

δIext((si, si, passive), e, (x, fast)) =
(si, δext(si, e, x), fast) = (si, sj , fast)
DI(si, si, fast) =Min(D(si)) if sj is active
∞ if sj is passive

  

XI

time0

x, fast x, slow

X2
(a) Faster system.

  

FM

time0

Si Sj

FM2
(b) Input events.

  

SM

time0

Si Sj

SM2

(c) Slower system.

  

EM

time0

Si Unknown state

EM2

(d) External Model.

  

IM

time0

(Si,Si) (Si, Sj)

IM2

(Sj, Sj)

(e) Internal model.

Figure 2. External state change from a passive state to a
passive one, occurring in each model: FM, SM, EM and IM.

  

XI

time0

x, fast x, slow

X4
(a) Faster system.

  

FM

time0

Si Sj Sk

FM4

(b) Input events.

  

SM

time0

Si Sj
Sk

SM4

(c) Slower system.

  

EM

time0

Si SkUnknown state

EM4

(d) External Model.

  

IM

time0

(Si,Si) (Φ, Φ)(Si, Sj)

IM4
(e) Internal model.

Figure 3. External state change from a passive state to an
active one with an early internal state change occurring in each
model: FM, SM, EM and IM.
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XI

time0

x, fast x, slow

X3
(a) Input events.
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time0
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FM3

(b) Faster system.

  

SM

time0

Si Sj Sk

SM3

(c) Slower system.

  

EM

time0

Si Sj Sk
Unknown 

state
Unknown 

state

EM3

(d) External Model.

  

IM

time0

(Si,Si) (Sj, Sj) (Sk, Sk)
(Si, Sj) (Sj, Sk)

IM3

(e) Internal model.

Figure 4. External state change from a passive state to an
active one with a late internal state change, occurring in each
model: FM, SM, EM and IM.

– Third case: the internal model IM is in state
(si, sj , autonomous). Then, the fast event (x, fast) occurs
before the internal transition of the slower system, and
late, the slower event (x, slow) arrives. Unfortunately, while
the fast event (x, fast) occurs, we have two successive
transitions for the faster system whereas no transition
occurred yet for the slower system. For that we choose the
following rules:

δIext((si, sj , autonomous), e, (x, fast)) =
(φ, φ, passive)
δIext((φ, φ, passive), e, (x, {fast, slow}) =
(φ, φ, passive)

Consequently, the internal model IM transients from a
known state to the totally unknown state (φ, φ, passive).

– Fourth case: the internal model IM receives two
successive fast events. For a given state (si, sj , fast), while
the second fast event (x′, fast) occurs, the internal model
IM transits to the totally unknown state because the slower
model does not receive yet the first slower event (x, slow).
Thus, we obtain:
δIext((si, sj , fast), e, (x

′, fast)) = (φ, φ, passive)

These rules that define the simulation semantics of a Min
Max DEVS behavior in which the min-max life time function
is specified for active states are deduced by enumerating
different cases for which the possible fast possible systems
pre-empt at more than one transition either internal or
external the possible slow systems.

In the following, we will attempt to apply this semantics
for the simulation of electronic circuits and compare it

with a classical simulation based on fixed delays, after
having recalled the closure under coupling property of this
formalism.

Closure under coupling
To allow hierarchical modeling of Min-Max DEVS
specifications, we proved the formal property closure under
coupling of the Min Max DEVS formalism Giambiasi
et al. (2008). This proof shows that considering a Min-
Max DEVS coupled model a Min Max DEVS atomic one
equivalent exists. Therefore at the conceptual level, we can
componentize a Min-Max DEVS coupled model and reuse it
to define a new Min-Max DEVS one. Let us consider a Min-
Max DEVS coupled model MC that consists of Min-Max
DEVS atomic ones. The equivalent Min-Max DEVS atomic
model is defined as follows:

MC = (X,Y, S, δext, δint, λ,D) where

X is the set of input events received by MC
Y is the set of output events that are sent out by MC
In fact the interface of the coupled model MC defines the

interface of the resultant model.

S =
∏d=N−1

d=0 Q = ((s0, e0), . . . , (sd, ed), . . .)|d ∈ D
D : S →∞+ ×∞+D(S) =

[min(min(D(s0), . . . , D(sd), . . . , ),
min(max(D(s0), . . . , D(sd), . . . , ))]

This means that an internal transition can be fired in
an atomic model at early at the minimum of the minimal
durations and not late than the minimum of the maximal
durations of current states of atomic models. Thus, an
internal transition can be activated in a temporal window
defined with a min-max value. When the minimal duration
becomes equal to zero, this means that the transition may
be fired at now. Therefore the remaining time ρ to fire a
transition from the last transition is defined as follows:
ρ = [min(D(s))− e,max(D(s))− e] if min(D(s))−

e >= 0
ρ = [0,max(D(s))− e] otherwise.
e is the elapsed time in the state s. This means that the

next expected transition will be fired in the temporal window
[ρmin, ρmax] since the last transition occurrence.

Let us consider the set of imminent atomic models from a
current state s,

IMM(s) = d ∈ D|Min(ρd) =Min(D(s))

The set of imminent models is the set of atomic models
that have the minimum of the set of temporal window
beginning (to reduce the complexity we exclude external
transitions). The corresponding models have an internal
transition to fire. These transitions are candidates for the
next expect internal transition of the equivalent model.
To identify which one must be fired first, we call the
function select to define the first atomic model to execute
its output then its internal transition functions, we call it
d∗ = select(IMM(s)). Therefore we define the internal
transition function of the resultant model as follows:
δint : S → S
δint(s) = s′ = (. . . , (s′d, e

′
d), . . .)

(s′d, e
′
d) = (δint((sd), 0) if d = d∗
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(s′d, e
′
d) = (δext(sd, ed + ed∗), Zd∗,d(λ(sd∗), 0)) if d∗ ∈

Id and λ(s∗d) 6= φ
The output function of the equivalent model λI() has

the role to send out an external output event to make state
changes in components outside MC. So there is an external
output coupling between a subcomponent and MC. In other
cases, a non-event φ may be sent out when a subcomponent
belongs to an influence set of another subcomponent. This
is to say when there is an internal coupling between two
subcomponents. This event may be ignored due to the
fact that there is no change to make. Consequently, the
performances of the DEVS simulator are increased. Based on
these definitions, we define the output function λ as follows:
λ(s) = Zd∗,MC(λ(MC)) if d∗ ∈ IMC

λ(s) = φ
Now consider the external transition function δIext() for

the equivalent Min-Max DEVS. When the interface of MC
receives an external event x, it sends this event to the
influenced models through the input-to-input function Zi,j to
activate δext then make the concerned state change. The other
models are still in their current state and only their elapsed
time is updated. So we define δIext of the equivalent model
as follows:
δIext : Q×X → S
δIext((s, e), x) = s′ = (. . . , (s′d, e

′
d), . . .)

(s′d, e
′
d) = (δext((sd, e), x), 0)ifMC ∈ Id

(sd, ed) = (sd, ed + e) otherwise.
Based on these definitions, we conclude that the obtained

Min-Max DEVS model is atomic. Consequently, the
formalism allows hierarchical modeling and simulation.

State of the art on logic circuits
Modeling an electronic circuit consists of reusing small chips
and connect them to design the wished network. A small
chip is a physical device implementing a boolean function
that performs a logical operation on one or more logical
inputs and produces a single logical output Hamri et al.
(2014) Hamri et al. (2015) Driouche et al. (2016). In fact,
logical circuits are the basis for the modern digital computer
systems and digital electronic circuits. They are usually made
from large assemblies of logic gates (chips) which are simple
boolean functions.

A logic gate produces an output according to the received
inputs with a certain delay. This delay justifies the use of a
simulation technique to compute the output (otherwise the
use of the boolean algebra is sufficient). Thus, we can design
a logic gate by three blocks :

1. one block to define the boolean function,
2. a second block to define the delay, and
3. a third block to define the amplifier function.

The boolean function is defined by the well-known
boolean algebra. This algebra employs boolean variables
defined on {0, 1} with a set of operators: and, or and not.
The operators and and or are binary and may be generalized
to more than two variables. However, the operator not is
unary and can not be generalized.

and = min(a, b) (1)

or = max(a, b) (2)

not(a) =!a (3)

In addition, from practical view, the unknown value x is
introduced to model the fact that the modeler does not
have information about the state of a given logic gate. This
situation happens often at the initialization of the simulation
for which the modeler has not enough information about the
initial state of a given logic gate and that he can not initialize.
Like a flip-flop gate where the output is used to compute
the next state and some simulation cycles are conducted to
make this state known.The output of each operator is given
on Table 1 by considering the state x.

Table 1. Truth tables of and, or and not with unknown input.

a b and
x 1 x
1 x x
x 0 0
0 x 0

a b or
x 1 x
1 x x
x 0 0
0 x 0

a not
x x

Note that this unknown state x and its use are different
from the totally unknown state (φ, φ, passive) that we use
to define the Min-Max DEVS simulation semantics.

The delay functions, according to the literature may be
grouped into four categories. The first category regroups
models that use mean values to define a delay function (these
mean values are considered as a fixed value). Under this
category, we find the pure transport delay which has only
one value, the rise-fall delay which has two values, one to
define the needed time for the input transits from 0 to 1
and a second time for the input transits from 1 to 0, and
the inertial delay with one or two values which has a pre-
emption semantics (we use this kind of delay in the given
examples). The second, third and fourth categories, due to
the lack of knowledge or a lot of candidate values to define
the delay function, they represent it by a set values. We fin the
min-max delay function that defines all possible values for
a given delay by an interval. Each value from this interval
is a possible delay. Then, the probabilistic delay function
where delay is represented by a stochastic variable with a
distribution of probability. Finally, the fuzzy delay function
that involves a fuzzification and defuzzification phases of the
delay defined by a distribution of possibility.

Concerning the min-max delay which is related to our
work, some tools leader in modeling and simulation of logic
gate propose the use of the typical min and max delays to
define such a function. However, its semantics is completely
different from that defined by the Min Max DEVS. The
modeler of such a delay, using Verilog for example, should
indicate, at the beginning of the simulation, which value
should be used for computing outputs of the designed logic
gate.

The amplifier function is used to model a finite gain,
supply rail clipping and slew rate limiting. The output
signal computed according to input and delay functions is
multiplied by a gain specified by the modeler. A detailed and
mathematical description of this function is given in Hamri
et al. (2014).

However, in this work, we ignore this function due to
the fact we model inputs with only two discrete values 0
and 1. In this case, there is no need to amplify inputs. We
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decide to model only the boolean and inertial delay functions
by the Min-Max DEVS formalism in order to obtain the
corresponding logic gates.

Min-Max Modeling of logic circuits

Basic logic gate
For a seek of simplicity, we ignore the amplifier function
and we retain only the boolean and delay functions.
Consequently, we model these two functions by the
Min-Max DEVS atomic functions and for which the
corresponding box may have one or two inports and one
outport. Two state variables are used to store inputs from
inports (or one state variable in case of the logic gate not)
using the function δext(). While the logic gate emits its
output through the function λ(), the function δint() is called
to in order to put the logic gate in phase active, then wait
for a new input. The last function D() that will define the
min-max delay when the logic gate is in an active phase.

The Min-Max DEVS atomic model of each boolean
function and, or and notrelated to a min-max delay are given
below:

phase ∈ {passive, active} a, b, v ∈ {0, 1, x}

δext(phase× a× b, e, in?v) :
{
a = v if in = in1
b = v otherwise

δint(phase× a× b) : phase = passive
λ(phase× a× b) : out!min(a, b)

ta() :

{
[min,max] if phase = active
∞ otherwise

δext(phase× a× b, e, in?v) :
{
a = v if in = in1
b = v otherwise

δint(phase× a× b) : phase = passive
λ(phase× a× b) : out!max(a, b)

ta() :

{
[min,max] if phase = active
∞ otherwise

δext(phase× a, e, in?v) : a = v
δint(phase× a) : phase = passive
λ(phase× a) : out!not(a)

ta() :

{
[min,max] if phase = active
∞ otherwise

These logic gates, at this stage, can not be simulated directly.
However, we should first, construct their internal models
IMs according to the rules detailed previously. Then simulate
them by any DEVS simulator. Without these internal models,
it is impossible to make a useful simulation and conclude
correctly on these logic gates that represent external models
EMs.

Note that this formalism as DEVS facilitates the modeling
of inertial delay thanks to its event filter mechanisms based
on the transition and time life functions.

Composite logic gate
Any composite logic gate is an assembly of basic and
existing composite logic gates. They may be designed by
the Min-Max DEVS coupled formalism. The key element
is the function select() that should be defined to handle
simultaneous inputs. Otherwise, a logic gate may receive
several inputs at time, which is absurd. In fact, a logic gate
is a sequential model for which the simultaneous events

should be ordered and sent correctly to the target logic gate
without any conflict. At this subject, Norbert said always:
simultaneous events can not occur for a physical system
and we should take care on concurrent events and not
simultaneous events; even the physician Albert Einstein did
not define simultaneity.

Let us consider the composite gate formed by four gates in
series, shown in Figure 5. It may have two or more subgates
are candidates for an internal state change, the subgate that
is more at right fires, first, its internal state change.

  

and1

and2

and3

and4

Figure 5. The composite gate and4 in series.

Thus, the function select() for this is composite gate is
defined as follows:
select() :< (and4, 1), (and3, 2), (and2, 4), (and1, 4) >
Through this function, we associate for each subgate
a weight. However, while subgates are in parallel (see
Figure 6), their weights are identical and the function
select() returns one randomly.

  

and1

and2

or1

Figure 6. A composite gate with two subgates in parallel.

The function select() is defined as follows:
select() :< (or1, 1), (and1, 2), (and2, 2) >.
The subgates and1 and and2 have the same weight. When
these two subgates are candidates for an internal state
change, the function select() identifies them and selects one
randomly.
Note that this technique of affecting weights to subgates
and choose the gate that has the priority can not return the
right subgate to handle in case of sequential logic gates
like flip-flop gate. However, we should identify all possible
conflicting subgate scenarios and define for each scenario the
imminent subgate.
Let us consider the RS-latch a composite gate (Figure 7).

There are 10 conflicting scenarios (computed by
identifying all conflicting cases), for which the modeler
should define the imminent subgate to handle first.
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or1

or2

not1

not2

Figure 7. RS-latch.

select()


...
< or1, not2 >→ or1
...
< or1, or2, not1 >→ not1
...

For example, if the subgates or1, or2 and not1 are
candidate to throughput, the function select() will choose
the subgate or2. A second example, when the subgates or1
and not2 are candidate, the subgate or1 will be handled first.
Whereas the technique of weighting subgates, will return the
subgate not2 which is incorrect.

Designing Min Max DEVS simulation
In order to conduct Min Max DEVS simulations of logic
circuits, we should first develop and implement the Min
Max DEVS simulator. As we said previously, the Min Max
DEVS simulation semantics may be simulated by any DEVS
simulator. In this work, we choose the fwkDEVS simulator
plug-in Hamri (2017) used successfully in many DEVS and
GDEVS simulations Hamri et al. (2014) Hamri et al. (2015).

fwkDEVS is a simulator designed in object-oriented
paradigm and implemented in Java 1.7. It distinguishes
the simulation kernel from the modeling requirements. For
designing DEVS atomic models, the user should extend
the class DEVSAtomic; and for designing DEVS coupled
models, he should extend the class DEVSCoupled and
complete them with modeling requirements.

The definition of Min Max DEVS coupled is identical to
that of DEVS. So, the class DEVSCoupled will be renamed
only. The definition of Min Max DEVS atomic seems to
that of DEVS atomic with the main difference, the lifetime
of active states is expressed with time intervals, instead of
a unique value. Moreover, the Min Max DEVS simulation
semantics of the atomic models is completely different from
DEVS simulation but consists in. For that, we supply the
class DEVSAtomic with new responsibilities to be able
to simulate correctly the Min Max DEVS models without
modifying the simulation kernel.

In the class DEVSAtomic, we implement the Min Max
DEVS simulation rules, i.e., the internal model IM through
the methods that are used by the modeler to design DEVS
atomic models. Also, we define useful methods in order to
design the Min Max DEVS external model EM . Note that
this class has two references to store the state of the slow and
fast systems on which transition functions will operate.

Once the Min Max DEVS atomic external model is
designed, it may be simulated by the DEVS simulator or
reused to design new Min Max DEVS coupled models.

The class diagram shown in Figure 8 summarizes the
design of Min Max DEVS atomic and coupled models.

  

DEVSSimulator DEVSModel
simulate

DEVSCoupledDEVSAtomic

MinMaxDEVSAtomicMinMaxDEVSAtomic MinMaxDEVSCoupled

Figure 8. Class diagram showing design of Min Max DEVS
models using a DEVS simulator.

Note that the designer of Min Max DEVS models should
take care when he inserts the submodels to composite the
whole model. These submodels should be typed as Min
Max DEVS models and not as DEVS models. In order to
avoid such a confusion, the Min Max DEVS coupled model
contains only other Min Max DEVS models. For that, the
designer may use an assertion to check whether the model is
designed in Min Max DEVS or not.

Remains, the simulation process of Min Max DEVS
models. The internal model IM that is related to each
atomic model will produce a behavior according to received
events. The coupling specified by the coupled models will
allow the simulator to dispatch events correctly to the
concerned models. Note that events according to Min Max
DEVS internal semantics possess two values, the event value
responsible on firing transitions and the event type that
identifies to which model the faster or slower the event is
intended to. The design of such an event on the fwkDEVS
simulator is easy to do, thanks to its object-oriented design
of messages and that has been tested successfully to simulate
GDEVS logic gates of first and second orders.

Designing Min Max DEVS logic gates
The design of logic gates and, or and not using Min Max
DEVS under fwkDEVS is easy to do. The designer extends
the class MinMaxDEVSAtomic to design the corresponding
gate, then he implements the different function δext(),
δint(), λ() and ta() through the methods delat extEM(),
delat intEM(), lambdaEM() and duration() according
to the external model specification of the concerned gate.

The method init() allows configuring the corresponding
gate at initialization. It should be defined according to
designer requirements: he affects concrete values to define
the state of a given gate or he uses the undefined value
x. Note that if the state of a given gate is unknown at
initialization, it will be known after a certain number of
simulation steps. Recall that the unknown state that we
employ at initialization is due to a lack of information on
the gate at this state which is completely different from the
state (φ, φ, passive) that occurs due to min-max delay.
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Let us consider the external model of the gate not. Its
specification seems to a DEVS specification with the slight
difference, the method getDuration() is divided into two
methods getMinDuration() and getMaxDuration().
Thus, the code of this gate is as follows:
@Override
public int deltaExtEM(int state, Object ev,

float e) {
// TODO Auto-generated method stub
if((int)ev == 0) a = 1;
else a = 0;
active = true;
return a;

}
@Override
public int deltaIntEM(int state) {
// TODO Auto-generated method stub
active = false;
return a;// return the current state

}
@Override
public float getMin(int state) {
// TODO Auto-generated method stub
if(active == false){

return Float.POSITIVE_INFINITY;
}

return delayMin;
}
@Override
public float getMax(int state) {
// TODO Auto-generated method stub
if(active == false){

return Float.POSITIVE_INFINITY;
}
return delayMax;

}

Note that the internal model of the gate not is
not the responsibility of the designer. The class Not
has its own methods inherited from the abstract class
MinMaxDEVSatomic in order to make the internal model IM
and to produce the correct behavior specified by the internal
semantics.

The internal model is implemented through the DEVS
methods in order to do not update and modify the designed
links between the simulator and the model. For example,
a piece of code of the method delta ext() that designs
the external function δIext() of the internal model, is shown
below:
public void deltaExt(Port p, Object ev,

float e){
int value, type;
value = ((int[])ev)[0];
type = ((int[])ev)[1];

if((a == indicator.passive)&&(type == 1)){
ecr = deltaExtEM(ecr,value, e);
ecl = ecl;
a = indicator.fast;
duration = getMin(ecr);

}
...
}

Consequently, the internal model of the gate will be
constructed on the fly according to the received events from
the simulator and occurred transitions.

Once the basic gates and, or and not are completely
designed, composite gates reusing Min Max DEVS gates
may be designed like in DEVS. The code of the RS-latch
gate declaring the subgates and the corresponding coupling
over them are given below:

public class RS extends MinMaxDEVSCoupled {
MinMaxOr or1, nor2;
MinMaxNot not1, not2;
Port in0, in1, out0, out1;
public RS(){

super();
this.name = "rs";
or1 = new MinMaxOr("or1");
or2 = new MinMaxOr("or2");
...
in0 = new Port(this, "in0");
...
this.addInPort(in0);
...

}

Like in DEVS, the most critical element is the
function select() that handles simultaneous events. It is the
responsibility of the designer to implement correctly this
method by weighting subgates or enumerating conflicting
scenarios.

Min Max DEVS vs. Verilog Simulation of
Logic Gates
In order to execute Min Max DEVS simulations of the
designed logic gates, we couple their input ports with
generators models. These generators are configured by the
user to send out events 0 or 1 at the hopeful time. Then, the
simulator handles these events and produces the right outputs
at right times, according to the behavior of simulated the
logic gate. Recall that the current state of a Min Max DEVS
model is described by a couple (si, sj) that shows the current
state of slow and fast systems respectively. So a gate output
represented with the couple (x, y) is interpreted as follows:
fast gates output y and slow gates output x.

So, let us consider the simple gate not with min max delay
designed in Min Max DEVS and a short simulation with
two pulses. We define the min-max delay of this gate to
[2, 5] units of time(u.t). The simulation of this gate, as shown
below, reproduces the first pulse by applying the not operator.
However, the second pulse is cut, due to the fact that the
second pulse is too short and the min-max delay too large.
This is in respect to the inertial delay semantics.

  

time

in

5 11 20 210

inputnot

(a) Input signal.

  

time

out

5 130 7 10 16

(x,x)
(x,1) (1,1)

(1,0)
(0,0)

(0,1)
(1,1)

outgatenotminmax

(b) State trajectory.

Figure 9. Min Max DEVS simulation of the gate not.

Note that the Min Max DEVS simulation produces
events and their time occurrences. So, we are constraints to
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construct the trajectory of each observed variables in order
to make a comparison with Verilog corresponding variables;
or extract events from observed Verilog variables.

By reproducing such a simulation on Verilog c© we
should consider the min max delay with another delay
semantics which is the min-typ-max delay to design a delay
represented with a time interval. The min-typ-max delay
of Verilog represents a delay interval with three different
values: min, typical and max. Then, the designer runs each
simulation separately by using the command -iverilog

-Tdelay where Tdelay may be Tmin, Ttyp or Tmax to
simulate one of the possible delay values: min, typical or max
respectively. Consequently in the previous case, we have 2 u.t
and 5 u.t to represent the min and max delays respectively;
and we choose 3.5 u.t as a typical delay.

Thus, we obtain the following chronograms deduced from
Verilog simulations of this example, shown on Figure 10.

  

time

out

2 130 7

x
1

0

1

verilogmingate

(a) Simulation of the gate not with min delay.

  

time

out

3.5 14.50 8.5

x
1

0

1

verilogtypgate

(b) Simulation of the gate not with the typical delay.

  

time

out

50 10 16

x
1 1

verilogmaxgate

0

(c) Simulation of the gate not with the max delay.

Figure 10. Verilog simulation of the gate not with min-typs-max
delay.

The chronogram shown on Figure 9 synthesizes and gives
more information than the other chronograms traced from
Verilog and that simulate the gate not with specific values
of the delay. It shows that at the beginning when the state
of the Min Max DEVS model is not yet setup, all possible
gates are in the unknown state x, until the first output occurs
for the faster gate (delay = min) at time t = 2 u.t. From this
time, some gates have made a state change and had sent out
the corresponding output; however other slow (late) gates are
still in the unknown state x. At time t = 5 u.t, the slower gate
with the max delay does its state changes to reach fast gates.
So, all gates from this time, are transited from state x to 1.
These conclusions are confirmed by the Verilog simulations
as shown on Figure 10.

Note that, for the moment, at initialization, the Min Max
DEVS gates are set up only with the unknown state x only,
and we do not consider the other unknown state, the high
impedance value z that may occur like in Verilog which may
create a slight divergence on the interpretation of simulation
results. However, all these states are unknown ones which let
us interpret them as identical states from this point view.

Now consider a simple network of two gates and in series.
Then consider the three inputsA,B andC evolving as shown
on Figures 11(a), 11(b) and 11(c) respectively.

  

A

1

time0

inputA

(a) Input A.

  

B

1

time0

inputB

12

0

16

1

(b) Input B.

  

inputC

C

1

time0

(c) Input C.

  

outputDminmax

D

(1,0)

time0 15

(x,x)

3 5 16

(x,1) (1,1)
(,)

(d) Output D with a Min Max DEVS simulation.

  

outputDmin

D

time0 3

z

15

1

0

19

1

(e) Output D with a Verilog simulation (delay = min).

  

outputDtype

D

time0 4

z

20

1

0
16

1

(f) Output D with a Verilog simulation (delay = typical).

  

outputDmax

D

time0 5

z
1

(g) Output D with a Verilog simulation (delay = max).

  

outputEminmax

E

(1,0)

time0

(x,x)

106 18

(x,1) (1,1)

(h) Output E with a Min Max DEVS simulation..

  

outputEmin

E

time0 6

x

15

1

0

19

1

(i) Output E with a Verilog simulation (delay = min).

  

outputEtyp

E

time0 8

x

20

1

0
24

1

(j) Output E with a Verilog simulation (delay = typical).

  

outputEmax

E

1

time0 10

x

(k) Output E with a Verilog simulation (delay = max).

Figure 11. Simple network simulation : Min Max DEVS vs.
Verilog.
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The two outputs D = A and B and E = D and C are
computed with two different simulations : Min Max DEVS
and Verilog. The delay of each component is the time interval
[3, 5] u.t that we use such as in Min Max DEVS. However,
in Verilog simulation, we represent this time interval with
the three values 3 : 4 : 5 u.t. The results are shown on
Figure 11(d-k).

The Verilog simulation of the network is illustrated
through three different simulations (Figures 11(e)–11(k))
that compute correctly the outputs D and E according to
the chosen inputs and the selected delay. In the Verilog
simulation with the min and typical delays (Figures 11(e),
11(f), 11(i) and 11(j)), the outputsD andE behaves likewise.
They transient to the state 0, then they come back to the state
1 due to the state changes that occur in the input B at times
t = 12 and 16 u.t. However, from the simulation with the
max delay (Figure 11(g) and 11(k)), we remark that the state
changes occurred on the input B are inhibited on the outputs
D and E.

Now, consider the Min Max DEVS simulations (Fig-
ures 11(d) and 11(d)). We remark that the outputs D and
E are computed correctly. However, the interpretation and
conclusions on the simulation are completely different. For
the output D, considering the time interval [0, 3[, we remark
that this variable is not initialized for all possible gates
(their state is x). At time t = 3 u.t which corresponds to the
beginning of a temporal window, the first state change occurs
in the faster gate which sends out the first output 1.

From this time until time t = 5 u.t, the fast gates may send
out the output 1 and the others are not yet initialized. At
time t = 5 u.t which corresponds to the end of the opened
temporal window, the last late gate is initialized and output
1. Then, look at the same output D on the temporal window
[15, 16]. Fast gates output 0, others are still in the previous
state 1 and do not output yet. If we look at the Verilog
simulation, this conclusion is confirmed. The output D with
min and typical delay output 1 whereas the output D with
the max delay does not output and remains in the state 1.
However, from the time t = 16 u.t, the gate D transits to
the totally unknown state (φ, φ, passive) and no output is
possible from this state. So, we conclude that the chosen
min max delay ([3, 5] u.t) is too large in order to ovoid the
totally unknown state (φ, φ, passive) and to obtain a precise
simulation.

Logically, if we reduce the min max delay to a time
interval small than [3, 5], we may avoid the totally unknown
state and we may obtain a precise simulation.

Note that, for Verilog simulations continue normally. For
example, from time t = 24 u.t, the output D is in the state 1,
in the three simulations; may let us infer a wrong conclusion
that this output in all gates behaves likewise if we do not take
into account the previous state changes.

This comparison between Min Max DEVS and Verilog
simulations reveals some points to enhance and questions to
answer quickly. The given basic gates design only the inertial
delay, so we should expand our basic gates to all delays
of the literature (transport, rise-fall, stochastic and fuzzy
delays) and compare them with Verilog and other simulators
in the field. In addition, we should take into account
when we redesign our basic gates to take into account the
impedance value z at initialization. More important which

need more work, how to propagate the totally unknown state
(φ, φ, passive) in the network, on one hand. On the other
hand, it is possible to use such a state for synthesizing a
network of logic gates like in Verilog with the unknown state
x. Thus, the road map is defined for the near future works.

Conclusion
In this work, we used the Min Max DEVS formalism
proposed by the Prof. and our colleague Norbert Giambiasi
to model and simulate logic gates. We proceed, first by
designing elementary gates based on the inertial delay due
to the fact that this formalism defines naturally an event
filter mechanisms thanks to its internal transition and time
advance functions. So in our case short (parasite) pulses
are automatically ignored. Then, the designer may define
a network of logic gates eligible for Min Max DEVS
simulation thanks to the closure under coupling property of
this formalism.

Moreover, we designed and implemented the Min Max
DEVS simulator, specific for the design and simulation of
logic gates. This prototype allowed us to make a comparison
with the Verilog simulator and conclude significant insights
for the future works.

Recall that someone may believe that a Min Max DEVS
simulation is less accurate comparing with a stochastic or
fuzzy simulation, due to the fact that the simulation can not
continue to give more results. In fact, the gate remains in
unknown state definitely but when its state is known (0 or 1)
more information may be inferred like the possible states for
all gates with different delay values.

In addition, in case of composite gates, we can deduce by
simulation if a subgate switches on or off, or only some of
them according to the min max delay of influence gate. Note
that the similar gate simulators like VHDL c©, Verilog c©,
etc. use simulations with three values (min:typ:max delay)
to simulate a min-max delay. Such a simulation returns a
behavior of the gate only for these three values and no
information can be returned how the gate behaves for the
other delay values.

Someone may ask the usefulness of such approach to
model and simulate large circuits such used in industry.
Firstly, we believe that if DEVS concepts are able to
support the structure of large circuits (high number of
components and complex coupling), the Min Max DEVS
coupled formalism is able in its turn. Because this formalism
uses the same concepts of DEVS. However, the Min Max
DEVS simulation employs large event schedulers than those
of DEVS simulation; this is due to the simulation semantics
of Min Max DEVS atomic models. On the other hand, we
may question the contribution the simulation results based
on this formalism for such circuits because of reaching the
unknown state during a simulation, quickly. A hypothesis
that we hope highlight by conducting additional works in the
future.
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