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A geometric graph G = (P, E) is a set of points in the plane and edges between pairs of points, where the weight of an edge is equal to the Euclidean distance between its two endpoints. In local routing we find a path through G from a source vertex s to a destination vertex t, using only knowledge of the current vertex, its incident edges, and the locations of s and t. We present an algorithm for local routing on the Delaunay triangulation, and show that it finds a path between a source vertex s and a target vertex t that is not longer than 3.56|st|, improving the previous bound of 5.9|st|.

Introduction

A Euclidean geometric graph G = (P, E) is a set P of points embedded in the plane, and a set E of edges, where each e ∈ E is a pair of points (u, v) in P , and the weight of e is the Euclidean distance |uv|.

A local routing algorithm A is an algorithm that routes a packet through the geometric graph G from a source vertex s to a target vertex t using only knowledge of the locations of s and t, as well as the location of the current vertex and its adjacent vertices. Let P s, t be the path found in G from s to t using A. The routing ratio of A for any two points s and t in the geometric graph G is the ratio of the length of P s, t to the Euclidean distance from s to t. An algorithm A has a routing ratio c for a class of geometric graphs G, if, for any two vertices s and t in G ∈ G, |P s, t | ≤ c • |st|.

A graph G = (P, E) is a c-spanner if for any pair of points u and v in P the shortest path in G is not longer than c|uv|. The value c is referred to as the stretch factor or spanning ratio of G. The stretch factor of G is thus a lower bound on the routing ratio of G for any routing algorithm A, and the routing ratio is an upper bound on the spanning ratio of G. Geometric spanners are described in detail in the book by Narasimhan and Smid [START_REF] Narasimhan | Geometric Spanner Networks[END_REF].

A notable geometric graph is the Delaunay triangulation. Given a set P of points in the plane, we construct the Delaunay triangulation of P as follows. For each triple (p, q, r) of points in P , let C be the circle through p, q, and r. If there are no points of P in the interior of C, then we connect p, q, and r by edges to form a triangle. In this paper we assume that P is in general position: no 3 points are colinar and no 4 points are cocircular.

The Delaunay triangulation was first proven to be a spanner by Dobkin et al. [START_REF] Dobkin | Delaunay graphs are almost as good as complete graphs[END_REF], who showed an upper bound of 5.08 on the spanning ratio. This was subsequently improved to 2.42 by Keil and Gutwin [START_REF] Keil | Classes of graphs which approximate the complete euclidean graph[END_REF], and then to 1.998 by Xia [START_REF] Xia | Improved upper bound on the stretch factor of Delaunay triangulations[END_REF]. Xia and Zhang proved later that there exist Delaunay triangulations with spanning ratio greater than 1.59 [START_REF] Xia | Toward the tight bound of the stretch factor of Delaunay triangulations[END_REF].

Bose and Morin [START_REF] Bose | Online routing in triangulations[END_REF] explored some of the theoretical limitations of routing, and provided some of the first deterministic routing algorithms with constant routing ratio on the Delaunay triangulation. They denoted the spanning ratio found by Dobkin et al. [START_REF] Dobkin | Delaunay graphs are almost as good as complete graphs[END_REF] as c df s ≈ 5.08. They showed that it is possible to locally route on the Delaunay triangulation with a routing ratio of 9 • c df s ≈ 45.749. Bose et al. [START_REF] Bose | Competitive online routing on Delaunay triangulations[END_REF] further improved this bound to ≈ 15.479. Then, Bonichon et al. [START_REF] Bonichon | Upper and lower bounds for online routing on Delaunay triangulations[END_REF] showed that we can locally route on the Delaunay triangulation with a routing ratio of at most 5.9. In the same paper it was shown that the routing ratio of any deterministic local algorithm is at least 1.70 for the Delaunay triangulation.

Efforts to evaluate the spanning ratio and routing ratio have been made for Delaunay triangulations defined on other metrics. We can define these metrics by taking a convex shape and translating and scaling it until it intersects three vertices but contains no points of P in its interior. When we use a circle we obtain the L 2 , or classical Delaunay triangulation. When the metric is not specified (as in the rest of this paper), then we are referring to the L 2 -Delaunay triangulation. The L 1 -Delaunay triangulation uses an axis aligned square, while the L ∞ -Delaunay triangulation uses a square tipped at 45 degrees. By rotating the point set 45 degrees, it is easy to show that the L 1 and L ∞ triangulations are equivalent. Bonichon et al. [START_REF] Bonichon | Tight stretch factors for L 1 and L ∞ Delaunay triangulations[END_REF] showed that the L 1 and L ∞ Delaunay triangulations are 4 + 2 √ 2 ≈ 2.61-spanners, and they showed that this bound is tight. On this triangulation, Chew [START_REF] Chew | There is a planar graph almost as good as the complete graph[END_REF] proposed a routing algorithm with routing ratio √ 10. Moreover, the routing ratio of any deterministic local algorithm is at least 2.70 for this class of graph [START_REF] Bonichon | Upper and lower bounds for online routing on Delaunay triangulations[END_REF]. The TD-Delaunay triangulation is constructed using an equilateral triangle. Chew [START_REF] Chew | There are planar graphs almost as good as the complete graph[END_REF] showed that they are 2-spanners. Bose et al. [START_REF] Bose | Competitive routing in the half-theta-6-graph[END_REF] proposed a routing algorithm of routing ratio 5/3 ≈ 2.89 and they show that this ratio is the best possible. Recently Dennis, Perkovic and Duru [START_REF] Dennis | The stretch factor of hexagon-Delaunay triangulations[END_REF] showed that the stretch factor of Hexagon-Delaunay triangulation is 2 and this is tight. In this paper we present a local routing algorithm, called MixedChordArc, for the L 2 -Delaunay triangulation, with a routing ratio of 3.56. This improves the current best routing ratio of 5.9 [START_REF] Bonichon | Upper and lower bounds for online routing on Delaunay triangulations[END_REF]. Table 1 shows our result in the context of spanning and routing ratios of other Delaunay triangulations.

In Section 2 we define a local algorithm that achieves this routing ratio. In Section 3 we prove the result for a special case, called balanced configurations. In Section 4 we extend the technique presented in Section 3 to prove the main result in the general case. In Section 5 we present our conclusions and our ideas for future directions for this line of research.
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The MixedChordArc Algorithm

Let P be a finite set of points in the plane, and let DT (P ) be the Delaunay triangulation of P . We want to route a packet between two vertices of P along edges of DT (P ) using only local knowledge and knowledge of our start and destination vertices.

Let s and t be the start and terminal vertices respectively, and assume, without loss of generality, that s and t are on the x-axis with s to the left of t. Our general position assumption ensures that no other vertex lies on st. Consider two triangles T and T whose interior is cut by st. We say that T is to the left of T , and T is to the right of T , if, by following st starting at s we intersect T before T . If uv is the edge shared by T and T , then our general position assumption ensures that u and v are on opposite sides of st.

Let C be a circle that intersects st. We denote by t C the rightmost point of C on st. Let u and v be two points on C. We denote by A C (u, v) the clockwise arc of C from u to v, and by B C (u, v) the counter-clockwise arc of C from u to v. We denote the length of a continuous curve S by |S|.

Let p = t be the vertex representing the current location of the packet. We assume s to be above st, and we assume t to be on the opposite side of st from the current vertex. Let T be the rightmost triangle with p as a vertex whose interior is cut by st. Let a = p be the vertex of T that is above st, and let b = p be the vertex of T that is below st. Let C be the circumcircle of T .

Here is the algorithm MixedChordArc. First assume that p = s. 

If |A C (s, t C )| ≤ |B C (s, t C )|,
a. If |A C (p, t C )| ≤ |pb| + |B C (b, t C )|, set p = a b. Else set p = b. 2. If p is below st: a. If |B C (p, t C )| ≤ |pa| + |A C (a, t C )|, set p = b b. Else set p = a.
Note that assuming that t is on the opposite side of st from p ensures that when t is a neighbour of the current vertex, the algorithm will forward the packet directly to t.

The possible choices are illustrated in Fig. 1. Let P s, t = (s = p 0 , p 1 , ..., p n = t) be the sequence of vertices produced by the algorithm. In this paper we prove the following theorem.

Theorem 1. The MixedChordArc Algorithm finds a path P s, t from s to t whose length |P s, t | is not more than µ|st|, where µ = In some cases, the path produced by our algorithm is a balanced configuration. In such cases, the analysis of the length of P s, t is much easier. In Section 3 we define what a balanced configuration is, and analyze the length of P s, t for this specific case. Then, in Section 4, we analyze the length of P s, t for the general case.

Bounding |P s, t | in a Balanced Configuration

Let us consider a path P s, t of vertices such that p 0 = s, p n = t and p i-1 p i is an edge of the rightmost triangle T i of p i-1 that has a non-empty intersection with st. Let a i and b i be the other two vertices of T i , where a i is above st, and b i is below st.

Thus p i = a i or p i = b i . Let s = p 0 = a 0 = b 0 and let t = p n = a n = b n . Let C i be the circumcircle of T i , let
r i be its radius and let c i be its center. Let C 0 be the circle centered at s with radius r 0 = 0. Let T = (T 1 , T 2 , ..., T n ), and let C = (C 0 , C 1 , ..., C n ) be the sequence of circles starting at C 0 , followed by the circumcircles of T . Note that the vertex of T i that is on the opposite side of st to p i-1 may not be at the intersection of C i-1 and C i . Thus we define a second intersection point of C i-1 and C i as follows (p i-1 being one intersection point). If p i-1 is above st, then q i is the lowest intersection of C i and C i-1 (where "lowest" is defined by the point having the least y-coordinate). If p i-1 is below st, let q i be the highest intersection of C i-1 and C i (where "highest" is defined by the point having the greatest y-coordinate).

Note that it is possible to have C i-1 and C i intersect in two points, and still have

q i = p i-1 . See circle C 4 in Fig. 2.
Observe that if T i and T i-1 share an edge, then q i is the vertex of T i on the opposite side of st from p i-1 . See circles C 1 , C 2 , C 3 , and C 5 in Fig. 2. To simplify the notation, we write t i instead of t Ci , and we write

A i (u, v) and B i (u, v) instead of A Ci (u, v) and B Ci (u, v), respectively.
We say that a pair of consecutive circles For the rest of this section, we assume that P s, t is a balanced configuration. Consider the case when p i-1 is above st (the case when

C i-1 and C i is balanced if |A i (p i-1 , t i )| = |p i-1 q i | + |B i (q i , t i )| when p i-1 is above st, and if |B i (p i-1 , t i )| = |p i-1 q i | + |A i (q i , t i )| when p i-1 is below st. A path P s, t on a point set P is a balanced configuration when C i-1 and C i are balanced for all 1 ≤ i ≤ n.

Analysis Technique

Lemma 2. Let C i-1 and C i be arbitrary circles of C, where 1 ≤ i ≤ n. Then 1. |p i-1 b i | + |B i (b i , t i )| ≤ |p i-1 q i | + |B i (q i , t i )| when p i-1 is above st, and 2. |p i-1 a i | + |A i (a i , t i )| ≤ |p i-1 q i | + |A i (q i , t i )| when p i-1 is below st.

Proof. By the triangle inequality we have |p

i-1 b i | ≤ |p i-1 q i | + |B i (q i , b i )|, from which 1 follows. Case 2 is symmetric. q 0 , p 0 , t 0 , s p 1 , a 1 C 1 C 2 C 3 C 4 p 2 , a 2 p 3 , a 3 , q 4 b 1 , b 2 , b 3 , q 1 , q 2 , q 3 b 4 , p 4 a 4 q 5 b 5 , p 5 , t 5 , t
p i-1 is below st is symmetric). If q i = b i then |A i (p i-1 , t i )| = |p i-1 b i | + |B i (b i , t i )|,

and the algorithm proceeds to a

i . If q i = b i , observe that |p i-1 b i | ≤ |p i-1 q i | + |B i (q i , b i )|
by the triangle inequality (see circles C 4 and C 5 in Fig. 2). Let x(v) and y(v) be the x and y-coordinates of a point v, respectively. Let s i be a point on st such that x(s i ) = x(t i ) -2r i . We define the following potential function that we use to bound the length of P s, t .

Thus we have |p

i-1 b i | + |B i (b i , t i )| < |p i-1 q i | + |B i (q i , t i )| = |A i (p i-1 , t i )|,
Definition 3. If p i-1 is above st, then Φ(C i-1 , C i ) = |A i (p i-1 , t i )| -|A i-1 (p i-1 t i-1 )| -λ|s i-1 s i | -(µ -λ)|t i-1 t i |. Otherwise, if p i-1 is below st, then Φ(C i-1 , C i ) = |B i (p i-1 , t i )| -|B i-1 (p i-1 t i-1 )| -λ|s i-1 s i | -(µ -λ)|t i-1 t i |,
where λ = 1+sin (1) cos(1) -π/2 -1 /2 ≈ 0.42 and µ = Lemma 6. For any C, x(t i-1 ) < x(t i ) for all 1 ≤ i ≤ n, and

n i=1 |t i-1 t i | ≤ |st|.
Proof. We prove that x(t i-1 ) < x(t i ), that is, t i is right of t i-1 for all 1 ≤ i ≤ n, by contradiction. Assume that x(t i-1 ) ≥ x(t i ). If q i is to the same side of st as p i-1 , then C i-1 must contain the vertex of T i on the opposite side of st. If q i is on the opposite side of st as p i-1 , then C i-1 contains the vertex of T i on the same side of st as p i-1 . Both cases contradict the construction of a Delaunay triangulation. This, together with the fact that t 0 = s and t n = t implies the second part of the lemma. Proof. We first analyze the case when p i-1 is above st. Recall that in this case, Φ(

Lemma 7. For 1 ≤ i ≤ n, if p i-1 is above st, then 1. a. |A i (p i-1 , t i )| > |p i-1 p i | + |A i (p i , t i )| if p i is above st, and b. |A i (p i-1 , t i )| > |p i-1 p i | + |B i (p i , t i )| if p i is below st otherwise p i-1 is below st and 2. a. |B i (p i-1 , t i )| > |p i-1 p i | + |B i (p i , t i )| if p i is below st, and b. |B i (p i-1 , t i )| > |p i-1 p i | + |A i (p i , t i )| if p i is above st. Proof. Case 1a is because |A i (p i-1 , p i )| > |p i-1 p i |,
C i-1 , C i ) is defined as Φ(C i-1 , C i ) = |A i (p i-1 , t i )| -|A i-1 (p i-1 t i-1 )| -λ|s i-1 s i | -(µ -λ)|t i-1 t i |.
If p i is above st (same side of st as p i-1 ), then

|A i (p i-1 , t i )| > |p i-1 p i | + |A i (p i , t i )| by Lemma 7. In this case, let D i = A i (p i , t i ). If p i is below st, then |A i (p i-1 , t i )| > |p i-1 p i | + |B i (p i , t i )| by Lemma 7. In this case, let D i = B i (p i , t i ). In both cases we have |A i (p i-1 , t i )| > |p i-1 p i | + |D i |. Let Φ (C i-1 , C i ) be the function defined by Φ (C i-1 , C i ) = |p i-1 p i | + |D i | -|D i-1 | -λ|s i-1 s i | -(µ -λ)|t i-1 t i |. p i-1 C i-1 C i Di-1
Ai(pi-1, ti)

q i t i-1 t i s i s i-1
Figure 4 Illustrating the function Φ(Ci-1, Ci): blue minus green is charged to red to obtain an upper bound on the routing ratio.

Observe that Φ (C

i-1 , C i ) ≤ Φ(C i-1 , C i ). By Lemma 4, Φ(C i-1 , C i ) ≤ 0, thus Φ (C i-1 , C i ) ≤ 0. When p i-1 is below st, a symmetric proof again shows us that Φ (C i-1 , C i ) ≤ 0. Recall that p 0 = t 0 = s, and p n = t n = t, which means |D 0 | = |D n | = 0. Therefore we have n i=1 Φ (C i-1 , C i ) ≤ 0 from which we get: n i=1 (|p i-1 p i | + |D i | -|D i-1 |) ≤ n i=1 (λ|s i-1 s i | + (µ -λ)|t i-1 t i |) |P s, t | -|D 0 | + |D n | ≤ (λ + µ -λ)|st| (1)
|P s, t | ≤ µ|st|.

The right hand side of ( 1) is due to Lemmas 5 and 6.

Lemma 5 is discussed in the next section. Lemma 4 is discussed in Section 3.3.

Proof of Lemma 5

Lemma 5 uses the following supporting result: Lemma 8. Let C i-1 and C i be balanced. Let s i-1 be the point on st where x(s i-1 ) = x(t i-1 ) -2r i-1 and let s i be the point on st where x(s i ) = x(t i ) -2r i . Then x(s i-1 ) ≤ x(s i ).

Proof. See Fig. 5. Let u i-1 be the point on C i-1 that is diametrically opposed to t i-1 and let u i be the point on C i that is diametrically opposed to t i . We will show the case when p i-1 is above st; the case when it is below st is symmetric. Since C i-1 and C i are balanced, we have that

|A i (p i-1 , t i )| = |p i-1 q i | + |B i (q i , t i )| which implies that |A i (p i-1 , t i )| ≤ πr i and |B i (q i , t i )| ≤ πr i . Since |A i (u i , t i )| = |B i (u i , t i )| = πr i , u i is not on the open interval A i (p i-1 , t i ) or B i (q i , t i ),
which implies that either u i is on the arc of C i between p i-1 and q i that does not contain t i , or u i = p i-1 = q i . Lemma 6 implies that t i is not inside C i-1 , which implies that u i must be on or inside C i-1 . Let O i be the circle centered at t i with radius |t i u i | = 2r i . Thus O i and C i are tangent at u i , and O i intersects st at s i . Let O i-1 be the circle centered at t i-1 with radius 2r i-1 . Thus O i-1 and C i-1 are tangent at u i-1 , and O i-1 intersects st at s i-1 . We prove the lemma by contradiction, thus assume that E S A 2 0 1 8
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s t C i t i u i p i-1 q i C i-1 s i s i-1 t i-1 O i O i-1 u i-1
Figure 5 Oi must intersect Oi-1 if Ci-1 and Ci are path balanced, which implies that x(si-1) ≤ x(si).

x(s i ) < x(s i-1 ). In the proof of Lemma 6, we showed that x(t i ) > x(t i-1 ). Therefore, it must be that O i-1 is in the interior of O i , and thus they do not intersect. Since u i is on or inside C i-1 , and

O i intersects u i , O i must intersect C i-1 . But C i-1 is contained in O i-1
except for the point u i-1 , and O i-1 is contained in O i , and thus O i cannot intersect C i-1 , which is a contradiction. See Fig. 5.

We can now prove Lemma 5:

Proof of Lemma 5. Follows from Lemma 8 and the fact that x(s 0 ) = x(s) and x(s n ) < x(t).

C i-1 C i st D i-1 p i-1 q i s i s i-1 c i-1 c i t i-1 t i A i (p i-1 , t i )
Figure 6 Coordinate system for analyzing Φ(Ci-1, Ci).

Proof of Lemma 4

To show that Φ(C i-1 , C i ) ≤ 0 when C i-1 and C i are balanced, we set up the following coordinate system. We show the proof for the case when p i-1 is above st; the case when p i-1 is below st is symmetric. Let c i-1 and c i lie along the x-axis, and let p i-1 and q i lie along the y-axis. See Fig. 6. Lemma 4 follows from the following two lemmas:

Lemma 9. When C i-1 and C i are balanced, if y(t i-1 ) ≤ 0, then Φ(C i-1 , C i ) ≤ 0. Lemma 10. When C i-1 and C i are balanced, if y(t i-1 ) > 0, then Φ(C i-1 , C i ) ≤ 0.
The main tool to prove these two lemmas is the following transformation, which is similar to a transformation used by Xia [START_REF] Xia | Improved upper bound on the stretch factor of Delaunay triangulations[END_REF].

Transformation 11. Fix p i-1 and q i , and translate c i to the left along the x-axis until c i = c i-1 . Moreover keep C i-1 unchanged and maintain C i as the circle with center c i with p i-1 on its boundary.

Observe that, after we have completed Transformation 11, we have Transformation 11. Thus we wish to find the change in Φ(C i-1 , C i ) with respect to the change in x(c i ) during Transformation 11. Formally:

C i = C i-1 and thus Φ(C i-1 , C i ) = 0. If we can show that Φ(C i-1 , C i ) is increasing while x(c i ) decreases, then it must be that Φ(C i-1 , C i ) ≤ 0 before
Lemma 12. If dΦ(Ci-1,Ci) dx(ci) ≤ 0 during Transformation 11, then Φ(C i-1 , C i ) ≤ 0.

Proof. At the end of Transformation 11 we have that Φ(C

i-1 , C i ) = 0. If dΦ(Ci-1,Ci) dx(ci) ≤ 0 then Φ(C i-1 , C i ) is not decreasing during Transformation 11, and thus Φ(C i-1 , C i ) ≤ 0 before Transformation 11.
The analysis of this function is similar to Xia's approach [START_REF] Xia | Improved upper bound on the stretch factor of Delaunay triangulations[END_REF]. To ensure that this transformation is well-defined, we require q i to be below st. We observe that Φ(C i-1 , C i ) is maximized when st is on or above c i-1 , and this assumption implies q i is below st (or on st, in the case where p i-1 = q i ). Full details of this analysis, the transformation analysis, and the proofs for Lemmas 9 and 10 have been left out due to space constraints.

4

Bounding P s, t in the General Case

In Section 3, we proved Theorem 1 for the case when the path produced by our algorithm results in a balanced configuration. In this section, we prove Theorem 1 for the general case. Given a sequence C of circles that intersect st, no series of transformations were found that could achieve a balanced configuration, while simultaneously providing a provable upper bound on the length of |p i-1 , p i |. However, we were able to find two sequences of circles to substitute for C. To represent each C i in C, we have a potential circle C P i and a bounding circle C B i . Like C i , both C P i and C B i have t i as their rightmost intersection with st. However, C i intersects both p i and p i-1 , while C B i is only required to intersect p i-1 , and C P i is only required to intersect p i . If we look at a bounding circle C B i and the previous potential circle C P i-1 , which intersect at p i-1 , they are balanced, and we can thus apply the function Φ(C P i-1 , C B i ) to relate the lengths of the arcs of these circles to |st|. Finally, when analyzed properly, they provide an upper bound on the length |p i p i-1 |.

Formally, let C P 0 be the circle centered at s = p 0 with radius r P 0 = 0, and let C P n be the circle centered at t with radius r P n = 0. Assuming we have defined C P i-1 , we will define C B i and

C P i . If p i-1 is above st, let C B i be the circle through p i-1 and t i for which |A C B i (p i-1 , t i )| = |p i-1 q i | + |B C B i (q i , t i )|
, where q i is the bottommost intersection t, p 6 , t 6 of Due to space constraints, we omit the proof of the following lemma. 

p 1 p 2 p 3 p 4 p 5 s, p 0 A B 1 (p 0 , t 1 ) A B 2 (p 1 , t 2 ) A B 3 (p 2 , t 3 ) B B 4 (p 3 , t 4 ) A B 5 (p 4 , t 5 ) B B 6 (p 5 , t 6 ) D P 1 D P 2 D 
C P i-1 and C B i . If p i-1 is below st, let C B i be the circle through p i-1 and t i for which |B C B i (p i-1 , t i )| = |p i-1 q i | + |A C B i (q i , t i )|,
P i-1 , C B i ) = |A B i (p i-1 , t i )| -|A P i-1 (p i-1 , t i-1 )| -λ|s P i-1 s B i | -µ|t i-1 t i | when p i-1 is above st and Φ(C P i-1 , C B i ) = |B B i (p i-1 , t i )| -|B P i-1 (p i-1 , t i-1 )| -λ|s P i-1 s B i | -µ|t i-1 t i | when p i-
Lemma 14. For 1 ≤ i ≤ n, if p i-1 is above st, then 1. a. |A B i (p i-1 , t i )| ≥ |p i-1 p i | + |A P i (p i , t i )| if p i is above st, and b. |A B i (p i-1 , t i )| ≥ |p i-1 p i | + |B P i (p i , t i )| if p i is below st otherwise p i-1 is below st and 2. a. |B B i (p i-1 , t i )| ≥ |p i-1 p i | + |B P i (p i , t i )| if p i is
P i-1 , C B i ) = |p i-1 p i | + |D P i | -|D P i-1 | -λ|s P i-1 s B i | -(µ -λ)|t i-1 t i |.
Lemmas 14 and 4 imply that Φ (C

P i-1 , C B i ) ≤ Φ(C P i-1 , C B i ) ≤ 0. Using Φ (C P i-1 , C B i ) we get: n i=1 Φ (C i-1 , C i ) ≤ 0 n i=1 |p i-1 p i | + |D P i | -|D P i-1 | ≤ n i=1 (λ|s P i-1 s B i | + (µ -λ)|t i-1 t i |) |P s, t | -|D P 0 | + |D P n | ≤ (λ + µ -λ)|st| (2) |P s, t | ≤ µ|st|.
Line (2) follows from Lemmas 6 and 13.

We give some insight into the selection of r P i . Assume that p i-1 is above st (when p i-1 is below st the explanation is symmetric). The purpose of 

|A B i (p i-1 , t i )| is to bound |p i-1 p i | + |A P i (p i , t i )|,
P i-1 C i-1 C i p i-1 b i t i a i , p i t i-1
(a) Ci-1, Ci, and

C P i-1 . Notice that r P i-1 > ri-1. C P i-1 C i-1 C i C B i p i-1 b i q i t i a i , p i (b) C B i
and its intersection with 

C P i-1 . C B i p i-1 q i t i A P i (p i , t i ) A B i (p i-

Conclusion and Future Work

Consider the algorithm presented in Section 2, along with two variations. To keep the algorithms simple, assume we are at a vertex p above st. Otherwise all assumptions are the same as in Section 2. The algorithm presented in this paper is M ixedChordArc. Following the techniques used in [START_REF] Bonichon | Upper and lower bounds for online routing on Delaunay triangulations[END_REF] we are able to show that the routing ratio of M inArc is between 3.20 and 3.96. Since the routing ratio of 3.56 of M ixedChordArc is better, we do not present the details of M inArc.

We suspect that BestChord is an improvement on M ixedChordArc. It seems plausible that we can modify the proofs presented in this paper to obtain the same upper bound for BestChord as for M ixedChordArc, but for now that remains unverified. Whether or not BestChord is asymptotically superior to M ixedChordArc, or whether they are asymptotically the same is still unknown.

Although we have improved the upper bound of the routing ratio on the L 2 -Delaunay triangulation, it is not clear how tight our analysis is. The upper bound on the analysis is where our potential function is the weakest. A more clever potential function could lower the routing ratio using a comparable analysis. Or perhaps one of the algorithms above would respond to a completely different style of analysis.

Furthermore, the lower bound on M ixedChordArc is still the same as the lower bound on routing on the L 2 -Delaunay triangulation in general, which is approximately 1.70 [START_REF] Bonichon | Upper and lower bounds for online routing on Delaunay triangulations[END_REF]. So it seems there is still much room for improvement. The question remains, what other algorithms or analysis can we use to improve the routing ratio of the Delaunay triangulation? And given that the upper and lower bounds on the spanning ratio of the L 2 -Delaunay triangulation are 1.998 [START_REF] Xia | Improved upper bound on the stretch factor of Delaunay triangulations[END_REF] and 1.5932 [START_REF] Xia | Toward the tight bound of the stretch factor of Delaunay triangulations[END_REF] respectively, is there a separation of the spanning and routing ratios of the Delaunay triangulation?

1 .

 1 set p = a, otherwise set p = b. See Fig.1a. If p = s, we repeat the following until p = t. If p is above st:

2 1 -

 1 sin(1) < 3.56. From p = s, the blue arc is shorter than the red arc, so we forward to a. From p, the blue path is shorter than the red path, so we forward to a. From p, the blue path is shorter than the red path, so we forward to a.

Figure 1

 1 Figure 1 Illustrating one step of the algorithm.

5 Figure 2

 52 Figure 2 Sequence of circles in a balanced configuration and the path in blue. The dotted circles are circumcircles of triangles intersected by st but not in T .

  and the algorithm proceeds to b i . Thus a balanced configuration allows for steps that cross st and steps that do not cross st. It also allows us to use |A i (p i-1 , t i )| as an upper bound on |p i-1 b i | + |B i (b i , t i )| in the case where p i-1 p i crosses st.

2 1 - 2 . 4 .Lemma 5 . 3 Figure 3

 124533 Figure3Illustrating the non-zero potential functions Di, 1 ≤ i ≤ 4 of a balanced configuration.

  The sequence of triangles T intersected by st, along with their circumcircles C, and the path P s, t found by the algorithm in bold.

5 ( b )

 5b The complete set of bounding arcs and potential arcs used in the function Φ(C P i-1 , C B i ), used to bound the routing ratio in the general case.

Figure 7

 7 Figure 7The initial circumcircles in 7a, and the construction of the potential circles and bounding circles in the general case in 7b.

A) BestChord:

  If |pa| + |AC (a, tC )| ≤ |pb| + |AC (b, tC )| then p = a else p = b. B) MixedChordArc: If |AC (p, tC )| ≤ |pb| + |AC (b, tC )| then p = a else p = b. C) MinArc: If |AC (p, tC )| ≤ πr then p = a else p = b.

Table 1

 1 Spanning and Routing Ratios of Delaunay Triangulations. Tight results are shown in bold.

	Graph T D-Delaunay L1 and L∞-Delaunay	Spanning Ratio 2 [8] 4 + 2 √ 2 ≈ 2.61 [3]	Routing Ratio 5/ √ 3 ≈ 2.89 [5] √ 10 ≈ 3.16 [7]
	Hexagon-Delaunay	2 [9]	
	L2-Delaunay	1.998 [13]	3.56 (this paper)

  and Case 1b is because if p i is below st, then the algorithm chose to cross st, which implies 1b. Case 2 is symmetric.

	Theorem 1 follows from Lemmas 4, 5, 6, and 7:

  where q i is the topmost intersection of C See Figs. 7a and 7b for an example of the initial sequences T and C and the resulting bounding and potential arcs that we are interested in.

	Since C P i-1 and C B i are balanced, Φ can be extended to C P i-1 and C B i , and thus we have
	Φ(C
	P i-1 and
	C B i . That is, C P i-1 and C B i are balanced. Let r B i be the radius of C B i . The potential circle
	C P i is the circle through p i , whose rightmost intersection with st is t i , and whose radius is
	given by r P i = min{r i , r B i } (with the exception of r P n = 0). Let s P i be the point on st with
	x(s P i ) = x(t i ) -2r P i , and let s B i be the point on st with x(s B i ) = x(t i ) -2r B i .
	To simplify notation, for points u and v on C P i , instead of writing A C P i (u, v) and B C P i (u, v)
	to indicate clockwise and counter-clockwise arcs of C P i from u to v, respectively, we write
	A P i (u, v) and B P i (u, v). Likewise, for points u and v on C B i , instead of writing A C B i (u, v)
	and B C B i (u, v), we write A B i (u, v) and B B i (u, v).

  1 is below st. Lemma 4 tells us that Φ(C P i-1 , C B i ) ≤ 0. To prove Theorem 1 in the general case, it is sufficient to prove the following two lemmas. Lemma 13 is a generalization of Lemma 5, whereas Lemma 14 is a generalization of Lemma 7.

	Lemma 13.	n i=1 |s P i-1 s B i | ≤ |st|.
	Proof. Since C P i-1 and C B i are balanced, Lemma 8 tells us that x(s P i-1 ) ≤ x(s B i ). We know
	that x(s P i ) = x(t i ) -2r P i and x(s B i ) = x(t i ) -2r B i , thus the fact that r P i = min{r i , r B i }
	implies that x(s B i ) ≤ x(s P i ). Thus |s P i-1 s B i | ≤ |s P i-1 s P i |, and it is sufficient to show that n i=1 |s P i-1 s P i | ≤ |st|. The fact that x(s P i-1 ) ≤ x(s B i ) implies that x(s P i-1 ) ≤ x(s P i ), and C P 0
	is the circle centered at s with radius 0, and thus s P 0 = s. Since x(s P n ) ≤ x(t), this completes
	the proof.	

  Theorem 1 follows from Lemmas 4, 6, 13, and 14. If p i is above st, let D P

	Proof of Theorem 1.

below st, and b. |B B i (p i-1 , t i )| ≥ |p i-1 p i | + |A P i (p i , t i )| if p i is above st. i = A P i (p i , t i ). If p i is below st, let D P i = B P i (p i , t i ). Let Φ (C

2 0 1 8 22:12 Improved Delaunay Routing C

  , it can happen that the arc |A B i+1 (p i , t i+1 )| on the next bounding circle is not large enough to cover |p i p i+1 | + |A P i+1 (p i+1 , t i+1 )|. See Fig. 8. Thus Lemma 14 would not hold. To account for this, we ensure that C P i has radius at most r i .

	as expressed in Lemma 14. This lemma is also the reason for selecting
	the radius of C P i as r P i = min{r i , r B i }. It would be simpler to let r P i = r B i , since then we
	would have s P i = s B i . However, if we allow r P i > r i

E S A

  The reasoning behind r P i = min{ri, r B i }. In this diagram, r P i > ri, and we show why it is detrimental to our analysis. Notice that |A B i (pi-1, ti)| < |pi-1, pi| + |A P i (pi, ti)|. Thus the arc A B i (pi-1, ti) of the bounding circle is not long enough to pay for |pi-1, pi| + |A P i (pi, ti)| .

	a i , p i
	1 , t i )
	C P
	i-1
	C P
	i
	(c) |A B i (pi-1, ti)| < |pi-1, pi|+
	|A P i (pi, ti)|.
	Figure 8
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