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, one of the most popular blockchains based on PBFT Consensus. Our methodology consists in identifying the algorithmic principles of Tendermint necessary for a specific system model. The current paper dissects Tendermint under two communication models: synchronous and eventually synchronous ones. This methodology allowed to identify bugs in preliminary versions of the protocol and to prove its correctness under the most adversarial conditions: an eventually synchronous communication model under Byzantine faults. The message complexity of Tendermint is O(n 3 ).

Introduction

A blockchain is a distributed ledger implementing an append-only list of blocks chained to each other, it serves as an immutable and non repudiable ledger in a system composed of untrusted processes. The append operation needs to preserve the chain shape of the data structure, leading to the necessity to have a mechanism allowing processes to agree on the next block to append. Bitcoin blockchain, for example, employs the proof-of-work mechanism [START_REF] Dwork | Pricing via processing or combatting junk mail[END_REF], that is, processes willing to append a new block have to solve a crypto-puzzle and the winning process will append the new block. While this mechanism does not require a real coordination between the processes participating to the Bitcoin system, it might lead to inconsistencies. Indeed, if more than one process solves the crypto-puzzle to extend the same last block then processes may have blockchains with different suffix as long as the conflict is unsolved.

In blockchain systems area the recent tendency is to privilege solutions based on distributed agreement than proof-of-work. This is motivated by the fact that the majority of proof-of-work based solutions such as Bitcoin or Ethereum are energetically not viable when efficiency is targeted. Moreover proof of work solutions guarantee the existence of an unique chain only with high probability which is the major drawback for using blockchains in industrial applications. That is, forks even though they are rare do still happen with an impact on the consistency guarantees offered by the system and consensus algorithms play an important role to prevent inconsistencies. In [START_REF] Anceaume | Blockchain Abstract Data Type[END_REF] the authors proved that consensus [START_REF] Lamport | The byzantine generals problem[END_REF] is necessary in order to avoid forks. Therefore, alternatives to proof-of-work have been recently considered and interestingly, the research in blockchain systems revived a branch of distributed systems research: Byzantine fault-tolerant protocols having PBFT consensus protocol as ambassador. It should be noted that PBFT solutions cannot be used in permissionless settings if the number of participants to the agreement is not known in advance. That is, in permissionless settings, for each block, a subset of processes (called validators in Tendermint) runs a Byzantine fault-tolerant consensus algorithm to propose the next block to be appended to the blockchain. All the existing solutions for PBFT consensus use the number of validators as hardcore information in their algorithm.

Related Work. In the blockchain realm, there exist several Byzantine Fault Tolerant Consensus based blockchain proposals (e.g., [START_REF] Abraham | Solidus: An incentivecompatible cryptocurrency based on permissionless byzantine consensus[END_REF][START_REF] Androulaki | Hyperledger fabric: a distributed operating system for permissioned blockchains[END_REF][START_REF] Crain | Dbft: Efficient byzantine consensus with a weak coordinator and its application to consortium blockchains[END_REF][START_REF] Decker | Bitcoin Meets Strong Consistency[END_REF], and [START_REF] Kokoris-Kogias | Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing[END_REF]).

The consensus problem, as proved in the seminal FLP paper [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF], cannot be solved in an asynchronous message-passing system (when there are no upper bounds on the message delivery delay) in the presence of one faulty (crash) process. Moreover, in [START_REF] Lamport | The byzantine generals problem[END_REF], the authors prove that consensus cannot be solved in presence of f Byzantine faulty processes if the overall number of processes n is less than 3f + 1 in a synchronous message-passing system (where the message delivery delay is upper bounded). In between those impossibility results, it is still possible to solve consensus in an asynchronous setting, either adding randomness [START_REF] Ben-Or | Another advantage of free choice (extended abstract): Completely asynchronous agreement protocols[END_REF] (which also proved the impossibility result for n ≤ 3f for any asynchronous solution) or partial synchrony as in Dwork et al. [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF] (DLS) where BFT Consensus is solved an eventual synchronous message-passing system (there is a time τ after which there is an upper bound on the message delivery delay). DLS preserves safety during the asynchronous period and the termination only after τ , when the message transfer delay becomes bounded. The message complexity of this protocol is O(n 4 ) per epoch and it needs O(n) epochs before deciding. Finally, Castro and Liskov proposed PBFT [START_REF] Castro | Practical Byzantine Fault Tolerance[END_REF], a leader-based protocol that optimizes the performances of the previous solution. If the leader is correct the complexity boils down to O(n 2 ). Otherwise, a view change mechanism takes place, to change the leader and resume the computation. The view-change is used to avoid that, in case of faulty leader, if some correct process decides on a value v, the other correct processes cannot decide on a value v ′ = v when the new leader proposes a new value. Such mechanism implies that when a leader is suspected to be faulty, all processes have to collect enough evidences for the view-change. That is, the view-change message contains at least 2f + 1 signed messages and these messages are sent from at least 2f + 1 processes which yields a message complexity of O(n 2 ). These messages are then sent to all processes, the view-change has then O(n 3 ) message complexity. Since the protocol terminates when there is a correct leader, which may happen for the first time in epoch f + 1, then in the worst case scenario it has a message complexity of O(n 4 ). Interestingly, Tendermint as well as similar recent approaches e.g [START_REF] Abraham | Hot-stuff the linear, optimal-resilience, onemessage BFT devil[END_REF] use an alternative mechanism for leader replacement that allows to drop message complexity to O(n 3 ). Basically, processes instead of exchanging all the messages they already delivered (used previously to trigger a view change), locally keep track of potentially decided values.

Our Contribution. In this paper we analyze Tendermint proposed in [START_REF] Buchman | The latest gossip on bft consensus[END_REF] as one of the most promising but not fully analyzed blockchain protocols that implements Byzantine fault tolerant consensus. Tendermint targets an eventual synchronous system [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF], which means that safety has to be guaranteed in the asynchronous periods and liveness in synchronous ones, when a subset of processes can be affected by Byzantine failures. To analyze the protocol, we dissect Tendermint identifying the techniques used to address different challenges in the considered system model: synchronous round-based communication model and eventual synchronous communication model. For each type of model we provide the corresponding algorithm (a variant of Tendermint [START_REF] Buchman | The latest gossip on bft consensus[END_REF]) and compute its complexity. Interestingly, and contrary to the classical view-changed based approaches, message complexity in the worst case scenario is O(n 3 ). This is because processes, instead of exchanging all the messages they already delivered, locally keep track of potentially decided values to preserve the safety, hence reducing the message complexity. In the same spirit, HotStuff [START_REF] Abraham | Hot-stuff the linear, optimal-resilience, onemessage BFT devil[END_REF] (a concurrent proposal) incurs the same message complexity, sharing with Tendermint a linear proposer replacement. Note as well that the proposed methodology allowed us to identify bugs (see [START_REF] Amoussou-Guenou | Correctness and Fairness of Tendermint-core Blockchains[END_REF]) in the preliminary versions of the protocol ( [START_REF] Buchman | The latest gossip on bft consensus[END_REF][START_REF] Kwon | Tendermint[END_REF]). This paper and [START_REF] Amoussou-Guenou | Correctness of Tendermint-Core Blockchains[END_REF] target two different consensus algorithms that are core of two different releases of Tendermint blockchain. In [START_REF] Amoussou-Guenou | Correctness of Tendermint-Core Blockchains[END_REF] the authors reverseengineered and then formalized the Tendermint blockchain protocol implemented initially by the Tendermint Foundation [START_REF]Tendermint: Tendermint: Tendermint Core (BFT Consensus) in Go[END_REF]. [START_REF] Amoussou-Guenou | Correctness of Tendermint-Core Blockchains[END_REF] allowed to identify several bugs in the initial version of Tendermint implementation (see [START_REF] Amoussou-Guenou | Correctness and Fairness of Tendermint-core Blockchains[END_REF]). Moreover, we proved that the termination property cannot be guaranteed in general, and hence an additional assumption on the execution is needed to solve Consensus. After the publication of our findings, Tendermint foundation proposed a new algorithm, [START_REF] Buchman | The latest gossip on bft consensus[END_REF], that is currently implemented as consensus-core for the new release of Tendermint. The new version of the protocol claimed to include new mechanisms that removed the need of additional assumptions in order to guarantee the termination. The pseudo-code proposed in [START_REF] Buchman | The latest gossip on bft consensus[END_REF] and further implemented by Tendermint foundation still had some bugs at the time when we started to analyse it, which we reported [START_REF]Tendermint: correctness issues[END_REF].

In order to help practitioners, and in particular Tendermint foundation, to detect easily their errors and compare with the existing state of the art, in this paper we decided to have a bottom up approach by identifying the minimal building blocks a PBFT-like protocol should include in order to solve consensus function on the considered system and communication model (going from synchronous to eventually synchronous) and the behavior of Byzantine nodes. We used Tendermint as case study and identified the mechanisms needed by the protocol in order to be correct. Our study resulted in three variants of the protocol for which we analyzed the correctness and the complexity. In this paper, we included two of the three algorithms (we decided to left aside the trivial one where Byzantines have a symmetrical behavior and the communication is synchronous). Moreover, the complexity analysis proposed in our paper may help both practitioners and academics to compare Tendermint to the state of the art which was an open question so far.

Model

The system is composed of an infinite set Π of sequential processes, namely Π = {p 1 , . . . }; Sequential means that a process executes one step at a time. This does not prevent it from executing several threads with an appropriate multiplexing. As local processing time are negligible with respect to message transfer delays, they are considered as equal to zero.

Arrival model. We assume a finite arrival model [START_REF] Aguilera | A pleasant stroll through the land of infinitely many creatures[END_REF], i.e. the system has infinitely many processes Π but each run has only finitely many. The size of the set Π ρ ⊂ Π of processes that participate in each system run is not a priori-known. We also consider a finite subset V ⊆ Π ρ of validators. The set V may change during any system run and its size n is a-priori known. A process is promoted in V based on a so-called merit parameter, which can model for instance its stake in proof-of-stake blockchains. Note that in the current Tendermint implementation, it is a separate module included in the Cosmos project [START_REF] Kwon | Cosmos: A Network of Distributed Ledgers[END_REF] that is in charge of implementing the selection of V .

Failure model. There is no bound on processes that can exhibit a Byzantine behaviour [START_REF] Pease | Reaching agreement in the presence of faults[END_REF] in the system, but up to f validators can exhibit a Byzantine behaviour at each point of the execution. A Byzantine process is a process that behaves arbitrarily. A process (or validator) that exhibits a Byzantine behaviour is called faulty. Otherwise, it is non-faulty or correct or honest. To be able to solve the consensus problem, we assume that f < n/3 and more precisely we consider n = 3f + 1.

Communication model. Processes communicate by exchanging messages through an eventually synchronous network [START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF]. Eventually Synchronous means that after a finite unknown time τ > 0 there is a bound δ on the message transfer delay. When τ = 0 the network is synchronous.

In the following we assume the presence of a broadcast primitive. A process p i by invoking the primitive broadcast( T AG, m ) broadcasts a message, where T AG is the type of the message, and m its content. To simplify the presentation, it is assumed that a process can send messages to itself. The primitive broadcast() is a best effort broadcast, which means that when a correct process broadcasts a value, eventually all the correct processes deliver it. A process p i receives a message by executing the primitive delivery(). Messages are created with a digital signature, and we assume that digital signatures cannot be forged. When a process p i delivers a message, it knows the process p j that created the message.

Let us note that the assumed broadcast primitive in an open dynamic network can be implemented through gossiping, i.e. each process sends the message to current neighbors in the underlying dynamic network graph. In these settings the finite arrival model is a necessary condition for the system to show eventual synchrony. Intuitively, a finite arrival implies that message losses due to topology changes are bounded, so that the propagation delay of a message between two processes not directly connected can be bounded [START_REF] Baldoni | Looking for a definition of dynamic distributed systems[END_REF][START_REF] Muñoz-Escoí | On synchrony in dynamic distributed systems[END_REF].

Round-based execution model. We assume that each correct process evolves in rounds. A round consists of three phases, in order: (i) a Send phase, where the process broadcasts messages computed during the last round, or a default messages for the first round; (ii) a Delivery phase where the process collects messages sent during the current and previous rounds; and (iii) a Compute phase where the process uses the messages delivered to change its state. At the end of a round a process exits from the current round and starts the next round. Each round has a finite duration, we consider the Send and the Compute phase as being atomic, they are executed instantaneously, but not the Delivery phase. In a synchronous network, we assume the duration of the Delivery phase, and so of the round is δ. We assume that processes have no access to a global clock but have access to local clocks, these clocks might not be synchronized with each other but are allowed to have bounded clock skew.

Problem definition. In this paper we analyze the correctness of Tendermint protocol with respect to the consensus specification: Termination, every correct process eventually decides some value; Integrity, no correct process decides twice; Agreement, if there is a correct process that decides a value v, then eventually all the correct processes decide v; Validity [START_REF] Cachin | Secure and efficient asynchronous broadcast protocols (extended abstract[END_REF][START_REF] Crain | Leader/Randomization/Signature)-free Byzantine Consensus for Consortium Blockchains[END_REF], a decided value is valid, it satisfies the predefined predicate denoted valid().

Tendermint Algorithms

Tendermint BFT Consensus protocol [START_REF] Buchman | The latest gossip on bft consensus[END_REF][START_REF] Kwon | Tendermint[END_REF][START_REF]Tendermint: Tendermint: Tendermint Core (BFT Consensus) in Go[END_REF] is a variant of PBFT consensus, at the core layer of the Tendermint blockchain.

The algorithm follows the rotating coordinator paradigm i.e., for each new block to be appended there is a proposer, chosen among the validators, that proposes the block. If the block is not decided then a new proposer is selected and so on, until a block is decided by all the correct validators and consensus terminates. In the following we present variants of [START_REF] Buchman | The latest gossip on bft consensus[END_REF] in synchronous and eventual synchronous communication models.

Basic principles of the protocol. Each block in the blockchain is characterized by its height h, which is the distance in terms of blocks from the genesis block, which is at height 0. For each new height, the two protocols (Algorithm 2 for the synchronous case and Algorithm 4 for the eventual synchronous case) share a common algorithmic structure, they proceed in epochs, and each epoch e consists in three rounds: the PRE-PROPOSE round; the PROPOSE round; and the VOTE round. During the PRE-PROPOSE round, the proposer pre-proposes a value v to all the other validators. During the PROPOSE round, if a validator accepts v then it proposes such value. If a validator receives enough proposals for the same value v then it votes for v during the VOTE round. Finally, if a validator receives enough votes for v, it decides on v. In this case, enough means at least 2f + 1 occurrences of the same value from 2f + 1 different validators and from each validator only the first value delivered for each round is considered, (cf. Algorithm 1).

If the proposer is correct then it pre-proposes the same value to all the 2f + 1 correct validators. All the 2f + 1 correct validators propose such value, it follows that all the 2f + 1 correct validators vote for such value and decide for it. If the proposer is Byzantine it can pre-propose different values to different correct validators, creating a partition in the proposal value set collected by validators. Depending on what the remaining Byzantine validators do, some correct validators may decide on a value v and some other may not 3 , then a new epoch starts. In order to not violate the agreement property, validators that have not decided yet in the previous epoch must only decide for v, for this reason validators, before vote for some value v, lock on that value, i.e., they will refuse to propose a further pre-proposed value different than v.

Information from one epoch to the next. lockedV alue and validV alue variables4 carry the potentially decided value from one epoch to the next one. The lockedV alue idea is the following. If one correct validator decides on v, it means that it collected 2f + 1 votes for v during the VOTE phase, since there are at most f Byzantine validators thus there are at least f + 1 correct validators that voted for v and those validators must not vote for any other different value than v. For this reason if a validator delivers 2f + 1 proposals for v during the PRO-POSE round it sets its lockedV alue to v. Since each new pre-proposed value v ′ is proposed if v ′ is equal to lockedV alue or validV alue (not true for at lest f + 1 correct validators that set lockedV alue to v), then there can be at most 2f possible proposals for v ′ that are not enough to lock and vote for v ′ , i.e., it is not possible to decide for any value different than v. On the other side, if no correct validator decided yet, Byzantine faulty validators may force different correct validators to lock on different values. Let us consider a scenario where the proposer is Byzantine and proposes v to f + 1 correct validators and then f Byzantine validators make x ≤ f of them lock on v and a similar scenario can happen with another value v ′ so that we can have different correct validators, let us say y ≤ f locked on a different value. If any new pre-proposal is checked only against the lockedV alue then a correct validator locked on a value v refuses (does not propose) all values different from v, it means that when some correct validator is locked, the proposer needs to propose some of the value on which the correct validators are locked on, but such value, in order to be accepted cannot be checked only against the lockedV alue because we may never have enough correct validators proposing such value. For this reason validators keep track of the validV alue and by construction of the algorithm all correct validators have the same validV alue at the end of the epoch (in the synchronous period). Such value is then used to set the value to pre-propose and it is further used along with lockedV alue to accept or not a pre-proposed value. Functions. We denote as V alue the set containing all blocks, as M emP ool the set containing all the transactions, and as M essages the set containing all messages.

proposer : Height × Epoch → V ⊆ Π ρ is a deterministic function which gives the proposer out of the validators set for a given epoch at a given height in a round robin fashion.

valid : V alue → Bool is an application dependent predicate that is satisfied if the given value is valid w.r.t. the blockchain. If there is a value v such that valid(v) = true, we say that v is valid. Note that we set valid(nil) = false.

-getValue() return a valid value.

-sendByProposer : Height × Epoch × V alue → Bool is an predicate that gives true if the given value has been pre-proposed by the proposer of the given height during the given epoch.

-2f + 1 : P(Messages) → Bool: checks if there are at least 2f + 1 proposals (resp. votes) in the given set of messages.

Everything defined above is common to the two algorithms. In each section we specify the data structures relative to a specific version of the algorithm. if validV aluei = nil ∨ vi ∈ {lockedV aluei , validV aluei} then 24:

proposali ← vi 25: else 26:

proposali ← nil

Byzantine Synchronous System

In Algorithms 1 -3 we describe the algorithm to solve consensus in a synchronous system in presence of Byzantine failures. The algorithm proceeds in 3 rounds for any given epoch at height h: if validV aluei = nil then 30:

-
proposali ← validV aluei 31: else 32:

proposali ← getV alue()

to that value then it checks if a value v ′ pre-proposed by the proposer of the current epoch is valid and has at least 2f + 1 votes, if it is the case, then p i decides v ′ and goes to the next height; otherwise it increases the epoch number and updates the value of proposal i with respect to validV alue i .

Byzantine Eventual Synchronous System

This section presents the Algorithm 1 and Algorithms 4 -5 that solve Consensus in an eventually synchronous model in presence of Byzantine faulty validators. This algorithm has been reported in an early version of [START_REF] Buchman | The latest gossip on bft consensus[END_REF] with the bugs fixed in [START_REF]Tendermint: correctness issues[END_REF]. To achieve the consensus in this setting two additional variables need to be used, (i if valid(vi) ∧ (lockedEpochi = -1 ∨ lockedV aluei = vi) then 33:

)
proposali ← vi duration management mechanism needs to be introduced, i.e. increasing timeouts. In the previous algorithm, rounds were lasting δ, the known message delay.

In an eventually synchronous system such approach is not feasible, since during the asynchronous period messages may take unbounded delay before being delivered. It follows that, since there are at most f Byzantine faulty validators, when a validator delivers messages from n -f different validators it can terminate the delivery phase, but such phase may last an unbounded time. On the contrary, in the PRE-PROPOSE round only the proposer is sending a message, and generally messages may take a lot of time before being delivered, for such reasons timeouts need to be used in order to manage the rounds duration and adapted to message delays, such that once the system enters in the synchronous period, rounds last enough for messages send during the round to be delivered before the end of it. The algorithm proceeds in 3 rounds for any given epoch e at height h. The description is mainly the same as in Section 3.1, thus in the following we underline just the differences:

-Round PRE-PROPOSE (lines 11 -33, Algorithm 4): The description of this round is mainly the same as before. We highlight the fact that a correct validator Algorithm 5 Tendermint Consensus part 2 for height h executed by p i 1: Round PROPOSE : 2:

Send phase:

3: if proposali = nil then 4:
broadcast PROPOSE, h, ei, proposali 5:

broadcast HeartBeat, PROPOSE, h, ei 6:

Delivery phase: 7:

set timerPropose to timeoutPropose 8:

while (timerPropose not expires) ∧ ¬(2f + 1 HeartBeat, PROPOSE, h, ei ) do{} /* Note that the HeartBeat messages should be from different validators */ 9:

if ¬(2f + 1 HeartBeat, PROPOSE, h, ei ) then 10:

timeoutPropose ← timeoutPropose + 1 11:

Compute phase: if validV aluei = nil then 41:

12: if ∃v ′ : 2f + 1 PROPOSE, h, ei, v ′ ∧ valid(v ′ ) ∧ sendByProposer(h, ei, v ′ ) then 13: lockedV aluei ← v ′ 14: lockedEpochi ← ei 15: validV aluei ← v ′ 16: validEpochi ← ei 17: votei ← v
proposali ← validV aluei 42: else 43:

proposali ← getV alue() p i takes into account also lockedEpoch i in order to accept a pre-proposed value.

-Round PROPOSE (lines 1 -19, Algorithm 5): When a correct validator p i updates lockedV alue i (resp. validV alue i ), it also update lockedEpoch i (resp. validEpoch i ) to the current epoch.

-Round VOTE (lines 20 -43, Algorithm 5): If a correct validator p i delivered at least f + 1 same type of messages from an epoch higher than the current one, p i moves directly to the PRE-PROPOSE round of that epoch and when a correct validator p i updates validV alue i , it also update validEpoch i to the current epoch. We recall that each validator has a time-out for each round. If during a round validator p i does not deliver at least 2f + 1 messages sent during that round (or the pre-proposal for the PRE-PROPOSE round), the corresponding time-out is increased. Those messages can be values or heartbeats, in the case in which a correct validator has not a value to propose or vote.

Correctness Proof of Tendermint Algorithm in a Byzantine

Eventual Synchronous Setting

In this section, we prove the correctness of Algorithm 4 -5 (Tendermint) in an eventual synchronous system. Due to the lack of space, the missing proofs can be found in the technical report [START_REF] Amoussou-Guenou | Dissecting Tendermint[END_REF].

Lemma 1 (Validity). In an eventual synchronous system, Tendermint verifies the following property: A decided value satisfies the predefined predicate denoted as valid().

Lemma 2 (Integrity). In an eventual synchronous system, Tendermint verifies the following property: No correct validator decides twice. Lemma 4 (Agreement). In an eventual synchronous system, Tendermint verifies the following property: If there is a correct validator that decides a value v, then eventually all the correct validators decide v.

Lemma 5 (Termination). In an eventual synchronous system, Tendermint verifies the following property: Every correct validator eventually decides some value.

Proof By construction, if a correct validator does not deliver more than 2f + 1 messages (or 1 from the proposer in the PRE-PROPOSE round) from different validators during the corresponding round, it increases the duration of its round, so eventually during the synchronous period of the system all the correct validators will deliver the pre-proposal, proposals and votes from correct validators respectively during the PRE-PROPOSE, PROPOSE and the VOTE round. Let e be the first epoch after that time.

If a correct validator decides before e, by Lemma 4 all correct validators decide which ends the proof. Otherwise at the beginning of epoch e, no correct validator decides yet. Let p i be the proposer of e. We assume that p i is correct and pre-propose v; v is valid since getV alue() always return a valid value (lines 6, Algorithm 4 & line 43, Algorithm 5), and validV alue i is always valid (lines 12 & 32, Algorithm 5). We have 2 cases:

-Case 1: At the beginning of epoch e, |{p j : p j correct ∧ (lockedEpoch j ≤ validEpoch i ∨ lockedV alue j = v)}| ≥ 2f + 1. Let p j be a correct validator where the condition lockedEpoch j ≤ validEpoch i ∨ lockedV alue j = v holds. After the delivery of the pre-proposal v from i, p j will update proposal j to v (lines 27 -33, Algorithm 4). During the PRO-POSE round, p j proposes v (line 4, Algorithm 5), and since there are at least 2f + 1 similar correct validators they will all propose v, and all correct validators will deliver at least 2f + 1 proposals for v (line 7, Algorithm 5). Correct validators will set their vote to v (lines 12 -4, Algorithm 5), will vote v, and will deliver these votes, so at least 2f + 1 of votes (lines 24 & 26, Algorithm 5). Since we assume that no correct validators decided yet, and since they deliver at least 2f + 1 votes for v, they will decide v (lines 35 -36, Algorithm 5). -Case 2: At the beginning of epoch e, |{p j : p j correct ∧ (lockedEpoch j ≤ validEpoch i ∨ lockedV alue j = v)}| < 2f + 1. Let p j be a correct validator where the condition lockedEpoch j > validEpoch i ∧ lockedV alue j = v holds. When p i will make the pre-proposal, p j will set proposal j to nil (line If p i , the proposer of epoch e, is Byzantine and more than 2f +1 correct validators delivered the same message during PRE-PROPOSE round, and the pre-proposal is valid, the situation is like p i was correct. Otherwise, there are not enough correct validators that delivered the pre-proposal, or if the pre-proposal is not valid, then there will be less than 2f + 1 correct validators that will propose that value, which is similar to the case 2.

Since the proposer is selected in a round robin fashion, a correct validator will eventually be the proposer, and correct validators will decide. Theorem 1. In an eventual synchronous system, Tendermint implements the consensus specification.

Complexity of Tendermint Algorithm in a Byzantine Eventual Synchronous Setting

Let us consider the following scenario after the asynchronous period (i.e., after τ ), in which in the first f epochs, e i+1 , . . . , e i+f , there are f Byzantine proposers that make lock only one correct validator at each epoch on f different values with different lockedEpoch, e i+1 , . . . , e i+f . Let p j be the last correct validator that locked, and let v such value (lockedV alue j = v) with lockedEpoch j = e i+f . Then all the other correct validators have validV alue set to v and validEpoch set to e i+f . This happens thanks to the fact that when a correct validator locks on a value then at the end of the epoch every correct validator sets its validV alue to that value. The algorithm terminates when a pre-proposal is proposed and voted by more than 2f correct validators, i.e, when the pre-proposed value has validEpoch greater equal than the validator lockedEpoch. Thus, during the period of synchrony, the first correct proposer that proposes leads the algorithm to terminate in f + 1 rounds. Let us consider the case in which there f correct validators locked on f different values with different lockedEpoch before τ . Let us assume that p j is the last correct validator that locked on a value v, thus it has the highest lockedEpoch but not all the correct validators have their validV alue set to v (due to the asynchronous communication). Let us now consider that after τ the first f proposers are Byzantines and stay silent. The following proposers are correct but their pre-propose value might not be accepted by enough correct validators as long as p j , with the highest validEpoch and lockedEpoch proposes. Which eventually happens due to the round robin selection function. Thus, the protocol terminates in a number of epochs proportional to the number of validators O(n), while the lower bound to solve BFT Consensus in the worst case scenario is f + 1 [START_REF] Fischer | A lower bound for the time to assure interactive consistency[END_REF]. As for message complexity, since at each epoch, all validators broadcast messages, it follows that during one epoch the protocol uses O(n 2 ) messages, thus in the worst case scenario the message complexity is O(n 3 ).

In the following we address the bit complexity of Tendermint. In Tendermint, each message is composed as follow:

-PRE-PROPOSE: The marker that the message is from the round PRE-PROPOSE; two integers one for the current height, and the second for the current epoch; In the worst case, for the whole execution, a validator may store O(n 2 ) messages. Therefore, the bit complexity in the worst case is O(n 2 log n).

Note that [START_REF] Kowalski | Synchronous byzantine agreement with nearly a cubic number of communication bits: synchronous byzantine agreement with nearly a cubic number of communication bits[END_REF] proposes a bit complexity of O(n 3 log n) for an optimal round complexity using a variant of the tree structure of the Exponential Information Gathering protocol introduced in [START_REF] Garay | Fully polynomial byzantine agreement in t+1 rounds[END_REF]. Clearly, there is a tradeoff between the bit complexity and the round complexity of the Byzantine agreement.

Conclusion

The contribution of this work is twofold. First, it analyzes Tendermint consensus protocol and provides detailed proof of its correctness and complexity. Second, it dissects such protocol in order to link the algorithmic techniques to the considered system model. We believe that this methodology can contribute in making Byzantine-tolerant consensus algorithms more understandable for developers and practitioners.

Lemma 3 .

 3 Let v be a value, e an epoch, and the set L v,e = {p j : p j correct ∧ lockedV alue j = v ∧ lockedEpoch j = e at the end of epoch e}. In an eventual synchronous system, Tendermint verifies the following property: If |L v,e | ≥ f + 1 then no correct validator p i will have lockedV alue i = v ∧ lockedEpoch i ≥ e, at the end of each epoch e ′ > e, moreover a validator in L v,e only proposes v or nil for each epoch e ′ > e.

Lemma 5

 5 

  the proposed value; and an integer representing the epoch on which the proposer last updated its validV alue. -PROPOSE: The marker that the message is from the round PROPOSE; two integers representing the current height and the current epoch; and a value which is the proposed block. -VOTE: The marker that the message is from the round VOTE; two integers representing the current height and the current epoch; and a value which is the voted block. -HeartBeat: The marker that the HeartBeat is from the round VOTE or PROPOSE; two integers representing the current height and the current epoch. A correct validator keeps in memory, for each epoch for a given height, one message for each type (PROPOSE, VOTE) and at most 2 messages of type HeartBeat from each validator, and only one PRE-PROPOSE. A correct validator may have at most 1 message from PRE-PROPOSE, n messages from PROPOSE, n messages from VOTE, and 2n messages of type HeartBeat. Hence, for each epoch at any given height, a validator stores at most 4n+1 messages of size O(log n).

  Algorithm 1 Messages management for validator p i 1: upon TYPE, h, e, message from validator pj do 2: if ∄c : ( TYPE, h, e, c , pj ) ∈ messagesSet then 3: messagesSeti ← messagesSeti ∪ ( TYPE, h, e, message , pj ) Messages syntax. When the validator p i broadcasts a message T AG, h, e, m , where m contains a value v, we say that p i pre-proposes, proposes or votes v if T AG=PRE-PROPOSE, T AG=PROPOSE, T AG=VOTE, respectively. Variables and data structures. h is an integer representing the consensus instance the validator is currently executing. e i is an integer representing the epoch where the validator p i is, we note that for each height, a validator may have multiple epochs. decision i is the decision of validator p i for the consensus instance h. proposal i is the value the validator p i proposes. vote i is the value the validator p i votes. lockedV alue i stores a value which is potentially decided by some other validator. If validator p i delivers more than 2f + 1 proposes for the same value v during its PROPOSE round, it sets lockedV alue i to v.

validV alue i stores a value which is potentially decided by some other validator. If the validator p i delivers at least 2f + 1 proposes for the same value v (from different validators) whether during its PROPOSE round or its VOTE round, it sets validV alue i to v. validV alid i is the last value that a validator delivered at least 2f + 1 times, and can be different than lockedV alue i . The latter two variables are used as follows: if p i is the next proposer then p i pre-proposes validV alid i if different from nil. Otherwise, if p i is a validator, it checks the new pre-proposal against lockedV alue i and validV alid i if those are different from nil.

  Algorithm 2 Simplified Algorithm part 1 for height h executed at validator p i

	1: Initialization:	
	2:	ei := 0	/* This current epoch number */
	3:	decisioni := nil	/* This variable stocks the decision of the validator pi */
	4:	lockedV aluei := nil; validV aluei := nil
	5:	proposali := getV alue() /* This variable stocks the value the validator will (pre-)propose */
	6:	vi := nil	/* Local variable stocking the pre-preposal if delivered */
	7:	votei := nil	
	8: Round PRE-PROPOSE(ei) :	
	9:	Send phase:	
	10:	if decisioni = nil then	
	11:	∀v, pj : ( VOTE, h, ei, v , pj ) ∈ messagesSeti , broadcast VOTE, h, ei, v
	12:	return	
	13:	if proposer(h, ei) = pi then	
	14:	broadcast PRE -PROPOSE, h, ei, proposali to all validators
	15:	Delivery phase:	
	16:	while (timerPrePropose not expired) do
	17:	if ∃v : sendByProposer(h, ei, v) then
	18:	vi ← v	/* v is the value sent by the proposer */
	19:	Compute phase:	
	20:	if !valid(vi) then	
	21:	proposali ← nil	/* Note that valid(nil) is set to false */
	22:	else	
	23:		

  Round PROPOSE (lines 1 -13, Algorithm 3): During the PROPOSE round, each validator broadcasts its proposal, and collects the proposals sent by the other validators. After the Delivery phase, validator p i has a set of proposals, and checks if v, pre-proposed by the proposer, was proposed by at least 2f + 1 different validators, if it is the case, and the value is valid, then p i sets vote i , validV alue i and lockedV alue i to v, otherwise it sets vote i to nil.-Round VOTE (lines 14 -32, Algorithm 3): In the round VOTE, a correct validator p i votes vote i and broadcasts all the proposals it delivered during the current epoch. Then p i collects all the messages that were broadcast. First p i checks if it has delivered at least 2f + 1 of proposal for a value v ′ pre-proposed by the proposer of the epoch, in that case, it sets validV alue i Algorithm 3 Simplified Algorithm part 2 for height h executed at validator p i

	1: Round PROPOSE(ei) :	
	2:	Send phase:	
	3:	if proposali = nil then	
	4:	broadcast PROPOSE, h, ei, proposali to all validators	
	5:	Delivery phase:	
	6:	while (timerPropose not expires) do{}	/* Collect messages */
	7:	Compute phase:	
	8:	if ∃v : 2f + 1 PROPOSE, h, ei, v ∧ valid(v) ∧ sendByProposer(h, ei, v) then
	9:	lockedV aluei ← v	
	10:	validV aluei ← v	
	11:	votei ← v	
	12:	else	
	13:	votei ← nil	
	14: Round VOTE(ei) :	
	15:	Send phase:	
	16:	∀v, pj : ( PROPOSE, h, ei, v , pj ) ∈ messagesSeti , broadcast PROPOSE, h, ei, v
	17:	if votei = nil then	
	18:	broadcast VOTE, h, ei, votei	
	19:	Delivery phase:	
	20:	while (timerVote not expires) do{}	/* Collect messages */
	21:	Compute phase:	
	22: if ∃v 25: decisioni ← v d	
	26:	else	
	27:	ei ← ei + 1	
	28:	vi ← nil	
	29:		

Round PRE-PROPOSE (lines 8 -26, Algorithm 2): If the validator p i is the proposer of the epoch, it pre-proposes its proposal value, otherwise, it waits for the proposal from the proposer. The proposal value of the proposer is its validV alue i if validV alue i = nil. If a validator p j delivers the pre-proposal from the proposer of the epoch, p j checks the validity of the pre-proposal and if to accept it with respect to the values in validV alue i and lockedV alue i . If the pre-proposal is accepted and valid, p j sets its proposal proposal j to the pre-proposal, otherwise it sets it to nil.

-′ : 2f + 1 PROPOSE, h, ei, v ′ ∧ valid(v ′ ) ∧ sendByProposer(h, ei, v ′ ) then 23: validV aluei ← v ′ 24: if ∃v d , e d : 2f + 1 VOTE, h, e d , v d ∧ valid(v d ) ∧ decisioni = nil then

  lockedEpoch i is an integer representing the last epoch where validator p i updated lockedV alue i , and (ii) validEpoch i is an integer which represents the last epoch where p i updates validV alue i . These two new variables are used to not violate the agreement property during the asynchronous period. During such period different epochs may overlap at different validators, then it is needed to keep track of the relative epoch when a validator locks in order to not accept "outdated" information generated during a previous epoch. Moreover, a round Algorithm 4 Tendermint Consensus part 1 for height h executed by p i

	1: Initialization:	
	2:	ei := 0	/* Current epoch number */
	3:	decisioni := nil	/* This variable stocks the decision of the validator pi */
	4:	lockedV aluei := nil; validV aluei := nil
	5:	lockedEpochi := -1; validEpochi := -1
	6:	proposali := getV alue() /* This variable stocks the value the validator will (pre-)propose */
	7:	vi := nil	/* Local variable stocking the pre-preposal if delivered */
	8:	validEpochj := nil	/* Local variable stocking the proposer's validEpoch */
	9:	votei := nil	/* This variable stock the value the validator will vote for */
	10:	timeoutPrePropose := ∆Pre-propose ; timeoutPropose := ∆Propose; timeoutVote := ∆Vote
	11: Round PRE-PROPOSE :	
	12:	Send phase:	
	13:	if decisioni = nil then	
	14:	∀v, pj : ( VOTE, h, ei, v , pj ) ∈ messagesSeti , broadcast VOTE, h, ei, v
	15:	return	
	16:	if proposer(h, ei) = pi then	
	17:	broadcast PRE -PROPOSE, h, ei, proposali, validEpochi
	18:	Delivery phase:	
	19:	set timerP reP ropose to timeoutPrePropose
	20:		

while (timerPrePropose not expired) ∧ ¬(∃vj, ej : sendByProposer(h, ei, vj , ej )) do 21: if ∃vj , ej : sendByProposer(h, ei, vj , ej ) then 22: vi ← vj /* vj is the value sent by the proposer */ 23: validEpochj ← ej /* ej is the validEpoch sent by the proposer */ 24: if ¬(∃v, epochP rop : sendByProposer(h, ei, v, epochP rop)) then 25: timeoutPrePropose ← timeoutPrePropose + 1 26: Compute phase: 27: if 2f + 1 PROPOSE, h, validEpochj , vi ∧ validEpochj ≥ lockedEpochi ∧ validEpochj < ei ∧ valid(vi) then 28: proposali ← vi 29: else 30: if !valid(vi) ∨ (lockedEpochi > validEpochj ∧ lockedV aluei = vi) then 31: proposali ← nil /* Note that valid(nil) is set to false */ 32:

  [START_REF]Tendermint: Tendermint: Tendermint Core (BFT Consensus) in Go[END_REF], Algorithm 4) and will propose nil (line 4, Algorithm 5). By counting only the propose value of the correct validators, no value will have at least 2f + 1 proposals for v. There are two cases:• No correct validator delivers at least 2f + 1 proposals for v during the PROPOSE round, so they will all set their vote to nil, vote nil and go to the next epoch without changing their state (lines 19 & 24 -26 & 37 -43, Algorithm 5). • If there are some correct validators that delivers at least 2f + 1 proposals for v during the PROPOSE round, which means that some Byzantine validators send proposals for v to those validators. As in the previous case, they will vote for v, and since there are 2f + 1 of them, all correct validators will decide v. Otherwise, there are less than 2f + 1 correct validators that deliver at least 2f + 1 proposals for v. Only them will vote for v (line 24, Algorithm 5). Without Byzantine validators, there will be less than 2f + 1 vote for v, no correct validator will decide (lines 35 -36, Algorithm 5) and they will go to the next epoch, if Byzantine validators send votes for v to a correct validator such as it delivers at least 2f + 1 votes for v during VOTE round, then it will decide (lines 35 -36, Algorithm 5), and by Lemma 4 all correct validators will eventually decide.Let p k be one of the correct validators that delivers at least 2f + 1 proposals for v during PROPOSE round, it means that lockedV alue k = v and lockedEpoch k = e. It follows that at the end of epoch e, all correct validators will have validV alue = v and validEpoch = e. If there is no decision, either no correct validator changes its state, otherwise all correct validators change their state and have the same validV alue and validEpoch, eventually a proposer of an epoch will satisfy the case 1, and that ends the proof.

Since there are 3f + 1 validators, there cannot be two different values that collect 2f + 1 distinct votes in the same epoch.

validV alue was not present in the previous version of Tendermint[START_REF] Kwon | Tendermint[END_REF], that was suffering from the Live Lock bug[START_REF]Livelock scenario[END_REF].
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