
HAL Id: hal-01881212
https://hal.science/hal-01881212v2

Submitted on 3 Apr 2019 (v2), last revised 8 Jul 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dissecting Tendermint
Yackolley Amoussou-Guenou, Antonella del Pozzo, Maria Potop-Butucaru,

Sara Tucci-Piergiovanni

To cite this version:
Yackolley Amoussou-Guenou, Antonella del Pozzo, Maria Potop-Butucaru, Sara Tucci-Piergiovanni.
Dissecting Tendermint. [Research Report] Sorbonne Université; LIP6, Sorbonne Université, CNRS,
UMR 7606; CEA List. 2018. �hal-01881212v2�

https://hal.science/hal-01881212v2
https://hal.archives-ouvertes.fr

Dissecting Tendermint

Yackolley Amoussou-Guenou1,2, Antonella Del Pozzo1, Maria
Potop-Butucaru2, and Sara Tucci-Piergiovanni1

1 CEA LIST, PC 174, Gif-sur-Yvette, 91191, France
2 Sorbonne Université, CNRS, LIP6, Paris, France

Abstract. In this paper we analyze Tendermint proposed in [10], one of
the most popular blockchains based on PBFT Consensus. Our method-
ology consists in identifying the algorithmic principles of Tendermint
necessary for a specific communication model. The current paper dis-
sects Tendermint under two system communication models: synchronous
and eventually synchronous communication models. This methodology
allowed to identify bugs [6] in preliminary versions of the protocol ([21],
[10]) and to prove its correctness under the most adversarial conditions:
an eventually synchronous communication model and Byzantine faults.

Keywords: BFT Consensus · Blockchain · Tendermint

1 Introduction

The Blockchain is a distributed ledger implementing an append-only list of blocks
chained to each other, it serves as an immutable and non repudiable ledger in a
system composed of untrusted components. These characteristics are a fruitful
field to envision new industrial applications. In the Blockchain systems area the
recent tendency is to privilege solutions based on distributed agreement than
proof-of-work. This is motivated by the fact that the majority of proof-of-work
based solutions such as Bitcoin or Ethereum are energetically not viable when
efficiency is targeted. Moreover proof of work solutions guarantee the existence
of an unique chain only with high probability which is the major drawback for
using blockchains in industrial applications. That is, forks even though they are
rare do still happen with an impact on the consistency guarantees offered by the
system and Consensus algorithms play an important role to prevent inconsisten-
cies. Therefore, alternatives to proof-of-work have been recently considered and
interestingly, the research in blockchain systems revived a branch of distributed
systems research: Byzantine fault-tolerant protocols having PBFT consensus
protocol as ambassador. In the class of blockchains based on distributed agree-
ment, Tendermint (inspired by PBFT consensus) is one of the most popular.

Since Blockchain is an append-only list, the append operation needs to pre-
serve the chain shape of the data structure, leading to the necessity to have a
mechanism allowing untrusted processes to agree on the next block to append.
Bitcoin Blockchain employs the proof-of-work mechanism [16]. That is, processes
willing to append a new block have to solve a crypto-puzzle. The winning process

2 Y. Amoussou-Guenou et al.

will proceed appending the new block. While this mechanism does not require a
real coordination between the processes participating to the Bitcoin system, it
might lead to inconsistencies. Indeed, if more than one process solves the crypto-
puzzle to extend the same last block then processes may have blockchains with
different suffix as long as the conflict is unsolved. In [7] the authors proved that
consensus [22] is necessary in order to avoid forks. Consensus can be informally
described as follows: given a set of processes proposing each of them a value
then, after a finite amount of time, all processes agree on the same value, chosen
among the proposed ones.

In this paper we analyze Tendermint proposed in [10] as one of the most
promising but not fully analyzed protocols so far that implements Byzantine
fault tolerant Consensus. Tendermint targets an eventual synchronous system
[15], which means that safety has to be guaranteed in the asynchronous periods
and liveness in synchronous ones, when a subset of processes can be affected by
Byzantine failures. To analyze the protocol, we dissect Tendermint identifying
the techniques used to address different challenges due to the considered sys-
tem model: synchronous round-based model in presence of Byzantine faults; and
eventual synchronous communication model in presence of Byzantine faults. For
each type of model we provide the corresponding algorithm (a variant of Tender-
mint [10]). Finally, we provide a proved correct protocol specification of [10] in
the eventual synchronous setting in presence of Byzantine faults and computed
its complexity. This methodology allowed to identify bugs [6] in the preliminary
versions of the protocol ([21], [10]) that now have been solved.

2 Model

The system is composed of an infinite set Π of sequential processes, namely
Π = {p1, . . . }; i is called the index of pi. Sequential means that a process
executes one step at a time. This does not prevent it from executing several
threads with an appropriate multiplexing. As local processing time are negligible
with respect to message transfer delays, they are considered as being equal to
zero.

Arrival model. We assume a finite arrival model [4], i.e. the system has
infinitely many processes but each run has only finitely many. The size of the set
Πρ ⊂ Π of processes that participate in each system run is not a priori-known.
We also consider a finite subset V ⊆ Πρ of validators. The set V may change
during any system run and its size n is a-priori known. A process is promoted in
V based on a so-called merit parameter, which can model for instance its stake in
proof-of-stake blockchains. Note that in the current Tendermint implementation,
it is a separate module included in the Cosmos project [20] that is in charge of
implementing the selection of V .

Time assumptions on communication. The processes communicate by
exchanging messages through an eventually synchronous network [15]. Eventually
Synchronous means that after a finite unknown time τ there is a bound δ on the
message transfer delay.

Dissecting Tendermint 3

Failure model. There is no bound on processes that can exhibit a Byzantine
behaviour [23] in the system, but up to f validators can exhibit a Byzantine
behaviour at each point of the execution. A Byzantine process is a process that
behaves arbitrarily. A process (or validator) that exhibits a Byzantine behaviour
is called faulty. Otherwise, it is non-faulty or correct or honest. To be able to
solve the consensus problem, we assume that f < n/3 and more precisely we
consider n = 3f + 1.

Communication primitives. In the following we assume the presence of a
broadcast primitive. A process pi by invoking the primitive broadcast(〈TAG,m〉)
broadcasts a message, where TAG is the type of the message, and m its content.
To simplify the presentation, it is assumed that a process can send messages to
itself. The primitive broadcast() is a best effort broadcast, which means that when
a correct process broadcasts a value, eventually all the correct processes deliver
it. A process pi receives a message by executing the primitive delivery(). Messages
are created with a digital signature, and we assume that digital signatures cannot
be forged. When a process pi delivers a message, it knows the process pj that
created the message.

Let us note that the assumed broadcast primitive in an open dynamic network
can be implemented through gossiping, i.e. each process sends the message to
current neighbors in the underlying dynamic network graph. In these settings
the finite arrival model is a necessary condition for the system to show eventual
synchrony. Intuitively, a finite arrival implies that message losses due to topology
changes are bounded, so that the propagation delay of a message between two
processes not directly connected can be bounded [8].

Round-based execution model. We assume that each correct process
evolves in rounds. A round consists of three phases, in order : (i) a Send phase,
where the process broadcasts messages computed during the last round, or a
default messages for the first round; (ii) a Delivery phase where the process
collect messages sent during the current and previous rounds; and (iii) a Compute
phase where the process uses the messages delivered to change its state. At the
end of a round a process exits from the current round and starts the next round.
Each round has a finite duration, we consider the Send and the Compute phase
as being atomic, they are executed instantaneously, but not the Delivery phase.
In a synchronous network, we assume the duration of the Delivery phase, and so
of the round is δ. We assume that processes have no access to a global clock but
have access to local clocks, these clocks might not be synchronized with each
other but are allowed to have bounded clock skew.

Problem definition. In this paper we analyze the correctness of the Tender-
mint protocol against the Consensus abstraction in distributed systems. We say
that an algorithm implements Consensus if and only if it satisfies the following
properties: Termination, every correct process eventually decides some value;
Integrity, no correct process decides twice; Agreement, if there is a correct
process that decides a value v, then eventually all the correct processes decide
v; Validity[12], a decided value is valid, it satisfies the predefined predicate
denoted valid().

4 Y. Amoussou-Guenou et al.

3 Tendermint Algorithms

Tendermint BFT Consensus protocol [21, 26, 10] is a variant of PBFT consensus
at the core layer under the Tendermint blockchain.

The algorithm follows the rotating coordinator paradigm i.e., for each new
block to be appended there is a proposer, chosen among the validators, that
proposes a block. If the block is not decided then a new proposer is selected and
so on, until a block is decided by all the correct processes and the consensus
terminates.

Basic principles of the protocol. Each block in the blockchain is characterized by
its height h, which is the distance in terms of blocks from the genesis block, which
is at height 0. For each new height, the two protocols (Algorithm 2 and Algorithm
4) share a common algorithmic structure, they proceed in epochs, and each epoch
e consists in three rounds: the PRE-PROPOSE round; the PROPOSE round;
and the VOTE round. During the PRE-PROPOSE round, the proposer pre-
proposes a value v to all the other validators. During the PROPOSE round, if
a validator accepts v then it proposes such value. If a validator receives enough
proposals for the same value v then it votes for v during the VOTE round.
Finally, if a validator receives enough votes for v, it decides on v. In this case,
enough means at least 2f +1 occurrences of the same value from 2f +1 different
processes and from each process only the first value delivered for each round is
considered, (cf. Algorithm 1).

If the proposer is correct then it pre-proposes the same value to all the
2f + 1 correct processes. All the 2f + 1 correct processes propose such value,
it follows that all the 2f + 1 correct processes vote for such value and decide
for it. If the proposer is Byzantine faulty it can pre-propose different values to
different correct processes, creating a partition in the proposal value set collected
by validators. Depending on what the remaining Byzantine faulty processes do,
some correct processes may decide on a value v and some other may not 3, then a
new epoch starts. To do not violate the agreement property, processes that have
not decided yet in the previous epoch must only decide for v, for this reason
processes, before vote for some value v, lock on that value, i.e., it will refuse to
propose a further pre-proposed value different than v.

Information from one epoch to the next. lockedV alue and validV alue vari-
ables4 carry the potentially decided value from one epoch to the next one. The
lockedV alue idea is the following. If one correct process decides on v, it means
that it collected 2f + 1 votes for v during the VOTE phase, since there are at
most f Byzantine faulty processes thus there are at least f + 1 correct processes
that voted for v and those processes must not vote for any other different value

3 Since there are 3f + 1 validators, there cannot be two different values that collect
2f + 1 distinct votes in the same epoch.

4 validV alue was not present in the previous version of Tendermint, that was suffering
from the Live Lock bug [1].

Dissecting Tendermint 5

than v. For this reason if a process delivers 2f + 1 proposals for v during the
PROPOSE round it sets lockedV alue to v. Since each new pre-proposed value
v′ is proposed if v′ is equal to lockedV alue or validV alue (not true for at lest
f + 1 correct processes that set lockedV alue to v), then there can be at most
2f possible proposals for v′ that are not enough to lock and vote for v′, i.e.,
it is not possible to decide for any value different than v. On the other side,
if no correct process decided yet, Byzantine faulty processes may force different
correct processes to lock on different values. Let us consider a scenario where the
proposer is Byzantine faulty and proposes v to f + 1 correct processes and then
f Byzantine processes make x ≤ f of them lock on v and a similar scenario can
happen with another value v′ so that we can have different correct processes, let
us say y ≤ f locked on a different value. If any new new pre-proposal is checked
only against the lockedV alue then a correct process locked on a value v refuses
(does not propose) all values different from v, it means that when some correct
process is locked, the proposer needs to propose some of the value on which the
correct processes are locked on, but such value, in order to be accepted cannot
be checked only against the lockedV alue because we may never have enough
correct processes proposing such value. For this reason processes keep track of
the validV alue and by construction of the algorithm all correct processes have
the same validV alue at the end of the epoch (in the synchronous period). Such
value is then used to set the value to pre-propose and it is further used along
with lockedV alue to accept or not a pre-proposed value.

Messages syntax. When pi broadcasts a message 〈TAG, h, e,m〉, where m con-
tains a value, we say that pi proposes or votes m if TAG=PROPOSE or TAG=VOTE

respectively. When pi broadcasts 〈PRE-PROPOSE, h, e,m, e′〉, where e′ is an epoch
and h is the height. We also say that pi pre-proposes m with an epoch e′.
Variables and data structures. hp is an integer representing the consensus in-
stance the process is currently executing. ep is an integer representing the epoch
where the process p is, we note that for each height, a process may have multiple
epochs. decisionp is a table that contains the sequence of decisions, decisionp[h]
is the decision of process p for the consensus instance h. proposalp is the value
the process p proposes. votep is the value the process p votes. lockedV alue stores
a value which is potentially decided by some other process. If process p delivers
more than 2f + 1 proposes for the same value v during its PROPOSE round, it
sets its lockedV aluep to v. validV alue stores a value which is potentially decided
by some other process. If the process p delivers at least 2f + 1 proposes for the
same value v whether during its PROPOSE round or its VOTE round, it sets
its validV alue to v. validV alid is the last value that a process delivered at least
2f + 1 times, and can be different than lockedV alue. The latter two variables
are used as follows: if p is the next proposer then p pre-proposes validV alid if
different from nil. Otherwise, if p is a validator, it checks the new pre-proposal
against lockedV alue and validV alid if those are different from nil.
Functions. We denote as V alue the set containing all blocks, and as MemPool
the set containing all the transactions.
- proposer : Height × Epoch → V ⊆ Πρ is a deterministic function which gives

6 Y. Amoussou-Guenou et al.

the proposer out of the validators set for a given epoch at a given height in a
round robin fashion.
- valid : V alue→ Bool is an application dependent predicate that is satisfied if
the given value is valid. If there is a value v such that valid(v) = true, we say
that v is valid. Note that we set valid(nil) = false.
- getValue : MemPool → V alue is an application dependent predicate which
gives a valid value.
- id : V alue → Hash of V alue application that gives a unique identifier to a
value. In the current version of Tendermint, the hash of the value represents
its identifier, such that instead of sending a whole value an identifier is sent to
optimize the communication cost.
- sendByProposer : Height × Epoch × V alue → Bool is an predicate that gives
true if the given value has been pre-proposed by the proposer of the given height
during the given epoch.
Everything defined above is common to the two algorithms. In each section we
specify the data structures relative to a specific version of the algorithm.
- 2f + 1 : PROPOSE∗ ∪ V OTE∗ → Bool: checks if there are at least 2f + 1
proposals/vote in the given set.

Algorithm 1 Messages management for process p

1: upon 〈TYPE, h, e,message〉 from process q do
2: if @c : (〈TYPE, h, e, c〉, q) ∈ messagesSet then
3: messagesSet← messagesSet ∪ (〈TYPE, h, e,message〉, q)

Byzantine Synchronous System. This section presents the Algorithm 2 and Al-
gorithm 1 that solve Consensus in a synchronous model in presence of Byzantine
faulty processes.

Detailed description of the algorithm. In Algorithms 1 - 3 we describe
the algorithm to solve the Consensus as defined in Section 2 in a synchronous
system in presence of Byzantine failures. The algorithm proceeds in 3 rounds for
any given epoch e at height h:
- Round PRE-PROPOSE (lines 8 - 25, Algorithm 2): If the process p is the
proposer of the epoch, it pre-proposes its proposal value, otherwise, it waits
for the proposal from the proposer. The proposal value of the proposer is its
validV alue if validV alue 6= nil. If a process q delivers the pre-proposal from the
proposer of the epoch, q checks the validity of the pre-proposal and if to accept
it with respect to the values in validV alue and lockedV alue, and if the pre-
proposal is accepted and valid, q sets its proposal proposalq to the pre-proposal,
otherwise it sets it to nil.
- Round PROPOSE (lines 1 - 13, Algorithm 3): During the PROPOSE round,
each process broadcasts its proposal, and collects the proposals sent by the other
processes. After the Delivery phase of the round propose, process p has a set of
proposals, and checks if a value v, pre-proposed by the proposer, was proposed

Dissecting Tendermint 7

Algorithm 2 Simplified Algorithm part 1 for height h executed at process p

1: Initialization:
2: ei := 0 /* current epoch number */
3: decisioni := nil
4: lockedV aluei := nil; validV aluei := nil
5: proposali := getV alue() /* This variable stocks the value the process will (pre-)propose */
6: vi := nil /* Local variable stocking the pre-preposal if delivered */
7: votei := nil

8: Round PRE-PROPOSE(ei) :
9: Send phase:
10: if decisioni 6= nil then
11: ∀x ∈ Vote|decision, broadcast x /* x is on the form 〈VOTE, h, epochOfDecision, ∗〉, and

epochOfDecision if the epoch number where the decided block where pre-proposed */
12: if proposer(h, ei) = p then
13: broadcast 〈PRE− PROPOSE, h, ei, proposali〉 to all processes
14: Delivery phase:
15: while (timerPrePropose not expires) do
16: if ∃vj , ej : sendByProposer(h, ei, vj) then
17: vi ← vj /* vj is the value of the proposal */
18: Compute phase:
19: if valid(vi) ∧ validV aluei = nil then
20: proposali ← id(vi)
21: else
22: if !valid(vi) ∨ vi /∈ {lockedV aluei, validV aluei} then
23: proposali ← nil
24: else
25: proposali ← id(vi) /* Note that id is only defined on valid value */

by at least 2f +1 different processes, if it is the case, and the value is valid, then
p sets votep, validV alue and lockedV alue to v, otherwise it sets votep to nil.

- Round VOTE (lines 14 - 31, Algorithm 3): In the round VOTE, a correct
process p votes votep and broadcasts all the proposals it delivered during the
current epoch. Then p collects all the messages that were broadcast. First p
checks if it has delivered at least 2f + 1 of proposal for a value v′ pre-proposed
by the proposer of the epoch, in that case, it sets validV aluep to that value then
it checks if a value v′ pre-proposed by the proposer of the current epoch is valid
and has at least 2f + 1 votes, if it is the case, then p decides v′ and goes to the
next height; otherwise it increases the epoch number and update the value of
proposalp with respect to validV aluep.

8 Y. Amoussou-Guenou et al.

Algorithm 3 Simplified Algorithm part 2 for height h executed at process p

1: Round PROPOSE(ei) :
2: Send phase:
3: if proposali 6= nil then
4: broadcast 〈PROPOSE, h, ei, proposali〉 to all processes
5: Delivery phase:
6: while (timerPropose not expires) do{}
7: Compute phase:
8: if ∃v′ : 2f + 1〈PROPOSE, h, ei, id(v′)〉 ∧ sendByProposer(h, ei, v

′) then
9: lockedV aluei ← v′

10: validV aluei ← v′

11: votei ← id(v′)
12: else
13: votei ← nil

14: Round VOTE(ei) :
15: Send phase:
16: if votei 6= nil then
17: broadcast 〈VOTE, h, ei, votei〉
18: ∀x ∈ Propose|ei , broadcast x /* x is on the form 〈PROPOSE, h, ei, ∗〉; Propose|ei is the

set of PROPOSE messages delivered corresponding to the phase PROPOSE(ei) */
19: Delivery phase:
20: while (timerVote not expires) do{}
21: Compute phase:
22: if ∃vd, ed : 2f + 1〈VOTE, h, ed, id(vd)〉 ∧ sendByProposer(h, ed, vd) ∧ decisioni = nil then
23: validV aluei ← vd
24: if 2f + 1〈VOTE, h, r, id(vd)〉 ∧ sendByProposer(h, ei, vd) ∧ valid(vd) ∧ decisioni = nil then
25: decisioni = vd
26: else
27: ei ← ei + 1
28: if validV aluei 6= nil then
29: proposali ← validV aluei
30: else
31: proposali ← getV alue()

Algorithm 4 Tendermint Consensus part 1 for height h executed at process p

1: Initialization:
2: ei := 0 /* Current epoch number */
3: decisioni := nil
4: lockedV aluei := nil; validV aluei := nil
5: lockedEpochi := −1; validEpochi := −1
6: proposali := getV alue() /* This variable stocks the value the process will (pre-)propose */
7: vi := nil /* Local variable stocking the pre-preposal if delivered */
8: validEpochj := nil /* Local variable stocking the proposer’s validEpoch */
9: votei := nil /* This variable stock the value the process will vote for */
10: timeoutPrePropose := ∆Pre-propose; timeoutPropose := ∆Propose; timeoutVote := ∆Vote

11: Round PRE-PROPOSE :
12: Send phase:
13: if decisioni 6= nil then
14: ∀x ∈ Vote|decision, broadcast x /* x is on the form 〈VOTE, h, epochOfDecision, ∗〉 */
15: if proposer(h, ei) = pi then
16: broadcast 〈PRE− PROPOSE, h, ei, proposali, validEpochi〉
17: Delivery phase:
18: set timerPrePropose to timeoutPrePropose
19: while (timerPrePropose not expires) ∧ ¬(∃vj , ej : sendByProposer(h, ei, vj , ej)) do
20: if ∃vj , ej : sendByProposer(h, ei, vj , ej) then
21: vi ← vj /* vj is the value of the proposal */
22: validEpochj ← ej /* ej is the validEpoch sent by the proposer */
23: if ¬(∃v, epochProp : sendByProposer(h, ei, v, epochProp)) then
24: timeoutPrePropose← timeoutPrePropose + 1
25: Compute phase:
26: if 2f + 1 〈PROPOSE, h, validEpochj , id(vi)〉 ∧ validEpochj ≥

lockedEpochi ∧ validEpochj < ei ∧ valid(vi) then
27: proposali ← id(vi) /* Note that the function id is only applied on value value. */
28: else
29: if !valid(vi) ∨ (lockedEpochi > e ∧ lockedV aluei 6= vi) then
30: proposali ← nil /* Note that valid(nil) is set to false */
31: if valid(vi) ∧ (lockedEpochi = −1 ∨ lockedV aluei = vi) then
32: proposali ← id(vi)

Dissecting Tendermint 9

Algorithm 5 Tendermint Consensus part 2 for height h executed at process p

1: Round PROPOSE :
2: Send phase:
3: if proposali 6= nil then
4: broadcast 〈PROPOSE, h, ei, proposali〉
5: broadcast 〈HeartBeat,PROPOSE, h, ei〉
6: Delivery phase:
7: set timerPropose to timeoutPropose
8: while (timerPropose not expires) ∧ ¬(2f + 1〈HeartBeat,PROPOSE, h, ei〉) do{} /* Note

that the HeartBeat messages should be from different processes */
9: if ¬(2f + 1〈HeartBeat,PROPOSE, h, ei〉) then
10: timeoutPropose← timeoutPropose + 1
11: Compute phase:
12: if ∃v′ : 2f + 1〈PROPOSE, h, ei, id(v′)〉 ∧ sendByProposer(h, ei, v

′) then
13: lockedV aluei ← v′

14: lockedEpochi ← ei
15: validV aluei ← v′

16: validEpochi ← ei
17: votei ← id(v′)
18: else
19: votei ← nil

20: Round VOTE :
21: Send phase:
22: if votei 6= nil then
23: broadcast 〈VOTE, h, ei, votei〉
24: ∀x ∈ Propose|ei , broadcast x

25: broadcast 〈HeartBeat,VOTE, h, ei〉
26: Delivery phase:
27: set timerVote to timeoutVote
28: while (timerVote not expires) ∧ ¬(2f + 1〈HeartBeat,VOTE, h, ei〉) do{}
29: if ¬(2f + 1〈HeartBeat,VOTE, h, ei〉) then
30: timeoutVote← timeoutVote + 1
31: Compute phase:
32: if ∃v′′ : 2f + 1〈PROPOSE, h, ei, id(v′′)〉 ∧ sendByProposer(h, ei, v

′′) then
33: validV aluei ← v′′

34: validEpochi ← ei
35: if ∃vd, ed : 2f + 1〈VOTE, h, ed, id(vd)〉 ∧ sendByProposer(h, ed, vd) ∧ decisioni = nil then
36: decisioni = vd
37: else
38: ei ← ei + 1
39: vi ← nil
40: if validV aluei 6= nil then
41: proposali ← validV aluei
42: else
43: proposali ← getV alue()

Byzantine Eventual Synchronous System. This section presents the Algorithm 1
and Algorithms 4 - 5 that solve Consensus in an eventually synchronous model
in presence of Byzantine faulty processes. This algorithm has been reported in
[10] with the bugs fixed in [25].

To achieve the consensus in this setting two additional variables need to be
used, (i) lockedEpochp is an integer representing the last epoch where process p
updated its lockedV alue, and (ii) validEpochp is an integer which represents the
last epoch where process p updates validV aluep. These two new variables are
used to do not violate the agreement property during the asynchronous period.
During such period different epochs may overlap at different processes, then it

10 Y. Amoussou-Guenou et al.

is needed to keep track of the relative epoch when a process locks in order to
not accept “outdated” information generated during a previous epoch.

Moreover, a round duration management mechanism needs to be introduced,
i.e. increasing timeouts. In the previous algorithm, rounds were lasting δ, the
known message delay. In an eventually synchronous system such approach is not
feasible, since during the asynchronous period messages may take unbounded
delay before being delivered. It follows that, since there are at most f Byzantine
faulty processes, when a process delivers messages from n−f different processes
it can terminate the delivery phase, but such phase may last an unbounded time.
On the contrary, in the PRE-PROPOSE round only the proposer is sending a
message, and generally messages may take lot of time before being delivered, for
such reasons timeouts needs to be used in order to manage the rounds duration
and adapted to be message delays, such that once the system enters in the
synchronous period, rounds last enough for messages send during the round to
be delivered before the end of it.

Detailed description of the algorithm.

The algorithm proceeds in 3 rounds for any given epoch e at height h. The
description is mainly the same as before, thus in the following we underline just
the differences:

- Round PRE-PROPOSE (lines 11 - 32, Algorithm 4): The description of this
round is mainly the same as before. We highlight the fact that a correct process
p takes into account also lockedEpochp in order to accept a pre-proposed value.
- Round PROPOSE (lines 1 - 19, Algorithm 5): When a correct process p
updates lockedV aluep (resp. validV aluep), it also update lockedEpochp (resp.
validEpochp) to the current epoch.
- Round VOTE (lines 20 - 43, Algorithm 5): If a correct process p delivered at
least f + 1 same type of messages from an epoch higher than the current one, p
moves directly to the PRE-PROPOSE round of that epoch and when a correct
process p updates validV aluep, it also update validEpochp to the current epoch.

We recall that each process has a time-out for each round. If during a round
process p does not deliver at least 2f + 1 messages sent during that round (or
the pre-proposal for the PRE-PROPOSE round), the corresponding time-out is
increased. Those messages can be values or heartbeats, in the case in which a
correct process has not a value to propose or vote.

Complexity. Let us consider the following worst case scenario after the asyn-
chronous period (i.e., after τ), in which in the first f epochs, ei+1, . . . , ei+f , there
are f Byzantine proposers that make lock only one correct process at each epoch
on f different values with different lockedEpoch, ei+1, . . . , ei+f . Let pj be the
last correct process that locked, and let v such value with lockedEpoch = ei+f .
Then all the other correct processes have validV alue set to v and validEpoch
set to ei+f . This happens thanks to the fact that when a correct process locks
on a value then at the end of the epoch all correct process sets their validV alue
to that value. The algorithm terminates when a pre-proposal is proposed and
voted by more than 2f correct processes. i.e, when the pre-proposed value has
validEpoch greater equal than the process lockedEpoch. Thus, during the pe-

Dissecting Tendermint 11

riod of synchrony, the first correct proposer that proposes leads the algorithm
to terminate in f + 1 rounds. Let us consider the case in which there f correct
processes locked on f different values with different lockedEpoch before τ . Let us
assume that pj is the last correct process that locked on a value v, thus it has the
highest lockedEpoch but not all the correct processes have the validV alue set to
v (due to the asynchronous communication). Let us consider that after τ the first
f proposers are Byzantines and stay silent. The following proposers are correct
but their pre-propose value might not be accepted by enough correct processes
as long as pj , which the highest validEpoch and lockedEpoch proposes. Which
eventually happens due to the round robin selection function. Thus, the proto-
col terminates in a number of epochs proportional to the number of validators,
while the optimum for the worst case scenario is f + 1 [17]. Considering that at
each epoch, all processes broadcast messages, it follows that during one epoch
the protocol uses O(n2) messages, thus in the worst case scenario the message
complexity is O(n3).

Correctness Proof of Tendermint Algorithm in a Byzantine Eventual Synchronous
Setting. In this section, we prove the correctness of Algorithm 4 - 5 (Tendermint)
in an eventual synchronous system. We recall that there are 3f + 1 processes,
and less than f Byzantine processes in the system.

Lemma 1 (Validity). In an eventual synchronous system, Tendermint verifies
the following property: A decided value satisfies the predefined predicate denoted
as valid().

Proof The proof follows by construction. When a correct process decides a value
(line 36), it checks before if that value is valid (line 35). So a correct process only
decides a valid value. �Lemma 1

Lemma 2 (Integrity). In an eventual synchronous system, Tendermint veri-
fies the following property: No correct process decides twice.

Proof The proof follows by construction. Before deciding (lines 35 - 36), a
correct process p checks if there is not already a value decided (decisionp[hp] =
nil) for the current height (i .e. line 35). If there is already a value decided
(decisionp[hp] 6= nil), there is no decision (lines 37 - 43). No correct process
decides twice. Moreover, note that a correct process exit the algorithm, the
epoch after it has decide (line 13, Algorithm 4). �Lemma 2

Lemma 3. In an eventual synchronous system, Tendermint verifies the follow-
ing property: Correct processes only propose and vote once per epoch.

Proof We prove this lemma by construction. In Algorithm 5, a correct process
proposes (line 4) and votes only once during the corresponding round (line 23),
and at the end of the VOTE round, a process either changes epoch or height
(lines 36 & 38). �Lemma 3

12 Y. Amoussou-Guenou et al.

Lemma 4. In an eventual synchronous system, Tendermint verifies the follow-
ing property: At most one value can be proposed at least 2f + 1 times per epoch,
and at most one value can be voted at least 2f + 1 times by epoch.

Proof We prove this lemma by contradiction. Let v, v′ such that v 6= v′. Since
there are 3f + 1 processes in the system, if v or v′ gets at least 2f + 1 proposals
(resp. votes), it means that at least f + 1 processes propose (vote) for both v
and v′. By assumption there are less than f Byzantine in the system, at least
1 correct process proposes (votes) both for v and v′, which contradicts Lemma
3. It means that two different values cannot be proposed (resp. voted) at least
2f + 1 times during the same epoch. �Lemma 4

Lemma 5. Let v be a value, e an epoch, and Lv,e = {q : q correct∧lockedV alueq =
v ∧ lockedEpochq = e at the end of epoch e}. In an eventual synchronous sys-
tem, Tendermint verifies the following property: If |Lv,e| ≥ f + 1 then no correct
process p will have lockedV aluep 6= v ∧ lockedEpochp ≥ e, at the end of each
epoch e′ > e, moreover a process in Lv,e only proposes v or nil for each epoch
e′ > e.

Proof Let v be a value, e an epoch, and Lv,e = {q : q correct∧ lockedV alueq =
v ∧ lockedEpochq = e at the end of epoch e}, we assume that |Lv,e| ≥ f + 1. We
prove the theorem by induction:

– Initialization: At the end of epoch e, by assumption, we have that |Lv,e| ≥
f + 1. Since a correct process p (p ∈ Lv,e) updates lockedV aluep to v during
epoch e, it means that p delivered 2f + 1 proposals for the value v (lines
12 - 14, Algorithm 5). By Lemma 4, at most one value can have at least
2f + 1 proposals during epoch e, and since v has at least 2f + 1 proposes,
no process q update lockedV alueq to a value v′ 6= v during epoch e. At the
end of e, lockedV alueq 6= v ∨ lockedEpochq < e.

– Induction: Let a ≥ 1, we assume that ∀p ∈ Lv,e, lockedV aluep = v at the
end of each epoch between e and e + a, we also assume that if a value was
proposed at least 2f + 1 times during these epochs it was either v or nil.
We prove that at the end of epoch e+ a+ 1, no correct process q will have
lockedV alueq = v′ ∧ lockedEpochq = e+ a+ 1 with (v′ 6= v).
Let p ∈ Lv,e, p delivers a pre-proposal for v, then p will set proposalp to
v, and will propose v since lockedV aluep = v (lines 26 - 32, Algorithm 4
& 4, Algorithm 5), in any other case, if p does not deliver a pre-proposal,
or delivers a pre-proposal for a value v′ 6= v, it will set proposalp to nil
and will propose nil (lines 26 - 32, , Algorithm 4 & 4, Algorithm 5), since
valid(nil) = false and by assumption, there is no e′ ∈ {e, . . . , e + a} where
there were at least 2f+1 proposals for a value v′ 6= v, and lockedEpochp ≥ e.
All processes in Lv,e will then propose v or nil during epoch e + a + 1. By
Lemma 3, correct processes only propose once per epoch, at least f + 1
processes (in Lv,e) propose v or nil and messages cannot be forged, the
only values that can get at least 2f + 1 proposals for the epoch e + a +

Dissecting Tendermint 13

1 are v and nil. If a correct process q delivers at least 2f + 1 proposals
for v, it sets lockedV alueq to v and lockedEpochq to e + a + 1 (lines 12 -
14), otherwise, it does not change lockedV alueq nor lockedEpochq (line 19,
Algorithm 5). At the end of epoch e + a + 1, there is no correct process q
such that lockedV alueq 6= v∧ lockedEpochq = e+a+1. Moreover, processes
in Lv,e, only propose v or nil during epoch e+ a+ 1.

We proved that if |Lv,e| ≥ f + 1, no correct process p will have lockedV aluep 6=
v∧ lockedEpochp ≥ e, moreover a process in Lv,e only proposes v or nil for each
epoch e′ > e.

�Lemma 5

Lemma 6 (Agreement). In an eventual synchronous system, Tendermint ver-
ifies the following property: If there is a correct process that decides a value v,
then eventually all the correct processes decide v.

Proof Let p be a correct process. We assume that p is the first correct pro-
cess that decides, and we assume that it decides value v during epoch e. To
decide, p delivered at least 2f + 1 votes for v for epoch e. Since there are less
that f Byzantine processes, and by Lemma 3 correct processes can only vote
once per epoch, so at least f + 1 correct processes voted for v during epoch
e, so we have |Lv,e| = |{q : q correct ∧ lockedV alueq = v ∧ lockedEpochq =
e at the end of epoch e}| ≥ f + 1. By Lemma 5 processes in Lv,e only pro-
pose v or nil during each epoch after e, and no correct process q will have
lockedV aluep 6= v ∧ lockedEpochp ≥ e. Thanks to the best effort broadcast
guarantees, all correct processes will eventually deliver the 2f + 1 votes for v
from epoch e, since when a correct process decides, it sends back all votes it
delivered than makes it decide (line 13, Algorithm 4).

If a correct process q does not decide before delivering these votes, when
delivering them, it will decide v (lines 35 - 36). Otherwise, it means that q
decides before delivering the votes from epoch e.

By contradiction, we assume that q decides a value v′ 6= v during an epoch
e′ > e, so q delivered at least 2f + 1 votes for v′ during epoch e′ (lines 35 -
36). Since a correct process only votes once by Lemma 3, there are less that
f Byzantine processes and the messages are unforgeable, at least f + 1 correct
processes vote for v′. A correct process votes a non-nil value if that value was
proposed at least 2f+1 times during the current epoch (lines 12 - 23, Algorithm
5). By Lemma 3 a correct process only proposes once, there are less that f
Byzantine processes and the messages are unforgeable, so at least f + 1 correct
processes proposed v′ during e′. Since e′ > e and |Lv,e| ≥ f + 1, by Lemma 5
there are at least f + 1 processes that propose v or nil during epoch e′. Even
if all the 2f processes remaining proposes v′, there cannot be 2f + 1 proposals
for v′, which is a contradiction. So q cannot decide v′ 6= v after epoch e and we
assume that e is the first epoch where a correct process decides. �Lemma 6

14 Y. Amoussou-Guenou et al.

Lemma 7. In an eventual synchronous system, if there is an epoch after which
when a correct process broadcasts a message during a round r, it is delivered by
all correct processes during the same round r, Tendermint verifies the following
property: If a correct process p updates lockedV aluep to a value v during epoch
e, then at the end of the epoch e, all correct processes have validV alue = v and
validEpoch = e.

Proof We prove this lemma by construction.
Let e be the epoch after which when a correct process broadcasts a message

during a round r, it is delivered by all correct processes during the same round
r. Let p be a correct process, we assume that at the end of epoch e′ ≥ e, p
has lockedV aluep = v and lockedEpochp = e′, it means that p delivered at least
2f+1 proposals for v during epoch e′ (lines 12 - 14, Algorithm 5). When p votes,
it sends all proposals delivered during PROPOSE round (line 23, Algorithm 5),
and all the correct processes will deliver these proposals for v. Let q be a correct
process, since q will deliver at least 2f + 1 proposals for v and epoch e′ during
the VOTE round, it will set validV alueq = v and validEpochq = e′ (lines 32 -
34, Algorithm 5). �Lemma 7

Lemma 8 (Termination). In an eventual synchronous system, Tendermint
verifies the following property: Every correct process eventually decides some
value.

Proof By construction, if a correct process does not deliver more than 2f + 1
messages (or 1 from the proposesr in the PRE-PROPOSE round) from different
processes during the corresponding round, it increases the duration of its rounds,
so eventually during the synchronous period of the system all the correct pro-
cesses will deliver the pre-proposal, proposals and votes from correct processes
respectively during the PRE-PROPOSE, PROPOSE and the VOTE round. Let
e be the first epoch after that time.

If a correct process decides before e, by Lemma 6 all correct processes de-
cide which ends the proof. Otherwise at the beginning of epoch e, no correct
process decides yet. Let p be the proposer of e. We assume that p is correct and
pre-propose v, v is valid since getV alue() always return a valid value (lines 6,
Algorithm 4 & 43, Algorithm 5), and validV aluep is always valid (lines 12 & 32,
Algorithm 5). We have 2 cases:

– Case 1: At the beginning of epoch e, |{q : q correct ∧ (lockedEpochq ≤
validEpochp ∨ lockedV alueq = v)}| ≥ 2f + 1.
Let q be a correct process such that lockedEpochq ≤ validEpochp∨lockedV alueq =
v, after the delivery of the pre-proposal v from p, q will update proposalq
to v (lines 26 - 32, Algorithm 4). During the PROPOSE round, q proposes
v (line 4, Algorithm 5), and since there are at least 2f + 1 similar correct
processes they will all propose v, and all correct processes will deliver at
least 2f + 1 proposals for v (line 7, Algorithm 5).
Correct processes will set vote to v (lines 12 - 4, Algorithm 5), will vote
v, and will deliver these votes, so at least 2f + 1 of votes (lines 23 & 26,

Dissecting Tendermint 15

Algorithm 5). Since we assume that no correct processes decide yet, and
since they deliver at least 2f + 1 votes for v, they will decide v (lines 35 -
36, Algorithm 5).

– Case 2: At the beginning of epoch e, |{q : q correct ∧ (lockedEpochq ≤
validEpochp ∨ lockedV alueq = v)}| < 2f + 1.
Let q be a correct process such that lockedEpochq > validEpochp∧lockedV alueq 6=
v, when p will make the pre-proposal, q will set proposalq to nil (line 30,
Algorithm 4) and will propose nil (line 4, Algorithm 5).
By counting only the propose value of the correct processes, no value will
have at least 2f + 1 proposals for v. There are two cases:
• No correct process delivers at least 2f + 1 proposals for v during the

PROPOSE round, so they will all set their vote to nil, vote nil and go
to the next epoch without changing their state (lines 19 & 23 - 26 & 37
- 43, Algorithm 5).

• If there are some correct processes that delivers at least 2f +1 proposals
for v during the PROPOSE round, which means that some Byzantine
processes send proposals for v to those processes.
As in the previous case, they will vote for v, and since there are 2f + 1
of them, all correct processes will decide v. Otherwise, there are less
than 2f + 1 correct processes that deliver at least 2f + 1 proposals for
v. Only them will vote for v (line 23, Algorithm 5). Without Byzantine
processes, there will be less than 2f + 1 vote for v, no correct process
will decide (lines 35 - 36, Algorithm 5) and they will go to the next
epoch, if Byzantine processes send votes for v to a correct process such
as it delivers at least 2f + 1 votes for v during VOTE round, then it will
decide (lines 35 - 36, Algorithm 5), and by Lemma 6 all correct processes
will eventually decide.
Let q1 be one of the correct processes that delivers at least 2f+1 propos-
als for v during PROPOSE round, it means that at lockedV alueq1 = v
and lockedEpochq1 = e, by Lemma 7 at the end of epoch e, all correct
processes will have validV alue = v validEpoch = e.

If there is no decision, either no correct process changes its state, otherwise
all correct processes change their state and have the same validV alue and
validRound, eventually a proposer of an epoch will satisfy the case 1, and
that ends the proof.

If p the proposer of epoch e is Byzantine and more than 2f + 1 correct processes
delivered the same message during PRE-PROPOSE round, and the pre-proposal
is valid, the situation is like p was correct. Otherwise, there are not enough
correct processes that delivered the pre-proposal, or if the pre-proposal is not
valid, then there will be less than 2f + 1 correct processes that will propose that
value, which is similar to the case 2.

Since the proposer is selected in a round robin fashion, a correct process will
eventually be the proposer, and a correct process will decide. �Lemma 8

Theorem 1. In an eventual synchronous system, Tendermint implements the
Consensus.

16 Y. Amoussou-Guenou et al.

Proof The proof follows directly from Lemmas 1, 2, 6 and 8.

�Theorem 1

4 Related work

The Consensus problem, as proved in [22], cannot be solved in presence of f
Byzantine faulty processes if the overall number of processes n is less than 3f+1
in a synchronous message-passing system (where the message delivery delay is
upper bounded). Moreover, as proved in the seminal FLP paper [18], Consensus
cannot be solved in an asynchronous message-passing system (when there are
no upper bounds on the message delivery delay) in the presence of one faulty
(crash) process. In between those impossibility results, it is still possible to solve
Consensus in an asynchronous setting, either adding randomness [9] (which also
proved the impossibility result for n ≤ 3f for any asynchronous solution) or
partial synchrony as in Dwork et al. [15] (DLS) where BFT Consensus is solved
an eventual synchronous message-passing system (there is a time after which
there is an upper bound on the message delivery delay). DLS preserves safety
during the asynchronous period and the termination only after τ , when the
message transfer delay becomes bounded. Unfortunately such protocol is not
practical, it has a message complexity of O(n4) per epoch and O(n) epochs
before deciding. Finally, Castro and Liskov proposed the PBFT [11], a protocol
that optimizes the performances of the previous solution. Indeed, such protocol
is leader-based, so that if the leader is correct the complexity boils down to
O(n2). Otherwise, a view change mechanism takes place, to change the leader
and continue the computation. Such mechanism implies that when a leader is
suspected to be faulty, all processes have to collect enough evidences for the
view-change, that is, the view-change message contains 2f + 1 signed messages
and those messages are sent from 2f + 1 processes. Those messages are then
sent to all processes, so that the view-change costs O(n3) in terms of message
complexity. Since the protocol terminates when there is a correct leader, then in
the worst case scenario it has a message complexity of O(n4). The view-change
is used to avoid that in case of faulty leader, if some correct process decides
on a value v, the other correct processes cannot decide on a value v′ 6= v when
the new leader takes place. Tendermint reduces the message complexity in case
of worst case scenario to O(n3) thanks to the lockedV alue. That is, processes
instead of exchanging all the messages they already delivered, they locally keep
track of potentially decided values to preserve the safety, in this way reducing the
message complexity. In the same spirit, HotStuff [2] incurs in the same message
complexity, sharing with Tendermint a linear proposer replacement.

In the blockchain context, there exist PBFT based blockchain propositions
(e.g., [3][19][14] based on PBFT) and real implementations as Hyperledger [5]
based on BFT-SMaRt [24]. Moreover we have also examples of Blockchain so-
lution that are based on new BFT Consensus algorithms as RedBelly based on
DBFT Consensus algorithm [13] that presents a message complexity of O(n3).

Dissecting Tendermint 17

5 Conclusion

The contribution of this work is twofold. First, it analyzes the Tendermint con-
sensus protocol and provides detailed proof of its correctness. Second, it dissects
such protocol to link all the algorithmic techniques employed to the system
model considered. We believe that this methodology can contribute in making
consensus algorithms more understandable for developers and practitioners.

References

1. Livelock scenario. https://github.com/tendermint/tendermint/wiki/0.

7-Livelock-Scenario, accessed: 2019-03-14
2. Abraham, I., Gueta, G., Malkhi, D.: Hot-stuff the linear, optimal-resilience, one-

message BFT devil. CoRR abs/1803.05069 (2018), http://arxiv.org/abs/

1803.05069

3. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Spiegelman, A.: Solidus: An incentive-
compatible cryptocurrency based on permissionless byzantine consensus. CoRR,
abs/1612.02916 (2016)

4. Aguilera, M.K.: A pleasant stroll through the land of infinitely many creatures.
ACM Sigact News 35(2), 36–59 (2004)

5. at al., E.A.: Hyperledger fabric: a distributed operating system for permissioned
blockchains. In: Proceedings of the Thirteenth EuroSys Conference, EuroSys 2018,
Porto, Portugal, April 23-26, 2018. pp. 30:1–30:15 (2018)

6. Amoussou-Guenou, Y., Pozzo, A.D., Potop-Butucaru, M., Tucci Piergiovanni, S.:
Correctness and fairness of tendermint-core blockchains. CoRR abs/1805.08429
(2018)

7. Anceaume, E., Pozzo, A.D., Ludinard, R., Potop-Butucaru, M., Tucci Piergiovanni,
S.: Blockchain abstract data type. CoRR abs/1802.09877 (2018)

8. Baldoni, R., Bertier, M., Raynal, M., Tucci-Piergiovanni, S.: Looking for a def-
inition of dynamic distributed systems. In: International Conference on Parallel
Computing Technologies. pp. 1–14. Springer (2007)

9. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In: Proceedings of the second annual ACM
symposium on Principles of distributed computing. pp. 27–30. ACM (1983)

10. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on bft consensus. arXiv
preprint arXiv:1807.04938 (2018)

11. Castro, M., Liskov, B.: Practical Byzantine Fault Tolerance. In: Proceedings of the
Symposium on Operating Systems Design and Implementation (OSDI) (1999)

12. Crain, T., Gramoli, V., Larrea, M., Raynal, M.:
(Leader/Randomization/Signature)-free Byzantine Consensus for Con-
sortium Blockchains. http://csrg.redbellyblockchain.io/doc/

ConsensusRedBellyBlockchain.pdf (visited on 2018-05-22) (2017)
13. Crain, T., Gramoli, V., Larrea, M., Raynal, M.: Dbft: Efficient byzantine consen-

sus with a weak coordinator and its application to consortium blockchains. arXiv
preprint arXiv:1702.03068 (2017)

14. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin Meets Strong Consistency. In:
Proceedings of the 17th International Conference on Distributed Computing and
Networking Conference (ICDCN) (2016)

18 Y. Amoussou-Guenou et al.

15. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988)

16. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Advances
in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 16-20, 1992, Proceedings. pp. 139–147
(1992)

17. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Information processing letters 14(4), 183–186 (1982)

18. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

19. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: En-
hancing Bitcoin Security and Performance with Strong Consistency via Collective
Signing. In: Proceedings of the 25th USENIX Security Symposium (2016)

20. Kwon, J., Buchman, E.: Cosmos: A Network of Distributed Ledgers. https://

cosmos.network/resources/whitepaper (visited on 2018-05-22)
21. Kwon, J., Buchman, E.: Tendermint. https://tendermint.readthedocs.io/en/

master/specification.html (visited on 2018-05-22)
22. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-

actions on Programming Languages and Systems 4(3), 382–401 (Jul 1982)
23. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.

Journal of the ACM 27(2), 228–234 (Apr 1980)
24. Sousa, J., Alchieri, E., Bessani, A.: State machine replication for the masses with

bft-smart (2013)
25. Tendermint: Tendermint: correctness issues. https://github.com/tendermint/

spec/issues (visited on 2018-09-24)
26. Tendermint: Tendermint: Tendermint Core (BFT Consen-

sus) in Go. https://github.com/tendermint/tendermint/blob/

e88f74bb9bb9edb9c311f256037fcca217b45ab6/consensus/state.go (visited
on 2018-05-22)

