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Abstract

In this paper we analyze Tendermint proposed in [7], one of the most popular blockchains
based on PBFT Consensus. The current paper dissects Tendermint under various system com-
munication models and Byzantine adversaries. Our methodology consists in identifying the
algorithmic principles of Tendermint necessary for a specific combination of communication
model - adversary. This methodology allowed to identify bugs [3] in preliminary versions of
the protocol ([19], [7]) and to prove its correctness under the most adversarial conditions: an
eventually synchronous communication model and asymmetric Byzantine faults.

1 Introduction

In the Blockchain systems area the recent tendency is to privilege solutions based on distributed
agreement than proof-of-work. This is motivated by the fact that the majority of proof-of-work
based solutions such as Bitcoin or Ethereum are energetically not viable when the economical
efficiency is targeted. Moreover, proof-of-work solutions guarantee only with high probability the
existence of an unique chain, the major drawback for using blockchains in industrial applications.
That is, forks even though they are rare do still happen with a dramatic impact on the consistency
guarantees offered by the system. Therefore, alternatives to proof-of-work have been recently
considered. Interestingly, the research in blockchain systems revived a branch of distributed systems
research: Byzantine fault-tolerant protocols having PBFT consensus protocol as ambassador. In
the class of blockchains based on distributed agreement, Tendermint (inspired by PBFT consensus)
is one of the most popular.

The Blockchain is a distributed ledger implementing an append-only list of blocks chained to
each other, it serves as an immutable and non repudiable ledger in a system composed of untrusted
components. These characteristics are a fruitful field to envision new industrial applications. Those
applications, by their nature, demand strong consistency quality of services from the underlying
data structure, the blockchain. Consensus algorithms provide strong consistency for free. Since
Blockchain is a list, the append operation needs to preserve the chain shape of the data structure,
leading to the necessity to have a mechanism allowing untrusted processes to agree on the next
block to append. Bitcoin Blockchain, the most famous Blockchain, employs the proof-of-work
mechanism [13]. That is, processes willing to append a new block have to solve a crypto-puzzle.
The winning process will proceed appending the new block. While this mechanism does not require
a real coordination between the processes participating to the Bitcoin system, it might lead to



inconsistencies. Indeed, if more than one process solves the crypto-puzzle to extend the same
block, then the chain shape is lost as long as the conflict is unsolved. In [4], the authors proved
that the only way to avoid forks is to employ a consensus mechanism.

Consensus [20] is a fundamental problem in the distributed system area, which allows coordina-
tion among processes. It can be informally described as follows: given a set of processes proposing
a value (which differs from process to process) then, after a finite amount of time, all processes
agree on the same value, chosen among the proposed ones.

The Byzantine Agreement problem, as proved in [20], cannot be solved with less than 3f + 1
processes in a synchronous message-passing system (where the message delivery delay is upper
bounded) in the presence of f Byzantine processes and in an asynchronous message-passing system
(when there are no upper bounds on the message delivery delay) in the presence of one faulty
(crash) process, as proved in the seminal FLP paper [15]. In between those impossibility results,
few years later, Dwork et al. [12] proved that considering an eventual synchronous message-passing
system (there is a time after which there is an upper bound on the message delivery delay) it
is possible to solve Consensus even in presence of Byzantine faults. Finally, Castro and Liskov
proposed the PBFT [8], which optimizes the performances of the previous solution. The eventual
synchronous message-passing system in presence of Byzantine faults is the model considered nowa-
days in implementing blockchain. There exist different BF'T based blockchain propositions (e.g.,
[1][17][11] based on PBFT) and real implementations as Hyperledger [5] based on BET-SMaRt [22],
Tendermint [24] based on a variation of PBFT and RedBelly based on DBFT Consensus algorithm
[10].

In this paper we analyze Tendermint proposed in [7] as one of the most promising but not
fully analyzed protocols so far. Tendermint targets an eventual synchronous system [12], which
means that safety has to be guaranteed in the asynchronous periods and liveness in synchronous
ones, when a subset of processes can be affected by Byzantine failures. To analyze the protocol,
we dissect Tendermint identifying the techniques used to address different challenges due to the
system model or the power of the adversary. We consider the following system models, from the
strongest to the weakest: synchronous round-based model in presence of symmetric Byzantine faults
(i.e., an adversary such that its behaviour is perceived identically by all non-faulty processes); syn-
chronous round-based model in presence of asymmetric Byzantine faults (i.e., its behavior may be
perceived differently by different non-faulty processes); and finally eventual synchronous commu-
nication model in presence of asymmetric Byzantine faults. For each type of model we provide the
corresponding algorithm (a variant of Tendermint [7]). Finally, we provide a proved correct protocol
specification of [7] in the eventual synchronous setting in presence of asymmetric Byzantine faults
and computed its complexity. This methodology allowed to identify bugs [3] in the preliminary
versions of the protocol ([19], [7]) that now have been solved.

2 Model

The system is composed of an infinite set Il of asynchronous sequential processes, namely II =
{p1,...}; i is called the index of p;. Asynchronous means that each process proceeds at it own
speed, which can vary with time and remains unknown to the other processes. Sequential means
that a process executes one step at a time. This does not prevent it from executing several threads
with an appropriate multiplexing. As local processing time are negligible with respect to message
transfer delays, they are considered as being equal to zero.



Arrival model. We assume a finite arrival model [2], i.e. the system has infinitely many
processes but each run has only finitely many. The size of the set II, C II of processes that
participate in each system run is not a priori-known. We also consider a finite subset V' C II, of
validators. The set V may change during any system run and its size n is a-priori known. A process
is promoted in V based on a so-called merit parameter, which can model for instance its stake in
proof-of-stake blockchains. Note that in the current Tendermint implementation, it is a separate
module included in the Cosmos project [18] that is in charge of implementing the selection of V.

Communication network. The processes communicate by exchanging messages through an
eventually synchronous network [12]. Eventually Synchronous means that after a finite unknown
time 7 there is a bound § on the message transfer delay.

Failure model. There is no bound on processes that can exhibit a Byzantine behaviour [21] in
the system, but up to f validators can exhibit a Byzantine behaviour at each point of the execution.
A Byzantine process is a process that behaves arbitrarily. A process (or validator) that exhibits a
Byzantine behaviour is called faulty. Otherwise, it is non-faulty or correct or honest. To be able
to solve the consensus problem, we assume that f < n/3.

In [16], different categories of faults have been considered, in particular we consider symmet-
ric and asymmetric: a process p; is said to be symmetrically faulty if its behaviour is perceived
identically by all non-faulty processes; and a process p; is said to be asymmetrically faulty if its
behaviour may be perceived differently by different non-faulty processes. In this work, we called
the processes symmetrically faulty, the symmetric Byzantine, and we called the asymmetrically
faulty the asymmetric Byzantine or just Byzantine.

Communication primitives. In the following we assume the presence of a broadcast prim-
itive. A process p; by invoking the primitive broadcast((I"AG,m)) broadcasts a message, where
TAG is the type of the message, and m its content. To simplify the presentation, it is assumed
that a process can send messages to itself. The primitive broadcast() is a best effort broadcast,
which means that when a correct process broadcasts a value, eventually all the correct processes
deliver it. A process p; receives a message by executing the primitive delivery(). Messages are
created with a digital signature, and we assume that digital signatures cannot be forged. When a
process p; delivers a message, it knows the process p; that created the message.

Let us note that the assumed broadcast primitive in an open dynamic network can be im-
plemented through gossiping, i.e. each process sends the message to current neighbors in the
underlying dynamic network graph. In these settings the finite arrival model is a necessary con-
dition for the system to show eventual synchrony. Intuitively, a finite arrival implies that message
losses due to topology changes are bounded, so that the propagation delay of a message between
two processes not directly connected can be bounded [6].

Round-based Execution model. We assume that each correct process evolves in rounds. A
round consists of three phases, in order : (i) a Send phase, where the process broadcasts messages
computed during the last round, or a default messages for the first round; (ii) a Delivery phase
where the process collect messages sent during the current and previous rounds; and (iii) a Compute
phase where the process uses the messages delivered to change its state. At the end of a round a
process exit from the current round and starts the next round. Each round last a certain duration,
we consider the Send and the Compute phase as being atomic, they are executed instantaneously,
but not the Delivery phase. In a synchronous network, we assume the the duration of the Delivery
phase, and so of the round is §. In an eventually synchronous network, the duration of a round is
monotonically increasing, it is modified each time the process does not deliver “enough” messages,



for instance a majority of correct responses.

Problem definition. In this paper we analyze the correctness of the Tendermint protocol
against the Consensus abstraction in distributed systems. We say that an algorithm implements
Consensus if and only if it satisfies the following properties: Termination, every correct process
eventually decides some value; Integrity, no correct process decides twice; Agreement, if there
is a correct process that decides a value v, then eventually all the correct processes decide v;
Validity[9], a decided value is valid, it satisfies the predefined predicate denoted valid().

3 Tendermint Algorithms

Tendermint BFT Consensus protocol [19, 24, 7] is a variant of PBFT consensus that aims at being
the core layer under the Tendermint blockchain.

In this work, we dissect the Tendermint protocol. We present it in three different models, from
the strongest to the weakest: (i) synchronous communication in presence of Symmetric Byzantine
processes; (ii) synchronous communication in presence of Asymmetric Byzantine processes and;
(iii) Eventually Synchronous communication in presence of Asymmetric Byzantine processes. We
show the modifications the algorithm needs to work from (i) to the model (ii) and finally to the
model (iii).

The three Tendermint protocols share a common algorithmic structure, they proceed in epochs,
and each epoch consists in three rounds: (i) the PRE-PROPOSE round where the proposer of the
epoch broadcasts a value, (ii) the PROPOSE round, where each process accept and broadcast the
pre-proposal or nil otherwise, and the (iii) VOTE round, where processes broadcast the value they
are voting on according the the proposal they receive.

When p; broadcasts a message (T'AG, h, e, m), m contains a value, we say that p; pre-proposes,
proposes or votes m if T"TAG=PRE-PROPOSE, T'AG=PROPOSE or T"AG=VOTE respectively. When p;
broadcasts (PRE-PROPOSE, h, e, m, €), where €’ is an epoch we also say that p; pre-proposes m with
an epoch €.

For each epoch, there is a process that is called the proposer for the epoch which should pre-
propose.

Messages syntax, variables and data structures. h, is an integer representing the consensus
instance the process is currently executing. e, is an integer representing the epoch where the
process p is, we note that for each height, a process may have multiple epochs. decision,, is a table
that contains the sequence of decisions, decision,[h] is the decision of process p for the consensus
instance h. proposal, is the value the process p proposes. vote, is the value the process p votes.
Functions. We denote as Block the set containing all blocks, and as MemPool the data structure
containing all the transactions.

- proposer : Height x Epoch — 1l is a deterministic function which gives the proposer for a given
epoch at a given height in a round robin fashion.

- valid : Value — Bool is an application dependent predicate that is satisfied if the given value
is valid. If there is a value v such that valid(v) = true, we say that v is valid. Note that we set
valid(nil) = false.

- getValue : Void — Value is an application dependent predicate which gives a valid value.

- id : Value — Hash application that gives a unique identifier to a value. In the current version
of Tendermint, the hash of the value represents its identifier, such that instead of sending a whole
value an identifier is sent to optimize the communication cost.



- sendByProposer : Height x Epoch x Value — Bool is an predicate that gives true if the given
value has been pre-proposed by the proposer of the given height during the given epoch.

The data structures above are shared by all three algorithms. In each section we specify the data
structures relative to a specific version of the algorithm.

Algorithm 1 Simplified Tendermint in a Synchronous and Symmetric faults model

1: Initialization:

2:  hp:=0 /* current height, or consensus instance currently executed */
3: ep:=0 /* current epoch number */
4:  decisionp|] := nil

5:  proposaly := getValue()

6 votep 1= nil

7: Round PRE-PROPOSE(ey) :
8: Send phase:

9: if proposer(hp,ep) = p then

10: broadcast (PRE — PROPOSE, hp, ep, proposaly,) to all processes
11: Delivery phase:

12: delivery (PRE — PROPOSE, hy, ep, v) from proposer(hy, ep)

13: Compute phase:

14: if valid(v) then

15: proposaly < id(v)

16: else

17: proposaly < nil

18: Round PROPOSE(eyp):
19: Send phase:

20: broadcast (PROPOSE, hy,, ey, proposaly) to all processes
21: Delivery phase:

22: delivery (PROPOSE, hp, ey, *) from all processes

23: Compute phase:

24: if valid(select((PROPOSE, hy, ep, *))) then

25: votey, < id(select((PROPOSE, hy, ep, *)))

26: else

27: voteyp < nil

28: Round VOTE(ep):
29: Send phase:

30: broadcast (VOTE, hy, ey, votep) to all processes

31: Delivery phase:

32: delivery (VOTE, hp, ep, *) from all processes

33: Compute phase:

34: if valid(select((VOTE, hp, ep, *))) A decisionp|hp] = nil then
35: decisiony[hy] = select((VOTE, hp, ep, *))

36: hp < hp + 1

37: else

38: ep < ep+1

39: proposaly <+ getValue()

Symmetric Byzantine Synchronous System The function select : Message® — Value
chooses deterministically a value with respect to the set of messages given in parameter.
Detailed description of the algorithm. In Algorithm 1 we describe the algorithm to solve
the Consensus as defined in Section 2 in a synchronous system, and under the assumption that
Byzantine processes can only exhibit a symmetric behaviour. The algorithm proceeds in 3 rounds
for any given epoch e at height h:

1. Round PRE-PROPOSE (lines 7 - 17): If the process p is the proposer of the epoch, it pre-
proposes its proposal value. Otherwise, it waits for the proposal from the proposer.



If a process p delivers the pre-proposal from the proposer of the epoch, p sets its proposal to
the pre-proposal, otherwise it sets it to nil.

2. Round PROPOSE (lines 18 - 27): During the PROPOSE round, each process broadcasts its
proposal, and collects the proposals sent by the other processes. After the Delivery phase of
the round propose, each process has a set of proposals, and process p sets the variable vote,
to the value returned by the deterministic function select on the set of proposals delivered.

3. Round VOTE (lines 28 - 39): In the round VOTE, correct process g votes vote,. ¢ collects
all the votes that were broadcast, then it checks if the value returned by the function select

let us say v is valid. If v is valid, then ¢ decides v, otherwise it increases the epoch number
and goes to the PRE-PROPOSE round.

Let us stress that such algorithm is only pedagogical. Indeed, in such system model at the
end of each round all the correct processes share the same set of messages delivered and solving
consensus became trivial. The first round PRE-PROPOSE just forces the processes on the value
they PROPOSE after. Then, there are the classical two rounds to exchange the values among
processes before taking a decision. Notice that in this case, even in presence of a faulty proposer,
if there is at least one valid value in the final set at the end of the epoch, then correct processes
decide.

Byzantine Synchronous System This section presents the algorithm that solves Consensus in
a synchronous model in presence of asymmetric behaviour from Byzantine processes. Byzantine
processes can send different messages to different processes, in other words, at the end of an
epoch different correct processes can have different messages delivered, which can harm the safety
condition, i.e., some correct processes might decide and some do not. Then, information from one
epoch have to be kept for the next ones. That is why, along with a new function, we need for two
more variables.
Functions. 2f+1: PROPOSE*UVOTE* — Bool: checks if there is at least 2 f+1 proposals/vote
in the given set.
Messages syntax, variables and data structures. (i) lockedValue stores a value which is
potentially will be decided. If process p delivered more than 2f + 1 proposes for the same value v
during its PROPOSE round, it sets its lockedV alue, to v, (ii) validV alue stores a value which is
potentially will be decided. If the process p delivered at least 2f + 1 proposes for the same value v
whether during its PROPOSE round or its VOTE round, it sets its validV alue to v. validValid is
the last value that a process delivered at least 2f 4 1 times, and can be different than lockedV alue.
Those variables are used to ensure the Agreement condition. Byzantine processes can send
different information to different processes then some correct processes (but not all) may deliver
2f 4+ 1 occurrences for the same value. Therefore such value can be a potential decided value for
some correct process p. To prevent the violation of the agreement property, there is a need to keep
track locally of such value. Such that if p is the next proposer pre-proposes such value. Otherwise
p checks the new pre-proposal against such value.
Detailed description of the algorithm. In Algorithm 2 we describe the algorithm to solve the
Consensus as defined in Section 2 in a synchronous system, and where Byzantine processes can
exhibit even asymmetric behaviour. The algorithm proceeds in 3 rounds for any given epoch e at
height h:



Algorithm 2 Simplified Tendermint in a Synchronous model

1: Initialization:

2 hp =0 /* current height, or consensus instance currently executed */
3 ep =0 /* current epoch number */
4:  decisiony[] := nil

5:  lockedValuep := nil

6: walidValuey := nil

7 proposaly := getValue()

8 votep 1= nil

9: Round PRE-PROPOSE(ep):
10: Send phase:

11: if proposer(hp,ep) = p then

12: broadcast (PRE — PROPOSE, hy,, ep, proposaly) to all processes
13: Delivery phase:

14: delivery (PRE — PROPOSE, hy, ep,v) from proposer(hy, ep)
15: Compute phase:

16: if valid(v) A validValuep, = nil then

17: proposaly < id(v)

18: else

19: if lvalid(v) Vv ¢ {lockedV aluep,validValuep} then

20: proposaly <+ nil

21: else

22: proposaly, < id(v)

23: Round PROPOSE(ep):
24: Send phase:

25: broadcast (PROPOSE, hy,, ey, proposaly) to all processes

26: Delivery phase:

27: delivery (PROPOSE, hp, ep, *) from all processes

28: Compute phase:

29: if 2f + 1(PROPOSE, hy, ep, id(v’)) A sendByProposer(hp, ep,v') A valid(v') then
30: lockedV aluep < v’

31: validV aluep + v’

32: votep, < id(v')

33: else

34: votep — nil

35: Round VOTE(ep):
36: Send phase:

37: broadcast (VOTE, hy, ey, votep) and (PROPOSE, hp, ey, *) delivered to all processes
38: Delivery phase:

39: delivery (VOTE, hp, ep, *) and (PROPOSE, hp, ep, *) delivered from all processes
40: Compute phase:

41: if 2f + 1(PROPOSE, hp, ep, id(v")) A sendByProposer(hy, ep,v"') A valid(v'”") then
42: validV alue, < v

43: if 2f +1 (VOTE, hp, r,id(v"")) A sendByProposer(hp, ep, v"") A valid(v'") A decisionp[hp] = nil then
44: decisionp|hyp] = v"’

45: hp < hp +1

46: reset lockedV aluep, validV alue to init values and empty message log

47: else

48: ep < ep+1

49: if validValuep # nil then

50: proposaly < validV aluep

51: else

52: proposaly, < getValue()

1. Round PRE-PROPOSE (lines 9 - 22): If the process p is the proposer of the epoch, it pre-
proposes its proposal value, otherwise, it waits for the proposal from the proposer. The
proposal value of the proposer is its validV alue if validV alue # nil.

If a process ¢ delivers the pre-proposal from the proposer of the epoch, ¢ checks the validity of



the pre-proposal with respect to its state, and if the pre-proposal is valid, ¢ sets its proposal
proposaly to the pre-proposal, otherwise it sets it to nil.

. Round PROPOSE (lines 23 - 34): During the PROPOSE round, each process broadcasts its
proposal, and collects the proposals sent by the other processes. After the Delivery phase of
the round propose, process p has a set of proposals, and checks if a value v, pre-proposed by
the proposer, was proposed by at least 2f 4+ 1 different processes, if it is the case, and the
value is valid, then p sets vote,, validV alue and lockedV alue to v, otherwise it sets vote, to
nal.

. Round VOTE (lines 35 - 52): In the round VOTE, a correct process p votes vote, and
broadcasts all the proposals it delivered during the current epoch. Then p collects all the
messages that were broadcast. First p checks if its now has delivered at least 2 f+1 of proposal
for a value v' pre-proposed by the proposer of the epoch, in that case, it sets validValue,
to that value then it checks if a value v’ pre-proposed by the proposer of the current epoch
is valid and has at least 2f + 1 votes, if it is the case, then p decides v’ and goes to the
next height; otherwise it increases the epoch number and update the value of proposal, with
respect to validV aluey,.



Algorithm 3 Tendermint Consensus Algorithm

1: Initialization:

2 hp =0 /* current height, or consensus instance currently executed */
3 ep =0 /* current epoch number */
4:  decisiony[] := nil

5:  lockedValuep := nil , validV aluep := nil

6: lockedEpochy := —1 , validEpochy 1= —1

7 proposaly := getValue()
8 votep 1= nil

©

: Round PRE-PROPOSE(ep) :
10: Send phase:

11: if proposer(hp,ep) = p then

12: broadcast (PRE — PROPOSE, hy, ey, proposaly, validEpochy) to all processes
13: Delivery phase:

14: delivery (PRE — PROPOSE, hy,, ep, v, €) from proposer(hy, ep)

15: Compute phase:

16: if f 4 1(x, hyp, epoch, *, *) A epoch > ep then

17: ep < epoch

18: goto PRE-PROPOSE(ep)

19: if 2f +1 (PROPOSE, hy, e,id(v)) A e > lockedEpochy A e < ep A valid(v) then
20: proposalp < id(v)

21: else

22: if lvalid(v) V (lockedEpochy, > e A lockedV alue, # v) then

23: proposaly <+ nil

24: else if valid(v) A (lockedEpochy, = —1V lockedV alue, = v) then

25: proposaly, < id(v)

26: Round PROPOSE(ep):
27: Send phase:

28: broadcast (PROPOSE, hy,, e, proposaly, valid Epochy) to all processes
29: Delivery phase:

30: delivery (PROPOSE, hy, ep, *) from all processes

31: Compute phase:

32: if f + 1(*, hp, epoch, x, %) A epoch > e, then

33: ep < epoch

34: goto PRE-PROPOSE(ep)

35: if 2f + 1(PROPOSE, hyp, ep, id(v")) A sendByProposer(hp, ep,v') A valid(v') then
36: lockedV aluep + v’

37: locked Epochy < ep

38: votep  id(v')

39: validValuep + v’

40: validEpochp < ep

41: else

42: voteyp < nil

43: Round VOTE(ep):
44: Send phase:

45: broadcast (VOTE, hy, ep, votep) and (PROPOSE, hy, ep, *) delivered to all processes

46: Delivery phase:

47: delivery (VOTE, hp, ep, *) and (PROPOSE, hp, ep, %) delivered from all processes

48: Compute phase:

49: if f 4+ 1(x, hyp, epoch, *, *) A epoch > e, then

50: ep < epoch

51: goto PRE-PROPOSE(ep)

52: if 2f + 1(PROPOSE, hyp, ep, id(v")) A sendByProposer(hy, ep,v"") A valid(v”) then

53: validValuep < v”’

54: validEpochy + ep

55: if 2f + 1(VOTE, hy, €', id(v"")) A sendByProposer(hp, ', v") A valid(v") A decisionphp] = nil then
56: decisionp|hp] = v"’

57: hp < hp +1

58: reset lockedV aluep, locked Epochy, validV alue, valid Epochy to init values and empty message log
59: else

60: ep < ep+1

61: if validValuep # nil then

62: proposaly, < validV aluep

63: else

64: proposaly, < getValue() 9




Byzantine Eventual Synchronous System Using the formalism in Section 2, we present the
Tendermint BFT Consensus algorithm [7] in an eventual synchronous setting, where Byzantine
processes may exhibit an asymmetric behaviour.

To achieve the consensus in this setting two additional variables need to be used, (i) locked Epoch,,
is an integer representing the last epoch where process p updated its lockedV alue, and (ii) valid Epoch,,
is an integer which represents the last epoch where process p updates validV alue,,.

These two new variables are used to guarantee the agreement property during the asynchronous
period. During such period different epochs may overlap at different processes, then it is needed to
keep track of the relative epoch when a process locks in order to not accept “outdated” information,
i.e., generated during a previous epoch.

Detailed description of the algorithm.

In Algorithm 3 we describe the algorithm to solve the Consensus as defined in Section 2 in an
eventually synchronous system, and where Byzantine processes can exhibit asymmetric behaviour.
This algorithm has been reported in [7] with the bugs fixed in [23]. The algorithm proceeds in 3
rounds for any given epoch e at height h:

1. Round PRE-PROPOSE (lines 9 - 25): The description of this round is the same as in the
round-based case with asymmetric Byzantine. We highlight the fact that a “valid” for a
correct process p with respect to the state in the eventual synchronous case is different than
in the round-base case, since the variable locked Epoch,, is now taken into account.

2. Round PROPOSE (lines 26 - 42): The difference with the Algorithm 2 is that: when a
correct process p updates lockedValue, (resp. wvalidValue,), it also update locked Epoch,,
(resp. wvalidEpoch,) to the current epoch.

3. Round VOTE (lines 43 - 64): The differences with the Algorithm 2 are the following: (i) if a
correct process p delivered at least f + 1 same type of messages from an epoch higher than
the current one, p moves directly to the PRE-PROPOSE round of that epoch; and (ii) when
a correct process p updates validV aluep, it also update validEpoch,, to the current epoch.

We recall that for the evental synchronous setting, each process has a time-out for each round.
If during a round process p does not deliver at least 2f + 1 messages sent during that round (or
the pre-proposal for the PRE-PROPOSE round), the corresponding time-out is increased.

Complexity. In the worst case scenario, the algorithm terminates when a pre-proposal can
be proposed by more than 2f + 1 correct processes, which eventually happens due to the round
robin selection function. Thus, during the synchrony period, the protocol terminates in at most 2 f
epochs, while the optimum is f [14]. At each epoch, all processes broadcast messages, it follows that
during one epoch the protocol uses O(n?) messages, then in the worst case scenario the message
complexity is O(fn?).

Correctness Proof of Tendermint Algorithm in a Byzantine Eventual Synchronous
Setting In this section, we prove the correctness of Algorithm 3 (Tendermint) in an eventual
synchronous system. We recall that there are 3f 4+ 1 processes, and less than f Byzantine processes
in the system.

Lemma 1 (Validity) In an eventual synchronous system, Tendermint verifies the following prop-
erty: A decided value satisfies the predefined predicate denoted as valid().
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Proof The proof follows by construction. When a correct process decides a value (line 56), it checks
before if that value is valid (line 55). So a correct process only decides a valid value. Uremma 1

Lemma 2 (Integrity) In an eventual synchronous system, Tendermint verifies the following prop-
erty: No correct process decides twice.

Proof The proof follows by construction. Before deciding (lines 55 - 58), a correct process p checks
if there is not already a value decided (decisiony[hy] = nil) for the current height (i.e. line 55). If
there is already a value decided (decisiony[h,] # nil), there is no decision (lines 59 - 64). No correct
process decides twice. Oremma 2

Lemma 3 In an eventual synchronous system, Tendermint verifies the following property: Correct
processes only propose and vote once per epoch.

Proof We prove this lemma by construction. A correct process proposes (line 28) and votes only
once during the corresponding round (line 45), and at the end of the VOTE round, a process either
changes epoch or height (lines 57 & 60). Oremma 3

Lemma 4 In an eventual synchronous system, Tendermint verifies the following property: At most
one value can be proposed at least 2f + 1 times per epoch, and at most one value can be voted at
least 2f + 1 times by epoch.

Proof We prove this lemma by contradiction. Let v,v" such that v # v’. Since there are 3f + 1
processes in the system, if v or v’ gets at least 2f 4+ 1 proposals (resp. votes), it means that at least
f + 1 processes propose (vote) for both v and v'. By assumption there are less than f Byzantine in
the system, at least 1 correct process proposes (votes) both for v and v’, which contradicts Lemma
3. It means that two different values cannot be proposed (resp. voted) at least 2f + 1 times during
the same epoch. Oremma 4

Lemma 5 Letv be a value, e an epoch, and LV = {q : q correctNlockedV alue, = vAlocked Epochy =
e at the end of epoch e}. In an eventual synchronous system, Tendermint verifies the following prop-
erty: If |LV¢| > f + 1 then no correct process p will have lockedV alue, # v A locked Epoch, > e,
at the end of each epoch € > e, moreover a process in LY¢ only proposes v or nil for each epoch
e >e.

Proof Let v be a value, e an epoch, and L"¢ = {q : ¢ correctAlockedV alue, = vAlocked Epoch, = e
at the end of epoch e}, we assume that |L"¢| > f + 1. We prove the theorem by induction:

e Initialization: At the end of epoch e, by assumption, we have that |L"¢| > f + 1. Since
a correct process p (p € L"¢) updates lockedValue, to v during epoch e, it means that
p delivered 2f + 1 proposals for the value v (lines 35 - 37). By Lemma 4, at most one
value can have at least 2f + 1 proposals during epoch e, and since v has at least 2f + 1
proposes, no process ¢ update lockedV aluey to a value v’ # v during epoch e. At the end of
e, lockedV aluey # v V locked Epochy < e.

11



e Induction: Let a > 1, we assume that Vp € L"¢, lockedV alue, = v at the end of each epoch
between e and e + a, we also assume that if a value was proposed at least 2f + 1 times during
these epochs it was either v or nil. We prove that at the end of epoch e 4+ a + 1, no correct
process ¢ will have lockedV alue; = v' A lockedEpochy = e + a + 1 with (v' # v).

Let p € LY, p delivers a pre-proposal for v, then p will set proposal, to v, and will propose
v since lockedValue, = v (lines 19 - 25 & 28), in any other case, if p does not deliver a
pre-proposal, or delivers a pre-proposal for a value v # v, it will set proposal, to nil and
will propose nil (lines 19 - 25 & 28), since valid(nil) = false and by assumption, there is
no € € {e,...,e+ a} where there were at least 2f + 1 proposals for a value v’ # v, and
lockedEpoch,, > e. All processes in L"® will then propose v or nil during epoch e 4 a + 1.
By Lemma 3, correct processes only propose once per epoch, at least f + 1 processes (in
LV¢) propose v or nil and messages cannot be forged, the only values that can get at least
2f + 1 proposals for the epoch e + a + 1 are v and nil. If a correct process g delivers at least
2f +1 proposals for v, it sets lockedV aluey to v and locked Epochy to e+a+1 (lines 35 - 37),
otherwise it does not change lockedV alue, nor lockedEpoch, (line 42). At the end of epoch
e+a+1, there is no correct process ¢ such that lockedV alue, # v Alocked Epochy = e+a+1.
Moreover, processes in L"¢, only propose v or nil during epoch e 4+ a + 1.

We proved that if |[L"¢| > f+1, no correct process p will have lockedV alue, # vAlockedEpoch, > e,
moreover a process in L%¢ only proposes v or nil for each epoch e’ > e.

|:lLemma 5

Lemma 6 (Agreement) In an eventual synchronous system, Tendermint verifies the following
property: If there is a correct process that decides a value v, then eventually all the correct processes
decide v.

Proof Let p be a correct process. We assume that p is the first correct process that decides, and
we assume that it decides value v during epoch e. To decide, p delivered at least 2f + 1 votes for v
for epoch e. Since there are less that f Byzantine processes, and by Lemma 3 correct processes can
only vote once per epoch, so at least f 4+ 1 correct processes voted for v during epoch e, so we have
|LV¢| = |{q : ¢ correct AlockedV aluey = v AlockedEpoch, = e at the end of epoch e}| > f+1. By
Lemma 5 processes in LY¢ only propose v or nil during each epoch after e, and no correct process
q will have lockedV alue, # v AlockedEpoch, > e. Thanks to the best effort broadcast guarantees,
all correct processes will eventually deliver the 2f + 1 votes for v from epoch e.

If a correct process ¢ does not decide before delivering these votes, when delivering them, it will
decide v (lines 55 - 56). Otherwise, it means that ¢ decides before delivering the votes from epoch
e.

By contradiction, we assume that g decides a value v' # v during an epoch €’ > e, so ¢ delivered
at least 2f + 1 votes for v" during epoch €’ (lines 55 - 56). Since a correct process only votes once by
Lemma 3, there are less that f Byzantine processes and the messages are unforgeable, at least f+1
correct processes vote for v'. A correct process votes a non-nil value if that value was proposed at
least 2f + 1 times during the current epoch (lines 35 - 45). By Lemma 3 a correct process only
proposes once, there are less that f Byzantine processes and the messages are unforgeable, so at
least f + 1 correct processes proposed v’ during €’. Since ¢/ > e and |LY¢| > f + 1, by Lemma 5
there are at least f + 1 processes that propose v or nil during epoch €’. Even if all the 2f processes
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remaining proposes v’, there cannot be 2f+1 proposals for v/, which is a contradiction. So ¢ cannot
decide v" # v after epoch e and we assume that e is the first epoch where a correct process decides.
|:lLemma 6

Lemma 7 In an eventual synchronous system, if there is an epoch after which when a correct
process broadcasts a message during a round r, it is delivered by all correct processes during the same
round r, Tendermint verifies the following property: If a correct process p updates lockedV alue, to
a value v during epoch e, then at the end of the epoch e, all correct processes have validV alue = v
and validEpoch = e.

Proof We prove this lemma by construction.

Let e be the epoch after which when a correct process broadcasts a message during a round r, it
is delivered by all correct processes during the same round r. Let p be a correct process, we assume
that at the end of epoch €’ > e, p has lockedV alue, = v and lockedEpoch, = €, it means that p
delivered at least 2f + 1 proposals for v during epoch ¢’ (lines 35 - 37). When p votes, it sends
all proposals delivered during PROPOSE round (line 45), and all the correct processes will deliver
these proposals for v. Let ¢ be a correct process, since g will deliver at least 2f 4+ 1 proposals for v
and epoch €’ during the VOTE round, it will set validValue, = v and validEpochy = ¢’ (lines 52

- 54) |:lLemma 7

Lemma 8 (Termination) In an eventual synchronous system, Tendermint verifies the following
property: Fvery correct process eventually decides some value.

Proof By construction, if a correct process does not deliver more than 2f + 1 messages (or 1 from
the proposesr in the PRE-PROPOSE round) from different processes during the corresponding
round, it increases the duration of its rounds, so eventually during the synchronous period of the
system all the correct processes will deliver the pre-proposal, proposals and votes from correct
processes respectively during the PRE-PROPOSE, PROPOSE and the VOTE round. Let e be the
first epoch after that time.

If a correct process decides before e, by Lemma 6 all correct processes decide which ends the
proof. Otherwise at the beginning of epoch e, no correct process decides yet. Let p be the proposer
of e. We assume that p is correct and pre-propose v, v is valid since getValue() always return a
valid value (lines 7, 64), and validV alue, is always valid (lines 35 & 52). We have 2 cases:

e Case 1: At the beginning of epoch e, |{q : ¢ correct A (lockedEpoch, < wvalidEpoch, V
lockedValueqg = v)}| > 2f + 1.

Let g be a correct process such that lockedEpochy, < validEpochy, V lockedV alueq = v, after
the delivery of the pre-proposal v from p, ¢ will update proposaly to v (lines 19 - 25). During
the PROPOSE round, g proposes v (line 28), and since there are at least 2 f 41 similar correct
processes they will all propose v, and all correct processes will deliver at least 2f+ 1 proposals
for v (line 30).

Correct processes will set vote to v (lines 35 - 28), will vote v, and will deliver these votes,
so at least 2f + 1 of votes (lines 45 & 47). Since we assume that no correct processes decide
yet, and since they deliver at least 2f + 1 votes for v, they will decide v (lines 55 - 56).
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e Case 2: At the beginning of epoch e, [{g : ¢ correct A (lockedEpochy, < wvalidEpoch, V
lockedValueqg = v)}| < 2f + 1.

Let g be a correct process such that locked Epochy > valid Epochy, A lockedV alueq # v, when
p will make the pre-proposal, ¢ will set proposal, to nil (line 23) and will propose nil (line
28).

By counting only the propose value of the correct processes, no value will have at least 2f + 1
proposals for v. There are two cases:

— No correct process delivers at least 2f + 1 proposals for v during the PROPOSE round,
so they will all set their vote to nil, vote nil and go to the next epoch without changing
their state (lines 42 & 45 - 47 & 59 - 64).

— If there are some correct processes that delivers at least 2f + 1 proposals for v during
the PROPOSE round, which means that some Byzantine processes send proposals for v
to those processes.

As in the previous case, they will vote for v, and since there are 2f + 1 of them, all
correct processes will decide v. Otherwise, there are less than 2f + 1 correct processes
that deliver at least 2f + 1 proposals for v. Only them will vote for v (line 45). Without
Byzantine processes, there will be less than 2f + 1 vote for v, no correct process will
decide (lines 55 - 58) and they will go to the next epoch, if Byzantine processes send
votes for v to a correct process such as it delivers at least 2f + 1 votes for v during
VOTE round, then it will decide (lines 55 - 56), and by Lemma 6 all correct processes
will eventually decide.

Let g1 be one of the correct processes that delivers at least 2f + 1 proposals for v
during PROPOSE round, it means that at lockedV alue,, = v and lockedEpochg, = e,
by Lemma 7 at the end of epoch e, all correct processes will have validValue = v
validEpoch = e.

If there is no decision, either no correct process changes its state, otherwise all correct pro-
cesses change their state and have the same wvalidV alue and validRound, eventually a pro-
poser of an epoch will satisfy the case 1, and that ends the proof.

If p the proposer of epoch e is Byzantine and more than 2f + 1 correct processes delivered the same
message during PRE-PROPOSE round, and the pre-proposal is valid, the situation is like p was
correct. Otherwise, there are not enough correct processes that delivered the pre-proposal, or if
the pre-proposal is not valid, then there will be less than 2f + 1 correct processes that will propose
that value, which is similar to the case 2.

Since the proposer is selected in a round robin fashion, a correct process will eventually be the
proposer, and a correct process will decide. Oremma 8

Theorem 1 In an eventual synchronous system, Tendermint implements the Consensus.

Proof The proof follows directly from Lemmas 1, 2, 6 and 8.
|:lTheorem 1
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4

Conclusion

The contribution of this work is twofold. First, it analyzes the Tendermint consensus protocol and
provides detailed proof of its correctness. Second, it dissects such protocol to link all the algorithmic
techniques employed to the system model to cope with. We believe that this methodology can
contribute in making consensus algorithms more understandable for developers and practitioners.
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