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Double diffusive instability in an inclined cavity
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U.M.R. 5502 IMFT-CNRS-UPS, U.F.R. M.I.G., 118, route de Narbonne, 31062 Toulouse Cedex, France

~Received 17 June 1997; accepted 30 November 1998!

Double diffusive convection in a rectangular two-dimensional cavity with imposed temperatures

and concentrations along two opposite sidewalls is considered. The study is performed for

two-dimensional cavities in which the thermal and solutal buoyancy forces have the same

magnitude, but are of opposite sign. The influence on the convective instability of the aspect ratio

A ~height/length! of the cavity and the cavity inclination a with respect to gravity is discussed. The

onset of convection is computed for an infinite layer and compared to that for bounded boxes. The

study is completed by the continuation of bifurcating solutions. It is found that, due to

centrosymmetry, steady bifurcations are either pitchfork or transcritical depending on A and a.
However, a primary pitchfork bifurcation is found to create unstable steady solutions, even if it is

the first bifurcation. For the aspect ratios we studied, and close to the onset of convection, the stable

solutions are mainly one-roll structures that can be destabilized by further interactions with

asymmetric solutions created at primary pitchfork bifurcations. For large aspect ratios, additional

asymmetric one-roll solutions are created via more complex branch interactions. © 1999

American Institute of Physics. @S1070-6631~99!01603-7#

I. INTRODUCTION

Double diffusive convection is the name given to con-

vective motions where two factors affect the fluid density

and that typically have different rates of diffusion. The ar-

chetypical example is heat and salt in water. This field origi-

nated in oceanography ~Schmidt1!, but its applications are

wide, including problems related to geology, metallurgy, and

crystal growth ~Turner,2–4 Huppert and Turner,5 Gebhart

et al.,6 and Wilcox7!.
In a typical configuration, temperature and concentration

gradients are imposed across a box filled with a nonreactive

binary fluid mixture. Any difference between the thermal and

solutal diffusivities x and D may cause convective instabili-

ties, even if the system is initially gravitationally stable. The

resulting convective motions are varied and mostly depend

on how the initial temperature and concentration gradients

are oriented relative to one another. The present paper is a

study of convective instabilities arising in boxes, where ini-

tial heat and mass stratifications are induced by specified

temperatures and concentrations along two opposite side-

walls.

Two situations are generally considered depending on

the sign of the buoyancy ratio N5GrS /GrT . Here, GrS
5gbC(DC)L

3/n2 and GrT5gbT(DT)L
3/n2 are the solutal

and thermal Grashof numbers measuring the magnitude of

the solutal and thermal buoyancy contributions, respectively.

L, DC , DT , g, bC , bT , and n are the width of the cavity, the
concentration and temperature differences, the gravitational

constant, the solutal and thermal expansion coefficients, and

the kinematic viscosity, respectively. The two situations are

referred to as the ‘‘cooperating case’’ if N.0, and as the

‘‘opposing case’’ if N,0.

The existence of multicellular flows has been widely dis-

cussed in the literature. Wang et al.,8 Kamotani et al.,9 and

Jiang et al.10,11 experimentally investigated low aspect ratio

rectangular enclosures. Kamotani et al.9 used an electro-

chemical method based on a diffusion-controlled electrode

reaction. For Le5300 ~Le is the Lewis number defined by

Le5Sc/Pr5x/D , where Pr and Sc are the Prandtl and the

Schmidt numbers, respectively!, they observed unicellular

flows for 210,N,6 and three-layer structures outside this

range. Lee et al.12 studied the same situation using a mem-

brane with supply reservoirs designed to maintain an im-

posed concentration and temperature along the sidewalls. For

larger thermal Rayleigh numbers (Ra5Pr GrT) and Lewis

numbers of order 100, they reported results that contradicted

Kamotani et al.9 concerning the flow structure in various

ranges of buoyancy ratio. In the same range of parameters,

Lee and Hyun13 and Hyun and Lee14 conducted numerical

simulations and obtained flow characteristics in good agree-

ment with Lee et al.12 In the opposing case (N,0), Jiang

et al.11 also observed unsteady mass transfer processes and a

very thin solutal boundary layer for large Lewis numbers.

Very recently, Bennacer and Gobin15 and Gobin and

Bennacer16 numerically focused on heat and mass transfer in

the cooperating case. Their results have shown that, depend-

ing on the range of parameters, unicellular and multicellular

steady-state flows appear.

The above studies used large Lewis number binary flu-

ids. A large amount of work on double diffusive instabilities

with moderate Lewis numbers ~gas media! has also appeared

in the literature. Weaver and Viskanta17 experimentally and

numerically investigated this situation in a square cavity for

0.59,Le,2 and 29.42,N,0.55. They observed good

agreement with the experimental results in the cooperating

case. But due to the unsteadiness of the flow, they did not

obtain agreement in the opposing case. Béghein et al.18 nu-

merically obtained some correlations concerning mass and
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heat transfers in a square cavity filled with air mixed with

different kinds of pollutants. The comparison between the

numerical results obtained by Mahajan and Angirasa19 in bi-

nary gases ~Le'7! and the theoretical results predicted by

Gebhart and Pera20 by means of the thermosolutal boundary

layer theory indicates that boundary layer analysis is suitable

only when the two buoyant forces cooperate.19

In the present work we study steady solutions arising

with exactly opposing buoyancy forces, that is, N521. It is

well established that when the coefficients D and x are equal,

the trivial no-flow solution, remains stable, whatever the im-

posed temperature difference. But when they are different,

there exists a critical temperature ~or concentration! differ-

ence above which the trivial solution is unstable, and some

perturbations may grow. This threshold is estimated in terms

of the ~thermal! Rayleigh number.

Linear analyses have been performed in order to evalu-

ate this critical Rayleigh number Rac . Gobin and Bennacer
21

established that in an infinite vertical layer, the stability of

the motionless solution only depends on Ra~Le21!. They

showed, following the analysis carried out by Thorpe et al.,22

that Rac56122/(Le21). The analytical solution they ob-

tained only satisfies the impermeability condition at the side-

walls. Ghorayeb and Mojtabi23 and Xin et al.24 refined this

analysis and established that Rac56509/(Le21), corre-

sponding to the critical dimensionless wave number kc
52.53. More precisely, Ghorayeb and Mojtabi23 considered

vertical two-dimensional bounded boxes with various finite

extensions. Their results report the evolution of the critical

Rayleigh number with the aspect ratio. Using direct numeri-

cal simulations of convective solutions, they observed the

existence of a wide variety of steady one-cell and multicell

solutions for a fixed aspect ratio and Grashof number.

Our purpose here is to investigate the onset of convec-

tion and the stability of the steady flow structures. This ex-

pands on the previous work of Ghorayeb and Mojtabi,23 in

which the mechanisms by which stable solutions lose stabil-

ity or by which bifurcating unstable solutions regain stability

were not ascertained. We thus reconsider, in detail, the linear

stability analysis of vertical bounded boxes and carry out the

continuation of bifurcating stable or unstable steady solu-

tions. We next turn to the influence of the cavity inclination

on the stability.

The vast literature we referred to contrasts with the num-

ber of publications on the influence of cavity inclination on

the flow structures. Paliwal and Chen26,27 experimentally26

and theoretically27 studied the influence of cavity inclination

in a stably stratified fluid layer subjected to a lateral thermal

gradient. Their results show that the agreement between the

theoretical predictions ~based on linear stability analysis! and

the experimental measures of the critical parameters is good.

A nonlinear analysis has been carried out by Thangam

et al.28 to study the initial evolution of the double-diffusive

instability in an inclined cavity. In this study we indicate that

the pairs of counter-rotating cells predicted by the linear

theory merge into single cells, with the sense of rotation

experimentally observed. In the present paper, we also study

nonlinear interactions between bifurcating branches of solu-

tions for different angles of inclination.

The paper is organized as follows. In the next section,

the governing equations, their scaling, and the numerical

methods are outlined. The results are divided into two parts.

The first is devoted to linear analysis, where the influence of

the aspect ratio and of the inclination of the box with respect

to gravity are studied. The second part is the study of the

bifurcating solutions. A continuation method is used that al-

lows us to follow the path of stable or unstable steady solu-

tions.

II. MATHEMATICAL PROBLEM AND NUMERICAL
METHODS

A. Mathematical formulation

We consider a two-dimensional cavity of length L and

height H and aspect ratio A5H/L ~Fig. 1!. The box is filled
with a binary, incompressible fluid mixture. The rigid left

sidewall is maintained at a constant temperature T01DT and

concentration C01DC and the right sidewall at T0 and C0 ,

respectively (DT.0, DC.0). We assume that the Bouss-

inesq approximation is valid in the range of temperatures and

concentrations expected, so that the density r is constant

except in the buoyancy term, where it varies linearly with the

temperature and concentration:

r~T ,C !5r0@12bT~T2T0!2bC~C2C0!# , ~1!

where bT and bC are the thermal and solutal expansion co-

efficients respectively. In the following, we assume that bT
.0 and bC,0 ~r increases with C and decreases with T!.
The other physical properties, the mass diffusion coefficient

D, the thermal diffusivity x, and the kinematic viscosity n
are constant. The time, distance, velocity U(u ,w), tempera-

ture T, and concentration C are scaled with L2/n , L, n/L ,
DT , and DC , respectively. The dimensionless equations are

FIG. 1. Cavity configuration.
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]U

]t
52~U–“ !U2“p1¹2U

1GrT~T1NC !~cosak2sinai!, ~2a!

]T

]t
52~U–“ !T1

1

Pr
¹2T , ~2b!

]C

]t
52~U–“ !C1

1

Sc
¹2C , ~2c!

“–U50, ~2d!

where a is the angle ~2k,g!, ~i,k! are the x and z unit vectors,
and Pr5n/x and Sc5n/D are the usual Prandtl and Schmidt

numbers. GrT , GrS , and N are the thermal and solutal

Grashof numbers and the buoyancy ratio, defined as

GrT5
gbT~DT !L3

n2 , GrS5
gbC~DC !L3

n2 , N5

GrS

GrT
,

~3!

where g is the gravitational constant. No-slip conditions are

imposed along the rigid wall. Across the lower and upper

boundaries, the normal heat and mass fluxes are zero. Ac-

cordingly, the set of boundary conditions is

at z50 and z5A , u5w5

]C

]z
5

]T

]z
50; ~4a!

at x50, u5w5T215C2150; ~4b!

at x51, u5w5T5C50. ~4c!

In the following, we restrict our study to the case N5

21 and we denote Gr5GrT52GrS . The problem has the

following purely diffusive solution:

Ud50, Td~x !5Cd~x !512x . ~5!

B. Numerical methods

We used two numerical methods to investigate the prob-

lem: time integration and a continuation method. Time inte-

gration was carried out using a pseudospectral method. The

fields are discretized using the spectral element method

~Patera29! with Chebyshev polynomials along the Lobatto–

Chebyshev points. The linear terms are integrated implicitly

and the nonlinear terms explicitly using the pressure bound-

ary conditions given by Karniadakis.30 The resulting Poisson

problem on the pressure and the Helmoltz problems arising

from the diffusion terms are solved using a variational for-

mulation.

The continuation method uses the time integration

scheme that is adapted to compute steady states with a New-

ton method.31–34 The linear Newton system is solved using

an iterative conjugate gradient method. Once a solution has

been computed, classical continuation is performed, enabling

us to follow any branch of steady solutions. Finally, we oc-

casionally compute the leading eigenvalues and their corre-

sponding eigenvectors.32 The Newton solver has been

adapted to compute primary bifurcation points and to follow

their evolution with the aspect ratio and the inclination

angle.33,34

III. RESULTS

The linear analysis of the diffusive solution shows that

the threshold of instability depends on the product Ra~Le
21!, where Ra is the usual ~thermal! Rayleigh number. Note
that with the choice of the Rayleigh number Ra as a dimen-

sionless parameter, the threshold does not depend on the

Prandtl number. All the linear results will be thus presented

in terms of the thermal Rayleigh number instead of the ther-

mal Grashof number.

For the nonlinear behavior, we keep the Grashof number

for the bifurcation diagrams. The values of the Grashof num-

ber at secondary bifurcations or saddle-node points will de-

pend on the Prandtl and Schmidt numbers. However, we

believe that small variations in Pr or Sc do not produce im-

portant qualitative changes in the bifurcation diagrams we

present. The next results are obtained for Pr51 and Sc511.

This choice is motivated by earlier results ~Ghorayeb and

Mojtabi23!. A Prandtl number of the order of 1 and a Schmidt

number of the order of 10 to 100 correspond to molten salts

~Henry and Roux35!.

A. Linear analysis

In this section, we present the results of the linear stabil-

ity of the motionless solution. The vertical infinite box is the

next subsection and it is followed by the study of the

bounded box. The equations we consider are obtained by

linearizing Eqs. ~2! and ~4! about the purely diffusive solu-

tion ~5!. The resulting eigenvalue problem is

lU852“p81¹2U81Gr~T82C8!~cosak2sinai!,
~6a!

lT85U81

1

Pr
¹2T8, ~6b!

lC85U81

1

Sc
¹2C8, ~6c!

“–U850, ~6d!

with the boundary conditions

at z50 and z5A , u85w85

]C8

]z
5

]T8

]z
50;

~7a!

at x50 and x51, u85w85T85C850, ~7b!

where U8, p8, T8, and C8 are the velocity, pressure, tem-

perature, and concentration perturbations. Here l is the ei-

genvalue. At a primary steady bifurcation, l50. These equa-

tions indicate that C85Le T8. Eliminating C8 in the

equations, it is easily seen that the control parameter is

Ra~Le21!.

1. Infinite layer

For the infinite vertical layer, boundary conditions ~7!
are replaced by periodic boundary conditions of an imposed

wave number k. Equations ~6! are rewritten using a stream-

function ~c8! formulation and the z dependence of the fields
c8, T8, and C8 is e ikz. The resulting system is a sixth-order

differential equation with six boundary conditions. It is
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solved by the compound matrix method already used suc-

cessfully by Ghorayeb and Mojtabi.23 The results are dis-

played in Figs. 2~a! and 2~b!, and in Table I, in which the

variations of Rac(Le21) and the critical wave number kc
with the inclination are presented.

At a50, the threshold is Rac(Le21)56509.03, and the

critical wave number is kc52.5321. When a increases from

0 to p/2, the critical Rayleigh number decreases monotoni-

cally to Rac(Le21)51707.76 with kc53.1156. At a5p/2,
the cavity is horizontal. The fluid layer has a higher tempera-

ture and concentration at the top. In the absence of the tem-

perature difference, the problem reduces to the Rayleigh–

Bénard instability, in which the role of the temperature

gradient is played by the concentration gradient. When the

temperature gradient is added, the layer becomes more stable

with respect to buoyancy, and the region of stability is ex-

tended from the critical Rayleigh number Rac to Rac(Le

21) ~for a5p/2!.
Figure 2~a! indicates that the horizontal box ~a5p/2! is

far less stable than the vertical box. If the cavity is inclined

in the other direction ~a,0!, the critical Rayleigh number

increases to infinity and the critical wave number decreases

to zero. In Fig. 3, we display the structure of the convective

rolls in an arbitrary vertical extension. When a increases, the

extension of the rolls in the direction of the gravity increases.

Without the thermal contribution, the limit a52p/2 cor-
responds to a stable Rayleigh–Bénard configuration: it is

stable for any finite-amplitude perturbation. When thermal

effects are added, it remains linearly stable. The main reason

is that the Lewis number is larger than one. When Le,1 and

when a increases ~decreases!, the situation becomes more

stable ~unstable!.
The simplest physical explanation of the stabilizing ef-

fect of heating from below ~a,0! is the following. Let us

consider a fluid particle p lying at a distance x0 from the

warmer and more concentrated wall (x50). Suppose that

the Lewis number is much larger than one and that only

diffusive heat and mass transfers initially occur ~purely dif-

fusive regime!. The thermal and solutal gradients thus bal-

ance each other such that the resulting density gradient van-

ishes. We first consider a vertical cavity.

Suppose now that the particle p is moved away from the

wall a distance dx along the x direction. The particle p is

introduced into surroundings that are cooler and at a lower

concentration. The particle is thus cooled but its salinity does

not change very much, owing to a smaller solutal diffusivity

~Le@1!. The density difference between the particle p and its
vertical surroundings is mainly due to the concentration dif-

ference and not to the temperature difference, so that the

thermal contribution to the vertical density gradient can be

FIG. 2. Infinite layer: critical product Rac(Le21) ~a! and critical wave

number kc ~b! versus the inclination a.

TABLE I. Infinite layer: Variation of Rac .(Le21) and kc with a.

a Rac .(Le21) kc a Rac .(Le21) kc

0 6509.03 2.5321

1p/16 4605.99 2.7923 2p/16 9493.00 2.1761

1p/12 4147.39 2.8537 2p/12 10 795.00 2.0490

1p/8 3430.82 2.9447 2p/8 14 086.00 1.7916

1p/6 2916.11 3.0048 2p/6 18 631.00 1.5439

1p/4 2272.73 3.0700 2p/4 35 184.00 1.0912

1p/3 1930.10 3.0989 2p/3 81 922.00 0.6943

13p/8 1827.26 3.1074 23p/8 147 156.00 0.5121

15p/12 1759.65 3.1126

1p/2 1707.76 3.1156

FIG. 3. Streamfunction contours of the eigenvector for the infinite layer

with a52p/4 ~on the left side! 2p/8, 0, p/8, p/4, and p/2 ~on the right!.
The solid and dashed lines designate clockwise and counterclockwise rota-

tions, respectively. The cavity inclination with respect to gravity is indicated

close to the insets.
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negligible. This density difference drives the particle p

downward.

The vertical concentration gradient can be approximated

by ]C/]z0'(DC/L)(dx/dz0), where dz0 is an arbitrary

small distance in the vertical surroundings of p. If the cavity

is inclined at an angle a, the estimate of the vertical concen-
tration gradient becomes (DC/L). Here (dx1d1x)/dz0
'(DC/L)(dx/dz01sina), where d1x indicates that at a

small vertical translation dz0 of p corresponds a variation

d1x of its x coordinate. We note that this crude estimate of

the concentration gradient increases with a. The magnitude
of the solutally induced buoyancy force acting on a given

perturbation becomes stronger as a increases. Or in other

terms, for a positive inclination, a lower concentration dif-

ference DC is required to obtain the magnitude of the buoy-

ancy forces in the vertical cavity. As the Rayleigh number is

proportional to DC , the critical Grashof number decreases

when a increases from 2p/2 to p/2. However, these physi-
cal arguments ignore the viscosity effects and consider the

thermal contribution to be negligible.

The behavior of a horizontal fluid layer submitted to

vertical thermal and solutal gradients has been widely dis-

cussed in the literature ~Turner,2 Turner,4 and Sclunidt1!.
Linear stability analysis has been performed by Stern,36

Baines and Gill,37 Nield,38 and Veronis.39 The results they

obtained are summarized in the work of Turner.2

In the situation a5p/2 and NÞ21, long narrow con-

vecting cells, called salt fingers, are predicted and have been

observed over a certain range of parameters (N ,Le,Ra). Ac-

cording to Turner ~Turner,2 Fig. 2, p. 40!, the situation we

study (N521,a5p/2) is at the limit between the salt finger
regime and the steady convective regime. The convective

solutions we obtained are fully within the convective regime,

and there is no indication of the proximity of the finger re-

gime. We also did not observe the oscillatory mode of insta-

bility with a stabilizing solutal gradient when the layer is

heated from below. Again according to the results displayed

by Turner for N521, the oscillatory mode can occur below

a critical value of the thermal Rayleigh number that depends

on Pr and Sc.

2. Bounded layer

We refer to the cavity in which the lateral walls are

maintained at constant temperatures and concentrations as a

vertical cavity. The horizontal extent of the box is taken to

be 1, so that its vertical extent is the aspect ratio A.

For a given geometry, the critical Rayleigh number de-

pends on the Lewis number with a relation of the type:

Rac(Le21)5K(A ,a). In the previous section, we obtained

K56509.3 for an infinite vertical layer ~a50 and A→`).
Figure 4 displays the evolution of K with the cavity aspect

ratio at the two first bifurcation points. The lowest value Rac
is the value above which arbitrarily, infinitesimally small

perturbation may grow. It does not correspond to the thresh-

old below which convection cannot appear. As previously

mentioned, the critical Rayleigh number depends on the

Lewis number and the aspect ratio. Here, for instance, we

find that Rac517 172/(Le21) for a square cavity.

The geometry and the set of equations linearized about

the purely diffusive solution are invariant under centrosym-

metry, i.e., rotation of 180° about the midpoint of the cavity.

Let S0 denote this centrosymmetry and X(u ,w ,T ,c) a steady

solution. The operation S0 :X→S0(X) is (u ,v ,T ,C)(x ,z)→

2(u ,v ,T ,C)(12x ,A2z). One can easily prove that all of

the eigenvectors are either S0 symmetric, that is,

(u8,v8,T8,C8)(x ,z)52(u8,v8,T8,C8)(12x ,A2z) or S0
antisymmetric, that is, (u8,v8,T8,C8)(x ,z)

5(u8,v8,T8,C8)(12x ,A2z). Symmetric eigenvectors con-

tain an odd number of cells and antisymmetric eigenvectors

contain an even number of cells. We observe that the flow

structure changes continuously along each bifurcation curve

but that the parity remains the same ~Fig. 4!. The creation of
an additional roll is depicted in Fig. 4 for aspect ratios vary-

ing from 1 to 6. We observe that the new rolls are initially

infinitesimally small and created in the upper right and lower

left corners. All eigenvectors are either S0 symmetric or S0
antisymmetric. As discussed by Crawford and Knobloch,40

eigenvectors that have broken the S0 symmetry correspond

to a pitchfork bifurcation, whereas eigenvectors with S0
symmetry correspond to transcritical bifurcations.

From Fig. 4, an estimate of the critical dimensionless

wavelength of a convective roll can be obtained. The two

curves of bifurcation points cross at some particular aspect

ratio values. When the aspect ratio is increased above one of

these values, the number of rolls of the first critical eigen-

vector increases by one. An estimate of the typical length of

a convective roll is approximately given by the distance

along the aspect ratio axis separating two successive points

at which the two curves cross. Figure 4 indicates that this

occurs at 2.2 and 3.5, leading to a critical dimensionless

wavelength lc'2.6.

We restricted ourselves to the two first bifurcations. To

draw the curves in Fig. 4, we computed the most unstable

eigenvectors at A51 for various Grashof numbers and

FIG. 4. The critical product K(A ,a50)5Rac(Le21) for the two first

steady bifurcations versus the aspect ratio. The box is vertical ~a50!. The
solid curve represents transcritical bifurcations and the dashed curve, pitch-

fork bifurcations. Insets are streamfunction contours of the null eigenvectors

for integer aspect ratios. The null eigenvector of the first bifurcation is

drawn on the left side.
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started a continuation from the two first bifurcation points.

As explained by Riley and Winters,41 Winters et al.42 and

Cliffe and Winters,43 with no-slip boundary conditions,

curves of eigenvectors of opposite parity cross at

codimension-two primary bifurcation points, whereas same-

parity curves approach one another and recede. This guaran-

tees that no additional steady bifurcation points appear for

larger aspect ratios in between the two eigenvector curves we

computed.

We studied the influence of cavity inclination with re-

spect to gravity. Figures 5 display the evolution of the two

first thresholds with both the angle a and the aspect ratio A.

For a fixed aspect ratio A, and when a increases, the critical

Grashof number decreases. At a5p/2, the configuration is

the opposite of the Rayleigh–Bénard configuration: the fluid

is heated from the top, where the higher concentration is

maintained. But, because the Lewis number is larger than

one, this configuration is much more unstable than the verti-

cal box configuration. For A51 and when a decreases from

0 to 2p/3, we observe in Fig. 6 that the two bifurcation

curves cross so that the first bifurcation becomes a pitchfork

between 20.11p and 20.24p. The critical product Rac(Le

21) also drastically increases, a result that was indicated by

the linear theory in the infinite layer. On the other hand,

when a increases from 0 to p/2 they do not cross ~see Fig.
5!. For a fixed inclination a and when A increases, the two

bifurcation curves approach one another. The limit Rac(A

→` ,a) is given in Fig. 2~a!.

We mention that the results obtained by Paliwal and

Chen26,27 concerning the evolution of the critical Rayleigh

number qualitatively agree with our results as we show that

the inclined fluid layer heated from below is much more

stable than one heated from above ~Le.1!.

B. Nonlinear study

The results are presented with bifurcation diagrams plot-

ting a component of the velocity at a given point of the

cavity versus the Grashof number Gr. The location of this

point is not important for our purposes, provided that the

variations of the reported quantity with the Grashof number

clearly exhibit the behavior of the whole solution. In the

following, branches of stable steady solutions are continuous

curves, whereas unstable solutions are dashed or dash–

dotted curves. Despite the fact that unstable solutions lying

along the dashed curves cannot be observed physically, they

indicate the way in which stable solutions are created, anni-

hilated, or related to one another. Bifurcation diagrams aim

to provide a complete map of all possible solutions over a

certain range of parameter values and show the multiplicity

of stable and unstable solutions. The subscripts H, P, T, S,

and SN denote Hopf, primary pitchfork, primary transcriti-

cal, secondary pitchfork, and saddle-node bifurcation, re-

spectively. As previously mentioned, the entire nonlinear

study was conducted for Pr51 and Sc511.

1. Vertical cavity

For the square cavity, the purely diffusive solution is

stable up to GrT51717.2 ~Fig. 7!. At GrT , it undergoes a
transcritical bifurcation. Two solution branches emerge: the

stable supercritical branch for Gr.GrT and the unstable sub-

critical branch for Gr,GrT . Close to GrT , the solutions are

centrosymmetric three-roll flows. At GrSN'676.8, the sub-

critical branch undergoes a saddle-node bifurcation and be-

comes stable. It remains stable at least up to Gr55000, the

end of our computational domain. On this stable part, the

flow is a one-roll structure. The change from three to one roll

FIG. 5. The critical product K(A ,a)5Rac(Le21) for the two first steady

bifurcations versus the aspect ratio A and the inclination angle a. The two
surfaces intersect at codimension-two bifurcation points. One surface dis-

plays transcritical bifurcations and the other pitchfork bifurcations ~see Fig.
4!.

FIG. 6. The critical product K(A51,a)5Rac(Le21) for the two first,

steady bifurcations versus the inclination angle a ~in degrees! for a square

cavity A51. The solid curve represents transcritical bifurcations and the

dashed curve, pitchfork bifurcations.

554 Phys. Fluids, Vol. 11, No. 3, March 1999 Bergeon, Ghorayeb, and Mojtabi

Downloaded 24 Apr 2008 to 138.38.168.181. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



occurs around the saddle-node point: the main roll grows

while the two small rolls located at the upper right and lower

left corners vanish. During this change, the solution remains

centrosymmetric. The supercritical branch is stable up to

GrS53035. At GrS , it undergoes a pitchfork bifurcation.

Two subcritical branches of solutions emerge for Gr,GrS .

Neither solution is centrosymmetric, but for a fixed Gr, each

is transformed to the other by S0 . These two unstable

branches terminate at the second primary bifurcation GrP
52589.4. When Gr increases, the inclination direction of the

roll changes.

Above A'2.2, linear stability analysis indicates that the

first bifurcation is a pitchfork. Figure 8 presents the bifurca-

tion diagram for A52.6. The first bifurcation occurs for

GrP5765.9, and two subcritical unstable branches are cre-

ated. With decreasing Gr, the branches approach one another

and terminate at a secondary bifurcation point GrS'742.

This point is located on the subcritical branch created at the

second primary bifurcation for GrT5804.8. This branch is

twice unstable ~i.e., it has two positive eigenvalues! down to
GrS below which it is once unstable. For Gr'503, this

branch undergoes a saddle-node bifurcation and becomes

stable at least up to Gr52000 ~the end of our computational
domain!. The supercritical branch emerging at GrT is once

unstable and remains so at least up to Gr52000.

We observe that after the two bifurcation curves have

crossed ~Figs. 8 and 7!, the location of the secondary bifur-

cation has moved from the supercritical part to the subcritical

part of the transcritical bifurcation branches. This has been

discussed by Riley and Winters.41

The two aspect ratios A51 and A52.6 show that the

noncentrosymmetric solutions are unstable, even when the

first bifurcation is a pitchfork. However, the influence of

these branches of solution is important, as it may allow the

stabilization of one of the branches emerging at the second

primary bifurcation.

Figure 9 displays the bifurcation diagram obtained for

the aspect ratio A53.8. This diagram has a complicated ap-

pearance, but the basic scenario is as before. The diffusive

solution is destabilized by a transcritical bifurcation T to a

branch of three-roll solutions at GrT5705.5 @Fig. 9~a!#.
Along the supercritically emerging branch, a secondary

pitchfork bifurcation S1 to three-roll solutions occurs at

GrS1'710.6 and the two branches created terminate at the

second primary bifurcation P at GrP5715.57. The secondary

bifurcation S1 occurs along the supercritical branch after a

saddle-node bifurcation SN1 . Because the saddle node desta-

bilizes the branch for Gr,GrSN1'710.8, the branch becomes

twice unstable for Gr,GrS1 . The two bifurcations SN1 and

S1 are very close together so that accurate solution branches

near these points cannot be computed.

Along the supercritical branch, another saddle-node bi-

FIG. 7. The bifurcation diagram for a vertical cavity with aspect ratio A

51. Insets are concentration, temperature, and streamfunction contours. Pri-

mary bifurcations are transcritical ~T! at GrT51717 and pitchfork ~P! at

GrT52589. Secondary pitchfork bifurcation ~S! occurs at GrS'3035.

Dashed curves denote unstable solutions and continuous lines, stable solu-

tions. Resolution is 15315.

FIG. 8. ~a! The bifurcation diagram for a cavity with aspect ratio A52.6.

Insets are concentration, temperature and streamfunction contours. Primary

bifurcations are pitchfork ~P! to two-roll steady states at GrP5765.95 and

transcritical ~T! to three-roll steady states at GrT5804.76. A secondary

pitchfork bifurcation ~S! occurs at GrS5742.34. Dashed curves denote one-

time unstable solutions and dotted–dashed cuves two-times unstable solu-

tions. A saddle-node occurs at Gr5502.8. Resolution is 11321. ~b! The

enlargement of ~a!. The bifurcating two-roll branches are destroyed at a

secondary bifurcation S that leaves the bifurcating three-roll branch one-

time unstable for Gr,GrS .
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furcation occurs at GrSN25490.5 followed by a further sec-

ondary pitchfork bifurcation S2 at GrS25495.8. For

Gr.GrS2 , this branch becomes stable, and the resulting flow

has a two-cell structure. Each of the branches of the asym-

metric two-roll states created at S2 are once unstable. These

branches undergo two successive saddle-node bifurcations at

GrSN45771.7 and GrSN55496.8 and terminate at a second-

ary bifurcation S3 at GrS35560.5. This pitchfork bifurcation

S3 is located along the subcritical branch of one-roll solu-

tions created at GrT . But, surprisingly, a part of these two

branches located between the two saddle nodes SN4 and SN5

is stable @see Fig. 9~b!#. Both branches undergo a Hopf bi-

furcation at GrH'710 and become unstable. The Hopf bifur-

cations are supercritical and one of the two resulting stable

limit cycle is shown in Fig. 10 for Gr5730. We observe that

the flow is mainly a one-roll structure whose vertical extent

oscillates. The subcritical branch created at T is stabilized by

a saddle-node bifurcation SN3 , and remains stable up to S3 .

We conclude that, compared to smaller aspect ratios, ad-

ditional stable solutions have been created by secondary bi-

furcations. In particular, additional asymmetric one-roll so-

lutions and a centrosymmetric two-roll solution have

appeared. Such stable solutions have been observed by Ghor-

ayeb and Mojtabi23 who reported similar results for A54.

Similar complex sequences of bifurcations are reported

in Tsitverblit’s44 study of cavities with initially perpendicular

gradients of temperature and concentration.

2. Bounded inclined cavity

We investigated the influence of the inclination on the

steady solutions for the aspect ratio A51. Figure 11 presents

the bifurcation diagrams we obtained for a50, p/16, p/8,
3p/16, and p/4. For all the angles, the first bifurcation is

transcritical and the second is a supercritical pitchfork bifur-

FIG. 9. ~a! and ~b! The bifurcation diagram for a cavity with aspect ratio

A53.8. Insets are concentration, temperature, and streamfunction contours.

Primary bifurcations are transcritical ~T! to three-roll steady states at GrT
5705.5 and pitchfork to four-roll structures at GrP5715.57. Dashed curves

denote one-time unstable solutions and dotted–dashed cuves two-times un-

stable solutions. Resolution is 11321. ~a! The enlargement of ~b!. The four-

roll branches are destroyed at a secondary bifurcation S1 .

FIG. 10. The limit cycle at Gr5730, A53.8, and Le511. Contours of the

streamfunction, temperature ~in the middle!, and concentration ~bottom!
fields are shown. One period is presented. Resolution is 21331.
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cation. When a increases, GrT approaches GrSN and the

range of existence of the subcritical branch becomes smaller.

The secondary bifurcation point S in Fig. 11 is the point at

which the two branches of supercritical solutions emerging

at P are terminated. As a increases, GrS increases so that the

stable part of the branch of supercritical symmetric solutions

also increases. The streamfunction contours of the convec-

tive solutions are presented in Fig. 11. The limit case ~Fig.
12! a5p/2 is the configuration of the Rayleigh–Bénard

problem. It has the Z23Z2 symmetries that are generated by

two reflections Sx and Sz about the x5
1
2 and z5A/2 axes,

respectively. As discussed by Riley and Winters,41 the rep-

resentation of Z23Z2 is G5$I ,Sx ,Sz ,SxSz%, where SxSz is
the centrosymmetry S0 . The first bifurcation creates one-cell

solutions breaking the Sx and Sz symmetries. The second

bifurcation creates two-cell solutions breaking the Sx and S0
symmetries. Bifurcations P1 and P2 are thus pitchforks and

both create two branches with S0 and Sz symmetric solu-

tions, respectively. On the other hand, for a fixed Grashof,

the solutions along one branch resulting from P1 ~or P2) are

related by Sx or Sz ~or by Sx or S0) to those along the other

branch. Secondary bifurcations S1 and S18 occur on the two-

cell solution branches. Because the solutions on each branch

are dynamically equivalent, this necessarily occurs at the

same Grashof number. The resulting solutions break the Sz
symmetry. A similar situation is discussed by Riley and

Winters41 for a porous medium. The difference is an addi-

tional translation invariance in their case resulting from the

slip condition along the boundaries.

We observe that there is qualitative agreement between

our results and the results of Paliwal and Chen26,27 and

Thangam et al.28 concerning the sense of rotation of the con-

vective cells. One obstacle in comparing our results to ex-

perimental works is the difficulty to attain the situation N

521 experimentally. However, we believe that the study of

the particular situation N521 provides a stepping stone to a

better understanding of much more realistic situations in

which N differs from 21. The problem is qualitatively dif-

ferent when N5211e . The purely diffusive solution is no
longer a solution and, consequently, the branch of no-flow

solutions is replaced by a branch of convective solutions. A

similar phenomenon is considered by Riley and Winters25 in

a study of the analog of the Rayleigh–Bénard instability in a

saturated porous medium. The two-dimensional horizontal

configuration they consider is invariant under reflection in

the vertical and horizontal middle axes, and under its prod-

uct, called centrosymmetry. Thus, its symmetry group is a

representation of the group Z23Z2 . When the cavity is

tilted, there is no longer a purely diffusive solution. The

governing system of equations has lost the reflection symme-

tries but has kept the centrosymmetry. The authors observe

that the effect of tilting the cavity is to unfold all bifurca-

tions, except those that break the centrosymmetry.

For the vertical box that we consider here, changing N

does not affect the centrosymmetry and the purely diffusive

state is not a solution when NÞ21. Consequently, the bifur-

cations that do not break the centrosymmetry, i.e., the tran-

scritical bifurcations, will be rendered imperfect by changing

N, whereas the bifurcations that break the centrosymmetry,

i.e., the pitchfork bifurcations, will be preserved. Since the

FIG. 11. Bifurcation diagrams for a cavity with A51 and for a50 ~a!, p/16
~b!, p/8 ~c!, 3p/16 ~d!, and p/4 ~e!. Primary bifurcations are either pitchfork
~P! or transcritical ~T!. Insets are concentration, temperature, and stream-

function contours along the supercritical branch created at T ~top!, along one
of the two branches created at P ~middle! and along the subcritical branch

created at T ~bottom!. As a is increased the hysteresis of the transcritical

bifurcation T decreases and the secondary bifurcation S occurs at a larger

Grashof number GrS . Resolution is 15315.

FIG. 12. The bifurcation diagram for a cavity with aspect ratio A51 and an

inclination a5p/2. Insets are concentration, temperature and streamfunction

contours. Primary bifurcations are pitchfork ~P! at GrP15258.48 and GrP2
5674.23. Two secondary supercritical pitchfork bifurcations ~S and S8)

occur at GrS'1165. Dashed curves denote one-time unstable solutions and

dotted–dashed cuves two-times unstable solutions. The secondary bifurca-

tions are pitchfork and both create two branches of asymetric solutions. The

direction gravity is indicated in the figure. Resolution is 15315.
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transformation N521 to N5211e is continuous, the flow

structures of solutions for N5211e may not strongly differ

from those of the present work.

IV. CONCLUSIONS

Numerical techniques were used to study the initiation of

convection in double diffusive fluid layers. The influence of

the cavity inclination with respect to gravity was studied for

infinite layers and bounded cavities in the exactly opposing

situation (N5GrS /GrT521).

The results obtained with an infinite layer showed that

when a decreases, the critical Grashof number and the criti-

cal wavelength increase toward infinity.

For aP~2p/2,p/2! and a bounded cavity, the purely dif-
fusive solution possesses Z2 centrosymmetry and the first

primary bifurcation is either pitchfork or transcritical de-

pending on the aspect ratio and the cavity inclination. We

accurately computed the two first thresholds as functions of

a and A.

We calculated bifurcation diagrams for vertical cavities.

The results indicate that the two solution branches created at

a pitchfork primary bifurcation are terminated at secondary

bifurcation points that stabilize or destabilize the one-roll

branches. In the cases we studied, when the first bifurcation

is a pitchfork, it is always subcritical, so that it creates asym-

metric unstable solutions. For larger aspect ratios of order 4,

additional stable solutions appear. Those solutions are one-

roll solutions but do not share the centrosymmetry. They

result from secondary bifurcations along the branches of cen-

trosymmetric solutions.

For aP~2p/2,p/2!, the only symmetry is centrosymme-
try. When a increases from 0 to p/2, the hysteresis induced
by transcritical bifurcations decreases, and the location of the

secondary bifurcation, which destabilizes the subcritical so-

lution, approaches infinity. As a result, the region of bista-

bility is increased. At a5p/2, the purely diffusive solution

has all of the Z23Z2 symmetries, and the two first steady

primary bifurcations are pitchforks. The bifurcation diagram

we obtained is qualitatively the same as that obtained by

Riley and Winters in the Lapwood convection problem.
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