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1. Introduction

Quantum Homodyne Tomography (QHT), is a technique for reconstructing the
quantum state of a monochromatic light beam in cavity (Artiles et al., 2005).
Unlike classical optics, the predictions of quantum optics are probabilistic so
that we cannot in general infer the result of a single measurement, but only the
distribution of possible outcomes. The quantum state of a monochromatic light
beam in cavity is a positive, self-adjoint and trace-class operator ρ acting on
the Hilbert space L2(R). We should here distinguish the pure states which are
projection operators onto one-dimensional subspaces of L2(R), and mixed-states
which are all the other possible states.

Having prepared a quantum system in state ρ, the aim of the physicist is
to perform measurement of certain observables. Mathematically speaking, an
observable A is a self-adjoint operator on L2(R). A measurement is a mapping
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which assigns to an observable A and a state ρ a probability measure μA on R;
this mapping is given by the so-called Born-von Neumann formula (Hall, 2013).

Two observables of interest in quantum optics correspond to the measure-
ments of the electric field and the magnetic field of a light beam, and are given
respectively by the operator Q and P with domains D(Q) := {ψ ∈ L2(R) :
x �→ xψ(x) ∈ L2(R)} and D(P) := {ψ ∈ L2(R) : x �→ ψ′(x) ∈ L2(R)}. The
operarors Q and P act on D(Q), respectively D(P), as

Qψ(x) = xψ(x), and Pψ(x) = −iψ′(x).

The derivative in the definitions of D(P) and P is understood in the distribu-
tional sense.

By virtue of the Heisenberg uncertainty principle (Hall, 2013), the observ-
ables P and Q cannot be measured simultaneously; that is there is no joint
probability distribution associated to the simultaneous measurement of P and
Q. Nevertheless, the Wigner density Wρ : R2 → R, with respect to the Lebesgue
measure on R

2, as defined below, is the closest object to a joint probability den-
sity function associated to the joint measurement of P and Q on a system in
state ρ. The Wigner distribution satisfies

∫
R2 Wρ = 1, and its marginals on any

direction are bona-fide probability density functions. In general, however, Wρ

fails to be a proper joint probability density function, as it can take negative
values, reflecting the non classicality of the quantum state ρ. For a pure state
ρψ, ψ ∈ L2(R), the Wigner quasi-probability density of ρψ is defined as

Wψ(x, ω) :=

∫
R

ψ(x+ t/2)ψ(x− t/2)e−2πiωtdt, (x, ω) ∈ R
2. (1)

We delay to later the definition of the Wigner distribution for mixed states,
which will follow from the definition for pure states in a relatively straight-
forward fashion. Here we take the opportunity to say that whenever we will
be concerned with pure states, we will identify the state ρψ to the function
ψ ∈ L2(R), and talk abusively about the state ψ.

Although we cannot measure simultaneously the observables P and Q, it is
possible to measure the quadrature observables, defined asXθ := Q cos θ+P sin θ
for all θ ∈ [0, π]. We denote by Xρ

θ the random variable whose distribution is the
measurement of Xθ on the quantum system in state ρ. Assuming that θ is drawn
uniformly from [0, π], the joint probability density function (with respect to the
Lebesgue measure on R× [0, π]) for (Xρ

θ , θ) is given by the Radon transform of
the Wigner distribution Wρ, that is

pρ(x, θ) :=
1

π

∫
R

Wρ(x cos θ−ξ sin θ, x sin θ+ξ cos θ) dξ, (x, θ) ∈ R×[0, π]. (2)

For a pure state ψ ∈ L2(R), there is a convenient way of rewriting the previ-
ous equation, as stated for example in (Markus, Bryan and Jorge, 2010, equa-
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tion 4.14),

pψ(x, θ) =

⎧⎪⎨⎪⎩
1

2π| sin θ|
∣∣∫

R
ψ(z) exp

(
πi cot θ2 z2 − πi xz

sin θ

)
dz
∣∣2 θ �= 0, θ �= π/2,

|ψ(x)|2/π θ = 0,

|ψ̂(x)|2/π θ = π/2,

(3)

where ψ̂ is the Fourier transform of ψ (according to the convention defined in
the next section of the paper). Equation (3) emphasizes that for any (x, θ) we
indeed have pψ(x, θ) ≥ 0, a fact that remains true for mixed states, but which
is not so clear from the definition of equation (2).

Quantum homodyne tomography is an experiment that allow for measuring
the quadrature observablesXθ for a monochromatic light beam in cavity in state
ρ. Here we consider the situation when we perform identical and independent
measurements of Xθ on n quantum systems in the same state ρ, with θ spread
uniformly over [0, π]. Following Butucea, Guţă and Artiles (2007), it turns out
that a good model for a realistic quantum homodyne tomography must take
into account noise on observations.

In practice, the noise is mostly due to the fact that a number of photons fails
to be detected. The ability of the detector to detect photons is quantified by a
parameter η ∈ [0, 1], called the efficiency of the detector. When η = 0, then the
detector fails to detect all photons, whereas η = 1 corresponds to the ideal case
where all the photons are detected. In general, it is assumed that η is known
ahead of the measurement process, and η is relatively close to one, according
to the physicists. Then, from Butucea, Guţă and Artiles (2007, section 2.4), a
more realistic model for quantum homodyne tomography is to consider that we
observe the random variables (given θ)

Y ρ
θ = Xρ

θ +

√
1− η

η
Xvac

θ ,

where Xθ ∼ pρ(· | θ), and Xvac
θ is the random variable whose distribution is the

measurement of Xθ on the vacuum state and is assumed independent of Xρ
θ .

Here we adopt the convention that the vacuum state is the projection operator
onto x �→ 2−1/4 exp(−πx2). It turns out from equations (1) and (4) that Xvac

θ

has a normal distribution with mean zero and variance1 1/(4π). This leads to
the following efficiency corrected probability density function of observations,

pηψ(y, θ) :=

√
2

1− η

∫
R

pψ(x, θ) exp

[
− 2πη

1− η
(x− y)

2

]
dx. (4)

To shorten notations, we define

γ :=
π(1− η)

2η
, and Φγ(x) :=

√
π/γ exp

[
−π2x2/γ

]
, (5)

1Some readers may have noticed that the variance here is different that in Butucea, Guţă
and Artiles (2007). This comes from a different convention for defining the vacuum state.
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so that we have pηψ(y, θ) = [pψ(·, θ) ∗ Φγ ](y), where ∗ denote the convolution
product.

To summarize the statistical model we are considering in this paper, we aim at
estimating the Wigner density functionWρ, or better directly the state ρ, from n
independent and indentically distributed noisy observations (Y1, θ1), . . . , (Yn, θn)
distributed according to the distribution that has the density function of equa-
tion (4) with respect to the Lebesgue measure on R× [0, π].

The problem of QHT is a statistical nonparametric ill-posed inverse problem
that has been relatively well studied from a frequentist point of view in the last
few years, and now quite well understood. We mention here only papers with
theoretical analysis of the performance of their estimation procedure. We should
classify frequentist methods in two categories, depending on whether they are
based on estimating the state ρ, or estimating Wρ (although ρ �→ Wρ is one-to-
one, methods based on estimating Wρ don’t permit to do the reverse path from
Wρ �→ ρ).

The estimation of the state ρ from QHT measurements has been considered
in the ideal situation (η = 1, no noise) by Artiles et al. (2005), while the noisy
setting is investigated in Aubry, Butucea and Méziani (2008) under Frobenius-
norm risk. For smoothness class of realistic states R(C,B, r), an adaptive esti-
mation procedure has been proposed by Alquier, Meziani and Peyré (2013) and
an upper bound for the Frobenius-norm risk is given. Goodness-of-fit testing is
investigated in Méziani (2008).

Regarding frequentist methods for estimating Wρ, the first result goes back
to Guţă and Artiles (2007), where sharp minimax results are given over a class
of smooth Wigner functions A(β, r = 1, L), under the pointwise risk. The noisy
framework has been considered in Butucea, Guţă and Artiles (2007); authors
obtain the minimax rates of convergence under the pointwise risk and propose
an adaptive estimator over the set of parameters β > 0, r ∈ (0, 1) that achieve
nearly minimax rates. In the same time Méziani (2007) explored the estima-
tion of a quadratic functional of the Wigner function, as an estimator of the
purity of the state. In, Aubry, Butucea and Méziani (2008) an upper bound
for the L2-norm risk over the class R(C,B, r) is given. More recently, Lounici,
Meziani and Peyré (2015) established the first sup-norm risk upper bound over
A(β, r, L), as well as the first minimax lower bounds for both sup-norm and
L2-norm risk; they also provide an adaptive estimator that achieve nearly mini-
max rates for both sup-norm and L2-norm risk over A(β, r, L) for all β > 0 and
r ∈ (0, 2).

To our knowledge, no Bayesian nonparametric method has been proposed to
address the problem of QHT with noisy data, a gap that we try to fill with this
paper. In particular, after having introduced preliminary notions in the next
section, we propose two families of prior distributions over pure states that can
be useful in practice, namely mixtures of coherent-states and random Wilson
series. Regarding mixed-states, we will discuss how we can straightforwardly
extend the prior distributions over pure states onto prior distributions over
mixed states. After presenting simulation results, we will investigate posterior
rates of contraction for random Wilson series in the main section of the paper.
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Rates of contraction, or even consistency, is still challenging for coherent states
mixtures, a fact that will be discussed more thoroughly in section 5.2.

2. Preliminaries

2.1. Notations

For x, y ∈ R
d, xy denote the euclidean inner product of x and y, and ‖x‖ is

the euclidean norm of a vector x ∈ R
d. For any function f , we denote by f̆ the

involution f̆(x) = f(−x). We use the notation ‖ · ‖p for the norm of the spaces
Lp(Rd).

We use the following convention for the Fourier transform of a function f ∈
L1(Rd).

Ff(ω) := f̂(ω) :=

∫
Rd

f(x)e−2πixω dx, ∀ω ∈ R
d.

Then, whenever f ∈ L1(Rd) and Ff ∈ L1(Rd), the inverse Fourier transform
F−1Ff = f is well defined and given by

f(x) =

∫
Rd

f̂(ω)e2πiωx dω, ∀x ∈ R
d.

Regarding the space L2(Rd), we use the convention that the inner product
〈·, ·〉 : L2(Rd) × L2(Rd) → C is linear in the first argument and antilinear in
the second argument, that is for two functions f, g ∈ L2(Rd) we define 〈f, g〉 :=∫
Rd f(x)g(x) dx, where z is the complex conjugate of z ∈ C. The unit circle of

L2(Rd) will be denoted by S
2(Rd); that is S2(Rd) := {f ∈ L2(Rd) : ‖f‖2 = 1}.

We shall sometimes encounter the Schwartz space S(Rd); that is the space
of all infinitely differentiable functions f : Rd → R for which |xαDβf(x)| <
+∞ for all α, β ∈ Nd, with the convention xα = xα1

1 . . . xαd

d and Dβf =

∂β1+···+βdf/(∂xβ1

1 . . . ∂xβd

d ).
Dealing with probability distributions, we consider the Hellinger distance

H2(P,Q) := 1
2

∫
(
√

dP/dλ −
√
dQ/dλ)2 dλ, for any probability measures P,Q

absolutely continuous with respect to a common measure λ.
We denote by Pρ, respectively P η

ρ , the distributions that admit equation (2),
respectively equation (4), as density with respect to the Lebesgue measure on
R× [0, π]. When ρ ≡ ρψ denote a pure state, we denote the previous distribution
by Pψ and P η

ψ , respectively.
Finally, inequalities up to a generic constant are denoted by the symbols �

and �, where a � b means a ≤ Cb for a constant C > 0 with no consequence
on the result of the proof.

2.2. Coherent states

In quantum optics, a coherent state refers to a state of the quantized electro-
magnetic field that describes a classical kind of behavior.
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Let Txf(y) := f(y − x), Mωf(y) = e2πiωyf(y), denote the translation and
modulation operators, respectively, and g a window function with ‖g‖2 = 1;
most of time g is chosen as g(x) = 2−1/4 exp(−πx2). Mathematically speaking,
coherent states are pure states ρψ, that is projection operators, described by a
wave-function ψ belonging to{

ψ ∈ L2(R) : ψ = TxMωg (x, ω) ∈ R
2
}
.

Note that the operators Tx and Mω are isometric on Lp(Rd) and ‖f‖p =
‖TxMωf‖p for any 1 ≤ p ≤ ∞, all f ∈ Lp(Rd) and all x, ω ∈ R.

2.3. Wilson bases

Daubechies, Jaffard and Journé (1991) proposed simple Wilson bases of expo-
nential decay. They constructed a real-valued function ϕ such that for some
a, b > 0,

|ϕ(x)| � e−a|x|, |ϕ̂(ω)| � e−b|ω|,

and such that the ϕlm, l ∈ N, m ∈ 1
2Z defined by

ϕlm(x) :=

⎧⎪⎨⎪⎩
ϕ(x− 2m) if l = 0,√
2ϕ(x−m) cos(2πlx) if l �= 0 and 2m+ l is even,√
2ϕ(x−m) sin(2πlx) if l �= 0 and 2m+ l is odd,

constitute an orthonormal base for L2(R). Following Gröchenig (2001, sec-
tion 8.5), we may rewrite ϕlm in a convenient form for the sequel, emphasizing
the relationship with coherent states,

ϕlm = clTm(Ml + (−1)2m+lM−l)ϕ, (l,m) ∈ N× 1
2Z, (6)

where c0 := 1/2 and cl := 1/
√
2 for l ≥ 1.

3. Prior distributions

We recall that a pure state ρψ is a projection operator onto a one-dimensional
subspace of L2(R). Before giving the methodology for estimating general states,
we introduce two types of prior distribution over pure-states. More precisely,
we first define two probability distributions over S

2(R), that can be trivially
identified with the set of pure-state through the mapping S

2(R) � ψ �→ ρψ; then
we will show how to enlarge these prior distributions to handle mixed states.

The first prior model is based on Gamma mixtures, whereas the second is
based on the Wilson base of exponential decay.
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3.1. Gamma Process mixtures of coherent states

For any finite positive measure α on the measurable space (X,X ), let Πα denote
the Gamma process distribution with parameter α; that is, a Q ∼ Πα is a
measure on (X,X ) such that for any disjoints B1, . . . , Bk ∈ X the random
variablesQ(B1), . . . , Q(Bk) are independent random variables with distributions
Ga(α(Bi), 1), i = 1, . . . , k.

We suggest a mixture of coherent states as prior distribution on the wave
function ψ. For a Gamma random measure Q on R

2× [0, 2π], our model may be
summarized by the following hierarchical representation. Recall that P η

ψ denote
the probability distribution having the density of equation (4), with ρ = ρψ the
projection operator onto ψ.

(Y1, θ1), . . . , (Yn, θn)
i.i.d∼ P η

ψ , with ψ = ψ̃/‖ψ̃‖2

ψ̃(z) =

∫
R2×[0,2π]

eiφTxMωg(z)Q(dxdωdφ)

Q ∼ Πα.

3.2. Random Wilson series

Let (ϕlm) be the orthonormal Wilson base with exponential decay of section 2.3.
For any positive number Z, let ΛZ be the spherical array

ΛZ :=
{
(l,m) ∈ N× 1

2Z : l2 +m2 < Z2
}
.

Also define the simplex ΔZ in the �2 metric as

ΔZ :=
{
p = (plm)(l,m)∈ΛZ

:
∑

(l,m)∈ΛZ
p2lm = 1, plm ≥ 0

}
.

We consider the following prior distribution Π on S2(R). Let PZ be a distribution
over R+ and draw Z ∼ PZ . Given Z, draw p from a distribution G(· | Z) over
the simplex ΔZ . Independently of p, draw ζ = (ζlm)(l,m)∈ΛZ

from a distribution

Pζ(· | Z) over [0, 2π]|ΛZ | and set

ψ :=
∑

(l,m)∈ΛZ

plmeiζlm ϕlm.

Note that (ϕlm) is orthonormal, thus ‖ψ‖22 =
∑

(l,m)∈ΛZ
p2lm = 1 almost-surely,

that is ψ ∈ S
2(R) almost-surely.

3.3. Estimation of mixed states

The set of quantum states is a convex set. According to the Hilbert-Schmidt
theorem on the canonical decomposition for compact self-adjoint operators, for
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every quantum state ρ there exists an orthonormal set (ψn)
N
n=1 in L2(R) (finite

or infinite, in the latter case N = ∞), and αn > 0 such that

ρ =

N∑
n=1

αnρψn , and Trρ =

N∑
n=1

αn = 1.

The (αn)
N
n=1 are the non-zero eigenvalues of ρ and (ρψn)

N
n=1 projection operators

onto (ψn)
N
n=1. Thus every mixed state is a convex linear combination of pure

states. In particular, for any state ρ we have

Wρ(x, ω) =

N∑
n=1

αnWψn(x, ω),

making relatively straightforward the extension of priors over pure states onto
priors over general states. In other words, a prior distribution over general states
can be constructed as a mixture of pure states by a random probability measure.

4. Simulations examples

We test the Gamma process mixtures of coherent states on two examples of
quantum states, corresponding to the Schrödinger cat and 2-photons states,
that are respectively described by the wave functions

ψx0
cat(x) :=

exp(−π(x− x0)
2) + exp(−π(x+ x0)

2)

21/4
√

1 + exp(−2πx2
0)

,

ψ2(x) := 2−1/4(4πx2 − 1) exp(−πx2).

Using equations (1) and (2), it is seen that the conditional density on θ ∈ [0, π]
corresponding to the measurement of Xθ on the systems in states ψx0

cat and ψ2

are respectively given by

px0
cat(x | θ) ∝

√
2e−2π(x−x0 cos θ)2

+
√
2e−2π(x+x0 cos θ)2 + 2e−2πx2

0

√
2e−2πx2

cos(4πxx0 sin θ)

e−2πx2
0 sin2 θ

,

and,

p2(x | θ) = 2−1/2(4πx2 − 1)2e−2πx2

.

Note that px0
cat(· | θ) is not a mixture density, since one term can take negative

values. Conditionally on θ drawn uniformly on [0, π], we simulate observations
from the Schrödinger cat state with x0 = 2 using px0

cat(· | θ) and the rejec-
tion sampling algorithm with candidate distribution 1

2N (−x0 cos θ, 1/(4π)) +
1
2N (x0 cos θ, 1/(4π)). Similarly, we simulate observations from the 2-photons
state using the rejection sampling algorithm with a Laplace candidate distribu-
tion. Finally, a Gaussian noise is added to observations according to equation (4).
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4.1. Simulation results

We use the algorithm of Naulet and Barat (2015) for simulating samples from
posterior distributions of Gamma process mixtures. The base measure α on
R

2 × [0, 2π] of the mixing Gamma process is taken as the independent product
of a normal distribution on R

2 with covariance matrix diag(1/2, 1/2) and the
uniform distribution on [0, 2π].

We ran 3000 iterations of the algorithm for n = 500, n = 2000 and n = 5000
simulated observations of either the Schrödinger cat state or the 2-photons state,
with efficiencies of η = 0.85 and η = 0.95. The algorithm was run with p = 50
particles (see Naulet and Barat, 2015), leading to an acceptance rate of approx-
imately 60% for the particle moves for all runs. All random-walk Metropolis-
Hastings steps are Gaussians, with amplitudes chosen to achieve approximately
25% acceptance rates. All the statistics were computed using only the 2000 last
samples provided by the algorithm.

Schrödinger cat 2-photons

η = 0.85 η = 0.95 η = 0.85 η = 0.95

500 obs. 0.316 0.347 0.044 0.027

2000 obs. 0.134 0.124 0.010 0.006

5000 obs. 0.047 0.048 0.005 0.003

Table 1

Summary of the average over 100 runs of the L2-error between the true Wigner distribution
and the posterior mean estimate for varying number of observations and efficiency of the

detector.

For each run of of the algorithm, we computed the L2-error between the true
Wigner distribution and the posterior mean estimate. The error was computed
using Simpson integration on a fine grid. Table 1 presents the average of the
L2-error over 100 runs of the algorithm for varying number of observations and
efficiency of the detector. Surprisingly, the efficiency of the detector seems to
only have a little impact on the error, and there is no clear difference between
the results for η = 0.85 and η = 0.95. However, the number of observations has
a clear impact on the error, although on these simple examples we believe it is
not worth to increase the number of data above 5000 since the gain on error is
then very low for a huge increase of the computation cost.

Figures 1 and 3 represent the average of posterior samples of the Wigner
distribution for the Schrödinger cat state, and the 2-photons state, respectively,
for n = 2000 observations and η = 0.95. Because it is hard to distinguish between
the posterior mean estimator and the true Wigner distribution, we added to the
figures a view map of the absolute value of the difference between the evaluated
posterior mean and the true Wigner distribution.

Figures 2 and 4 show the marginals of the posterior mean estimates of Wigner
distributions for our two examples. We represented the true marginals in dashed
lines, as well as the posterior credible bands provided by the algorithm, which
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Fig 1. Left: Average of Wigner distribution samples from the posterior distribution of the
mixture of coherent states prior given 2000 quantum homodyne tomography observations sim-
ulated from a Schrödinger cat state with η = 0.95. Right: View map of the absolute value of
the difference between the posterior mean estimate of the Wigner distribution and the true
Wigner distribution.

Fig 2. Marginals of the Wigner distribution samples from the posterior distribution of the
mixture of coherent states prior given 2000 quantum homodyne tomography observations sim-
ulated from a Schrödinger cat state with η = 0.95. In straight line the posterior mean estimate,
whereas the dashed lines corresponds to the true marginals. The 95% credible intervals for
the sup-norm distance are drawn in shading.
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Fig 3. Left: Average of Wigner distribution samples from the posterior distribution of the
mixture of coherent states prior given 2000 quantum homodyne tomography observations sim-
ulated from a 2-photons state with η = 0.95. Right: View map of the absolute value of the
difference between the posterior mean estimate of the Wigner distribution and the true Wigner
distribution.

Fig 4. Marginals of the Wigner distribution samples from the posterior distribution of the
mixture of coherent states prior given 2000 quantum homodyne tomography observations sim-
ulated from a 2-photons state with η = 0.95. In straight line the posterior mean estimate,
whereas the dashed lines corresponds to the true marginals. The 95% credible intervals for
the sup-norm distance are drawn in shading.
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we computed by retaining the 95% samples with the smaller sup-norm distance
from the posterior mean estimator of the marginals.

Compared to other classical methods in this area, our estimate is non linear,
preventing easy computations. To our knowledge, however, none of the current
approaches can preserve the physical properties of the true Wigner function
(non negativity of marginal distributions, bounds) whereas our approach does
guarantee preservation of all physical properties.

5. Rates of contraction for random series priors

In this section, we establish posterior convergence rates in the quantum ho-
modyne tomography problem, for estimating pure states. Unfortunately, to get
such result we need a fine control of the L2(R) norm of random functions drawn
from the prior distribution, which remains challenging for mixtures of coherent
states. However, dealing with Wilson bases, the control of the L2(R) norm is
straightforward and we are able to obtain posterior concentration rates.

5.1. Preliminaries on function spaces

To establish posterior concentration rates, we describe suitable classes of func-
tions that can be well approximated by partial sums of Wilson bases elements;
these functional classes are called ultra-modulation spaces. To this aim, we need
the following ingredients: the short-time Fourier transform (STFT), a class of
windows and a class of weights. For a non-zero window function g ∈ L2(R),
the short-time Fourier transform of a function f ∈ L2(R) with respect to the
window g is given by

Vgf(x, ω) := 〈f, MωTxg〉 =
∫
R

f(t)g(t− x)e−2πiωt dt, (x, ω) ∈ R
2. (7)

We also need a class of analyzing windows g with sufficiently good time-
frequency localization properties. Following, Cordero (2007); Cordero et al.
(2005); Gröchenig and Zimmermann (2004), we use the Gelfand-Shilov space
S1
1 (R). For any d ≥ 1, a function f : Rd → C belongs to the Gelfand-Shilov

space S1
1 (R

d) if f ∈ C∞(Rd) and there exist real constants h > 0 and k > 0
such that

sup
x∈Rd

|f(x)eh‖x‖| < +∞, sup
ω∈Rd

|f̂(ω)ek‖ω‖| < +∞.

Next, for β > 0, g ∈ S1
1 (R), and r ∈ [0, 1), we consider the exponential weights

on R
2 defined by x �→ exp(β‖x‖r), and we introduce the class of wave-functions

Cg(β, r, L) :=
{
ψ ∈ S

2(R) :

∫
R2

|Vgψ(z)| exp(β‖z‖r)dz ≤ L

}
. (8)

The class Cg(β, r, L) is reminiscent tomodulation spaces (Gröchenig, 2001, 2006).
Note that it would be interesting to consider Cg(β, r, L) for r ≥ 1, since most
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quantum states should fall in these classes. There is, however, at least two
limitations for considering r ≥ 1. First, we use repeatedly in the proofs that
exp(β‖x+y‖r) ≤ exp(β‖x‖r) exp(β‖y‖r) for r ≤ 1, which is no longer true when
r > 1. The previous limitation is indeed not the more serious concerns, since
for r > 1 we could use that exp(β‖x+ y‖r) ≤ exp(2r−1β‖x‖r) exp(2r−1β‖y‖r).
The more serious problem is that, to our knowledge, there is no Wilson base for
L2(R) whose elements fall into Cg(β, r, L) for r > 1 and β > 0, L > 0. The case
r = 1 is more delicate since it depends on the value of β. For sufficiently small
β > 0, the results proved in this paper for r < 1 should also hold for r = 1.

Let also notice that, there is a fundamental limit on the growth of the weights
in the definition of Cg(β, r, L), imposed by Hardy’s theorem. If r = 2 and β >
π/2, the the corresponding classes of smoothness Cg(β, r, L) are trivial for any
L > 0 (Gröchenig and Zimmermann, 2001).

A critical point regarding the class Cg(β, r, L) is the dependence on g in the
definition. We truly want that for two different windows g0 and g1 the corre-
sponding smoothness classes are the same. Fortunately, we have the following
theorem, proved in appendix A.

Theorem 1. Let g, g0 ∈ S1
1 (R). For all β, L > 0 and all 0 ≤ r < 1 there is

a constant C > 0, depending only on g, g0, such that embedding Cg(β, r, L) ⊆
Cg0(β, r, CL) holds.

The STFT and the Wigner transform both aim at having a time-frequency
representation of functions in L2(R), and are deeply linked to each other. How-
ever, contrarily to the Wigner transform, the STFT has the advantage of being
a linear operator, which is one reason why we prefer to state the class Cg(β, r, L)
in term of the STFT instead of the Wigner transform.

5.2. Assumptions and results

Before stating the main result of this paper, we need some further assumptions
on the random Wilson base series prior, which we state now. To this aim, we
need the following definition of the weighted simplex Δw

Z(β, r,M). For a constant
M > 0, β > 0 and r ∈ [0, 1) let

Δw
Z(β, r,M) :=

{
p ∈ ΔZ :

∑
(l,m)∈ΛZ

plm exp
(
β(l2 +m2)r/2

)
< M

}
.

Then, in the sequel, we assume that

• There is a constant a0 > 0 such that for any sequence (xlm)(l,m)∈ΛZ
∈

[0, 2π]|ΛZ |,

Pζ

(∑
(l,m)∈ΛZ

|ζlm − xlm|2 ≤ t | Z
)
� exp

(
−a0Z

2 log t−1
)
, ∀t ∈ (0, 1).

• PZ(Z < +∞) = 1 and there are constants a1, a2 > 0 and b1 > 2 + r, such
that for all k positive integer large enough

PZ(Z = k) � exp(−a1k
b1), PZ(Z > k) � exp(−a2k

b1).
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• For any constant C > 0 and any sequence q ∈ Δw
Z(β, r, C), there is a

constant a3 > 0 such that the distribution G(· | Z) satisfy,

G
(∑

(l,m)∈ΛZ
|plm − qlm|2 ≤ t | Z

)
� exp

(
−a3Z

b1−r log t−1
)
, ∀t ∈ (0, 1).

We further assume that there exist constants a4 ≥ 0, a5, c0 > 0, and
b5 > b1/r such that for x > 0 large enough

G
(
p /∈ Δw

Z(β, r, c0x
a4) | Z ≤ x1/r

)
� exp

(
−a5x

b5
)
.

It is not clear whether or not we can find a distribution G for which the
above conditions are satisfied simultaneously for all (β, r, L), eventually with
constants a3, a4, a5, b5 depending on (β, r, L). If such distribution exists, then
the rates stated below are easily seen to be adaptive on (β, r, L). In section 6,
we show that for a given (β, r, L) it is easy to construct a distribution G that
satisfies the above conditions, with a4 = 2/r. However, we believe that the proof
for adaptive rates must follow a different path, still to be found.

Under the hypothesis above, we will dedicate the rest of the paper to prove
the following theorem.

Theorem 2. Let β, L > 0 and r ∈ (0, 1). Let Π be the random Wilson series
prior satisfying the assumptions above, and (Y1, θ1), . . . , (Yn, θn) be observations
coming from the statistical model described by equation (4), with 0 < η < 1 and
γ > 0 defined in equation (5). Then for any ψ0 ∈ Cg(β, r, L), there is M > 0
such that

P η,n
ψ0

Π(‖ψ − ψ0‖2 ≥ Mεn | (Y1, θ1), . . . , (Yn, θn)) → 0,

ε2n = (log n)2a4 exp

{
−β

(
logn

2γ

)r/2
}
.

Note that the same result holds with ‖ψ−ψ0‖2 replaced with ‖Wψ −Wψ0‖2,
because the Wigner transform is isometric from L2(R) onto L2(R2); see for
instance Gröchenig (2001, proposition 4.3.2).

The rates of contraction are relatively slow, a fact that is also pointed out in
Butucea, Guţă and Artiles (2007). Indeed, the rates are faster than (log n)−a

but slower than n−a, for all a > 0. The reason for such bad rates of convergence
is to be found in the deconvolution of the Gaussian noise. If one does not care
about deconvoluting the noise, then all the steps in the proof of theorem 2 can
be mimicked to get weaker a result. In particular, we infer from the results of
the paper that the posterior distribution should contracts at nearly parametric
rates, i.e. at rate εn ≈ n−1/2(logn)t for some t > 0, around balls of the form{

ψ ∈ S
2(R) :

∫
R2

|Ŵψ(z)− Ŵψ0(z)|2 Φ̂γ(‖z‖)2dz ≤ ε2n

}
, (9)

whenever ψ0 ∈ Cg(β, r, L) for some β, L > 0 and r ∈ (0, 1). Moreover, we’ve
made many restrictive assumptions on the prior distribution that can be easily
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released for those interested only in posterior contraction around balls of the
form (9).

A natural question regarding the rates found in theorem 2 concerns optimal-
ity. We do not know yet the minimax lower bounds over the class Cg(β, r, L) for
the L2 risk. However, Butucea, Guţă and Artiles (2007); Aubry, Butucea and
Méziani (2008); Lounici, Meziani and Peyré (2015) consider a class A(α, r, L)
that resembles to Cg(β, r, L). More precisely, they define

A(α, r, L) :=

{
Wρ :

∫
|Ŵρ(z)|2 exp(2α‖z‖r)dz ≤ L2

}
.

Identifying ρψ with ψ, our proposition 7 state the embedding Cg(β, r, L) ⊆
A(β/2, r, L). Hence Cg(β, r, L) is certainly contained in the intersection of a
class A(β/2, r, L) with the set of pure states, and it makes sense to compare
the rates. To our knowledge, the only minimax lower bound for the quadratic
risk known is for the estimation of a state in A(α, r = 2, L), stated in Lounici,
Meziani and Peyré (2015); although minimax lower bounds for the pointwise
risk are known since Butucea, Guţă and Artiles (2007) for all r ∈ (0, 2). For
r ∈ (0, 1), however, upper bounds for the quadratic risk over A(β/2, r, L) are
established in Aubry, Butucea and Méziani (2008), and coincide with the rates
found here. Therefore, we believe that the rates we found in this paper are
optimal.

Let conclude with a few points that are still challenging at this time. First,
the rates (or even consistency) for the coherent states mixtures priors appears
difficult to establish with the method employed here; the reason comes from
the difficulty to control the norm ‖ψ̃‖2 when ψ̃ is a coherent states mixture.
Regarding Wilson based priors, we already discussed the lack of adaptivity,
which clearly deserved to be dug in a near future. Finally, it would be interesting
to consider priors based on Gabor frames expansions, as they are more flexible
than Wilson bases, and should be computationally more efficient than coherent
states mixtures. However, Gabor frames suffer from the same evil that coherent
states, namely the expansions are not unique and it is hard to control from
below the L2 norm of random Gabor expansions.

6. Example of prior on the simplex

In this section, we construct a prior on the simplex ΔZ that satisfy the assump-
tions of section 5.2 for a given (β, r). For all k ≥ 1, and a constant M > 0 to be
defined later, we define the sets

Ik :=
{
(l,m) ∈ N× 1

2Z : (k − 1)M ≤
√
l2 +m2 < kM

}
.

We assume without loss of generality that Z = KM for an integer K > 0;
then ΛZ = ∪K

k=1Ik. We then construct the distribution G(· | Z) over the sim-
plex ΔZ as follows. For k = 2, . . . ,K, let Hk be the uniform distribution over
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[0,
√
2L exp(−β(kr − 1)Mr)]. Let θ1 := 1 and for k = 2, . . . ,K draw θk from Hk

independently. The next step is to introduce distributions Fk over the Ik-simplex

Sk :=
{
(ηlm)(l,m)∈Ik

:
∑

(l,m)∈Ik
η2lm = 1, ηlm ≥ 0

}
,

and draw independently sequences (ηlm)(l,m)∈I1
, (ηlm)(l,m)∈I2

, . . . , (ηlm)(l,m)∈IK
,

according to distributions F1, F2, . . . , FK . Finally, the sequence p=(plm)(l,m)∈ΛZ

drawn from G(· | Z) is defined to be such that

plm :=
ηlmθk1 ((l,m) ∈ Ik) .∑K

k=1 θ
2
k

.

Now we prove that we can chose reasonably M > 0 and the distributions
F1, F2 . . . to met the assumptions of section 5.2. The proofs of the next two
propositions are to be found in appendix D.

Proposition 1. There is a constant c0 > 0 such that for any Z ≥ 0 it holds
(plm)(l,m)∈ΛZ

∈ Δw
Z(β, r, c0Z

2) with G(· | Z) probability one.

Proposition 2. Let M > 0 be large enough, K ≥ 0 integer, and Z = KM .
Assume that there is a constant c0 > 0 and a sequence (dk)

K
k=1 such that∑K

k=1 dk ≤ c0K, and for any sequence (elm)(l,m)∈Sk
it holds Fk(

∑
(l,m)∈Ik

|ηlm−
elm|2 ≤ t) � exp(−dkK

b1−r−1 log t−1). Then there is a constant a3 > 0 such
that G(

∑
(l,m)∈ΛZ

|plm − qlm|2 ≤ 12t | Z) � exp(−a3Z
b1−r log t−1).

In the previous proposition, some conditions are required on F1, F2, . . . ; these
conditions are indeed really mild. For instance, it follows from Ghosal, Ghosh
and Van Der Vaart (2000, lemma 6.1) that the conclusion of proposition 2 is
valid if ηlm :=

√
ulm where (ulm)(l,m)∈Ik

are drawn from Dirichlet distributions
with suitable parameters.

7. Proof of theorem 2

The proof of theorem 2 follows the classical approach of Ghosal, Ghosh and Van
Der Vaart (2000); Ghosal and van der Vaart (2007) for which the prior mass of
Kullback-Leibler type neighborhoods need to be bounded from below and tests
constructed. See details in appendix E.

Throughout the document, we let Dβ,r
n := (log(n)/β)1/r. Then we introduce

the following events, which we’ll use several times in the proof of posterior
contraction rates.

En :=
{
(y, θ) ∈ R× [0, 2π] : |y| ≤ Dβ,r

n

}
, (10)

Ωn := {((y1, θ1), . . . , (yn, θn)) : (yi, θi) ∈ En ∀i = 1, . . . , n}. (11)

7.1. Prior mass of Kullback-Leibler neighborhoods

We introduce a new variation around the basic lines of Ghosal, Ghosh and
Van Der Vaart (2000); Ghosal and van der Vaart (2007), permitting to slightly
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weaken the so-called Kullback-Leibler (KL) condition. We show that we can
trade the KL condition for a restricted KL condition; that is prior positivity of
the sets

Bn(δn) :=

⎧⎨⎩ψ :

∫
En

pηψ0
log

pηψ0

pηψ
≤ δ2n,

∫
En

pηψ0

(
log

pηψ0

pηψ

)2

≤ δ2n

⎫⎬⎭. (12)

Although looking trivial, this will ease the proof of our main theorem, since the
prior positivity of Bn(δn) is simpler to prove than the classical positivity of KL
balls of Ghosal, Ghosh and Van Der Vaart (2000); Ghosal and van der Vaart
(2007).

7.1.1. Decay estimates of the true density

It is a classical fact that in Bayesian nonparametrics we often require tails as-
sumptions on the density of observations to be able to state rates of convergence.
Here, the density of observations is quite complicated, as being the convolution
of a Gaussian noise with the Radon-Wigner transform of ψ. Since the Wigner
transform of ψ interpolates ψ and its Fourier transform, we definitively have
to take care about fancy tails assumptions on the density that could be non
compatible with the requirements of a Wigner transform. Instead, we show that
the decay assumptions on the STFT stated in the definition of Cg(β, r, L) di-
rectly translate onto the tails of the joint density of observations. We have the
following theorem, whose proof is given in appendix B.1.

Lemma 1. For all β, L > 0 and all r ∈ (0, 1) there is a constant C(β, r, η) > 0
such such that P η

ψ(E
c
n) ≤ 2πC(β, r, η)L2n−2 and P η,n

ψ (Ωc
n) ≤ 2πC(β, r, η)L2n−1

for all ψ ∈ Cg(β, r, L).

7.1.2. Approximation theory

In order to prove the prior positivity of the sets Bn(δn), we need to construct a
familyMn of functions in S

2(R) that approximate well ψ0 in the L2(R) distance.
We will show later that the sets Bn(δn) contains suitable closed balls around ψ0

in the norm of L2(R).
In the sequel, we need to relate the parameters β, r, L to the decay of the

coefficients 〈ψ0, ϕlm〉 of ψ0 ∈ Cg(β, r, L) expressed in the Wilson base. Fortu-
nately, Wilson bases are unconditional bases for the ultra-modulation spaces,
and Cg(β, r, L) is a subset of the ultra-modulation space M1

β,r. It follows the
following lemma (Gröchenig, 2001, theorem 12.3.1).

Lemma 2. Let ψ ∈ Cg(β, r, L) for some β, L > 0 and 0 ≤ r < 1. Then there is
a constant 0 < C(β, r) < +∞ such that∑

(l,m)∈Λ∞

|〈ψ, ϕlm〉| exp
(
β(l2 +m2)r/2

)
≤ C(β, r)L.
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Having characterized the decay of Gabor coefficients for those ψ ∈ Cg(β, r, L),
we are now in position to construct functions ψZ which degree of approximation
to ψ0 ∈ Cg(β, r, L) is indexed by the value of Z. In view of section 2.3, ψ0 has the
formal decomposition ψ0 =

∑
l,m〈ψ0, ϕlm〉ϕlm, with unconditional convergence

of the series in L2(R). We define ψ̃Z such that

ψ̃Z :=
∑

(l,m)∈ΛZ

〈ψ0, ϕlm〉ϕlm.

Since (ϕlm) constitutes an orthonormal base for L2(R), lemma 2 implies that
for any β > 0 and r ∈ (0, 1),

‖ψ0 − ψ̃Z‖22 =
∑

(l,m)/∈ΛZ

|〈ψ0, ϕlm〉|2

≤ exp(−βZr)
∑
l,m

|〈ψ0, ϕlm〉| exp
(
β(l2 +m2)r/2

)
≤ C(β, r)L exp (−βZr) ,

because on Λc
Z we have l2+m2 ≥ Z2 and |〈ψ0, ϕlm〉| ≤ ‖ψ0‖2‖ϕlm‖2 = 1. Note

that ψ̃Z is not necessarily in S
2(R), that is in general ‖ψ̃Z‖2 �= 1, whence it is

not a proper wave-function. We now trade ψ̃Z for a version ψZ with ‖ψZ‖2 = 1,

keeping the same order of approximation. Indeed, let ψZ := ψ̃Z/‖ψ̃Z‖2, then
since ‖ψ0‖2 = 1,

‖ψZ − ψ0‖2 ≤ ‖ψZ − ψ̃Z‖2 + ‖ψ̃Z − ψ0‖2

≤ ‖ψ̃Z‖
∣∣∣∣∣1− 1

‖ψ̃Z‖2

∣∣∣∣∣+ ‖ψ̃Z − ψ0‖2 ≤ 2‖ψ̃Z − ψ0‖2

≤ 2
√
C(β, r)L exp

(
−βZr

2

)
. (13)

7.1.3. A lower bound on Π(Bn(δn))

The proof of the lemmas and theorem of this section are to be found in appen-
dices B.2 and B.3. To prove the Kullback-Leibler condition, we first construct
a suitable set Mn ⊂ Bn(δn), and we’ll lower bound Π(Bn(δn)) ≥ Π(Mn). Let
ψZ be the function constructed in section 7.1.2 and clm := 〈ψZ , ϕlm〉, so that
ψZ =

∑
(l,m)∈ΛZ

clmϕlm. Then, we define the set Mn ≡ Mn(Z,U) as follows,

and we’ll prove that Z,U can be chosen so that Mn(Z,U) ⊂ Bn(δn).

Mn(Z,U) :=

⎧⎨⎩ψ ∈ S
2(R) :

ψ =
∑

(l,m)∈ΛZ
plmeiζlm ϕlm,∑

(l,m)∈ΛZ
|plm − |clm||2 ≤ U2∑

(l,m)∈ΛZ
|ζlm − arg clm|2 ≤ U2

⎫⎬⎭. (14)
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Lemma 3. For all ψ ∈ Mn(Z,U), it holds with the constant C(β, r) of lemma 2,

‖ψ − ψ0‖2 ≤ 2U + 2
√
C(β, r, g)L exp

(
−βZr

2

)
.

The fact that Mn(Z,U) is included into a suitable L2(R) ball around ψ0 is
not enough to prove the inclusion Mn(Z,U) ⊂ Bn(δn). The next lemma states
sufficient conditions for which the inclusion Mn(Z,U) ⊂ Bn(δn) actually holds
true.

Lemma 4. There are constants 0 < C1, C2 < ∞ depending only on γ, β, r, A,
B, L such that if U ≤ C1(logn)

−4/rδ2n and Z ≥ C2(log δ
−1
n )1/r, then for n

large enough Mn(Z,U) ⊂ Bn(δn) for every δ2n ≥ 4
√

2πC(β, r, η)Ln−1, where
C(β, r, η) is the constant of lemma 1.

Now that we have shown that Mn(Z,U) ⊆ Bn(δn) for suitable choice of Z
and U , it is clear that the prior mass of Bn(δn) is lower bounded by the prior
mass ofMn(Z,U), the one is relatively easy to compute. This statement is made
formal in the next theorem.

Theorem 3. Let ψ0 ∈ Cg(β, r, L), and b1 > 2 + r. Then there is a constant
C > 0 such that for nδ2n = C(logn)b1/r it holds Π(Bn(δn)) � exp(−nδ2n) for n
large enough.

7.2. Construction of tests

The approach for constructing tests is reminiscent to Knapik and Salomond
(2014), where authors provide a general setup to establish posterior contraction
rates in nonparametric inverse problems. We define the following sieve. For
positive constants c, h to be determined later, and the constant a4 > 0 of the
assumptions

Fn :=

{
ψ ∈ S

2(R) :
ψ =

∑
(l,m)∈ΛZ

plmeiζlm ϕlm, 0 ≤ Z ≤ h(logn)1/r,

p ∈ Δw
Z(β, r, c(logn)

a4)

}
.

Then, we construct test functions with rapidly decreasing type I and type II
errors, for testing the hypothesis H0 : ψ = ψ0 against the alternative H1 : ψ ∈
Un ∩ Fn, with Un := {ψ ∈ S2(R) : ‖ψ − ψ0‖2 ≥ εn}, for a sequence (εn)n≥0 to
be determined later. To this aim, we need the following series of propositions
about Fn, which are proved in appendix C.1.

Proposition 3. Let nδ2n =C(logn)b1/r for some constant C > 0. Then Π(Fc
n) �

exp(−6nδ2n) whenever h > (6C/a2)
1/b1 and c > 0 large enough.

Proposition 4. Let b1 > 2 + r and assume that nδ2n = C(logn)b1/r for some
constant C > 0. Then N(

√
2δ2n,Fn, ‖ · ‖2) exp(−6nδ2n) = o(1).

Proposition 5. There is a constant M > 0, depending only on ϕ and η, such
that for all ψ ∈ Fn it holds ‖pηψ‖∞ ≤ Mh2(logn)2/r.
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Proposition 6. For all β > 0 and r ∈ (0, 1) there is a constant R > 0 such that

for any u > 0 it holds supψ∈Fn

∫
{‖z‖>u} |Ŵψ(z)|2 dz ≤ R(log n)2a4 exp(−βur).

The first step in the tests construction consists on bounding, both from below
and from above, the Hellinger distance H2(P η

ψ , P
η
ψ0
) by a multiple constant of

‖ψ − ψ0‖2, at least for those ψ0 ∈ Cg(β, r, L) and those ψ ∈ Fn. To this aim,

we need to estimate the decay of Ŵψ0 , stated in the next proposition. The
remaining proofs for this section can be found in appendices C.2 and C.3.

Proposition 7. Let ψ ∈ Cg(β, r, L) for some β, L > 0 and r ∈ (0, 1). Then∫
R2

|Ŵψ(z)|2 exp(β‖z‖r) dz ≤ L2.

The practical proposition 7 allows to upper bound ‖ψ−ψ0‖2 by H(P η
ψ , P

η
ψ0
),

provided ψ and ψ0 are sufficiently separated from each other.

Lemma 5. Let β, L > 0, r ∈ (0, 1), C0 := ‖pηψ0
‖∞, M,R > 0 be the constants

of propositions 5 and 6, and assume n large enough. Then for all u > 0, all
ψ ∈ Fn and all ψ0 ∈ Cg(β, r, L) such that ‖ψ−ψ0‖22 ≥ 8R(log n)2a4 exp(−βur),
it holds

√
2H2(P η

ψ , P
η
ψ0
) ≤ ‖ψ − ψ0‖2 ≤ 2

√
C0 +Mh2(log n)2/reγu

2

H(P η
ψ , P

η
ψ0
).

From the last lemma, we are in position to construct test functions with
rapidly decreasing type I and type II error for testing H0 : ψ = ψ0 ∈ Cg(β, r, L)
against H1 : ‖ψ − ψ1‖2 ≤

√
2δ2n for any ψ1 ∈ Fn such that ‖ψ1 − ψ0‖2 ≥ ε2n,

with

δ2n :=
ε2n exp(−2γu2

n)

48[C0 +Mh2(logn)2/r)]
, ε2n := 8R(log n)2a4 exp(−βur

n), (15)

where (un)n≥0 is an increasing sequence of positive numbers to be determined
later and M,R > 0 the constants of propositions 5 and 6.

Proposition 8. Let δn, εn be as in equation (15). Then there exist test functions
(φn)n≥0 for testing H0 : ψ = ψ0 ∈ Cg(β, r, L) against H1 : ‖ψ−ψ1‖2 ≤

√
2δ2n for

any ψ1 ∈ Fn such that ‖ψ1−ψ0‖2 ≥ εn, with type I and type II errors satisfying

P η,n
ψ0

φn ≤ exp(−6nδ2n), sup
ψ∈S2 : ‖ψ−ψ1‖2≤

√
2δ2n

P η,n
ψ (1− φn) ≤ exp(−6nδ2n).

Proof. By lemma 5, we deduce that H(P η
ψ1
, P η

ψ0
) ≥

√
12δn. From lemma 11, for

any ψ ∈ S
2(R) with ‖ψ − ψ1‖2 ≤

√
2δ2n (ψ not necessarily in Fn), we have the

estimate H(P η
ψ , P

η
ψ1
) ≤ δn ≤ H(P η

ψ1
, P η

ψ0
)/2. Then the conclusion follows from

Ghosal, Ghosh and Van Der Vaart (2000, section 7).

The small balls estimate of proposition 8 allows to build the desired test
functions, using the classical approach of the covering of Fn with balls of radius√
2δ2n in the L2(R) norm (Ghosal, Ghosh and Van Der Vaart, 2000).
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Theorem 4. Assume that ψ0 ∈ Cg(β, r, L) for β, L > 0 and r ∈ (0, 1), and let
εn, δn be as in equation (15). Let N(

√
2δ2n,Fn, ‖ · ‖2) be the number of L2(R)

balls of radius
√
2δ2n needed to cover Fn. Then there exist test functions (φn)n≥0

such that

P η,n
ψ0

φn ≤ N(
√
2δ2n,Fn, ‖ · ‖2) exp(−6nδ2n), and

sup
ψ∈Fn : ‖ψ−ψ0‖2≥εn

P η,n
ψ (1− φn) ≤ exp(−6nδ2n).

7.3. Conclusion of the proof

Let summarize what we’ve done so far, and finalize the proof of theorem 2.
In lemma 10 in appendix, we state sufficient conditions to finish the proof of
our main theorem; these conditions involve two parts. First, proving that for a
suitable sequence δn → 0 with nδ2n → our prior puts enough probability mass
on the balls Bn(δn) and; the construction of tests functions with sufficiently
rapidly decreasing type I and type II errors for testing H0 : ψ = ψ0 against
H1 : ‖ψ−ψ0‖2 ≥ εn, for those ψ in a set Fn of prior probability 1−exp(−6nδ2n).

For the prior considered here, we found in theorem 3 that δn must satisfy
nδ2n ≥ C(logn)b1/r for some C > 0, otherwise the so-called Kullback-Leilbler
condition is not met. Regarding the construction of tests, this involved to build
explicitly the sets Fn in section 7.2. From that construction and equation (15),
we deduce that the required test functions exist, if for some constantsK1,K2 > 0
and a sequence un → ∞

δ2n ≤ K1 exp(−2γu2
n)ε

2
n

(logn)2/r
, ε2n ≥ K2(logn)

2a4 exp(−βur
n). (16)

Since we must also have nδ2n ≥ C(logn)b1/r, we deduce that the sequence
(un)n≥1 should satisfy, for a suitable constant C ′ > 0,

βur
n + 2γu2

n − 2a5(log n)
s/2 ≤ logC ′ + logn− r−1(2 + b1 − 2ra4) log logn.

Finally, we can take,

u2
n =

logn

2γ
−O((log n)r/2)

and the conclusion of the proof follows by equation (16).

Appendix A: Proof of theorem 1

We need some subsidiaries results to prove the theorem 1.

Proposition 9. For all β > 0, all 0 ≤ r ≤ 1 and all x, y ∈ R2, it holds
exp(β‖x+ y‖r) ≤ exp(β‖x‖r) exp(β‖y‖r).



3616 Z. Naulet and É. Barat

Proof. This follows from the trivial estimate

‖x+ y‖r ≤ (‖x‖+ ‖y‖)r = ‖x‖(‖x‖+ ‖y‖)r−1 + ‖y‖(‖x‖+ ‖y‖)r−1

≤ ‖x‖‖x‖r−1 + ‖y‖‖y‖r−1 = ‖x‖r + ‖y‖r.

The next lemma is about the change of window in the STFT; its proof is
given for arbitrary g ∈ S(R) and ψ ∈ S ′(R) in Gröchenig (2001, lemma 11.3.3).
The proof is identical when g, ψ ∈ L2(R), since it essentially rely on a duality
argument. Note, however, that the class of windows and functions that we are
considering are subset of S(R).
Lemma 6. Let g0, g, h ∈ L2(R) such that 〈h, g〉 �= 0 and let ψ ∈ L2(R). Then
|Vg0ψ(x, ω)| ≤ |〈h, g〉|−1(|Vgψ| ∗ |Vg0h|)(x, ω) for all (x, ω) ∈ R

d.

Proof. From Gröchenig (2001, corollary 3.2.3), for those g, h ∈ L2(R) with
〈h, g〉 �= 0, we have the inversion formula ψ = 〈h, g〉−1

∫
Vgψ(x, ω)MωTxh dωdx

for all ψ ∈ L2. Applying Vg0 both sides

Vg0ψ(x
′, ω′) =

1

〈h, g〉

∫
R2

Vgψ(x, ω)Vg0(MωTxh)(x
′, ω′) dωdx.

The conclusion follows because |Vg0(MωTxh)(x
′, ω′)| = |Vg0h(x

′−x, ω′−ω)|.
Finally, we have the sufficient material to establish the independence of the

class Cg(β, r, L) with respect to the choice of the window function g, as soon as
g is suitably well behaved.

Proof of theorem 1. Using lemma 6, we have that |Vg0ψ| ≤ ‖g‖−2
2 |Vgψ| ∗ |Vg0g|.

Then, because r < 1 by assumption,∫
R2

|Vg0ψ(z)| exp(β‖z‖r) dz

≤
∫
R2

(|Vgψ(z)| ∗ |Vg0g(z)| exp(β‖z‖r) dz

≤
∫∫

R2

∫
R2

|Vgψ(u) exp(β‖u‖r)|Vg0g(z − u)| exp(β‖z − u‖r) dudz

≤
∫
R2

|Vgψ(u)| exp(β‖u‖r) du
∫
R2

|Vg0g(u)| exp(β‖u‖r) du,

where we’ve used Young’s inequality and the first estimate of proposition 9. We
have by Gröchenig and Zimmermann (2004, corollary 3.10) that Vg0g ∈ S1

1 (R
2),

thus the second integral in the rhs of the last equation is bounded.

Appendix B: Proofs of Kullback-Leibler neighborhoods prior mass

B.1. Proof of lemma 1

To prove lemma 1, we need the following intermediate lemmas, relating the
smoothness of ψ to the tails of the Wigner density of ψ.
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Lemma 7. Let ψ ∈ Cg(β, r, L) with β, L > 0 and r ∈ (0, 1). Then,∫
R2

|Wψ(z)| exp(β‖2z‖r)dz ≤ L2.

Proof. Let ψ̆(x) = ψ(−x). Then from the definition of Vgψ and Wψ we have
that Wψ(x, ω) = 2e4πiωxVψ̆ψ(2x, 2ω). By lemma 6 (with |〈g, g〉| = ‖g‖22 = 1),
proposition 9, and Young’s inequality,∫

|Wψ(z/2)| exp(β‖z‖r)dz

≤ 2

∫
(|Vgψ| ∗ |Vψ̆g|)(z) exp(β‖z‖

r)dz

≤ 2

∫∫
|Vgψ(u)| exp(β‖u‖r)|Vψ̆g(z − u)| exp(β‖z − u‖r) dudz

≤ 2

∫
|Vgψ(z)| exp(β‖z‖r)dz ×

∫
|Vψ̆g(z)| exp(β‖z‖

r)dz.

Moreover, a straightforward computation shows that

Vψ̆g(x, ω) = e−2πiωxVgψ(x,−ω),

which concludes the proof.

Lemma 8. Let ψ ∈ Cg(β, r, L), with β, L > 0 and r ∈ (0, 1). Then,

sup
θ

∫
R

pψ(x, θ) exp(2β|x|r)dx ≤ L2.

Proof. From the definition of pψ,∫
R

pψ(x, θ) e
2β|x|rdx =

∫
R2

Wψ(x cos θ − ξ sin θ, x sin θ + ξ cos θ) e2β|x|
r

dξdx.

Performing the change of variable (x, ξ) �→ (x cos θ + ξ sin θ,−x sin θ + ξ cos θ),
we arrive at∫

R

pψ(x, θ) e
2β|x|rdx =

∫
R2

Wψ(x, ξ) e
2β|x cos θ+ξ sin θ|rdξdx.

But for all r ∈ (0, 1), by the triangle inequality and Hölder’s inequality

|x cos θ + ξ sin θ|r ≤ (|x cos θ|+ |ξ sin θ|)r ≤ (|x|+ |ξ|)r ≤ 2r/2(x2 + ξ2)r/2.

Then ∫
R

pψ(x, θ) e
2β|x|rdx ≤

∫
R2

|Wψ(z)| exp (β‖2z‖r) dz,

and the conclusion follows from lemma 7.
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Lemma 9. For all β, L > 0 and r ∈ (0, 1) there is a constant C(β, r, η) > 0 such
that if ψ ∈ Cg(β, r, L) we have supθ

∫
R
pηψ(y, θ) exp(2β|y|r)dy ≤ C(β, r, η)L2.

Proof. Using Fubini’s theorem twice and the estimate |u+ x|r ≤ |u|r + |x|r,∫
pηψ(y, θ) e

2β|y|rdy =

√
π

γ

∫∫
pψ(x, θ) exp

{
−π2(x− y)2

γ

}
dx e2β|y|

r

dy

=

√
π

γ

∫∫
pψ(x, θ) exp

{
−π2u2

γ

}
exp (2β|u+ x|r) dudx

≤
√

π

γ

∫
pψ(x, θ) e

2β|x|rdx

∫
exp

{
−π2u2

γ
+ 2β|u|r

}
du.

The conclusion follows from lemma 8.

From the lemmas above the proof of lemma 1 is relatively straightforward,
we give it here for the sake of completeness.

Proof of lemma 1. We begin with the obvious estimate P η,n
ψ (Ωc

n) ≤ nP η
ψ(E

c
n).

The proof is finished by noticing that

P η
ψ(E

c
n) =

∫
Ec

n

pηψ(y, θ) e
2β|y|re−2β|y|rdydθ

≤ n−2

∫
pηψ(y, θ) e

2β|y|rdydθ

≤ 2πC(β, r, η)L2n−2,

because of lemma 9.

B.2. Proofs regarding approximation theory

Proof of lemma 3. For all ψ ∈ Mn(Z,U) we have the following estimate. Be-
cause (ϕlm) is an orthonormal base of L2(R),

‖ψ − ψZ‖22 =
∑

(l,m)∈ΛZ

|plmeiζlm − clm|2

≤ 2
∑

(l,m)∈ΛZ

|plm − |clm||2 + 2
∑

(l,m)∈ΛZ

|ζlm − arg clm|2 ≤ 4U2.

Then the conclusion follows using ‖ψ − ψ0‖2 ≤ ‖ψ − ψZ‖2 + ‖ψZ − ψ0‖2 and
equation (13).

Proof of lemma 4. Recall that pηψ(y, θ) = [pψ(·, θ)∗Φγ ](y). We have the obvious
bound

pηψ(y, θ) =

∫ +∞

−∞
pψ(x, θ)Φγ(y − x) dx ≥

∫ +Dβ,r
n

−Dβ,r
n

pψ(x, θ)Φγ(y − x) dx.
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Then for all (y, θ) ∈ En (i.e. |y| ≤ Dβ,r
n ) it follows from the definition of Φγ

that pηψ(y, θ) ≥ Φγ(2D
β,r
n )Pψ(|X| ≤ Dβ,r

n | θ)/(2π). From proposition 10 in
appendix, the latter implies for n large enough that for all ψ ∈ Mn it holds
pηψ(y, θ) ≥ Φγ(2D

β,r
n )/(4π) whenever (y, θ) ∈ En. Since ψ0 ∈ Cg(β, r, L), which

is a subset of the Schwartz space S(R), and since the Radon transform maps
S(R) onto a subset of S(R× [0, 2π]) by Helgason (2011, theorem 2.4), we deduce
that there is a constant C = C(ψ0, η) > 0 such that for all ψ ∈ Mn(Z,U),

pηψ0
(y, θ)

pηψ(y, θ)
≤ C exp

{
4π2

γ

(
logn

β

)2/r
}

=: λ−1
n , ∀(y, θ) ∈ En.

The proof now follows similar lines as Shen, Tokdar and Ghosal (2013, lem-
ma B2). The function r : (0,∞) → R defined implicitly by log x = 2(x1/2− 1)−
r(x)(x1/2 − 1)2 is nonnegative and decreasing. Thus we obtain,

∫
En

pηψ0
log

pηψ0

pηψ

= −2

∫
En

pηψ0

(√
pηψ
pηψ0

− 1

)
+

∫
En

pηψ0
r

(
pηψ
pηψ0

)(√
pηψ
pηψ0

− 1

)2

≤ 2

(
1−

∫ √
pηψ0

pηψ

)
− 2P η

ψ0
(Ec

n)

+ 2

∫
Ec

n

√
pηψ0

pηψ + r(λn)

∫
En

(√
pηψ −

√
pηψ0

)2
≤ 2H2(P η

ψ , P
η
ψ0
) (1 + r(λn)) + 2P η

ψ0
(Ec

n)
1/2P η

ψ(E
c
n)

1/2,

(17)

where the last line follows from Hölder’s inequality. Also, proceeding as in the
proof of Shen, Tokdar and Ghosal (2013, lemma B2) we find that

∫
En

pηψ0

(
log

pηψ0

pηψ

)2

≤ H2(P η
ψ , P

η
ψ0
)
(
12 + 2r(λn)

2
)
. (18)

Note that r(x) ≤ log x−1 for x small enough, and by lemma 1,

P η
ψ0
(Ec

n)
1/2P η

ψ(E
c
n)

1/2 ≤ P η
ψ0
(Ec

n)
1/2 ≤

√
2πC(β, r, η)Ln−1. (19)

Then we deduce from equations (17) to (19) and lemma 11 that for n large
enough, provided δ2n ≥ 4

√
2πC(β, r, η)Ln−1,

Bn(δn) ⊃
{
P η
ψ : ψ ∈ S

2(R), ‖ψ − ψ0‖2 ≤ γ2

48
√
2π4

(
β

logn

)4/r

δ2n

}
.

Then the conclusion follows from lemma 3.
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B.3. Proof of the lower bound

Proof of theorem 3. Let C1, C2 > 0 be the constants of lemma 4, let Un =
C1(logn)

−4/rδ2n and Zn be the smaller integer larger than C2(log δ
−1
n )1/r. Then

by lemma 4 Π(Bn(δn)) ≥ Π(Mn(Zn, Un)), and

Π(Mn(Zn, Un)) ≥ PZ(Z = Zn)G
(∑

(l,m)∈ΛZ
|plm − |clm||2 ≤ U2

n | Z
)

× Pζ

(∑
(l,m)∈ΛZ

|ζlm − arg clm|2 ≤ U2 | Z
)
.

Note that by lemma 2 the sequence (|clm|)(l,m)∈λZ
is in Δw

Z(β, r, C(β, r)L).
Hence, using the assumptions of section 5.2, we have for n large enough

Π(Mn(Zn, Un)) � exp
{
−a1Z

b1
n − (a0 + a3)Z

b1−r
n logU−2

n

}
.

We deduce from the above the existence of a constant K > 0 not depending on
n, such that for n large enough,

Π(Bn(δn)) � exp
{
−K(log δ−1

n )b1/r −K(log δ−1
n )b1/r−1

(
log δ−1

n + log logn
)}

� exp(−nδ2n).

Then the conclusion of the theorem follows since we assume nδ2n = C(logn)b1/r

for a suitable constant C > 0.

Appendix C: Proofs of tests construction

C.1. Proofs regarding the sieve

Proof of proposition 3. Let Zn be the smaller integer larger than h(logn)1/r.
Clearly ψ ∼ Π is almost-surely in S

2(R). Then if c > 0 is large enough we have
the bound

Π(Fc
n) ≤ PZ

(
Z > h(logn)1/r

)
+G (p /∈ Δw

Z(β, r, c(logn)
a4) | Z ≤ Zn)

� exp
(
−a2h

b1(logn)b1/r
)
+ exp

(
−a5(log n)

b5
)

which is trivially smaller than a multiple constant of exp(−6nδ2n) when h is as
large as in the proposition, and because b5 > b1/r by assumption.

Proof of proposition 4. We use the classical argument that N(
√
2δ2n,Fn, ‖ · ‖2)

is bounded by the cardinality of a
√
2δ2n-net over Fn is the ‖ · ‖2 distance (Shen,

Tokdar and Ghosal, 2013). We compute the cardinality of such
√
2δ2n-net as

follows. Let Zn := h(logn)1/r, P̂ be a δ2n-net over the simplex ΔZn in the �2
distance, and let Ô be a δ2n-net over [0, 2π] in the euclidean distance. Then define

Nn :=

{
ψ ∈ S

2(R) :
ψ̃ =

∑
(l,m)∈ΛZn

vlmeiζlm ϕlm,

(vlm)(l,m)∈ΛZn
∈ P̂, ∀(l,m) ∈ ΛZn : ζlm ∈ Ô

}
.
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For all ψ ∈ Fn we have ψ =
∑

(l,m)∈ΛZn
qlmeiζlm ϕlm, with qlm = plm for those

(l,m) ∈ ΛZ , Z ≤ Zn, and qlm = 0 otherwise. Since (ϕlm) is an orthonormal
base of L2(R), we have

∑
(l,m)∈ΛZn

q2lm = 1, and we can find a function ψ′ ∈ Nn

with ψ′ =
∑

(l,m)∈ΛZn
q′lmeiζ

′
lm ϕlm such that

∑
(l,m)∈ΛZn

|q′lm− qlm|2 ≤ δ4n, and

|ζ ′lm − ζlm| ≤ δ2n for all (l,m) ∈ ΛZn . Using standard arguments, we have

‖ψ′ − ψ‖22 =
∑

(l,m)∈ΛZ

∣∣∣q′lmeiζ
′
lm − qlmeiζlm

∣∣∣2
≤ 2

∑
(l,m)∈ΛZ

|q′lm − qlm|2 + 2
∑

(l,m)∈ΛZ

q2lm

∣∣∣eiζ′
lm − eiζlm

∣∣∣2 ≤ 4δ4n.

Thus Nn is a 2δ2n over Fn in the ‖ · ‖2 norm. Moreover, the cardinality of Nn is

upper bounded by |P̂| × |Ô||ΛZn |, which is in turn bounded by

C

(
1

δ4n

)|ΛZn |(
2π

δ2n

)|ΛZn |
,

for a constant C > 0. Clearly, the cardinality of a
√
2δ2n-net over Fn in the

‖ · ‖2 distance satisfy the same bound, eventually for a different constant C.
Therefore, for a suitable constant K > 0, when n is large enough.

N(
√
2δ2n,Fn, ‖ · ‖2) � exp

{
K|ΛZn | log

1

δn

}
� exp

{
Kh2(log n)1+2/r

}
.

The conclusion follows because b1 > 2 + r.

Proof of proposition 5. The bound is obvious for those ψ ∈ Fn with Z = 0. For
Z ≥ 1, we have from the definition of the Wigner transform (equation (1)), for
an arbitrary ψ ∈ Fn,

Wψ(x, ω) =∑
(l,m)∈ΛZ

∑
(j,k)∈ΛZ

plmpjke
i(ζlm−ζjk)

∫
R

ϕlm(x+ t/2)ϕjk(x− t/2)e−2πiωt dt.

Using the expression of ϕlm from equation (6), it follows

ϕlm(x+ t/2)ϕjk(x− t/2) = clcjTmMlϕ(x+ t/2)TkMjϕ(x− t/2)

+ (−1)2k+jclcjTmMlϕ(x+ t/2)TkM−jϕ(x− t/2)

+ (−1)2m+lclcjTmM−lϕ(x+ t/2)TkMjϕ(x− t/2)

+ (−1)2m+l(−1)2k+jclcjTmM−lϕ(x+ t/2)TkM−jϕ(x− t/2).
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Recalling that Txϕ(y) = ϕ(y − x) and Mωϕ(y) = e2πiωyϕ(y), it follows∫
R

TmMlϕ(x+ t/2)TkMjϕ(x− t/2)e−2πiωt dt

=

∫
R

e2πil(x+t/2−m)ϕ(x+ t/2−m)e−2πij(x−t/2−k)ϕ(x− t/2− k)e−2πiωt dt

= 2e4πiω(x−m)−2πij(2x−m−k)

∫
R

ϕ(u)ϕ(−u+ 2x−m− k)e−2πiu(2ω−l−j) du

= 2e4πiω(x−m)−2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω − l − j).

Thus, we deduce the following expression for the Wigner transform of an arbi-
trary function ψ ∈ Fn.

Wψ(x, ω) =
∑

(l,m)∈ΛZ

∑
(j,k)∈ΛZ

plmpjke
i(ζlm−ζjk) × 2clcje

4πiω(x−m)
[

e−2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω − l − j)

+ (−1)2k+je2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω − l + j)

+ (−1)2m+le−2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω + l − j)

+ (−1)2m+l(−1)2k+je2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω + l + j)
]
.

To ease notations, let

f(x, ω; l,m, j, k) := e4πiω(x−m)−2πij(2x−m−k)Vϕ̆ϕ(2x−m− k, 2ω − l − j).

Letting Rf(z, θ) denote the Radon transform of f , it is easy to check that

F [Rf(·, θ)](u) = f̂(u cos θ, u sin θ), where f̂ is the Fourier transform with re-
spect to both variables of f , and F the L1 Fourier operator. Note that,∫

Vϕ̆ϕ(x, y)e
πixye−2πi(xξ1+yξ2) dxdy

=

∫
R2

∫
R

ϕ(u)ϕ(x− u)e−2πiuy du eπixye−2πi(xξ1+yξ2)dxdy

=

∫∫
ϕ(u)e−πiuy

∫
ϕ(t)e2πit(ξ1−y/2)dt e−2πiuξ1−2πiyξ2dy du

= 2e4πiξ1ξ2
∫

ϕ̂(t)ϕ̂(t− 2ξ1)e
−4πitξ2 dt

= 2e4πiξ1ξ2Vϕ̂ϕ̂(2ξ1, 2ξ2).

Hence,

|f̂(u cos θ, u sin θ; l,m, j, k)| = 1

2
|Vϕ̂ϕ̂(u cos θ + j − l, u sin θ +m− k)|

By Fourier duality, this implies that

sup
x

|Rf(·; l,m, j, k)(x, θ)| ≤ 1

2

∫
|Vϕ̂ϕ̂(u cos θ + j − l, u sin θ +m− k)| du
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The function ϕ is in S1
1 (R) by construction. From Gröchenig and Zimmermann

(2004, corollary 3.10) we can then find a constant a > 0 such that |Vϕ̂ϕ̂(x, ω)| �
exp(−a

√
x2 + ω2). Moreover,

(u cos θ + j − l)2 + (u sin θ +m− k)2

= (u+ (j − l) cos θ + (m− k) sin θ)
2
+ ((m− k) cos θ − (j − l) sin θ)

2

≥ (u+ (j − l) cos θ + (m− k) sin θ)
2
.

Therefore,

sup
x,θ

|Rf(·; l,m, j, k)(x, θ)| �
∫

exp(−a|u|) du = 2a−1.

Since the Radon transform is a linear map, we deduce that

|pψ(x, θ)| � 8a−1
(∑

(l,m)∈ΛZ
plm

)2
≤ 8a−1|λZ | ≤ 8a−1h2(logn)2/r.

Now pηψ(y, θ) = [pψ(·, θ) ∗ Φγ ](y), so that conclusion of the proposition follows
from Young’s inequality.

Proof of proposition 6. Using the expression of ϕlm of equation (6), we have

Vgϕlm = clVg(TmMlϕ) + (−1)2m+lclVg(TmM−lϕ).

Since |Vg(TmMlϕ)(x, ω)| = |Vg(x−m,ω −m)|, it follows
|Vgϕlm(x, ω)| ≤ cl|Vgϕ(x−m,ω − l)|+ cl|Vgϕ(x−m,ω + l)|.

Now pick an arbitrary ψ ∈ Fn. We have∫
R2

|Vgψ(z)| exp(β‖z‖r) dz

≤
∑

(l,m)∈ΛZ

plm

∫
R2

|Vgϕlm(z)| exp(β‖z‖r) dz

≤
∑

(l,m)∈ΛZ

plmcl

∫
R2

|Vgϕ(x−m,ω − l)| exp
(
β(x2 + ω2)r/2

)
dxdω

+
∑

(l,m)∈ΛZ

plmcl

∫
R2

|Vgϕ(x−m,ω + l)| exp
(
β(x2 + ω2)r/2

)
dxdω

≤ 2
∑

(l,m)∈ΛZ

plm exp
(
β(l2 +m2)r/2

)∫
R2

|Vgϕ(z)| exp(β‖z‖r) dz

�
∑

(l,m)∈ΛZ

plm exp
(
β(l2 +m2)r/2

)
� (logn)a4 ,

where the last line follows from Gröchenig and Zimmermann (2004, corollary
3.10), since both g and ϕ are in S1

1 (R) and r < 1 by assumption. The previous
estimate show that Fn ⊂ Cg(β, r, Ln) with Ln � (logn)a4 . Hence the conclusion
follows from proposition 7.
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C.2. Proofs of norm equivalence

Proof of proposition 7. Recall that F denote the L1 Fourier transfom opera-
tor. By definition of Wψ, it holds Wψ(u1, u2) = F [ψ(u1 + ·/2)ψ(u1 − ·/2)](u2).
Clearly if ψ ∈ Cg(β, r, L) then Wψ ∈ L1(R2) by lemma 7. Moreover, for all

u1 ∈ R the mapping t �→ ψ(u1+ t/2)ψ(u1 − t/2) is in L1(R) because of Cauchy-
Schwarz inequality and ψ ∈ L2(R). Then by Fourier inversion, we get∫

Wψ(u1, u2)e
−2πiu2(−ξ2) du2 = ψ(u1 + ξ2/2)ψ(u1 − ξ2/2).

Taking the Fourier transform with respect to u1 yields∫∫
Wψ(u1, u2)e

−2πi(u1ξ1+u2ξ2) du1du2

=

∫
ψ(u1 − ξ2/2)ψ(u1 + ξ2/2)e

−2πiu1ξ1 du1

= e−πiξ1ξ2

∫
ψ(t)ψ(t+ ξ2)e

−2πiξ1t dt.

Hence we proved that Ŵψ(ξ1, ξ2) = e−πiξ1ξ2Vψψ(−ξ2, ξ1), at least when ψ ∈
Cg(β, r, L). By lemma 6, |Vψψ(−ξ2, ξ1)| ≤ (|Vgψ|∗|Vψg|)(−ξ2, ξ1) since ‖g‖2 = 1.
Note that, by proposition 9 we have

exp(β(ξ21 + ξ22)
r/2) ≤ exp(β((−ξ2 − u1)

2 + (ξ1 − u2)
2)r/2) exp(β(u2

1 + u2
2)

r/2).

Also, by Cauchy-Schwarz inequality |Ŵψ(ξ1, ξ2)| ≤ ‖ψ‖22 = 1. Therefore, by
Young’s inequality, and because |Vψg| = |Vgψ|,∫∫

|Ŵψ(ξ1, ξ2)|2 exp(β(ξ21 + ξ22)
r/2) dξ1dξ2

≤
∫∫

|Ŵψ(ξ1, ξ2)| exp(β(ξ21 + ξ22)
r/2) dξ1dξ2

≤
(∫∫

|Vgψ(ξ1, ξ2)| exp(β(ξ21 + ξ22)
r/2) dξ1dξ2

)2

,

which concludes the proof.

Proof of lemma 5. The lower bound follows from lemma 11 in appendix F. In
the sequel we let Mn := Mh2(logn)2/r and Rn := R(log n)2a4 exp(−βur). To
establish the upper bound, we first bound the L2 distance between densities by
the Hellinger distance. By triangular inequality and Young’s inequality,

|pηψ(y, θ)− pηψ0
(y, θ)|2 ≤ 2

∣∣∣√pηψ(y, θ)
√

pηψ0
(y, θ)−

√
pηψ(y, θ)

√
pηψ(y, θ)

∣∣∣2
+ 2

∣∣∣√pηψ(y, θ)
√

pηψ0
(y, θ)−

√
pηψ0

(y, θ)
√

pηψ0
(y, θ)

∣∣∣2 .
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Taking the integral both sides, under the assumptions of the lemma it comes∫∫
|pηψ(y, θ)− pηψ0

(y, θ)|2 dydθ ≤ 2(C0 +Mn)H
2(P η

ψ , P
η
ψ0
).

Recall that F denote the L1-Fourier transform operator. Then by Parseval-
Plancherel formula we can rewrite∫∫

|F [pηψ(·, θ)](ξ)− F [pηψ0
(·, θ)](ξ)|2 dξdθ ≤ 2(C0 +Mn)H

2(P η
ψ , P

η
ψ0
).

Recalling that pηψ(y, θ) = [pψ(·, θ) ∗ Φγ ](y), where F [Φγ ] = Φ̂γ , we deduce that

F [pηψ(·, θ)](ξ) = F [pψ(·, θ)](ξ)Φ̂γ(ξ). Therefore,∫∫
|F [pψ(·, θ)](ξ)− F [pψ0(·, θ)](ξ)|2|Φ̂γ(ξ)|2 dξdθ ≤ 2(C0 +Mn)H

2(P η
ψ , P

η
ψ0
).

Using that F [pψ(·, θ)](ξ) = Ŵψ(ξ cos θ, ξ sin θ), and performing the suitable
change of variables, we arrive at∫

R2

|Ŵψ(z)− Ŵψ0(z)|2|Φ̂γ(‖z‖)|2 dz ≤ 2(C0 +Mn)H
2(P η

ψ , P
η
ψ0
).

Now, using that the Fourier transform is isometric from L2(R) onto itself, and
that the Wigner transform is isometric from L2(R) onto L2(R2), by Gröchenig
(2001, proposition 4.3.2), we write

‖ψ − ψ0‖22 =

∫
R2

|Ŵψ(z)− Ŵψ0(z)|2 dz

=

∫
{‖z‖≤u}

|Ŵψ(z)− Ŵψ0(z)|2 dz +
∫
{‖z‖>u}

|Ŵψ(z)− Ŵψ0(z)|2 dz

≤ 1

|Φ̂γ(u)|2

∫
R2

|Ŵψ(z)− Ŵψ0(z)|2|Φ̂γ(‖z‖)|2 dz

+

∫
{‖z‖>u}

|Ŵψ(z)− Ŵψ0(z)|2 dz.

Under the hypothesis of the lemma, the second term in the rhs of the last
equation is bounded by 4Rn when n is large, because by proposition 7 we have∫

{‖z‖>u}
|Ŵψ0(z)|2 dz =

∫
{‖z‖>u}

|Ŵψ0(z)|2 eβ‖z‖
r

e−ν‖z‖r

dz

≤ e−βur

∫
R2

|Ŵψ0(z)|2 eβ‖z‖
r

dz ≤ L2e−βur

.

Since Φ̂γ(ξ) = exp(−γξ2), it follows,

‖ψ − ψ0‖22 ≤ 1

|Φ̂γ(u)|2

∫
R2

|Ŵψ(z)− Ŵψ0(z)|2|Φ̂γ(‖z‖)|2 dz + 4Rn

≤ 2(C0 +Mn)e
2γu2

H2(P η
ψ , P

η
ψ0
) + 4Rn.
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Consequently, when ‖ψ − ψ0‖22 ≥ 8Rn we have

‖ψ − ψ0‖22 ≤ 4(C0 +Mn)e
2γu2

H2(P η
ψ , P

η
ψ0
).

C.3. Construction of global test functions

Proof of theorem 4. Let N ≡ N(
√
2δ2n,Fn, ‖ · ‖2) denote the number of balls of

radius
√
2δ2n and centers in Fn, needed to cover Fn. Let (B1, . . . , BN ) denote

the corresponding covering with centers (ψ1, . . . , ψN ). Now let J be the index
set of balls Bj with ‖ψj −ψ0‖2 ≥ εn. Using proposition 8, for each of these balls
Bj with j ∈ J , we can build a test function φn,j satisfying

P η,n
ψ0

φn,j ≤ exp(−6nδ2n), sup
ψ∈Bj

P η,n
ψ (1− φn,j) ≤ exp(−6nδ2n).

Define the test function φn := maxj∈J φn,j . Then P η,n
ψ0

φn ≤
∑

j∈J P η,n
ψ0

φn,j ≤
N exp(−6nδ2n) and P η,n

ψ (1−φn) ≤ minj∈J supψ′∈Bj
P η,n
ψ′ (1−φn,j) ≤ exp(−6nδ2n)

for any ψ ∈ Fn with ‖ψ − ψ0‖2 ≥ εn −
√
2δ2n (recall that δn � εn), and hence

for any ψ ∈ Fn with ‖ψ − ψ0‖2 ≥ εn.

Appendix D: Proofs for uniform series prior on simplex

Proof of proposition 1. From the definition of of G and Hölder’s inequality, for
K ≥ 0 integer, Z = KM and (plm)(l,m)∈ΛZ

in the support of G(· | Z), we get
estimate

∑
(l,m)∈ΛZ

plm exp(β(l2 +m2)r/2) ≤
K∑

k=1

θk
∑

(l,m)∈Ik

ηlm exp(β(l2 +m2)r/2)

≤
K∑

k=1

θk
√
|Ik| exp(βkrMr),

because
∑K

k=1 θ
2
k ≥ θ21 = 1. The conclusion is direct because θ1 = 1 and θk ≤√

2L exp(−β(kr − 1)Mr) for any k = 2, . . . ,K.

Proof of proposition 2. Let Z = KM for K > 0 integer, and (qlm)(l,m)∈ΛZ
∈

Δw
Z(β, r, L) be arbitrary. For any (l,m) ∈ ΛZ , and any sequence (plm)(l,m)∈ΛZ

∈
ΔZ , let define the unnormalized coefficients

q̃lm :=
qlm√∑

(n,p)∈I1
q2np

, p̃lm :=
plm√∑

(n,p)∈I1
p2np

,

Note that
∑

(l,m)∈I1
q̃2lm =

∑
(l,m)∈I1

p̃2lm = 1. Moreover, we also have∑
(l,m)∈ΛZ

p2lm =
∑

(l,m)∈ΛZ

q2lm = 1;
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it turns out that

qlm =
q̃lm√∑

(n,p)∈ΛZ
q̃2np

, plm =
p̃lm√∑

(n,p)∈ΛZ
p̃2np

.

By the triangle inequality, the two previous expressions of qlm, plm yield the
bound,

√ ∑
(l,m)∈ΛZ

|qlm − plm|2 ≤
2
√∑

(l,m)∈ΛZ
|q̃lm − p̃lm|2√∑

(l,m)∈ΛZ
q̃2lm

≤ 2

√ ∑
(l,m)∈ΛZ

|q̃lm − p̃lm|2.

For any k = 1, . . . ,K, define tk :=
∑

(l,m)∈Ik
q̃2lm and elm := q̃lmt−1

k 1((l,m) ∈
Ik). Note that by construction we have t1 = 1. With obvious definition for θk
and ηlm, we have

∑
(l,m)∈ΛZ

|plm − qlm|2 ≤ 2

K∑
k=1

∑
(l,m)∈Ik

|θkηlm − tkelm|2

≤ 4

K∑
k=1

t2k
∑

(l,m)∈Ik

|ηlm − elm|2 + 4

Z∑
k=2

|θk − tk|2.

We can choose M > 0 large enough to have
∑

(l,m)∈I1
q2lm ≥ 1/2; it turns out

that
∑K

k=1 t
2
k ≤ 2. Moreover, with M > 0 chosen as previously we have

tk exp(βk
rMr) =

√
2eβM

r ∑
(l,m)∈Ik

qlm exp(β(k − 1)rMr)

≤
√
2eβM

r ∑
(l,m)∈Ik

qlm exp(β(l2 +m2)r/2) ≤
√
2LeβM

r

,

thus the coefficients (tk)
K
k=1 are in the support of G(· | Z). By independence

structure of the prior, and since
∑K

k=1 t
2
k ≤ 2, it suffices to prove that for any

t > 0,∏K
k=1 Fk

(∑
(l,m)∈Ik

|ηlm − elm|2 ≤ t
)
� exp(−cKb1−r log t−1), (20)

Pr
(∑K

k=2 |θk − tk|2 ≤ t
)
� exp(−c′Kb1−r log t−1), (21)

for some constants c, c′ > 0. Equation (20) is automatically satisfied by the
assumptions on F1, F2, . . . in the proposition. Equation (21) is straightforward
from the definition of G(· | Z).

Appendix E: Bounding the posterior distribution

We bound the posterior distribution as follows. Let Ωn be the event of equa-
tion (11). Then, with the notation Zi := (Yi, θi) and Zn = (Z1, . . . , Zn), for any
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measurable set Un,

P η,n
ψ0

Π(Un | Zn) = P η,n
ψ0

(Ωn) [I
n
1 + In2 + In3 ] + P η,n

ψ0
(Ωc

n)I
n
4 , (22)

where

In1 :=

∫
Ωn

Π(Un ∩ Fc
n | zn) dP η,n

ψ0
(zn | Ωn),

In2 :=

∫
Ωn

φn(z
n)Π(Un ∩ Fn | zn) dP η,n

ψ0
(zn | Ωn),

In3 :=

∫
Ωn

(1− φn(z
n))Π(Un ∩ Fn | zn) dP η,n

ψ0
(zn | Ωn),

In4 :=

∫
Ωc

n

Π(Un | zn) dP η,n
ψ0

(zn | Ωc
n).

This decomposition of the expectation for the posterior distribution serves as a
basis for the proof of the next lemma.

Lemma 10. Let δn → 0 with nδ2n → ∞. Assume that there are sets Fn ⊂ F
with Π(Fc

n) ≤ e−6nδ2n and a sequence of test functions (φn)n≥1, φn : (R+ ×
[0, 2π])n → [0, 1], such that P η,n

ψ0
φn → 0 and supψ∈Un∩Fn

P η,n
ψ (1−φn) ≤ e−6nδ2n .

Also assume that Π(Bn(δn)) � e−nδ2n , where Bn(δn) are the sets defined in
equation (12). Then P η,n

ψ0
Π(Un | Zn) → 0 as n → ∞.

Proof. The proof looks like Ghosal, Ghosh and Van Der Vaart (2000), with
careful adaptions. It is obvious that In4 ≤ 1 so that P η,n

ψ0
(Ωc

n)I
n
4 → 0 by lemma 1.

With the same argument we have that In2 ≤ P η,n
ψ0

(Ωn)
−1P η,n

ψ0
φn. Now we bound

In3 . As usual, recalling that the observations are i.i.d we rewrite

Π(Un ∩ Fn | zn) =
∫
Un∩Fn

∏n
i=1 p

η
ψ(yi, θi)/p

η
ψ0
(yi, θi) dΠ(ψ)∫ ∏n

i=1 p
η
ψ(yi, θi)/p

η
ψ0
(yi, θi) dΠ(ψ)

. (23)

We lower bound the integral in the denominator of equation (23) by integrating
on the smaller set Bn. Consider the events

An :=

{
((y1, θ1), . . . , (yn, θn)) :

∫
Bn

n∏
i=1

pηψ(yi, θi)

pηψ0
(yi, θi)

dΠ(ψ)

Π(Bn)
≤ exp(−4nδ2n)

}

Cn :=

{
((y1, θ1), . . . , (yn, θn)) :

n∑
i=1

∫
Bn

log
pηψ0

(yi, θi)

pηψ(yi, θi)

dΠ(ψ)

Π(Bn)
≥ 4nδ2n

}
.

By Jensen’s inequality, we have the inclusion Cn ⊆ An, thus P η,n
ψ0

(An | Ωn) ≤
P η,n
ψ0

(Cn | Ωn). Moreover, using that the observations are independent, and
Fubini’s theorem, we have
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P η,n
ψ0

[
n∑

i=1

∫
Bn

log
pηψ0

(yi, θi)

pηψ(yi, θi)

dΠ(ψ)

Π(Bn)
| Ωn

]

=
1

P η,n
ψ0

(Ωn)

∫
Ωn

n∑
i=1

∫
Bn

log
pηψ0

(yi, θi)

pηψ(yi, θi)

dΠ(ψ)

Π(Bn)
dP η,n

ψ0
(
∏n

j=1 dyjdθj ∩ Ωn)

=
nP η

ψ0
(En)

n−1

P η,n
ψ0

(Ωn)

∫
Bn

[∫
En

log
pψ0(y, θ)

pψ(y, θ)
dP η

ψ0
(dydθ)

]
dΠ(ψ)

Π(Bn)

=
n

P η
ψ0
(En)

∫
Bn

[∫
En

log
pψ0(y, θ)

pψ(y, θ)
dP η

ψ0
(dydθ)

]
dΠ(ψ)

Π(Bn)
.

Likewise, we can bound the variance with respect to P η,n
ψ0

(· | Ωn), denoted var
for the sake of simplicity; with the same arguments as previously,

var

[
n∑

i=1

∫
Bn

log
pηψ0

(yi, θi)

pηψ(yi, θi)

dΠ(ψ)

Π(Bn)

]

≤ n

P η
ψ0
(En)

∫
En

(∫
Bn

log
pηψ0

(y, θ)

pηψ(y, θ)

dΠ(ψ)

Π(Bn)

)2

dP η
ψ0
(y, θ)

≤ n

P η
ψ0
(En)

∫
Bn

⎡⎣∫
En

(
log

pηψ0
(y, θ)

pηψ(y, θ)

)2

dP η
ψ0
(y, θ)

⎤⎦ dΠ(ψ)

Π(Bn)
,

From the definition of Bn and because P η
ψ0
(En) ≥ 1/2 for n large enough, we

get from Chebychev inequality that for those n,

P η,n
ψ0

(An | Ωn) ≤ P η,n
ψ0

(Cn | Ωn) ≤
1

8nδ2n
.

Hence,∫
Ωn∩An

(1− φn(z
n))Π(Un ∩ Fn | zn) dP η,n

ψ0
(zn | Ωn) �

P η,n
ψ0

(An)

P η,n
ψ0

(Ωn)
≤ (nδ2n)

−1

P η,n
ψ0

(Ωn)
,

and,∫
Ωn∩Ac

n

(1− φn(z
n))Π(Un ∩ Fn | zn) dP η,n

ψ0
(zn | Ωn)

≤ e4nδ
2
n

Π(Bn)

∫
Ωn∩Ac

n

(1− φn(z
n))

∫
Un∩Fn

n∏
i=1

pηψ(yi, θi)

pηψ0
(yi, θi)

dΠ(ψ)dP η,n
ψ0

(zn | Ωn)

=
e4nδ

2
n

Π(Bn)

∫
Un∩Fn

∫
Ωn∩Ac

n

(1− φn(z
n))

n∏
i=1

pηψ(yi, θi)

pηψ0
(yi, θi)

dP η,n
ψ0

(zn | Ωn)dΠ(ψ)

≤ e4nδ
2
nΠ(Un ∩ Fn)

Π(Bn)

supψ∈Un∩Fn
P η,n
ψ (1− φn)

P η,n
ψ0

(Ωn)
.
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where the third line follows from Fubini’s theorem. Combining the last two
results yields P η,n

ψ0
(Ωn)I

n
3 → 0. The bound on In1 follows exactly the same lines

as the bound on In3 (see also Ghosal, Ghosh and Van Der Vaart, 2000).

Appendix F: Remaining proofs and auxiliary results

Lemma 11. Let ψ, ψ0 ∈ S
2(R). Then, H2(P η

ψ , P
η
ψ0
)≤

√
2H(Pψ, Pψ0) ≤

√
2‖ψ−

ψ0‖2. Moreover, we also have that H(Pψ(· | θ), Pψ0(· | θ)) ≤ ‖ψ − ψ0‖2 for all
θ ∈ [0, π].

Proof. First, we recall that pηψ(y, θ) = [pψ(·, θ)∗Φγ ](y). The same holds for pηψ0
.

Then using that the square Hellinger distance is bounded by the total variation
distance, which is in turn bounded by the Hellinger distance,

H2(P η
ψ , P

η
ψ0
) ≤

∫∫
|[pψ(·, θ) ∗ Φγ ](y)− [pψ0(·, θ) ∗ Φγ ](y)| dydθ

≤ ‖Φγ‖1
∫∫

|pψ(x, θ)− pψ0(x, θ)| dxdθ ≤
√
2H(Pψ, Pψ0),

where the second line follows from Young’s inequality. Now let θ �= 0 and θ �=
π/2. Using that |x| − |y| = |x − y + y| − |y| ≤ |x − y| for all x, y ∈ C, it holds
from equation (3) that,√

pψ(x, θ)−
√

pψ0(x, θ)

≤ 1

2π
√

| sin θ|

∣∣∣∣∫ +∞

−∞
(ψ(z)− ψ0(z)) exp

(
i
cot θ

2
z2 − i

x

sin θ
z

)
dz

∣∣∣∣ .
On almost recognize the expression of the square-root of a density in the rhs of
the last equation. Indeed, it is not because ψ−ψ0 is not normalized in L2. But,
letting ψv := (ψ − ψ0)/‖ψ − ψ0‖2,(√

pψ(x, θ)−
√

pψ0(x, θ)

)2

≤ pv(x, θ)‖ψ − ψ0‖22. (24)

One can show easily that the same bound holds when θ = 0 or θ = π/2 (although
it is even not necessary). The conclusion of the lemma then follows from the
definition of the Hellinger distance and the fact that pv is a probability density.
The results for conditional densities is immediate from equation (24) since pψ(x |
θ) = πpψ(x, θ) for any ψ ∈ S

2(R).

Proposition 10. There exists n0 such that for all n ≥ n0 and all ψ ∈ Mn(Z,U)
it holds Pψ(|X| ≤ Dβ,r

n | θ) ≥ 1/2 for all θ ∈ [0, π].

Proof. It suffices to write that,

Pψ0(|X| ≤Dβ,r
n | θ)≤

∫
[−Dβ,r

n ,+Dβ,r
n ]

pψ(x | θ) dx+
∫
R

|pψ(x | θ)− pψ0(x | θ)| dx

≤Pψ(|X| ≤ Dβ,r
n | θ) +

√
2H(Pψ(· | θ), Pψ0(· | θ)).
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By lemma 11,
√
2H(Pψ(· | θ), Pψ0(· | θ)) ≤ 1/4 for all ψ ∈ Mn if n is large

enough. Moreover, is n is sufficiently large, we also have Pψ0(|X| ≤ Dβ,r
n | θ) ≥

3/4, concluding the proof.
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