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Abstract Tying non-matching meshes is needed in many instances of finite element mod-
eling. Multiple techniques have been proposed in the literature to accomplish the correct
communication between different discretizations. They all seek to achieve some trade-off
in terms of accuracy, complexity and computational cost. In this work we review several
of the existing techniques and benchmark them on several simple test problems in terms of
accuracy and computational cost. We also discuss some of the drawbacks and limitations of
the existing methods. We then propose two novel contributions. First, a new approach that
imposes the continuity of the displacement field at the interface in a point-wise manner only
after an integral weighted averaging procedure over each interface. Second, a procedure for
the correction of the interpolation operator based on the balance of internal forces and mo-
ments at the interface is proposed, which is applicable to all the reviewed methods, both
existing and the new proposed one. All the considered approaches are benchmarked on sev-
eral test problems in terms of various error measures for displacements, stresses, interface
forces and moments, total work at the interface and computational cost.

Keywords Non-matching grids · FEM · mesh projection

1 Introduction

Finite Element Modelling (FEM) is the most popular approximation method used to solve
Partial Derivatives Equation (PDE) problems in industrial applications. FEM provides me-
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chanical responses of solid structures under prescribed load and Boundary Conditions (BCs).
This can be useful for the design and validation phase, to avoid costly full scale testing and
to improve the overall design process. Situations arise where a finite element model needs to
be assembled from parts that can present non-matching grids (meshes) and elemental formu-
lation. In these cases the displacement at the interface is not unequivocally determined and
special techniques have to be used to take into account the non-conforming interface [56].
This can be the case:

– When two parts have to be meshed independently for practical reasons [4, 62]. This can
be due to the impossibility to get good quality meshes for two adjacent components or
due to models being generated independently by different teams or for different pur-
poses, or even for modularity if one component model has to be integrated in different
product models.

– When different physical phenomena are studied with different discretizations: for exam-
ple in acoustics [39]. One of the most popular application is Fluid-Structure Interaction
(FSI) [6, 12, 16, 23, 35, 46, 54]. The mesh needed for the fluid is much finer than the
one that can be used for solid. Important computation time can be saved using mesh
projection techniques to connect different meshes.

– When the domain decomposition is required ( [13, 34, 36, 37, 55]. The communication
between the large scale and lower scale meshes is often done with mesh projection
operator. Such domain decomposition is for example useful when a much finer mesh is
needed in a localized region of a structure (e.g. in crack propagation analysis [34, 52,
53]).

– When contact between meshes is activated in the simulation [20,65,67,75]. In the most
general situation rebounding and sliding can appear the exchange of information be-
tween meshes changes with the grid configurations. In this application the mesh projec-
tion operator have to be computed fast enough so that their evaluation can be repeated
in the analysis.

This paper choses to mainly focus on the first point mentioned, but the final conclusions
may be applicable to several of the other cases as well. The main challenge of the aforemen-
tioned situation is to ensure the continuity of the displacement field at the non-conforming
interface. In the general case of non-matching interfaces, the displacement field will be con-
tinuous at the cost of an over-constraint of the interface [63]. To avoid this phenomenon,
typically both strong and weak coupling can be employed to satisfy the compatibility of the
solution at the interface node DOFs. The strong coupling techniques are also referred to as
collocation techniques [1, 63] or node to segment [75] methods, as one constraint equation
is assigned to each interface node DOF. In the weak coupling also called segment to seg-
ment [75] methods, on the other hand, the continuity is written in an integral or averaged
sense. To avoid interface stiffening, the weak formulation is preferred [1,38]. For both these
”classic” approaches, one surface is chosen to be the one that will produce the constraint
equations (slave surface) and the other is considered as interpolating (master surface). Each
DOF of the slave surface is then written as a linear combination of the DOFs of the master
surface. Once that this linear system of constraint equation is written, the final displacement
solution can be obtained by the elimination method [4] i.e. substituting the slave node DOFs
variable with their expression in terms of master node DOFs. Since the solution of a static
solid analysis can also be considered as a minimization problem, the linear constraints can
be imposed using the Lagrange multipliers approach [2, 9]. A variable is therefore created
for each constraint that has to be satisfied and used to build the Lagrangian function. The sta-
tionary conditions of the Lagrangian function give the linear system of equation used to find
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the nodal displacement and the interface Lagrange multiplier variables. The latter also have
the physical interpretation of interface internal forces. One of the most used techniques that
utilizes Lagrange multipliers in a continuous form is the Mortar approach [7, 8, 60, 61].The
distribution functions for the Lagrange multipliers and shape functions for the finite ele-
ments should be properly selected to fulfill the Ladyzhenskaya-Babuška-Brezzi (LBB) con-
dition (also known as the inf-sup condition) [3] in order to guarantee that both discretiza-
tions converge to the correct solution with the mesh refinement. Other numerical schemes
followed, inspired by the optimization community. In the PhD dissertation of Rixen [63]
one can find a method based on the augmented Lagragian method in optimization. In the
review of Barlow [4] another method based on the external penalty approach is presented.
The main difficulty of this approach consists in the choice of the penalty factor. Deparis et
al. introduced in [26] a new approach based on the simultaneous continuity of the displace-
ment and the internal loads per unit of area at the interface. This promising techniques has
been tested in the case of a simple patch test and more complex fluid structure interaction
problems. In those cases the method reveals the same performance as Mortar, with a much
smaller computational effort and programming complexity. In order to pass a priori the sim-
ple stress patch test even for curved interfaces where Mortar typically fails, Park et al [59]
developed a method based on the introduction of a third displacement field whose nodes
are placed based on an equilibrium equation of moments. The resulting scheme is however
quite complex and the applications considered in [59] where only for a simple 2D case and a
planar interface on a 3D case. For overlapped domains with non consistent domains the Ar-
lerquin method has also been proposed [28, 29]. More invasive approaches were developed
by Cho et al. [17–19],Lim et al. [49, 50] , Kim et al. [48] and Duarte [32], where the idea is
to modify the Element shape functions adding some nodes to the element of the interface or
enriching the shape functions. In Dohrman et al. [30,31] the slave element locations and for-
mulations are modified in order to transform a non-conforming interface into a conforming
one. In Tian et al. [72] interface elements formulation is replaced with a meshless formu-
lation. In this way the coupled analysis becomes straightforward but the implementation of
a special formulation for interface elements is not as simple as the application of multi-
point constraints (MPCs) at the interface. A Least Square Method can be found in Bochev
et al. [11] in order to pass a simple patch test. This method requires nevertheless the meshes
to be perturbed at the interface to avoid gaps between curved interface, which renders the
approach more complex to implement. Bitencourt et al. [10] introduced a new method that
assembles Coupling Finite Elements (CFEs) at the interface to build the constraints equa-
tion between interfaces Degrees of Freedom (DOFs). This approach was studied for 3D
planar, 2D planar or 2D curved interfaces. A recent method was developed by Cafiero et
al. [15] on the base of the previous developments of Nitsche [57], Becker [5], Heintz [44] ,
Olivier [58] and Hartman [43]. This approach, inspired from the contact community avoids
the expensive segment to segment projections needed for the mortar approach introducing a
particular formulation in the gap between the non conforming meshes at the interface.The
DIM approach [15] was also extended to the case of mixed fields as can be encoutered in
multiphysics problems [51]. Another similar approach introduced virtual gap elements at
the interface of the domains and imposes a zero strain condition to these elements [68].
In this article we first review and analyze several of the existing approaches for tying non
conforming interfaces. After describing their formulation and implementation we discuss
their advantages and drawbacks. All the considered approaches are then benchmarked on
several simple test problems in terms of accuracy, computational cost and implementation
complexity. We then propose two novel contributions. First, a new approach is proposed that
imposes the continuity of the displacement field at the interface in a point-wise manner only
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after an integral weighted averaging procedure over each interface. This approaches seeks
to improve the accuracy of the stresses, while maintaining relatively low computational cost
and implmentation complexity. Second, a procedure is proposed for the correction of the
interpolation operator based on the balance of internal forces and moments at the interface.
This approach is applicable to all the reviewed approaches and aims to improve their accu-
racy.
The rest of this article is structured as follows. In section 2 We introduce notations related
to the governing equations for solid elasto-statics and the finite element discretization. In
section 3 the basic equations of the elimination approach are obtained, and the conserva-
tion of energy and sum of residual at the interface is transposed in terms of requirements
on the interpolation operator. Then several existing mesh tying techniques are introduced,
among the strong coupling The Radial Basis Function (RBF) [6], [66] and Element Shape
Function (ESF) 1 interpolations, are presented in details. As an example of weak coupling
we present in section 3.1.3 the Weighted Residual Method (WRM) whose displacement so-
lution is the same as of the Mortar approach and of the continuous least squares approach
presented in [63]. The implementation we propose here is quite different from the one origi-
nally presented by Puso [60,61] as will be descibed in subsection 3.1.3. In subsection 3.2 the
variational principle and the Mortar formulation with Lagrange multipliers are summarized.
The internodes [26] formulation is presented in subsection 3.3, starting from the physical hy-
pothesis behind this method giving its matrix formulation. The simplicity of the internodes
formulation inspired us to develop a new approach we call Weighted Average Continuity
Approach (WACA), which seeks to maintain low implementation complexity and computa-
tional cost, similar to the Internodes apporach, but achieve improved stress accuracy, similar
to the Mortar approach. The idea of the proposed WACA method is to make a RBF/ESF
interpolation, not directly of the displacement field but of its weighted integral average on
each interface (master and slave). This leads to a simple and conservative approach that
improves the accuracy of the RBF interpolation. A second novel contribution presented in
subsection 3.5 consists in the a priori balance of the total moment and force residuals that
defines six constraints per each line of the projection operator. These are used to produce a
vector subspace on which one can project the interpolation operator line obtained from an
elimination method to get a new interpolation operator, which significantly improves accu-
racy. In section 4 a numerical test battery is presented for benchmarking the performance
of RBF interpolation, WRM, WACA and internodes method. The methods are compared in
section 4.2 in terms of several metrics, including accuracy of the displacements, stresses,
interface forces and moments, total work at the interface. The conclusion of this study are
finally outlined in section 5.

2 Continuous elastostatics problem for partitioned domains and consistent finite
element discretization

The main goal of section 2 is to introduces notations associated with the finite element
formulations for the problem at hand, notations which will be used throughout the rest of
the article.

1 In this paper we call ESF the use of element shape function to interpolate the displacement field at the
interface.
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2.1 Elastostatics equations - strong and weak form

We consider an elastic body described by a 3D domain Ω (cf. figure 1). We denote its
boundary ∂Ω and the outward normal vector n̂. Finally we call ∂Ωu and ∂Ωσ the boundary
where respectively displacements and surface traction are prescribed, so that ∂Ωσ ∪∂Ωu =
∂Ω .
In elastostatic problems one seeks the displacement field u(x) ∈ H1(Ω) that solves the

Fig. 1: linear elastostatics problem definition

local balance, boundary conditions and constitutive equations:

∇ ·σ+b= 0 ∀x ∈Ω/∂Ω (1)

u= ū ∀x ∈ ∂Ωu (2)

σ · n̂= t̄ ∀x ∈ ∂Ωσ (3)

σ =E : ε ∀x ∈Ω (4)

Where b are the body force vector, σ is the stress tensor and ∇ · (•) indicate the di-
vergence operator, ū(x) and t̄(x) are respectively the prescribed displacements field and
surface force field defined on the boundary ∂Ωσ and ∂Ωu, E is the fourth order elastic ten-
sor and ε(u(x)) =D ·u is the infinitesimal strain tensor (D denotes the symmetric gradient
operator). In order to use a finite element approach to discretize the elastostatics equations,
a weak form of equation (1) is introduced. By evaluating the scalar product of equation (1)
with a compatible virtual displacement v(x) ∈ V and integrating it over the domain Ω , the
weak or integral formulation is obtained:

∫
∂Ωσ

(v · t̄)d∂Ω +
∫

Ω

(v ·b)dΩ =
∫

Ω

(D ·v :E :D ·u)dΩ (5)
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2.2 Domain partition

We consider here the same problem but this time we consider a partition of the domain Ω

into two subdomains Ω1 and Ω2 (cf. figure 2). The general case with m subdomain can be
easily derived by this case. The surface used for the partition is unique (Γ1 ≡ Γ2 ≡ Γ ), as a
consequence:

uΓ1 = uΓ2 ∀x ∈ Γ (6)

E :DuΓ1 · n̂Γ1 = t12 =−t21 =−E :DuΓ2 · n̂Γ2 ∀x ∈ Γ (7)

Fig. 2: Partition of Ω in two subdomains Ω1, Ω2

Moreover taking in account the partition we will have:2∫
Γ1

(v · t21)dΓ1 +
∫

∂Ωσ1

(v · t̄)d∂Ω +
∫

Ω1

(v ·b)dΩ =
∫

Ω1

(Dv :E :Du)dΩ (8)

∫
Γ2

(v · t12)dΓ2 +
∫

∂Ωσ2

(v · t̄)d∂Ω +
∫

Ω2

(v ·b)dΩ =
∫

Ω2

(Dv :E :Du)dΩ (9)

That may be combined with equation (7) to get equation (5). As expected the virtual partition
into subdomain is a choice that do not affect the solution of the elastostatics problem.

2.3 Popular discretization using Finite Element

In the standard Galerkin formulation of the finite element method the space of the solution
U and the space of test functions V are approximated by their discrete approximation: Uh

2 In these expression the terms
∫

Γ1
(v · t21)dΓ1 and

∫
Γ2
(v · t12)dΓ2 is due to the work of internal forces

at the boundary in a variational approach it would naturally vanishes considering the work over the whole
structure.
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and Vh that are given by the linear combination of shape functions defined in each element3.
so that the test function and the displacement field can be approximated as follows:

v(x) =N (h)(x)v(h) u(x) =N (h)(x)u(h) (10)

In which v(h) and u(h) are the vectors containing the corresponding field values at each node
for each degree of freedom,N (h)(x) is the Nd×NdN matrix, Nd is the number of DOFs per
node, N is the number of nodes of the discretization. Accordingly in a 3-D mesh with solid
elementsN (h)(x) has the following structure:

N (h)(x) =
[

N1(x)Id N2(x)Id · · · N j(x)Id · · · NN(x)Id
]

(11)

Where Id is the Nd×Nd identity matrix. Using the discretization of equation (10), the prob-
lem of equation (5) can be written as the well known system of equation:

K(h)u(h) = f (h) (12)

TypicallyK(h) and f (h) are called stiffness matrix and load vector. They are defined as:

K(h)
i, j =

∫
Ω

(D ·N (h)
i (x) :E :D ·N (h)

j (x))dΩ (13)

f (h)i =
∫

∂Ωσ

(N
(h)
i (x) · t̄)d∂Ω +

∫
Ω

(N
(h)
i (x) ·b)dΩ (14)

Here the column vector N (h)
i (x) and N (h)

j (x) are respectively the i-th and j-th column of
N (h)(x). The integrals of equations (13) and (14) are usually evaluated by Gauss quadrature
over each element. Finally the boundary conditions (2) are applied and the linear system of
equations is solved to find all the components of the vector u(h).

2.4 Domain decomposition with consistent discretization

When a finite element discretization is used to solve the elastostatic problems over the sub-
domains Ω1 and Ω2 the interface will be discretized in the surfaces Γ h

1 and Γ h
2 . We call

consistent discretization the case where the nodes of the interface are on the same positions
for both subdomains Ω1 and Ω2 and the shape functions of each element on both sides of
the interfaces are the same.
In this case the domain decomposition is not a concrete issue. In fact the communication
between the degree of freedoms (DOFs) of the two discretization is straightforward. We
can nevertheless introduce a partition of the DOFs that will be used for each of the latter
approaches discussed in this work. We will call u(h)

1 ,u
(h)
2 ,u

(h)
Γ1

,u
(h)
Γ2

respectively the DOFs
of nodes inside Ω1 but not on the interface Γ1, the DOFs of nodes inside Ω2 but not on the
interface Γ2, the DOFs of the nodes of the interface Γ1 and the DOFs of the nodes on the
interface Γ2. In the following the index (h) will be neglected for brevity. The discretized
form of equations (8)-(9) is then:

K1,1 K1,Γ1 0 0
KΓ1,1 KΓ1,Γ1 0 0

0 0 KΓ2,Γ2 KΓ2,2
0 0 K2,Γ2 K2,2



u1
uΓ1

uΓ2

u2

=


f1

fΓ1 +rΓ1

fΓ2 +rΓ2

f2

 (15)

3 The standard Galerkin approximation is well established approach that produces a symmetric stiffness
matrix consistent with the classic variational formulation, more generally the space of function of Uh and Vh

may not be the same as it is the case for the Petrov-Galerkin methods.
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Fig. 3: Consistent discretization of the partitioned domain

The residuals rΓ1 and rΓ2 are the expression of the internal forces acting on the interface
DOFs of each surface. Equations (6) and (7) are easily interpreted in this case since the node
in the same position belonging to both meshes will merge and have the same DOFs. This
can be expressed as:

uΓ2 = uΓ1 = uΓ rΓ2 =−rΓ1 (16)

Where it is assumed that the interface DOFs have been sorted giving the same index to
corresponding DOFs of corresponding nodes. Substituting equations (16) back into equation
(15) and eliminating the residuals one can get: K1,1 K1,Γ1 0

KΓ1,1 KΓ1,Γ1 +KΓ2,Γ2 KΓ2,2
0 K2,Γ2 K2,2


u1
uΓ

u2

=


f1

fΓ1 +fΓ2

f2

 (17)

Obviousely, in the case of a conforming interface equation (17) could also be obtained using
the conforming discretization of equation (5). Indeed equations (12) and (17) are equivalent.

3 Domain decomposition with non-consistent discretization

Cafiero et al. [15] shows different cases in which the non conforming discretization can
increase the challenge associated with a ”transfer” of displacement field and stress tensor
between meshes. In the following section the different scenarios are reviewed.

3.0.1 Non conformity scenarios

The first case we want to address is the simplest one (cf. figure 4). The interface boundary
and area are the same, Γ h

1 ≡ Γ h
2 , the normal are opposite in each corresponding point of the

interfaces. It may be the case for in the context of a domain decomposition for a multi-grid
approach. The nodes are not in the same position but the shape functions of both domains
are still the same. As a consequence, the local balance of the surface traction using a mortar
approach will also imply the satisfaction of a patch test [59].
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Fig. 4: Inconsistent mesh partition that do not introduce geometric inconsistency: Γ h
1 ≡ Γ h

2

The second case is the first case of geometric inconsistency due to the non coincidence
of the boundary of the interface (figure 5).

Fig. 5: Inconsistent mesh partition that introduces geometric inconsistency: Γ h
1 6≡ Γ h

2 , first
case different mesh boundaries

Still the surface normal is the opposite that means that the patch test may be satisfied by the
use of mortar approach. In figure 6 we present a second case that also produces a geometric
inconsistency: wen a curved interface is discretized with non-matching meshes, the normal
vectors are distinct on each element surface and may not be opposite for corresponding
elements4. The area is different on both mesh surfaces. Moreover there can be a gap or
intersections of interface mesh surfaces.
In this case the satisfaction of the patch test is only approximated with the use of the mortar
approach [59]. Another important scenario is the one in figure 7 that shows two domains
with the same node position but with different shape functions. Also in this case the normal
and the geometry of the interpolated interfaces are not coincident, and special methods are
needed to deal with this case [73].The most general scenario could be the combination of
one or more of these scenarios, as it will be discussed later.

4 In this case even the definition of corresponding elements is not straightforward. A possible definition
is that two elements are corresponding if the area of the intersection between one element surface and the
projection of the other element surface on the first one is positive and if the element center distance is less
then a given tolerance
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Fig. 6: Inconsistent mesh partition that introduces geometric inconsistency: Γ h
1 6≡Γ h

2 , second
case curbed interface

Fig. 7: Inconsistent mesh partition that introduces geometric inconsistency: Γ h
1 6≡ Γ h

2 , third
case different shape functions

3.1 Elimination methods - Master/Slave approaches

This is a family of approaches that we can find described in Barlow et al. [4] and in the
review paper of De Boer et al [23] that we briefly resume and complete in this section.
The main idea consist in the reformulation of equations (6) and (7) as linear relationships
between the interfaces of the sub-domains. Then one of the surfaces is chosen as slave (Γ2),
its DOFs will be explicitly given in function of the DOFs of the master surface (Γ1).

uΓ2 =Π21uΓ1 (18)

From a physical point of view the total work as the resultant force of the internal forces on
the interface should be zero (energy conservation and static balance).

rT
Γ1
·uΓ1 +r

T
Γ2
·uΓ2 = 0 (19)

1T
Γ1
·rΓ1 +1T

Γ2
·rΓ2 = 0 (20)
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In which 1Γ1 and 1Γ2 are matrix with number of line equal to the number of DOFs of inter-
face Γ1 and Γ2 and 3 columns (one per each balance). For 3D solid elements they are Boolean
matrices that have 1 on the component whose line correspond to the direction given by the
index of their column and 0 otherwise. Equations (19) and (20) combined with equation (18)
give:

rΓ1 =−Π
T
21rΓ2 (21)

Π211Γ1 = 1Γ2 (22)

Equation (22) is a necessary condition that must be satisfied by the projection operatorΠ21
defined in equation (18). On the other hand, equation (21) is used with equations (15) and
(16) to finally get the reduced system of equations: K1,1 K1,Γ1 0

KΓ1,1 KΓ1,Γ1 +Π
T
21KΓ2,Γ2Π21 Π

T
21KΓ2,2

0 K2,Γ2Π21 K2,2


u1
uΓ1

u2

=


f1

fΓ1 +Π
T
21fΓ2

f2

 (23)

That is a linear system of equation with a positive semi-definite symmetric matrix like the
stiffness matrix of equation (12). The projection operator Π21 can be defined using two
different approaches that in the contact community are known as node to segment and seg-
ment to segment approaches. In the former the relation between the DOFs is given directly
by a geometric interpolation. De Boer et al. [23] show two examples of these methods: the
Nearest neighbour interpolation (NN) [71] and the Radial Basis Functions (RBF) [6], [66].
Another option consists in using of the trace of element shape function on the interface to
interpolate the displacement field. In this paper we will refer to these methods as Element
Shape Function interpolation (ESF). The main drawback of these methods is their strong de-
pendence on the slave and master surface choice. In fact for domains meshed with different
mesh sizes, choosing the most refined mesh as master surface will not ensure the continuity
of the displacement field for all the master nodes that do not belong to elements that contain
a slave node projection. Moreover these methods don’t satisfy simple patch tests even if the
interface is not curved, and finally as it was shown by Bernardi et al. [7] they are sub-optimal
in term of mesh convergence. The segment to segment approaches even if much more com-
plicated can show better accuracy. In this section we present the last elimination method
based on a weak form of the continuity equation: the Weighted Residual Methods (WRM).

3.1.1 Radial Basis Function interpolation (RBF)

For more general applications the RBF represent a practical and easy to implement solution.
In this approach the displacement field at the interface is supposed to be a linear combination
of radial basis functions defined per each node of the master surface:

uΓ1(x) =

NΓ1

∑
s=1

αsφs(‖x−xΓ1
s ‖,rs)+ p(x) (24)

Here uΓ1 is the displacement field on surface Γ1. αs is the weight relative to the s-th radial
basis function φs, ‖x−xΓ1

s ‖ is the euclidean distance of point x from the node s-th node of
the master surface Γ1, rs ∈ R is the shape factor of the s-th radial basis function φs , NΓ1 is
the number of nodes of Γ1 and p(x) is a polynomial function of x. In this work p(x) is not
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considered, for a more general discussion of RBF the reader is referred to [23] , [6] and [66].
The weights αs of equation (24) can be found using the interpolation conditions:

uΓ1(x
Γ1
i ) = uΓ1i ∀i = 1, . . . ,NΓ1 (25)

As a consequence the weights factors will be

A=Φ−1uΓ1 (26)

Where Φ was defined as:
Φi, j = φi(‖xΓ1

j −x
Γ1
i ‖,rs) (27)

Finally to impose the continuity of displacements at the interface (equation (16)) one can
use the interpolation given by the RBF that takes the form:

uΓ2 = Ψ
T ·A= ΨT ·Φ−1uΓ1 =Π21uΓ1 (28)

Here we defined the matrix Ψ as:

Ψi, j = φi(‖xΓ2
j −x

Γ1
i ‖,rs) (29)

Different radial basis functions (φ(·)) can be found in the literature [74], [14] , [33]. An
example considered in this work is the compactly supported functions B&W [74]:

φ(‖x‖,rs) =

(
1− ‖x‖

rs

)4

+

(
1+4

‖x‖
rs

)
(30)

A benchmark of the most popular RBF can be found in Deparis et al. [27]. The latter deals
with the choice of the shape factor rs in a local manner in order to find a good compromise
between precision and evaluation cost (Φ band width). In the same work the RBFs are
rescaled in order to avoid spurious oscillation due to interpolation so that they satisfy the
condition given by equation (22).

3.1.2 Element Shape Function interpolation (ESF)

A natural, but more complex, approachconsists in the projection of slave surface nodes on
master surface elements. So that :

Π21i, j =N
Γ1
j (xΓ2

i ) (31)

Where NΓ1
j is the j-th column of the N (h)(x) matrix of equation (11) for Γ1 interface

elements. This projection is quite simple for planar intefaces but for a general curved inter-
faces the projection may be more complicated. An elegant solution is presented in Puso et
al. [60] who considered the normal vector in the center of master elements to rapidly eval-
uate the projection. For nearly planar surfaces this can be a reasonable approximation, on
the other hand for double curved surfaces this approximation may not be justified. For each
node (i) of Γ1 and for each element ( j) of Γ2 we want to find the local coordinates (ξi j,ηi j)
that describe the position of the node (i) on the surface Γj described by the element ( j). In
the case of geometrical inconsistency (figure 6) the node (i) may not lie on the surface Γj, in
that case we want to find the local coordinates of the point of (i∗) ∈ Γj ( as in figure 8) that
is the closest to (i) i.e.

min(ξ j ,η j)d2
i j (ξ j,η j) = min(ξ j ,η j)

(
‖x(ξ j,η j)−x(i)‖2) (32)
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To find all the corresponding local coordinates of one mesh projected on the other this op-
timization problem has to be solved for all N(e)

Γ1
×NΓ2 pairs of nodes (i) element ( j). To

improve the numerical efficiency of this procedure the squared distance function may be
summed up to build a function that has to be minimized once for each node (i) to get its
local coordinate in each corresponding elementΞ,Θ:

D2
i (Ξ,Θ) =

N(e)
Γ1

∑
j=1

d2
i j (ξ j,η j) (33)

Moreover the gradient of each squared distance can be computed analytically to speed up the
optimization convergence using a gradient based optimization algorithm for unconstrained
problems for example the Quasi-Newtom algorithm [22, 24]- [25, 40].

∇d2
i, j (ξ j,η j) = 2∇x(ξ j,η j) ·

(
x(ξ j,η j)−x(i)

)
(34)

When this procedure is used, for convex interface meshes there may be nodes that are far

(a) Squared distance function (b) Minimal distance configuration for a bi-linear quad
element

Fig. 8: Node to element projection

from the element ( j) but that have their corresponding point (i∗) inside the element ( j). The
shape function of equation 31 should take in account the minimal distance di j

(
ξ ∗j ,η

∗
j

)
: all

the DOFs of the node (i) at a distance superior to a given tolerance t to its projection (i∗) on
Γj , should not be considered dependent on the ( j) elements DOFs i.e.:

Π21i, j =

{
NΓ1

j (ξ ∗,η∗) di j

(
ξ ∗j ,η

∗
j

)
≤ t

0 otherwise
(35)

3.1.3 Weighted Residual Methods (WRM)

The methods described until now are based on a strong formulation of the continuity on the
interface of the displacement field (equation 18). On the other hand, segment to segment
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methods try to impose the continuity of displacement at the interface by the use of a weak
form. One such method is the Weighted residual methods described in De Boer et al. [23],
CebralĪ et al [16] and Löhner et al. [54] for the fluid-structure interaction problem.5 In this
approach the jump of the displacement field across the interface has to be orthogonal in the
L2 sense to the trace on Γ2 of the kinematic admissible virtual displacement v ∈ V:∫

Γ
v(x) · (uΓ2(x)−uΓ1(x))dΓ = 0 ∀v ∈ V (36)

Discretizing v(x) using the shape functions of Γ2 and using equation (10) for each sub-
domains and writing one equation for each shape function of the discretized space Vh

Γ2
equation (36) becomes :

M2uΓ2 −M21uΓ1 = 0 (37)

Where the mass matrices are defined as:

M2i, j =
∫

Γ

NΓ2
i (x) ·NΓ2

j (x)dΓ (38)

M21i, j =
∫

Γ

NΓ2
i (x) ·NΓ1

j (x)dΓ (39)

We can finally explicit the slave DOFs in function of the master DOFs as:

uΓ2 =M
−1
2 M21uΓ1 =Π21uΓ1 (40)

It is shown in De Boer et al [23] that this method respects the condition of equation (22)
therefore the force resultant is conserved at the interface. In order to evaluate the integral
from equation (38) and (39) the support of the integral has to be chosen.

In fact in the most general case the surfaces described by the meshes will not be coinci-
dent and a projection will be needed (cf. figure (9)) 6

One can observe that the integrand’s support (cf. figure 10c)is Γj1∗k2 ≡ Γj1∗ ∩Γk2. The total
support Γ is therefore the union of all the intersection of each Γk2 with all corresponding
projection Γj1∗ of Γj1 on Γk2:

Γ ≡ ∪N(e)
2

k2=1∪
N(e)

1
j1=1 Γj1∗k2 (41)

For the numeric evaluation of M2 and M21 we were inspired by the procedure in Puso et
al. [60]. Compared to Puso’s original approach we implemented however some modifica-
tions in terms of node-to-element projection, and in terms of intersection polygon definition
in order to render the procedure more robust. Instead of using the clipping algorithm of
Foley [21] that may fail in some cases ( see [41] for further details), we implemented the
procedure described by Gander et al. in [41]. To obtain the intersection polygon Γj1∗k2, firstly
the nodes (s1) of Γj1 that have a projection inside the element (k2) are found. Secondly the
nodes (s2) of Γk2 that are inside the projected element surface Γj1∗ are found. Thirdly the
intersection points (s3) of all the sides of Γk2 with the one of Γj1∗ . The union of (s1),(s2)
and (s3) form the vertices of the intersection polygon see figure 11a.
A triangulation of this polygon is obtained connecting all the sides with the polygon center.

5 In these approaches it is avoid the use of Lagrange multipliers like in the Mortar methods ( [7], [8])
anyway when the shape functions of Lagrange multipliers are the same of the displacement field of the slave
surface, the consequent equations are the same as it is also shown in Jeon et al. [47]

6 Note that Γ ∗j1 sides are generally curbed, in this work they are considered to be straights, this approxima-
tion will affect the accuracy of the evaluation of M21. in equation (39). Nevertheless the error induced by this
approximation can be considered negligible
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(a) Elements belonging to inconsistent meshes of the same inter-
face surface.

(b) Projected master element on slave element surface in slave local coordinates.

Fig. 9: Element to element projection examples. The master element surface Γj1 has been
projected on the slave element surface Γk2 using the same procedure shown in figure (8) for
each node of the element j1 (1,2,3,4). In this way it possible to obtain the projected slave
surface Γ ∗j1 (1∗,2∗,3∗,4∗). The union of the projection of all the element of Γ1 on Γ2 is then
indicated as Γ ∗1 . After this projection a change in local variables (ξk2,ηk2) of the element k2
can be employed for the evaluation of Mass matrices (equations (38) and (39))

Finally 3 Gauss points per pallet have to be used for the numerical integration of equa-
tion (38) and (39)) (see the example of figure 11b). The Gauss point local coordinates
(Ξ

(GP)
k2 ,Θ

(GP)
k2 ) are easy to find in function of the triangulation coordinates. On the other

hand, to know the value of NΓ1
j on the corresponding points of Γj1∗ for equation (39)), the

local coordinates (Ξ(GP)
j1 ,Θ

(GP)
j1 ) have to be determined. Puso suggested even for this pro-

jection to use the normal of element (k2) on the center of the element. To be completely
rigorous one should evaluate the normal to the surface Γk2 in each Gauss point and then
make an intersection of the line on witch the normal lies and the surface of Γj1 to finally
have the local coordinates (Ξ(GP)

j1 ,Θ
(GP)
j1 ) . In other words we should find the roots of the
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(a) N3∗ (ξk2,ηk2) (b) N5(ξk2,ηk2) (c) N3∗ (ξk2,ηk2) ·N5(ξk2,ηk2)

Fig. 10: Shape function of node 3∗ of j1, of node 5 of k2 for the example of figure 9 and
their product that has to be integrated in equation (39), are represented.

(a) Determination of Γj1∗k2 vertex.
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(b) Integration over Γj1∗k2

Fig. 11: Procedure for the determination of Γj1∗k2 vertex and consequent numerical integra-
tion

non linear system of equations:

2∇xΓk2

(
Ξ

(GP)
k2 ,Θ

(GP)
k2

)
·
(
xΓk2

(
Ξ

(GP)
k2 ,Θ

(GP)
k2

)
−xΓj1

(
Ξ

(GP)
j1 ,Θ

(GP)
j1

))
= 0 (42)

Taking in consideration the fact that the side of Γj1∗ are considered as straight segment
between the projection on Γk2 of the nodes of ( j1), even if this is not always the case, the
use of equation (42) is not recommended. Some Gauss points when re-projected on Γj1 could
lie outside the element ( j1). To avoid this situation a geometric isoparametric interpolation
between the local coordinate (ξ j1,η j1) and the projected one (ξk2,ηk2) is considered here:

ξk2 (ξ j1,η j1) = ξ
1∗
k2 N1 (ξ j1,η j1)+ξ

2∗
k2 N2 (ξ j1,η j1)+ξ

3∗
k2 N3 (ξ j1,η j1)+ξ

4∗
k2 N4 (ξ j1,η j1)(43)

ηk2 (ξ j1,η j1) = η
1∗
k2 N1 (ξ j1,η j1)+η

2∗
k2 N2 (ξ j1,η j1)+η

3∗
k2 N3 (ξ j1,η j1)+η

4∗
k2 N4 (ξ j1,η j1)(44)
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Where (ξ n∗
k2 ,ξ

n∗
k2 ) are the local coordinates of the projection of the n-th node of ( j1) on Γk2

and Nn are the classic bilinear shape function:

N1 (ξ j1,η j1) =
1
4 (1−ξ j1)(1−η j1)

N2 (ξ j1,η j1) =
1
4 (1−ξ j1)(1+η j1)

N3 (ξ j1,η j1) =
1
4 (1+ξ j1)(1+η j1)

N4 (ξ j1,η j1) =
1
4 (1+ξ j1)(1−η j1)

(45)

Finally equation (43)-(44) can be used to find (Ξ
(GP)
j1 ,Θ

(GP)
j1 ) solving another non linear

system of equations:

Ξ
(GP)
k2 −ξk2

(
Ξ

(GP)
j1 ,Θ

(GP)
j1

)
= 0 (46)

Θ
(GP)
k2 −ηk2

(
Ξ

(GP)
j1 ,Θ

(GP)
j1

)
= 0 (47)

This system can be solved numerically (e.g. with a Newton-Raphson algorithm) giving the
analytical expression of the Jacobian matrix. In figure 12 the Gauss points are projected
from Γj1∗k2 back on Γj1 using the iso-parametric projection of equations (46)-(47)

Fig. 12: Gauss point projection

3.2 Variational based approaches

In variational approaches, instead of using the principle of virtual work to get the final
system of equations, the displacement field solution of the static problem will be sought to
minimize the total energy:

E(u) = uTKu−uTf (48)
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Considering the partition that we already introduced the total energy becomes:

E(u1,uΓ1 ,uΓ2 ,u2) =
{
uT

1 u
T
Γ1
uT

Γ2
uT

2
}

K1,1 K1,Γ1 0 0
KΓ1,1 KΓ1,Γ1 0 0

0 0 KΓ2,Γ2 KΓ2,2
0 0 K2,Γ2 K2,2



u1
uΓ1

uΓ2

u2

−

f1
fΓ1

fΓ2

f2




(49)
Note that in equation (49) the work at the interface of the residual is eliminated for energy
conservation. The system of equations that comes from this formulation has a singular ma-
trix, so that the solution of the static problem cannot be simply obtained by minimizing the
total energy.

3.2.1 Mortar Element Method

The basic idea of the Mortar approach is to add a dislocation potential to the total energy, in
order to impose the continuity of the displacement field at the interface:

Ed (u,λ) =
∫

Γ

λ(u|Γ1 −u|Γ2)dΓ (50)

This potential is summed with the total energy to get the Lagrangian functional El (u,λ) =
Ed (u,λ)+E(u) whose stationary points are the solution of the constrained optimization:{

minu(E(u))
u|Γ1 −u|Γ2 = 0 (51)

Similarly to Master/Slave approaches, the mortar approach needs the choice of one surface
to be the mortar surface and the other to be the non-mortar. The interpolation functions of
the lagrangian multipliers λ are (in the case of two domains) chosen to be the same as those
of the slave surface:7

λ(λ|Γ2) =N(λ|Γ2)λΓ2 (52)

The dislocation potential can then be written as:

Ed(uΓ1 ,uΓ2 ,λΓ2) = λ
T
Γ2
(M21uΓ1 −M2uΓ2) (53)

Then the Lagrangian functional is stationary for:
K1,1 K1,Γ1 0 0 0
KΓ1,1 KΓ1,Γ1 MT

21 0 0
0 M21 0 −M2 0
0 0 −MT

2 KΓ2,Γ2 KΓ2,2
0 0 0 K2,Γ2 K2,2



u1
uΓ1

λΓ2

uΓ2

u2

=


f1
fΓ1

0
fΓ2

f2

 (54)

Even if the equations obtained from this approach seem to be different from the one of
the WRM eliminating the Lagrange eigenvalues from equation (54) we can recognize that
they have the same solution (see Jeong et al. [47] for the proof). It can be noted that this
method has the same difficulties of implementation and of evaluation cost encountered with
the WRM method: The integral of the shape function over the intersection of the interface
has to be evaluated in order to evaluate the mass matricesM21,M2. The Mortar approach is
shown to be as precise as the WRM approach with a quite bigger effort due to the increased
number of variables. For this reason in section 4 only WRM has been implemented and
compared with other methods.

7 In the work of Puso et al [60] the dual space is also employed
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3.3 The Internodes Approach

Here we describe the internodes approach, introduced for the first time by Deparis et al
in [26] and further analyzed by Gervasio et al in [42]. We derived it’s matrix formulation
directly from equation (8). Like in the elimination approaches the continuity of the dis-
placement field is guaranteed by equation (18). On the other hand the balance of energy and
efforts are not imposed. The forces t12 and t12 are supposed to be interpolated with the same
shape functions of displacement on each subdomain interface:

t12(x|Γ2) =N
(h)(x|Γ2)p2 (55)

t21(x|Γ1) =N
(h)(x|Γ1)p1 (56)

Conforming with these definitions the residual at the interface may be evaluated as:

rΓ1 =
∫

Γ1

N (h)(x|Γ1) ·N
(h)(x|Γ1)p1dΓ1 =M1p1 (57)

rΓ2 =
∫

Γ2

N (h)(x|Γ2) ·N
(h)(x|Γ2)p2dΓ2 =M2p2 (58)

The balance of the internal forces per unit area is imposed in a similar fashion to the conti-
nuity of the displacement as in equation (18), but this time a second interpolation operator
is used:

p1 +Π12p2 = 0 (59)

Substituting equation (57) and (58) in (59) one gets:

rΓ1 +M1Π12M
−1
2 rΓ2 = rΓ1 +Q12rΓ2 = 0 (60)

Finally, using equations (60) and (18) in (8) one can get: K1,1 K1,Γ1 0
KΓ1,1 KΓ1,Γ1 +Q12KΓ2,Γ2Π21 Q12KΓ2,2

0 K2,Γ2Π21 K2,2


u1
uΓ1

u2

=


f1

fΓ1 +Q12fΓ2

f2

 (61)

It can be observed that the system of equation of the internodes formulation is not symmetric
and that equation (21) and (22) are not imposed so that internodes is not a conservative
method. On the other hand the formulation and the implementation are straightforward if
compared with the mortar and the WRM approaches: the only mass matrices M2, M1 and
the interolation operators Π12 and Π21 are needed. Good convergence property have been
showed in the work of Gervasio et al. [42].

3.4 Weighted Average Continuity Approach (WACA)

The collocation approaches even if simple are not precise enough when the the most refined
mesh is chosen as master surface. On the other hand the segment to segment approaches are
very accurate but are complex and need much more computational effort. The Internodes
approach seeks to achieve such a trade-off between complexity and accuracy but, as it will
be shown in section 4, the fact that it does not conserve the resultant force vector and total
energy at the interface can deteriorate its accuracy. We would like to develop a new method
here that shares with Internodes its simplicity but achieve an improved accuracy. This one
is based on another expression of the continuity of the displacement field at the interface.
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Before we introduce the new formulation let us highlight some equations that can be derived.
Each line of the vector coming from the multiplication of the interface mass matrix and the
interface displacement vector represent the integral over the interface of the displacement
field times the shape function of the DOF corresponding to the selected line. We can define
a weighted average displacement field using as weight the shape function as:

ūΓ1i =

∫
Γ1
u(x‖Γ1) ·N

Γ1
i (x‖Γ1)dΓ1∫

Γ1(N
Γ1
i (x‖Γ1 ))idΓ1

(62)

That can be reformulated as:
(M1uΓ1)i = SNi ūΓ1i (63)

Where SNi is the integral of the i-th shape function over its support and ūΓ1i is the weighted
average of the i-th displacement on Γ1. We can put this relationship in the matrix form:

M1uΓ1 = S1ūΓ1 M2uΓ2 = S2ūΓ2 (64)

Where we indicate with S1 and S2 the diagonal matrices containing on the diagonal the
integral of each shape function on its support8, and with ūΓ1 and ūΓ2 the weighted average
displacement field of each component over the corresponding shape function support. In the
approach we propose we seek to state the continuity of the weighted average displacement
interpolating between the two surface i.e.

ūΓ2 =Π21ūΓ1 (65)

By substitution of equation (64) into equation (65) one gets a new interpolation operator
between the displacement field:

uΓ2 =M
−1
2 S2Π21S

−1
1 M1uΓ1 =Π

∗
21uΓ1 (66)

If the interpolation operator Π21 satisfies the conservation conditions given by equation
(22),Π∗21 will also satisfy the same conditions:

Π∗211Γ1 =M
−1
2 S2Π21S

−1
1 M11Γ1 =M

−1
2 S2Π21S

−1
1 S11Γ1 =

=M−1
2 S2Π211Γ1 =M

−1
2 S21Γ2 =M

−1
2 M21Γ2 = 1Γ2

(67)

Where we used twice the fact that the mass coherent and lumped mass matrices conserve
the sum of lines i.e.

M11Γ1 = S11Γ1 M21Γ2 = S21Γ2 (68)

The condition of zero work at the interface (equation 19) can be used as was done in the
classic elimination methods so that the final matrix form of the WACA approach is: K1,1 K1,Γ1 0

KΓ1,1 KΓ1,Γ1 +(Π∗21)
TKΓ2,Γ2Π

∗
21 (Π∗21)

TKΓ2,2
0 K2,Γ2Π

∗
21 K2,2


u1
uΓ1

u2

=


f1

fΓ1 +(Π∗21)
TfΓ2

f2


(69)

This formulation shares the same simplicity of the Internodes approach, on the other hand
satisfies a priori the conservation of the residual sum at the interface and of the energy at
the interface.

8 S1 and S2 are also indicated as lumped mass matrix
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3.5 A priori conservation of moments

All the methods proposed here do respect the balance of residual resultant and residual work
but do not respect an a priori condition on the moments of the resultant at the interface. In
the work of Puso [60] to enforce this balance of moments and keep the same formulation of
the mortar method the nodes of slave surface in the undeformed configuration are moved on
the interface surface. This method is interesting but still not very practical to conserve the
meshes of both sub-domains. Another interesting approach is proposed by Park et al. in [59],
were a third surface and mesh (the frame) are introduced and the balance of moments and of
the patch test are satisfied choosing the position of nodes on the frame. To the authors’ best
knowledge no works exist which propose to respect the moments’ balance equation through
an a priori condition on the interpolation operators Π12, Π21. This is the objective of this
subsection in which a necessary condition is determined and used to correct the projection
operator for all eliminations methods as well as for the new WACA method. First of all lets
write the balance of moments of the residual:

nΓ1

∑
i=1
OPiΓ1 ×RiΓ1 +

nΓ2

∑
j=1
OP jΓ2 ×R jΓ2 = 0 (70)

We defined here OPiΓs as the vector connecting the fixed point O to the positions of the
ith nodes of Γs surface (s=1,2); RiΓs as the vector of the residual force at the same node.
This equation must be satisfied for each possible combination of residual. For the energy
balance (21) the residuals are not independent so that all the combination of residuals can be
obtained as all the vectors in RNΓ2 where NΓ2 = ndnΓ2 is the number of DOFs of the second
interface. Satisfying equation (70) for all vectors ofRNΓ2 means that it has to be verified for
each vector in a normal basis, for example the canonical one. For each node j and for each
direction n( j)

d (for each k2 DOF) we can then write 3 equations as follows:

nΓ1

∑
i=1
OPiΓ1 × (RiΓ1)n(i)d

+OP jΓ2 × (R jΓ2)n( j)
d

= 0 ∀k2 ∈ {1,2, . . . ,NΓ2} (71)

By the use of (21) on can replace (RiΓ1)n(i)d
by the (k2,k1) terms ofΠ21 , that we will denote

here as (Π21)(k2,k1)
, where the k1 are the index of the DOFs of the ith node of Γ1. Choosing

O≡ PjΓ2 to write each moments equations, equation (71) becomes:

nΓ1

∑
i=1
P jΓ2PiΓ1 × (Π21)

T
(k2,k1)

= 0 ∀k2 ∈ {1,2, . . . ,NΓ2} (72)

This equation can be also written in the following matrix form:

(Π21)k2
·Bk2 = 0 ∀k2 ∈ {1,2, . . . ,NΓ2} (73)

Where (Π21)k2
is the kth

2 line ofΠ21,Bk2 is a matrix NΓ1 ×3 defined by:

(Bk2)(k1,nd) = (P jΓ2PiΓ1 ×n
(k1)
d )nd (74)

n
(k1)
d is the 3× 1 versor of the kth

1 DOF direction and by (•)nd the extraction of the nd
component of a vector. Equation 73 and equation 22 form a system of 6 equation for each
line of the projecting operator that can be compactly written as:

(Π21)k2
·AT

k2
= (Π21)k2

·
[
1Γ1 Bk2

]
=
[
(1Γ2)k2

0
]
= bT (75)
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We seek to correct the projecting operator coming from an elimination approach (RBF,
WRM, WACA) to respect equation (75). Since we don’t want to significantly modify the
previous interpolations, we would like to have a new line (Π21)

(c)
k2

that is as close as possible
to the original one (Π21)k2

and that satisfies equation 75. In other terms we want to solve
the optimization problem{

mins
(
s− (Π21)k2

)T
·
(
s− (Π21)k2

)
s ·AT

k2
= bT

(76)

Here we indicated (Π21)
(c)
k2

as s for brevity. To solve this constrained optimization problem
the Lagrangian approach can be used. The stationary condition of the Lagrangian form a
linear system of equation that can be solved to find sT as:(

(Π21)
(c)
k2

)T
= (Π21)

T
k2
+AT

k2
· (Ak2 ·A

T
k2
)−1(b−Ak2 · (Π21)

T
k2
) (77)

The resulting operatorΠ(c)
21 will then respect both the balance of resultant of residual/energy

and moments. Still its precision in term of displacement and stress continuity could be af-
fected so in the next section we will analyze its numerical efficiency. The correction pre-
sented here can be adapted even for the Internodes approach. The corrected scheme will
modify the column of the Q12 and not the line of Π21. The resulting scheme will therefore
conserve the balance of forces and moments but not of energy sinceQ(c)

12 6=ΠT
21.

4 Benchmarking on numerical test cases

4.1 Test cases definition and analysis for consistent meshes

In this section we present two test case geometries, each investigated under pure traction and
bending-traction boundary conditions, which will serve for benchmarking various methods
considered. The first case is a column like structure with spherical ends see figure 13a. In
the second case (figure 13b) the bottom structure is wider and shorter then the upper one and
both ends are spherical. Both structures are completely fixed at the bottom face and for the
pure traction loading they are loaded on the upper surface with a constant surface traction in
the z direction of magnitude 30.25 MPa. The analysis made for configuration (1) is actually
very similar to the ones frequently studied in the literature (cf. [68]). The main differences
consist in the clamping on the bottom side and in curved instead of planar upper and bottom
faces. Note that in configuration 2 our test problem does not have a closed form solution and
we had to consider the fine and consistent mesh as reference for the analysis. One should
also keep in mind that none of the presented methods passes linear patch tests for curved
interfaces.However, the classic constant stress patch test is not a necessary condition for
optimality convergence [70] and other conditions have to been proposed in the Generalized
patch test [69] or in the FEM test [64] . On the other hand one could be wondering how
much the error induced by the violation of the patch test can affect a general solution. The
following benchmarking will try to bring some insights to this question.
In the FEM, the upper and the lower domains are meshed with linear brick finite elements
with complete quadrature (8 Gauss points). In configuration (1) in figure 13a the upper and
the lower domains are meshed with 10× 10× 10 and 10× 10× 20 elements respectively.
Configuration (1) represents a very simple configuration and we also sought a more general
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case in witch the interface surfaces do not have the same boundaries. To achieve this we
considered configuration (2), see figure 13b. In this case the nodes that are not inside the
boundary of the intersection of the interface surfaces have to be eliminated from the inter-
face node set. To find these nodes one has to check the interpolation operator (applicable for
RL-RBF but also for ES) looking for all-zero columns and all-zero lines and eliminate the
corresponding nodes from the set of interface node. This avoids major errors of projection
and gives much better results for all the methods considered. In configuration (2) in figure
13b the upper domain is meshed in the same way and the lower domain with 20× 20× 5
elements. The total active DOFs are 10890 in configuration (1) and 10245 in configuration
(2). These configurations are denoted in the rest of this paper as reference configurations
and will serve for comparison, since they involve consistent meshes between the upper and
lower domains and involve the most refined meshes.

(a) Geometric configuration (1) (b) Geometric configuration (2)

Fig. 13: Geometric configurations (1) and (2), pure traction load case

In figure 14 a bending-traction loading condition is applied to both geometrical configura-
tions. In this case we simply added a second surface traction component in the x direction
with the same magnitude as the one in z direction (30.25MPa). The upper and the lower
domains are meshed with consistent meshes, so that this analysis does not introduce any
interpolation error between the meshes. The displacement field corresponding to the pure
traction and to the bending-traction loadings are represented in figure 15 and 16 respec-
tively.
The finite element code (in house code, implemented in Matlab) used for this test has been

tested and validated with a comparison with Abaqus 6.14. One can observe that in these
configurations the displacement field is continuous at the interface between the upper and
the lower domain. To represent the Von Mises stress, that is evaluated at each gauss integra-
tion point a global least square interpolation approach [45] was adopted (cf. figure 17 and
18). One can observe that for these meshes in both configurations the Von Mises stress is
continuous at the interface. These configurations are denoted in the rest of this paper as ref-
erence configurations and will serve for comparison, since they involve consistent meshes
between the upper and lower domains and involve the most refined meshes. Note also that
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(a) Geometric configuration (1) (b) Geometric configuration (2)

Fig. 14: Geometric configurations (1) and (2), bending-traction traction load case

(a) Geometric configuration (1) (b) Geometric configuration (2)

Fig. 15: Displacement amplitude under pure traction load case

(a) Geometric configuration (1) (b) Geometric configuration (2)

Fig. 16: Displacement amplitude under bending-traction load case
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the choice of the corresponding mesh densities was based on a convergence study, presented
in Appendix 1.

(a) Geometric configuration (1) (b) Geometric configuration (2)

Fig. 17: Von Mises stress under pure traction load case

(a) Geometric configuration (1) (b) Geometric configuration (2)

Fig. 18: Von Mises stress under bending-traction load case

4.2 Benchmark Results

The inconsistent meshes that are tested here are obtained by changing the mesh of the bottom
domain and keeping constant the mesh of the upper domain. The upper domain will always
be a (10× 10× 10) domain, on the other hand the bottom domain will change its mesh as
(n×n×20) for configuration (1) and as (m×m×5) in the configuration (2), with n and m
varying.
One can observe that in configuration (1) we are in the scenario of figure 6. On the other hand
in configuration (2) both the inconsistency of figure 5 and 6 are encountered. To measure
the quality of a given mesh tying technique, several parameters are studied as a function of
the discretization of each domain:

– The interface must be in balance of force and moments. The sum of the residuals at one
side must be the opposite value of the sum of residuals on the other side. The same for
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(a) Geometric configuration (1) n = 4 (b) Geometric configuration (1) n = 6

Fig. 19: Configuration (1) example of inconsistent meshes

(a) Geometric configuration (2) m = 8 (b) Geometric configuration (2) m = 10

Fig. 20: Configuration (2) example of inconsistent meshes

the moments. We introduce the percent resultant force and moments relative error as:

ER =
‖RΓ1 +RΓ2‖
‖RΓ1‖

×100% EM =
‖M Γ1 +M Γ2‖
‖M Γ1‖

×100% (78)

Where we define as RΓi the vector of the sum of the residual on the interface Γi, and
M Γi as the sum of residual moments around a fix point (in our case the origin).
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– In the same way also the total work of the internal forces at the interface should vanish.
For this reason one must also consider the compliance error as:

Ec =

∣∣∣∣∣rT
Γ1
uΓ1 +r

T
Γ2
uΓ2

rT
Γ1
uΓ1

∣∣∣∣∣×100% (79)

– The displacement field has to be continuous at the interface. An indicator of displace-
ment discontinuity can be considered as:

Ed =

(
‖uΓ1 −Π12uΓ2‖

2‖uΓ1‖
+
‖uΓ2 −Π21uΓ1‖

2‖uΓ2‖

)
×100% (80)

This indicator quantifies the amplitude of gaps and com-penetrations at both interface
mesh nodes.

– If m≤ 20 and n≤ 10 the conforming meshes can be considered as reference solutions.
We can then compare the displacement field at the node of the constant mesh side (upper
domain) with the one in the conforming cases figure 13 and 14.

EU =
1

NΓ1

NΓ1

∑
i=1

‖uΓ1i−ure f
Γ1i ‖

‖ure f
Γ1i ‖

×100% (81)

NΓ1 indicates the number of nodes of Γ1 (interface surface of the upper domain) and uΓ1i
is the displacement vector in the i-th node of the same surface. The drawback of these
indicators is that they are affected by the discretization in each sub-domain as well as
they are affected by the interface interpolation.

– The convergence trough reference Von Mises stress can also be studied comparing upper
domain gauss point stresses with the corresponding one in reference configuration. Once
again the upper domain is unchanged as are its Gauss point locations. The average and
the maximum Von Mises stress relative error over the entire upper domain Gauss points
are studied.

ES =
1

NPG1

NPG1

∑
i=1

|σi−σre f
i |

|σre f
i |

×100% (82)

Eσ = maxi

(
|σi−σre f

i |
|σre f

i |
×100%

)
(83)

Where NPG1 is the number of Gauss integration points in the upper domain finite ele-
ments.

– To complete the comparison the evaluation time will also be considered for each ap-
proach.

Different combinations can be adopted using methods described in section 3, For concise-
ness here we will concentrate only on a few methods:

– Re-Localized Radial Basis Function (RL-RBF) interpolation operator as described in
subsection 3.1.1

– Weighted residual method (WRM) as described in subsection 3.1.3 this approach has
the same accuracy of Mortar of subsection 3.2.1 but is less expensive in terms of com-
putational effort due to the reduced number variables. Since the solution of the WRM
method has been proven to have the same solution as the Mortar method (cf. [47]) we
will use the label ”WRM/Mortar” throughout the benchmark results.
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– The Internodes as described in subsection 3.3 and RL-RBF interpolation operators.
– the Weighted Average Continuity Approach (WACA) following the description of sub-

section 3.4 also using the same RL-RBF interpolation operators.

For the benchmarking of these methods in configuration (1), the mesh refinement n of the
bottom domain is made varying between 4 and 10. The choice of Master and Slave surfaces
is also varied and both loading conditions (pure traction and bending-traction) are consid-
ered. Furthermore the application or not of the proposed moment correction approach is also
considered. Similarly for configuration (2) the mesh refinement of the bottom domain m is
varied between 8 a and 20.The detailed results of the parametric studies for configurations
(1) and (2) are provided in Appendix 2. In order to summarize these parametric studies pre-
sented in the appendix we provide here in the main section, box plots that aggregate the
error measures for all the different cases considered, cf. Fig. 21. In these plots the results are
grouped by method and application of moment correction. The labeling ”corrected meth-
dod” means that the proposed moment correction was applied to the respective method. For
recall, the line in the middle of the box is the median while the edges of the box represent
the 25% and 75% percentiles. The whiskers extend to the most extreme data points not con-
sidered outliers, and the outliers are plotted individually by crosses in the plot.
Several conclusions can be drawn from the plots of Fig. 21. A priori moment correction not
only makes it possible to satisfy the exact balance of moments as it is clear from figure 21b,
moreover it sensibly improves the accuracy of all elimination approaches in terms of stress
and displacements discrepancy (cf. figures 21d,21e,21f and 21g). For the computation time
on the other hand this projection can cost less then the 25% of the overall CPU time, but
improved implementation based on the use of matrices could further reduce this cost.
Overall the most accurate method is found to be WRM/Mortar, which is in accordance
with the literature. Unfortunately, as often noted in the literature as well, the accuracy of
the WRM/Mortar approach comes at the expense of a significant implementation com-
plexity and significant computational cost (cf. Fig. 21h) . This is due to the fact that the
WRM/Mortar method needs the tedious element to element projections and integrations for
the mass matrix assembly that are not necessary in the other approaches. In De Boer the
WRM method was described as ineffective for fluid structure applications with curved in-
terfaces. Here we show that for elastostatic problems this method does not suffer of this
weakness. The three other methods (RL-RBF, Internodes and WACA) have much lower
implementation complexity and computational cost but come with different tradeoffs with
respect to accuracy. The Internodes method does not appear to be able to achieve the vanish-
ing of the work of the internal forces at the interface (cf. Fig. 21c), but this does not appear
to necessarily badly affect the accuracy of the displacement field, compared to the other
methods.
While on the majority of error metrics all methods appear to perform reasonably well, espe-
cially after balance of moments correction, one of the most discriminating error metrics is
the discrepancy in the Von Mises stresses, where relatively large errors can still be encoun-
tered. In order to obtain a better overview of the actual discrepancy in terms of stresses we
plot the stress maps corresponding to each approach before and after moment correction,
for n = 4 and when Γ1 (resp. Γ2) is chosen as master surface in Fig. 22 (resp. in Fig.23 ).
Artificial stress concentration are generated by the mesh coupling at the interface especially
for RL-RBF, Internodes and WACA (even after moment correction). Note however that the
a priori balance of moments correction sensibly improves the accuracy of the stress fields
for all the methods which performed very poorly without this correction. It is also important
to note that outliers can have totally unacceptable accuracy in terms of stresses. Overall, in
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terms of accuracy of the stress field, we can note that the corrected WACA approach allows
to achieve, on average, a low error on the stresses and a low dispersion from case to case, as
well as less extreme outliers, making it a pertinent alternative to the WRM/Mortar approach,
while involving a lower implementation complexity and computational cost. Several other
additional conclusions can be drawn based on the detailed study of the dependence of the
error measures with mesh density (see figures 26-29). In configuration (1)(figure 26) we can
make following observations:

– n=10 is not represented for clarity, nevertheless we verified that all the error indicators
were equal to 0 for n=10.

– In Figure 26a, and 26c one can check that RL-RBF,WACA and WRM/Mortar respecting
equations (21) and (22) consequently conserve force resultant and elastic energy at the
interface. On the other hand Internodes, that does not respect these equations, shows a
discrepancy in terms of reaction sum and residual work at the interface. This discrepancy
is severe when the difference between element areas at the interface is important (n=4-
7) and when the coarser mesh (always Γ2 in our study) is the master. Moreover the
discrepancy becomes more severe when the load case is combined (bending-traction
load case).

– None of the methods studied here conserve a priori the interface total moment(figure
26b). WACA and internodes do not conserve the moments for coarse meshes and in the
combined load case. WRM/Mortar and RL-RBF perform better and seem to be reason-
ably accurate even for coarser mesh size. Of course for the pure traction case all the
methods perform well in terms of zero moment conservation.

– In figure 26d we find that RL-RBF generate openings in the deformed configuration
when the interface with the finest mesh (Γ1 in our case) is the master. This is a classic
problem of node to segment approaches. WACA improves the continuity of the dis-
placement field but is less precise than internodes and WRM/Mortar especially in the
combined load case. All these methods focus on the displacement field.

– In figure 26e,26f and 26g one can observe displacements and stress convergence at the
upper domain9 to the reference configuration (finest mesh tested with consistent mesh
on the interface).We find that WRM/Mortar is quite accurate even for coarse meshes.
The other methods are reasonably accurate for finer meshes.

– From figure 26e, 26b and 26g one can also observe that both WACA and internodes
loose their precision in bending-traction load case. The non conservation of moments
may be a cause of this weaknesses in agreements of accuracy improvements obtained
after moment correction.

– In figure 26h we can see that WRM/Mortar is much slower (almost an order of magni-
tude) than the other methods, and this difference of cost increases with the problem size
and with the interface refinement. The particular implementation chosen for this work
has not been optimized to reduce the computational cost, anyway in all implementation
the tedious element to element projection is the main source of computational effort.

– In figure 26d for n=5 for WACA,Internodes and RL-RBF, when Γ2 is master Ed% is 0
to the machine precision. This is due to the fact that for this mesh all the nodes of Γ2 are
superposed to one node of Γ1. For that reason choosing the coarsest mesh surface (Γ2)
as master will also imply the point-wise continuity on each node of (Γ1). This is not the
case for WRM/Mortar as the continuity is imposed in an integral form.

9 As mentioned before we considered the error average over interface (Γ1) nodes for displacement and the
average over all the upper domain Gauss points for stress
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The same study was conducted for configuration (2) (figure 27). Here can make following
observations:

– In this case as well consistent mesh accuracy (m = 20) is not represented for clarity pur-
pose nevertheless it has been checked that all errors converge to 0 in this configuration.

– The accuracy is much better when m is a multiple of 4 (m = 8,12,16,20) i.e. when Γ1
and Γ2 have the same boundaries like in figure 20a. For all other configurations, the error
is much higher for all the methods studied. The fact that some elements are cut by the
interface boundaries like (cf. figure 20b) affects the precision of all the studied methods.

– The error in the total moments balance (figure 27b) is much smaller in this case for all
methods except for Internodes where also the energy and the total reaction as indicated
in figures 27a and 27c is much higher. Not having exactly the same area of element in
both meshes is probably the main cause of this error.

– In terms of displacement continuity at the interface (cf. figures 27d) , the RL-RBF is this
time overtaken by both WACA and Internodes.It must be noted that Ed% is small when
both interfaces have similar displacement even if this is not the ”good” one. RL-RBF
poor accuracy is traduced in gap appearing at the interface in the deformed configuration
especially in pure traction load case.

– Looking at the displacement and stress convergence to the reference solution (figures 27f
and 27g respectively) WRM/Mortar confirms its accuracy even in this case. On the other
hand Internodes and RL-RBF show poor convergence especially for m 6= 8,12,16,20 .
WACA lies somewhere in between WRM/Mortar and Internodes.

– The CPU time in seconds (figure 27h) is still much higher for the WRM, for the same
reason as in configuration (1).

– As was highlighted for configuration (1), looking at figures 27b , 27e and 27g a method
seems to lose its accuracy for the stress prediction when the total moments balance at
the interface is not respected.
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Fig. 21: Results accuracy and time dispersion over the whole test battery: (a) Boxplot of ER,
the Resultant Force relative error, (b) Boxplot of EM , the moment relative error, (c) Boxplot
of Ec, the interface compliance relative error, (d) Boxplot of Ed , the displacement disconti-
nuity relative error, (e) Boxplot of Eσ , the maximum of Von Mises stress relative error, (f)
Boxplot of EU , interface displacement field relative error, (g) Boxplot of ES, average Von
Mises stress relative error, (h) Boxplot of CPU time (s);
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(a) WACA (b) Corrected WACA

(c) WRM/Mortar (d) Corrected WRM/Mortar

(e) Internodes (f) Corrected Internodes

(g) RL-RBF (h) Corrected RL-RBF

Fig. 22: Von Mises stress plot configuration (1) under bending-traction load case, for n = 4
and Γ1 master.
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(a) WACA (b) Corrected WACA

(c) WRM/Mortar (d) Corrected WRM/Mortar

(e) Internodes (f) Corrected Internodes

(g) RL-RBF (h) (h): Corrected RL-RBF

Fig. 23: Von Mises stress plot configuration (1) under bending-traction load case, for n = 4
and Γ2 master.
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Fig. 24: Boxplot of EK , interface specific kinetic energy relative error.

There is a last point on which we would like to comment. In this paper we focused just
on elasto-static problem, so we didn’t check for the continuity of the specific kinetic energy
at the interface. Moving to a dynamic problem a relevant error measure is the continuity of
the specific kinetic energy at the interface that can be written as:

uT
Γ1
M1uΓ1 = u

T
Γ2
M2uΓ2 (84)

We made a check of this continuity using the specific kinetic energy error index Ek% defined
as:

Ek =
uT

Γ1
M1uΓ1 −uT

Γ2
M2uΓ2

uT
Γ1
M1uΓ1

×100% (85)

Figure 24 results of all previous experiences are given also for EK%. We can see from
these box-plots that further developments are still possible aimed at improving the accuracy
of the methods for dynamic problems.

5 Conclusion and perspectives

In this paper we presented several techniques for mesh tying of inconsistently discretized
domains. The Re-Localized Radial Basis Function interpolation (RL-RBF), The Weighted
Residual Method/Mortar (WRM/Mortar), the Internodes were presented and a first contribu-
tion consisted in the proposal of the Weighted Average Continuity Approach (WACA). All
these approaches were benchmarked comparing several accuracy metrics as well as CPU
time. Note that we also proposed some implementation improvements for the WRM/Mortar
method in order to make the approach more robust. Based on the benchmarking analysis
we can confirm that WRM/Mortar is the most accurate approach for all indicators in terms
of stress and displacement predictions. On the other hand it is the most complex method
implemented here and also the most expensive in term of CPU time. The other methods in-
volve much lower implementation complexity and computational cost but represent different
trade-offs between the various error measures: displacements, stresses, interface forces and
moments, total work at the interface. A second contribution consisted in a new procedure
for the correction of elimination approaches in order to respect the balance of the resultant
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of moments of residuals at the interface. This a priori moments correction allowed to sig-
nificantly improve the accuracy of all the elimination approaches considered. The proposed
WACA method, including this correction, seems to be a good trade-off between CPU time,
implementation complexity and accuracy, especially in terms of accuracy of the stresses.
Future work could focus on similar improvements of mesh tying methods for dynamic,
Fluid-Structure Interaction or contact problems.

6 Appendix 1

We provide in Figure 25 the results of the convergence study, which led to the choice of
the mesh density used in subsection 4.1 and thereafter as reference configurations. In both
configuration the reference situation chosen for this study (n=10 and m=20) show a max
displacement discretization error that is less than 2%
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Fig. 25: Convergence of the maximum displacement with mesh density : (a) for configu-
ration (1) and (b) for configuration (2). The mesh was changed keeping the same element
aspect ratio and the conforming interfaces in figure 13under the form n × n × 10 for the
upper domain of configuration 1 and m × m × 10 for the upper domain of configuration 2

7 Appendix 2

In this appendix we report the detailed error analysis of each benchmark configuration, while
varying the mesh density. All error measures introduced in subsection 4.2 are provided in
figures 26-29 for both configuration considered.
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Fig. 26: Benchmark results in configuration (1) impact of n over: (a) ER, the Resultant Force
relative error, (b) EM , the moment relative error, (c) Ec, the interface compliance relative
error, (d) Ed , the displacement discontinuity relative error, (e) Eσ , the maximum of Von
Mises stress relative error, (f) EU , interface displacement field relative error, (g) ES, average
Von Mises stress relative error, (h) CPU time (s).
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Fig. 27: Benchmark results in configuration (2)impact of m over: (a) ER, the Resultant Force
relative error, (b) EM , the moment relative error, (c) Ec, the interface compliance relative
error, (d) Ed , the displacement discontinuity relative error, (e) Eσ , the maximum of Von
Mises stress relative error, (f) EU , interface displacement field relative error, (g) ES, average
Von Mises stress relative error, (h) CPU time (s).
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Fig. 28: Benchmark results in configuration (1) after moments balance correction. Impact
of n over: (a) ER, the Resultant Force relative error, (b) EM , the moment relative error, (c) Ec,
the interface compliance relative error, (d) Ed , the displacement discontinuity relative error,
(e) Eσ , the maximum of Von Mises stress relative error, (f) EU , interface displacement field
relative error, (g) ES, average Von Mises stress relative error, (h) CPU time (s).
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Fig. 29: Benchmark results in configuration (2) after moments balance correction. Impact
of m over: (a) ER, the Resultant Force relative error, (b) EM , the moment relative error, (c)
Ec, the interface compliance relative error, (d) Ed , the displacement discontinuity relative
error, (e) Eσ , the maximum of Von Mises stress relative error, (f) EU , interface displacement
field relative error, (g) ES, average Von Mises stress relative error, (h) CPU time (s).
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ics/Revue Européenne de Mécanique Numérique 17(5-7), 969–980 (2008)

29. Dhia, H.B., Rateau, G.: The arlequin method as a flexible engineering design tool. International journal
for numerical methods in engineering 62(11), 1442–1462 (2005)

30. Dohrmann, C., Key, S., Heinstein, M.: A method for connecting dissimilar finite element meshes in two
dimensions. International Journal for Numerical Methods in Engineering 48(5), 655–678 (2000)

31. Dohrmann, C., Key, S., Heinstein, M.: Methods for connecting dissimilar three-dimensional finite ele-
ment meshes. International Journal for Numerical Methods in Engineering 47(5), 1057–1080 (2000)

32. Duarte, C.A., Kim, D.J.: Analysis and applications of a generalized finite element method with global–
local enrichment functions. Computer Methods in Applied Mechanics and Engineering 197(6), 487–504
(2008)

33. Duchon, J.: Splines minimizing rotation-invariant semi-norms in sobolev spaces. Constructive theory of
functions of several variables pp. 85–100 (1977)

34. Duval, M., Passieux, J.C., Salaün, M., Guinard, S.: Non-intrusive coupling: recent advances and scalable
nonlinear domain decomposition. Archives of Computational Methods in Engineering 23(1), 17 (2016)

35. Farhat, C., Lesoinne, M., Le Tallec, P.: Load and motion transfer algorithms for fluid/structure inter-
action problems with non-matching discrete interfaces: Momentum and energy conservation, optimal
discretization and application to aeroelasticity. Computer methods in applied mechanics and engineer-
ing 157(1-2), 95–114 (1998)

36. Farhat, C., Roux, F.X.: A method of finite element tearing and interconnecting and its parallel solution
algorithm. International Journal for Numerical Methods in Engineering 32(6), 1205–1227 (1991)

37. Feyel, F., Chaboche, J.L.: Fe 2 multiscale approach for modelling the elastoviscoplastic behaviour of
long fibre sic/ti composite materials. Computer methods in applied mechanics and engineering 183(3),
309–330 (2000)

38. Fish, J., Belsky, V., Pandheeradi, M.: Iterative and direct solvers for interface problems with lagrange
multipliers. Computing Systems in Engineering 6(3), 261–273 (1995)

39. Flemisch, B., Kaltenbacher, M., Triebenbacher, S., Wohlmuth, B.: Non-matching grids for a flexible
discretization in computational acoustics. Communications in Computational Physics 11(2), 472–488
(2012)

40. Fletcher, R., Powell, M.J.: A rapidly convergent descent method for minimization. The computer journal
6(2), 163–168 (1963)

41. Gander, M.J., Japhet, C.: Algorithm 932: Pang: software for nonmatching grid projections in 2d and 3d
with linear complexity. ACM Transactions on Mathematical Software (TOMS) 40(1), 6 (2013)

42. Gervasio, P., Quarteroni, A.: Analysis of the internodes method for non-conforming discretizations of
elliptic equations (2016)

43. Hartmann, S., Oliver, J., Weyler, R., Cante, J., Hernández, J.: A contact domain method for large defor-
mation frictional contact problems. part 2: Numerical aspects. Computer Methods in Applied Mechanics
and Engineering 198(33), 2607–2631 (2009)

44. Heintz, P., Hansbo, P.: Stabilized lagrange multiplier methods for bilateral elastic contact with friction.
Computer methods in applied mechanics and engineering 195(33), 4323–4333 (2006)

45. Hinton, E., Campbell, J.: Local and global smoothing of discontinuous finite element functions using a
least squares method. International Journal for Numerical Methods in Engineering 8(3), 461–480 (1974)

46. Hou, G., Wang, J., Layton, A.: Numerical methods for fluid-structure interaction - a review. Communi-
cations in Computational Physics 12(2), 337–377 (2012)



42 Simone Coniglio et al.

47. Jeong, G.E., Youn, S.K., Park, K.: Element-independent implementation for method of lagrange multi-
pliers. World Academy of Science, Engineering and Technology, International Journal of Mechanical,
Aerospace, Industrial, Mechatronic and Manufacturing Engineering 11(2), 343–347 (2017)

48. Kim, H.G.: Interface element method: Treatment of non-matching nodes at the ends of interfaces between
partitioned domains. Computer methods in applied mechanics and engineering 192(15), 1841–1858
(2003)

49. Lim, J.H., Im, S., Cho, Y.S.: Mls (moving least square)-based finite elements for three-dimensional
nonmatching meshes and adaptive mesh refinement. Computer methods in applied mechanics and engi-
neering 196(17), 2216–2228 (2007)

50. Lim, J.H., Im, S., Cho, Y.S.: Variable-node elements for non-matching meshes by means of mls (mov-
ing least-square) scheme. International Journal for Numerical Methods in Engineering 72(7), 835–857
(2007)

51. Lloberas-Valls, O., Cafiero, M., Cante, J., Ferrer, A., Oliver, J.: The domain interface method in non-
conforming domain decomposition multifield problems. Computational Mechanics 59(4), 579–610
(2017)

52. Lloberas-Valls, O., Rixen, D., Simone, A., Sluys, L.: Multiscale domain decomposition analysis of quasi-
brittle heterogeneous materials. International Journal for Numerical Methods in Engineering 89(11),
1337–1366 (2012)

53. Lloberas-Valls, O., Rixen, D., Simone, A., Sluys, L.: On micro-to-macro connections in domain decom-
position multiscale methods. Computer Methods in Applied Mechanics and Engineering 225, 177–196
(2012)
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teilräumen, die keinen randbedingungen unterworfen sind 36(1), 9–15 (1971)

58. Oliver, J., Hartmann, S., Cante, J., Weyler, R., Hernández, J.: A contact domain method for large defor-
mation frictional contact problems. part 1: theoretical basis. Computer Methods in Applied Mechanics
and Engineering 198(33), 2591–2606 (2009)

59. Park, K., Felippa, C., Rebel, G.: A simple algorithm for localized construction of non-matching structural
interfaces. International Journal for Numerical Methods in Engineering 53(9), 2117–2142 (2002)

60. Puso, M.A.: A 3d mortar method for solid mechanics. International Journal for Numerical Methods in
Engineering 59(3), 315–336 (2004)

61. Puso, M.A., Laursen, T.A.: A mortar segment-to-segment contact method for large deformation solid
mechanics. Computer methods in applied mechanics and engineering 193(6), 601–629 (2004)

62. Quiroz, L., Beckers, P.: Non-conforming mesh gluing in the finite elements method. International Journal
for Numerical Methods in Engineering 38(13), 2165–2184 (1995)

63. Rixen, D.J.: Substructuring and dual methods in structural analysis. Ph.D. thesis (1997)
64. Shi, Z.C.: The fem test for convergence of nonconforming finite elements. Mathematics of computation

49(180), 391–405 (1987)
65. Shillor, M., Sofonea, M., Telega, J.J.: 7 elastic contact. In: Models and Analysis of Quasistatic Contact,

pp. 101–115. Springer (2004)
66. Smith, M.J., Cesnik, C.E., Hodges, D.H.: Evaluation of some data transfer algorithms for noncontiguous

meshes. Journal of Aerospace Engineering 13(2), 52–58 (2000)
67. Sofonea, M., Han, W., Shillor, M.: Analysis and approximation of contact problems with adhesion or

damage. CRC Press (2005)
68. Song, Y.U., Youn, S.K., Park, K.: Virtual gap element approach for the treatment of non-matching inter-

face using three-dimensional solid elements. Computational Mechanics pp. 1–10 (2017)
69. Stummel, F.: The generalized patch test. SIAM Journal on Numerical Analysis 16(3), 449–471 (1979)
70. Stummel, F.: The limitations of the patch test. International journal for numerical methods in engineering

15(2), 177–188 (1980)
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