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5 Place Jules Janssen, F-92190 Meudon, France,
and Département de Physique Théorique, Université de Genève,

24 quai E. Ansermet, CH-1211 Geneva, Switzerland

(Received 29 October 2019; published 16 December 2019)

Primordial black holes may have formed in the radiative era of the early Universe from the collapse
of large enough amplitude perturbations of the metric. These correspond to non linear energy density
perturbations characterized by an amplitude larger than a certain threshold, measured when the
perturbations reenter the cosmological horizon. The process of primordial black hole formation is studied
here within spherical symmetry, using the gradient expansion approximation in the long wavelength limit,
where the pressure gradients are small, and the initial perturbations are functions only of a time-
independent curvature profile. In this regime it is possible to understand how the threshold for primordial
black hole formation depends on the shape of the initial energy density profile, clarifying the relation
between local and averaged measures of the perturbation amplitude. Although there is no universal
threshold for primordial black hole formation, the averaged mass excess of the perturbation depends on the
amplitude of the energy density peak, and it is possible to formulate a well-defined criterion to establish
when a cosmological perturbation is able to form a black hole in terms of one of these two key quantities.
This gives understanding of how the abundance of primordial black holes depends on the shape of the
inflationary power spectrum of cosmological perturbations.

DOI: 10.1103/PhysRevD.100.123524

I. INTRODUCTION

A population of primordial black holes (PBHs) might
have been formed in the radiation dominated era of the
early Universe, by gravitational collapse of sufficiently
large-amplitude cosmological perturbations. This idea,
suggested more than 50 years ago by Zel’dovich and
Novikov in 1966 [1], was five years afterwards considered
by Hawking [2]. Inspired by the fact that primordial black
holes could be as small as elementary particles, by
including semiclassical quantum corrections he discovered
that a black hole could evaporate [3].
The cosmological consequences of PBH formation

were then analyzed in more detail by Carr, Hawking’s
PhD student at that time, between 1974 and 1975 [4,5].
He formulated the first criterion to compute the threshold
amplitude δc for PBH formation, using a simplified Jeans
length argument in Newtonian gravity, obtaining δc ∼ c2s
where cs ¼

ffiffiffiffiffiffiffiffi
1=3

p
is the sound speed of the cosmological

radiation fluidmeasured in units of the speed of light. Hewas
then followed by other authors who investigated the process
of formation by gravitational collapse also numerically:

Nadezhin, Novikov and Polnarev in 1978 [6]; Bicknell and
Henriksen in 1979 [7]; Novikov and Polnarev in 1980 [8].
After these pioneering papers, progress on the mecha-

nism of PBH formation was stalled for about 20 years until
being studied again with more sophisticated numerical
simulations by Niemeyer and Jedamzik [9] and Shibata and
Sasaki [10], both in 1999, followed in 2002 by Hawke
and Stewart [11], and by Musco, Miller and Rezzolla in
2005 [12]. PBH formation received a lot of attention at
that time because of the discovery of critical collapse by
Choptuik in 1993 [13]. This mechanism finds a natural
application in the context of PBH formation, as pointed out
in 1998 by Niemeyer and Jedamzik [14].
All of these numerical investigations confirmed that a

cosmological perturbation is able to collapse to a PBH if it
has an amplitude δ greater than a certain threshold value δc.
One of the definitions of δ that can be found in the literature
was introduced in [9], referring to the relative mass excess
inside the overdense region (an averaged quantity) mea-
sured at the time of horizon crossing, when the radius of the
cosmological horizon is exactly equal to the lengthscale of
the overdensity measured in real space.
In [9] it was found that for a radiation fluid δc is between

0.67 and 0.71 depending on the shape of the energy density
profile considered. Already at that time the issue of*iliamusco@icc.ub.edu, ilia.musco@unige.ch
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measuring the lengthscale of the perturbation at the edge of
the overdensity was arising when a non compensated
perturbation, like the Gaussian shape with an overdensity
spread to infinity, was considered. The problem was simply
“solved” using a different prescription for measuring the
lengthscale where the perturbation is characterized by a
shape like the Gaussian, without investigating more deeply
the issue of determining a well defined and unique criterion
to measure the perturbation amplitude.
In [10] this was measured with the peak of the curvature

profile (a local quantity) specified in Fourier space.
Although these two papers came out in the same year,
their approach, and the numerical techniques used, are very
different and it was difficult at that time to compare the
results obtained. The problem was confronted a few years
later by Green et al. (2004) [15] using the relation between
the curvature and the energy density profile known from
the linear theory of cosmological perturbations, showing
that the results of [10] corresponded to a value of δc varying
between 0.3 and 0.5, which was not in agreement with the
range of values obtained in [9].
There were two reasons for this. Firstly, as noted by

Shibata and Sasaki in [10], the results of [9] had been
contaminated by the inclusion of a decaying component
whichwould have been absent in perturbations coming from
inflation. This was rectified in our subsequent paper [12]
wherewe obtained δc ¼ 0.45–0.47 for similar profile shapes
to those in [9]. Since this was within the range of [15], δc ¼
0.45 (for a Mexican-Hat perturbation) came to be used as a
standard by cosmologists in many calculations of PBH
formation. However, the measure of δ used in [15] is a local
value of the energy density, while the amplitudemeasured in
[9,12] is an averaged measure of the mass excess contained
within the overdense region. Moreover the relation used in
[15] is linear, while it was shown in [16] that the peak of the
curvature profile forming a PBHneeds to be at least ofOð1Þ,
which is obviously non linear. This inconsistency has long
been under estimated, creating confusion in the literature
and producing wrong estimates of the cosmological impact
of PBHs, as Germani and myself have recently pointed out
[17]. The same thing was noticed independently at the same
time by Yoo et al. making a similar analysis [18].
One of the aims of the present paper is to combine together

all of these aspects in a consistent and coherent picture,
introducing a well defined criterion to measure the pertur-
bation amplitude, which is shape independent. This clarifies
the relation between the local and averaged measures of the
perturbation amplitude, making it possible to compute
consistently how the threshold for PBH formation varies
with changing the shape of the initial density perturbation.
To do this I will follow the approach used in Polnarev

and Musco (2007) [16], where supra horizon initial
perturbations are described in terms of the non linear
curvature profile, used to specify initial conditions for
numerical simulations analogous to the ones performed in

[12], using an asymptotic quasihomogeneous solution [19].
Because the curvature perturbation is a time-independent
quantity when the perturbation lengthscale is much larger
than the cosmological horizon [20], the initial perturbations
for all of the other quantities can then be specified in a
consistent way in terms of the initial curvature profile, even
when this is non linear. This approach allowed Musco et al.
[21] to show in 2009, implementing the previous numerical
simulations with an adaptive mesh refinement (AMR), that
the critical behavior continues to hold down to very small
values of ðδ − δcÞ. Finally in 2013 the self similarity of the
solution for δ ¼ δc was analyzed and confirmed [22].
In 2014 Nakama et al. [23] made the first attempt to

investigate the effects of the shape of cosmological per-
turbations on the threshold for PBH formation. They
suggested two phenomenological parameters to measure
the relation between the perturbation amplitude and the
pressure gradients. Their analysis however only partially
covers all of the possible range of shapes, and their
phenomenological parameters cannot be easily related to
the calculation of the cosmological impact of PBHs. The
approach followed in this paper instead allows one to
compute how δc and the corresponding peak amplitude of
the energy density perturbations are varying with respect
to the shape. This is perfectly consistent with peak theory
[24] and shows that the abundance of PBHs is strongly
dependent on the shape of the inflationary power spectrum,
which determines the shape of the averaged perturbation
collapsing to form PBHs [17].
For the work of this paper I have used the same

numerical code as in our previous papers written on the
subject. Following the present Introduction, Sec. II reviews
the mathematical formulation of the problem, revising the
quasihomogeneous solution and discussing the criterion to
measure the perturbation amplitude, analyzing the relation
between the local and averaged measures of the perturba-
tion amplitude. In Sec. III different families of initial
conditions are discussed, studying a wide range of pertur-
bation profiles which allow identification of the funda-
mental properties of all possible shapes of the energy
density. In Sec. IV the results for the threshold δc as a
function of a fundamental parameter characterizing the
shapes are presented and discussed. In Sec. V the con-
clusions are presented by making a summary of the results.
Throughout we use c ¼ G ¼ 1.

II. MATHEMATICAL FORMULATION
OF THE PROBLEM

A. Basics of the 3 + 1 ADM formalism

In general the (3þ 1)-decomposition of the metric in the
Arnowitt-Deser-Misner (ADM) formalism [25,26] can be
written as

ds2 ¼ − α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ
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where α, βi and γij are the lapse function, the shift vector
and the spatial metric. In this (3þ 1)-decomposition, the
unit timelike vector nμ normal to the t ¼ const hypersur-
face Σ has the following covariant and controvariant forms:

nμ ¼ ð−α; 0; 0; 0Þ and nμ ¼
�
1

α
;−

βi

α

�
: ð2Þ

In this paper I will consider matter described by a perfect
fluid, with the stress energy tensor:

Tμν ¼ ðρþ pÞuμuν þ pgμν; ð3Þ

where ρ and p are the fluid energy density and the pressure
measured in the comoving frame of the fluid, while uμ is
the four-velocity of the fluid normalized such that
uμuμ ¼ −1. With these notions one can then write the
3þ 1 Einstein equations for a perfect fluid in a general
form without specifying a particular foliation of the space
time (the slicing) and a particular family of worldlines (the
threading). Choosing a particular combination of the two is
equivalent to specifying the gauge. In general the spatial
metric can be decomposed in the following form:

γij ¼ a2ðtÞe2ζðt;xiÞγ̃i;j; ð4Þ

where aðtÞ is the global scale factor and ζðt; xiÞ is a
curvature perturbation describing the inhomogeneous
Universe. The part of the three-metric given by γ̃i;j is time
independent and such that det½γ̃i;j� ¼ 1.

B. The long wavelength approach

We want to consider now non linear supra horizon
perturbations with lengthscale much larger than the
Hubble Horizon (which for a spatially flat Universe
coincides with the cosmological Horizon). This approach
has been variously called: long wavelength approximation
[10], gradient expansion [27], anti-Newtonian approxima-
tion [28], and is based on expanding the exact solution
as a power series in a fictitious parameter ϵ ≪ 1 that is
conveniently identified with the ratio between the
Hubble radius 1=HðtÞ [HðtÞ ≔ _aðtÞ=aðtÞ is the Hubble
parameter] which is the only geometrical scale in the
homogeneous Universe, and the length scale L character-
izing the perturbation.

ϵ ≔
1

HðtÞL ð5Þ

Choosing a particular value of ϵ corresponds to focusing on
a particular value of time t, multiplying each spatial
gradient by ϵ, expanding the equations in power series
in ϵ up to the first non zero order and finally setting ϵ ¼ 1.
This approach reproduces the time evolution of linear
perturbation theory but also allows consideration of non

linear curvature perturbations if the spacetime is suffi-
ciently smooth for scales greater than L (see [20] and the
references therein). This is equivalent to saying that
pressure gradients are small when ϵ ≪ 1 and are not
playing an important role in the evolution of the perturba-
tion (we will come back to this later in Sec. II E).
We assume that ζ ¼ 0 somewhere in the Universe, which

makes aðtÞ the scale factor of that region, allowing us to
interpret ζ as a perturbation within the observable Universe.
In Fourier space the lengthscale L of the perturbation
corresponds to a particular wave number k ∝ aðtÞ=L which
allows ϵ to be expressed in terms of the wave number.
This says that fixing the value of time t, the limit ϵ → 0
corresponds to k → 0 and the Universe becomes locally
homogeneous and isotropic (as in the Friedmann-Lemaître-
Robertson-Walker (FLRW) solution) when the perturbation
is smoothed out on a sufficiently large scale L.
The long wavelength approach is equivalent to the

separate Universe hypothesis [29–31] which implies that
it is always possible to find a coordinate system with which
the metric of any local region can be written as

ds2 ¼ −dt2 þ a2ðtÞδijdxidxj; ð6Þ

where we have assumed the spatial flatness expected from
inflation and confirmed by observations. While the homo-
geneous time-independent γ̃ij can be locally transformed
away choosing the spatial coordinates, the time-dependent
γij cannot be homogeneous if we have a perturbation ζ
which deviates our model of the Universe from the FLRW
solution. It has been shown that in classical general
relativity the OðϵÞ of _̃γij is decaying and therefore it is
reasonable to assume _̃γij ¼ Oðϵ2Þ while the shift compo-
nent behaves as βi ¼ OðϵÞ. This also implies that any
perturbation ζ is time independent at the zero order in ϵ and
_ζ ¼ Oðϵ2Þ, also for a non linear amplitude of ζ as it has
been proved in [20].

C. The Misner-Sharp-Hernandez equations
(comoving gauge)

Simulations of PBH formation have been performed by
Shibata and Sasaki (S&S) [10] using the constant mean
curvature gauge, characterized by a constant trace of the
extrinsic curvature, while other groups (including ours)
have been working using the comoving gaugewhich we are
now going to specify. The relation between different gauges
in the gradient expansion approximation has been analyzed
extensively in [20,32].
In spherical symmetry the explicit form of the Einstein

equations in the comoving gauge is known as the Misner-
Sharp-Hernandez equations which start from the following
diagonal form of the metric [33]:

ds2 ¼ −A2ðr; tÞdt2 þ B2ðr; tÞdr2 þ R2ðr; tÞdΩ2; ð7Þ
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where the radial coordinate r is taken to be comoving
with the fluid, which then has the four-velocity of the fluid
equal to the unit normal vector orthogonal to the hyper-
surface of constant time t, namely uμ ¼ nμ, which is usually
referred to as cosmic time. This metric corresponds to an
orthogonal comoving foliation of the spacetime with the
threading fixed by the shift vector βi ¼ 0. The non zero
coefficients of the metric, A, B and R, are positive definite
functions of r and t; R is called the circumference
coordinate in [33] (being the proper circumference of a
sphere with coordinate labels (r; t), divided by 2π) equiv-
alent to the quantity referred to as the areal radius, and
dΩ2 ¼ dθ2 þ sin2θdϕ2 is the element of a 2-sphere of
symmetry. The metric (7) can apply to any spherically
symmetric spacetime; in the particular case of a homo-
geneous and isotropic universe it can be rewritten in the
form of the FLRW metric given by

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − Kr2
þ r2dΩ2

�
; ð8Þ

with K ¼ 0;�1 being the spatial curvature for flat, closed
and open Universes.
In the Misner-Sharp-Hernandez approach, two basic

differential operators are introduced:

Dt ≡ 1

A
∂
∂t and Dr ≡ 1

B
∂
∂r ; ð9Þ

representing derivatives with respect to proper time and
radial proper distance in the comoving frame of the fluid.
These operators are then applied to R, to define two
additional quantities:

U ≡DtR ¼ 1

A
∂R
∂t and Γ≡DrR ¼ 1

B
∂R
∂r ; ð10Þ

with U being the radial component of four-velocity in an
“Eulerian” (non comoving) frame where R is used as the
radial coordinate, and Γ being a generalized Lorentz factor
(which reduces to the standard one in the special relativistic
limit). In other words U is measuring the velocity of the
fluid with respect to the center of coordinates, that in the
homogeneous and isotropic FLRW Universe is simply
given by the Hubble law U ¼ HR with Rðr; tÞ ¼ aðtÞr.
The quantity Γ instead gives a measure of the spatial
curvature, and in FLRWone gets Γ2 ¼ 1 − Kr2. Note that Γ
is just a constant (Γ ¼ 1) when the Universe is homo-
geneous, isotropic and spatially flat.
In general U and Γ are related to the Misner-Sharp-

Hernandez mass M (mathematically appearing as a first
integral of the G0

0 and G1
0 components of the Einstein

equations) by the constraint equation

Γ2 ¼ 1þU2 −
2M
R

; ð11Þ

where the interpretation of M as a mass becomes
transparent when the form of the stress energy tensor,
on the right hand side of the Einstein equations, is
specified. Assuming a perfect fluid defined as in (3) M
is given by

M ¼
Z

R

0

4πR2ρdR; ð12Þ

and in the FLRW Universe this integral is simply given
by M ¼ 4πρbðtÞR3=3. In this case the constraint equa-
tion reduce to the First Friedmann equation

H2ðtÞ ¼ 8π

3
ρbðtÞ −

K
a2ðtÞ ; ð13Þ

where ρbðtÞ is the background energy density of the
Universe.
The Misner-Sharp-Hernandez hydrodynamic equations

obtained from the Einstein equations and the conservation
of the stress energy tensor (see [33–35] for the details of
the derivation) are:

DtU ¼ −
Γ

ρþ p
Drp −

M
R2

− 4πRp; ð14Þ

Dtρ0 ¼ −
ρ0
ΓR2

DrðR2UÞ; ð15Þ

Dtρ ¼ ρþ p
ρ0

Dtρ0; ð16Þ

DrA ¼ −
A

ρþ p
Drp; ð17Þ

DrM ¼ 4πR2Γρ; ð18Þ

where ρ0 in Eqs. (15) and (16) is the rest mass density (or
the compression factor for a fluid of particles without rest
mass). Together with the constraint equation these form
the basic set of the Misner-Sharp-Hernandez equations.
Two other useful expressions coming from the Einstein
equations are:

DtΓ ¼ −
U

eþ p
Drp; ð19Þ

DtM ¼ − 4πR2Up: ð20Þ

To solve this set of equations we need one more equation
to close the system, which is represented by the equation of
state that is specifying the relation between pressure and
the components of the energy density (see the Appendix).
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In this paper I am going to consider a cosmological fluid
with isotropic pressure described by

p ¼ wρ ð21Þ

with w constant. In particular w ¼ 0 corresponds to a
pressureless fluid (often referred to as “dust”) while
w ¼ 1=3 corresponds to a radiation fluid.

D. The curvature profile

We can now introduce the curvature profile into the
Misner-Sharp-Hernandez formulation of the Einstein equa-
tions as was done by Polnarev and Musco (P&M) [16],
and subsequently also by Polnarev et al. [36] to study the
formation of PBHs. In the comoving gauge this can be done
conveniently using a function KðrÞ replacing the constant
curvature parameter of the FLRW metric (8) as

ds2 ¼ −dt2 þ a2ðtÞ
�

dr2

1 − KðrÞr2 þ r2dΩ2

�
: ð22Þ

Alternatively one can follow the standard approach used
in cosmology keeping the curvature profile outside the
spatial 3-metric as a perturbation of the scale factor, writing

ds2 ¼ −dt2 þ a2ðtÞe2ζðr̂Þ½dr̂2 þ r̂2dΩ2�: ð23Þ

In general the way of specifying the curvature profile into
the metric fixes the parametrization of the radial comoving
coordinate. Both (22) and (23) are asymptotic solutions of
the Einstein equations in the limit of t → 0 and the full
solution is the quasihomogeneous solution described later
in Sec. II E. The coordinate transformation between KðrÞ
and ζðr̂Þ can be found by equating separately the radial and
angular components of the two asymptotic metrics,
obtaining as in [37]

(
r ¼ r̂eζðr̂Þ

drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−KðrÞr2

p ¼ eζðr̂Þdr̂: ð24Þ

Harada et al. [32] contains an extensive discussion of the
relation between the different gauges of the curvature
profiles, with the aim of comparing the results for PBH
formation obtained by P&M (using the comoving gauge)
with the ones obtained by S&S (using the constant mean
curvature gauge). In the long wavelength approximation
the zero order of the curvature profile ζðr̂Þ is gauge
independent with differences arising at Oðϵ2Þ.
To connect directly ζðr̂Þ to KðrÞ one needs to insert the

differential relation between r̂ and r obtained from the first
expression of (24),

dr
dr̂

¼ eζðr̂Þð1þ r̂ζ0ðr̂ÞÞ; ð25Þ

into the second expression, which gives the following
important relation:

KðrÞr2 ¼ −r̂ζ0ðr̂Þ½2þ r̂ζ0ðr̂Þ� ð26Þ
already derived in [38] for a pressureless fluid. Another
useful alternative relation can be obtained by comparing the
time independent zero order component of the spatial
curvature from the two asymptotic forms of the metric
(22) and (23):

Rð3Þ ¼
( 2

a2ðtÞ
1
r2

d
dr ½r3KðrÞ�

− 8
a2ðtÞ e

−5ζðr̂Þ=2∇2eζðr̂Þ=2;
ð27Þ

which gives

d
dr

½r3KðrÞ� ¼ −
4r̂2

eζðr̂Þ=2
∇2eζðr̂Þ=2: ð28Þ

Ψðr̂Þ≡ eζðr̂Þ=2 is the curvature profile as defined in S&S
and the consistency of this expression with equation (26)
can be verified using the transformation relations given
by (24).
The relation between KðrÞ and ζðrÞ can also be found by

using the definition of Γ given in (10) which is directly
related to the curvature: at the zero order in ϵ one obtains

Γ2 ¼ 1 − KðrÞr2 ¼ ð1þ r̂ζ0ðr̂ÞÞ2; ð29Þ

which rearranged gives again (26). Note that for KðrÞr2¼1
we have a coordinate singularity in the definition of metric
(22) which can be solved with a coordinate transformation,
as was pointed out in [39]. This point is distinguishing
between PBHs of type I [KðrÞr2 ≤ 1] and PBHs of type II
[KðrÞr2 > 1] (see [40] for more details); however, the
second case will not be considered here because, as we
see in Sec. IV, the range of all possible values of the
threshold δc is completely described by PBHs of Type I.
In general for any given profile ζðr̂Þ one can compute

the corresponding KðrÞ by making the derivative of ζðr̂Þ
with respect to r̂ and then changing the comoving radial
coordinate with the first expression of (24). To obtain the
inverse transformations from (29) we can write

dζ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − KðrÞr2
q

− 1

�
dr̂
r̂
¼

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

p �
dr
r
;

where the second equality has been obtained using (24).
As was shown in [32], this can then be integrated using
the boundary condition at infinity where we assume for
simplicity the Universe to be spatially flat

lim
r→∞

KðrÞr2 ¼ 0 lim
r̂→∞

ζðr̂Þ ¼ 0; ð30Þ

THRESHOLD FOR PRIMORDIAL BLACK HOLES: DEPENDENCE … PHYS. REV. D 100, 123524 (2019)

123524-5



which finally gives

8>><
>>:

ζðr̂Þ ¼ R
r
∞

�
1 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−KðrÞr2
p

�
dr
r

r̂ ¼ r exp

�R
r
∞

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−KðrÞr2
p − 1

�
dr
r

�
:

ð31Þ

The solution of these integrals is not analytic, in general,
and needs to be computed numerically.

E. The quasihomogeneous solution

In this subsection I am going to describe the explicit
solution of the Misner-Sharp-Hernandez set of equations
in the long wavelength approximation, as a function of
the time independent curvature profile. The details of the
derivation were presented in P&M using only KðrÞ; here I
am going to review the main results presenting them also in
terms of ζðr̂Þ using the relations just seen above.
The time evolution of the scale factor and the Hubble

parameter

aðtÞ ∝ t
2

3ð1þwÞ and HðtÞ ∝ 1

t
⇒ ϵ ∝ t

1þ3w
3ð1þwÞ ð32Þ

shows explicitly that choosing a particular value of ϵ with
k ¼ const is equivalent to focusing on a particular value of
time in the evolution of the perturbation. In particular for
matter with w > −1=3 (like dust and radiation) the limit
ϵ → 0 corresponds to t → 0. As mentioned in Sec. II B the
deviation from the asymptotic value of the metric tensor is
Oðϵ2Þ, plus higher order terms that can be neglected when
ϵ ≪ 1, and one can write the components of the cosmic
time metric defined in (7) as

A ¼ 1þ ϵ2Ã ð33Þ

B ¼ R0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − KðrÞr2

p ð1þ ϵ2B̃Þ ¼ aðtÞeζðr̂Þð1þ ϵ2B̃Þ ð34Þ

R ¼ aðtÞrð1þ ϵ2R̃Þ ¼ aðtÞeζðr̂Þr̂ð1þ ϵ2R̃Þ; ð35Þ

and in the same way one can expand the hydrodynamical
variables as

ρ ¼ ρbðtÞð1þ ϵ2ρ̃Þ ð36Þ

U ¼ HðtÞRð1þ ϵ2ŨÞ ð37Þ

M ¼ 4π

3
ρbðtÞR3ð1þ ϵ2M̃Þ; ð38Þ

where the pressure is then calculated with the equation of
state given by Eq. (21). Putting R instead of Rb ¼ aðtÞr
outside the parenthesis in (37) and (38) simplifies the

calculation allowing decomposition of the perturbation of
M and U into the fundamental components.
Writing the constraint equation (11) as an expansion in ϵ,

using its definition in Eq. (5), one gets

KðrÞ ¼ a2H2ϵ2ðM̃ − 2ŨÞ ⇒ KðrÞr2k ¼ M̃ − 2Ũ; ð39Þ
where rk is the comoving lengthscale of the perturbation
associated with the wave number k. Looking at this
expression we can appreciate why in (37) and (38) it is
useful to separate the perturbation of U and M from the
perturbation of R. It also shows a general property of the
quasihomogeneous solution: the profile of the perturbation
is directly related to the curvature profile KðrÞ or ζðr̂Þ,
while the time evolution is governed by ϵ2, with a clear
separation between time and space dependence. Note that
in the long wavelength approximation perturbations have
the same time evolution as those in the linear theory for a
pure growing mode.
The explicit expression for the energy density and

velocity perturbations in terms of the curvature profile is
then given by

ρ̃ ¼

8>><
>>:

3ð1þwÞ
5þ3w

h
KðrÞ þ r

3
K0ðrÞ

i
r2k

− 2ð1þwÞ
5þ3w

e2ζðr̂kÞ
e2ζðr̂Þ

h
ζ00ðr̂Þ þ ζ0ðr̂Þ

�
2
r þ 1

2
ζ0ðr̂Þ

�i
r̂2k

ð40Þ

Ũ ¼
8<
:

− 1
5þ3wKðrÞr2k
1

5þ3w
e2ζðr̂kÞ
e2ζðr̂Þ ζ

0ðr̂Þ
h
2
r̂ þ ζ0ðr̂Þ

i
r̂2k;

ð41Þ

and note that, consistently with a pure growing solution,
ρ̃ and Ũ can be expressed in terms of each other as

ρ̃ ¼ −ð1þ wÞ 1
r2

d
dr

ðr3ŨÞ ð42Þ

Ũ ¼ −
1

ð1þ wÞ
1

r3

Z
ρ̃r2dr: ð43Þ

To complete the solution one can write the other
perturbation terms as linear combinations of energy density
and velocity perturbations

Ã ¼ −
w

1þ w
ρ̃ ð44Þ

M̃ ¼ −3ð1þ wÞŨ ð45Þ

R̃ ¼ −
w

ð1þ 3wÞð1þ wÞ ρ̃þ
1

1þ 3w
Ũ ð46Þ

B̃ ¼ w
ð1þ 3wÞð1þ wÞ r

dρ̃
dr

; ð47Þ

where
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r
d
dr

¼ r̂
1þ r̂ζ0ðr̂Þ

d
dr̂

:

Note that B̃ ¼ 0 for w ¼ 0 and in general this term is
related to pressure gradients which are responsible for the
next order correction of Oðϵ2Þ of the curvature profile, as
can be appreciated from Eq. (19). One can look at B̃ as the
seeds of pressure gradients which will grow during the non
linear evolution, breaking the self similar behavior of the
quasihomogeneous solution. It is also interesting to notice
that the sum of the coefficients of −2Ũ and M̃ is equal to 1,
because of the constraint equation written in terms of KðrÞ
seen in (39). The values of these coefficients show how the
curvature perturbation splits between Ũ and M̃, with the
two limits of pure kinetic energy for w ¼ −1 and pure
gravitational energy for w → ∞.
To use the quasihomogeneous solution just derived one

needs to specify the values of the background quantities:
the energy density ρbðtÞ, the Hubble parameter HðtÞ and
the scale factor aðtÞ, related by the first Friedmann
equation (13). These allow ϵðtÞ to be written as

ϵðtÞ ¼ 1

aðtÞHðtÞrk
¼ 1

aðtÞHðtÞr̂keζðr̂kÞ
; ð48Þ

which inserted into (36) and (37) gives

δρ

ρb
¼

8>><
>>:

�
1
aH

�
2 3ð1þwÞ

5þ3w

h
KðrÞ þ r

3
K0ðrÞ

i
−
�

1
aH

�
2 3ð1þwÞ

5þ3w e−2ζðr̂Þ
h
ζ00ðr̂Þ þ ζ0ðr̂Þ

�
2
r̂ þ 1

2
ζ0ðr̂Þ

�i
ð49Þ

δU
U0

¼
( ð 1

aHÞ2 1
5þ3wKðrÞ

ð 1
aHÞ2 1

5þ3w e
−2ζðr̂Þζ0ðr̂Þ½2r̂ þ ζ0ðr̂Þ�; ð50Þ

where U0 ¼ HR differs from the background value because
it includes the perturbation in R. The above expression
represents an alternative way of writing the quasihomoge-
neous solution, with rk not appearing explicitly, showing that
the solution is scale independent.
In general it is possible to distinguish between compen-

sated and non compensated density profiles: the first ones
are characterized by overdensity regions compensated by
underdensity ones such that

Z
∞

0

4πr2ρ̃dr ¼ 0 ⇒

8<
:

lim
r→∞

KðrÞr3 ¼ 0

lim
r̂→∞

ζðr̂Þr̂ ¼ 0;
ð51Þ

while non compensated perturbations are characterized by a
curvature profile not satisfying this limit but still satisfying
the condition Γ > 0 from (29), which gives

KðrÞ < 1

r2
and ζ0ðr̂Þ > −

1

r̂
: ð52Þ

Summarizing the boundary conditions at infinity in terms
of KðrÞ these are given by

lim
r→∞

KðrÞ ∼ 1

rα

	
α > 3 compensated

2 < α ≤ 3 non compensated;
ð53Þ

while in terms of ζðr̂Þ these are

lim
r̂→∞

ζðr̂Þ ∼ 1

r̂α

	
α > 1 compensated

0 < α ≤ 1 non compensated:
ð54Þ

We will see explicit examples of compensated and non
compensated profiles in Sec. III where we will discuss
different parametrizations of the curvature profile.

F. The perturbation amplitude δ

To conclude this Sec. I introduce a measure of the
perturbation amplitude. Defining the averaged mass excess
within a certain volume as

δðr; tÞ ≔ 1

V

Z
R

0

4πR2
ρ − ρb
ρb

dR; ð55Þ

where V ¼ 4
3
πR3, and using the expressions for ρ and R

seen above in the long wavelength approximation at Oðϵ2Þ,
one gets

δðr; tÞ ¼ 3

r3

Z
r

0

δρ

ρb
r2dr ¼ ϵ2ðtÞfðwÞKðrÞr2k; ð56Þ

where

fðwÞ ¼ 3ð1þ wÞ
5þ 3w

:

Using ϵðtÞ in terms of rk as in (48) allows (56) to be
written as

δðr; tÞ ¼ ϵ2ðtÞM̃ðrÞ ¼
�

1

aH

�
2

fðwÞKðrÞ; ð57Þ

which shows that KðrÞ is directly measuring the averaged
mass excess within a sphere of comoving radius r, with a
“transfer coefficient” fðwÞ depending on the equation
of state.
If the perturbation has a central overdensity (under-

density) of comoving radius r0 surrounded by an under-
density (overdensity), it has been common to identify rk
with the edge of the overdensity (underdensity) r0 which is
given by the location where δρ=ρb ¼ 0, obtained by
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(
Kðr0Þ þ r

3
K0ðr0Þ ¼ 0

½eζðr̂0Þ=2�0 þ r0
2
½eζðr̂0Þ=2�00 ¼ 0:

ð58Þ

However, if r0 → ∞ we have δ → 0, coherently with the
boundary condition at infinity of the curvature profile seen
in (30) and with the fact that a perturbation with infinite
lengthscale (k → 0) is equivalent to the background solu-
tion. This shows that in general r0 is not a good measure of
the perturbation lengthscale and it is necessary to find an
alternative way to quantify the perturbation amplitude.
One can define the compaction function C, according to

the R ¼ 2M condition for the formation of an apparent
horizon,1 as twice the mass excess over the areal radius

C ≔
2½Mðr; tÞ −Mbðr; tÞ�

Rðr; tÞ ¼ r2

r2k
M̃ þOðϵ2Þ; ð59Þ

where in the second equality we have used the first
Friedmann equation (13) for a Universe which is spatially
flat.2 Neglecting the higher order terms in ϵ2, consistently
with the long wavelength approximation, one finds that C is
time independent, and using the explicit expression for M̃
we have

CðrÞ ¼ fðwÞKðrÞr2 ¼ r2

r2k
δðrÞ ⇒ CðrkÞ ¼ δðrkÞ; ð60Þ

where δðrÞ is the spatial component of (55), i.e.,
δðr; tÞ ¼ ϵ2ðtÞδðrÞ. This shows the equivalence of meas-
uring the amplitude in terms of the excess of mass within a
comoving volume of radius rk or in terms of the local value
of the compaction function. Because we are looking at PBH
formation it is natural to identify rk with the location rm
where CðrÞ is reaching its maximum, defined by C0ðrÞ ¼ 0,
which gives:

	
KðrmÞ þ rm

2
K0ðrmÞ ¼ 0

ζ0ðr̂mÞ þ r̂mζ00ðr̂mÞ ¼ 0:
ð61Þ

Using these relations one can express K0ðrmÞ in terms of
KðrmÞ, or ζ00ðr̂mÞ in terms of ζ0ðr̂mÞ, and inserting these into
(49), using also (57), we finally obtain

δðrm; tÞ ¼ 3
δρðrm; tÞ
ρbðtÞ

ð62Þ

which is completely independent of the particular shape
of the curvature profile. This simple expression, which
to my knowledge has never been pointed out before,
shows the general relation between the local value of the

energy density perturbation δρ=ρb measured at rm and the
averaged excess of mass δ within a comoving volume of
radius rm. The coefficient 3 is related to the spatial
dimensions of the volume in spherical symmetry. Because
of the “local to global” relation given by this expression,
evaluating the energy density, or the mass excess at rm,
represents an invariant and well defined criterion to measure
the amplitude of a cosmological perturbation on supra
horizon scales, when the curvature profile is time indepen-
dent. Inserting (62) into (56) one can write rm as

r3m ¼
R rm
0 δρðr; tÞr2dr
δρðrm; tÞ

; ð63Þ

which is an alternative definition of rm using the energy
density profile instead of the curvature. The location of rm
corresponds in general to the maximum of the Newtonian
gravitational potential, measured by the ratio M=R.
To compare the amplitude of perturbations specified on

different scales, it is useful to normalize ϵ¼1⇒aHrm¼1,
removing the time dependence from the expression for δ.
In a first approximation this corresponds to the amplitude
of the perturbation measured at horizon crossing (linearly
extrapolated from the supra horizon regime), although a
caveat is necessary here. In linear theory cosmological
perturbations are usually described as single modes k
evolving in the Fourier space and horizon crossing is
defined as being when k=aH ¼ 1.
Gravitational collapse forming a PBH instead is a non

linear process happening in real space, where a perturbation
is a combination of different modes over a region charac-
terized by a particular lengthscale identified by location rm
of the maximum of 2M=R. In the long wavelength regime,
rm will be associated with the “characteristic mode” k of the
perturbation such that rm ∝ 1=k. In general the coefficient
of proportionality between rm and k depends on the
particular curvature profile, which in Fourier space is
associated with a particular shape of the inflationary power
spectrum, and in [17] this connection has been computed
for two particular shapes of the power spectrum, assuming
Gaussian statistics.
The concept of horizon crossing therefore is not the same

if measured in Fourier space or real space, and the non
linear effects when ϵ ∼ 1 are not negligible (these will be
analyzed in a future work). On the other hand extrapolating
the horizon crossing from the quasihomogeneous solution
putting ϵ ¼ 1 gives a reasonable estimation of the pertur-
bation amplitude at horizon crossing and, most importantly,
is a well defined criterion to compare different perturba-
tions at the same scale rm when computing the effect of the
shape on the threshold for PBH formation.
In this context it is therefore useful to measure the

amplitude of the perturbation at ϵðtHÞ≡ 1, which with an
abuse of language I am going to call “horizon crossing
time”, defining

1See e.g., [41] for a review about the condition R ¼ 2M
determining a trapped surface in spherical symmetry.

2This function was for the first time defined by S&S as
C ¼ ðM −MbÞ=R.
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δm ≡ δðrm; tHÞ ¼ fðwÞKðrmÞr2m; ð64Þ

which in general will be different from the mass excess δ0
measured at the edge r0 of the overdensity

δ0 ≡ δðr0; tH0
Þ ¼ fðwÞKðr0Þr20; ð65Þ

where tH0
is the “horizon crossing time” defined with

respect to r0 instead of rm. These expressions for CðrÞ,
δm and δ0 can be expressed in terms of ζðr̂Þ using (24)
and (26).

III. INITIAL CONDITIONS

I am now going to study some specific parametrizations
of the curvature profile KðrÞ or ζðr̂Þ to describe, using the
quasihomogeneous solution seen in the previous section,
different shapes as initial conditions for numerical simu-
lations of PBH formation. I will start by considering an
illustrative simple example of a Gaussian profile of KðrÞ
and ζðr̂Þ containing only two parameters to vary: the
amplitude and the length scale of the perturbation. This
particular shape will then be generalized by introducing
additional parameters, identifying which are the fundamen-
tal features characterizing the shape of the energy density.

A. Gaussian curvature profile

A Gaussian curvature profile for KðrÞ is given by

KðrÞ ¼ A exp

�
−

r2

2Δ2

�
; ð66Þ

which inserted into (49) gives the following profile for the
energy density:

δρ

ρb
¼

�
1

aH

�
2

fðwÞ
�
1 −

r2

3Δ2

�
KðrÞ: ð67Þ

This type of perturbation is characterized by a central
overdense region compensated by a surrounding under-
dense one approaching the background density at infinity,
consistently with the condition seen in (53). The parameters
A and Δ are controlling, respectively, the peak amplitude
and the lengthscale of the perturbation. Using (61) and (58)
we can calculate rm and r0 which allow computations of the
values of δm and δ0 defined in (64) and (65) as

rm ¼
ffiffiffi
2

p
Δ ⇒ δm ¼ fðwÞ

e
Ar2m ð68Þ

r0 ¼
ffiffiffi
3

p
Δ ⇒ δ0 ¼

fðwÞ
e3=2

Ar20: ð69Þ

Using (68) one can write (66) as a function of r=rm

KðrÞ ¼ A exp

�
−
�

r
rm

�
2
�
; ð70Þ

which inserted into (67) gives

δρ

ρb
¼

�
1

aH

�
2

fðwÞ
�
1 −

2

3

�
r
rm

�
2
�
KðrÞ: ð71Þ

This is the so called Mexican-Hat profile of the energy
density already used as an initial condition in [12]. When
the Universe is radiation dominated (w ¼ 1=3) a critical
value of δ0 ≃ 0.45 was found, which corresponds to a
critical value of δm ≃ 0.5 and Ar2m ≃ 2. In general we can
relate the amplitude δm to the value of the peak measured at
horizon crossing tH (ϵ ¼ 1), obtaining

δρ

ρb
ð0; tHÞ ¼ fðwÞAr2m ¼ eδm: ð72Þ

The left frame of Fig. 1 shows the behavior of KðrÞ as a
function of r for three different choices of A and r2m
corresponding to the threshold δc ≃ 0.5, where the dotted
line corresponds to the condition KðrÞr2 ¼ 1. In the right
frame of Fig. 1 the corresponding profiles of the compac-
tion function CðrÞ are plotted, identifying the region of
PBH formation with the amplitude of the peak correspond-
ing to the threshold δc. Because A ∝ 1=r2m for a constant
value of δc, the different curves of Fig. 1 correspond toCðrÞ
written as a function of r=rm, describing perturbations with
the same amplitude δm specified at different scales.
Considering now a Gaussian curvature profile ζðr̂Þ

written in terms of r̂ instead of r

ζðr̂Þ ¼ A exp

�
−

r̂2

2Δ2

�
; ð73Þ

one obtains the following energy density profile:

δρ

ρb
¼

�
1

aH

�
2

fðwÞ
�
1 −

r̂2

3Δ2

�
1þ ζðr̂Þ

2

��
2ζðr̂Þ
Δ2e2ζðr̂Þ

: ð74Þ

Putting δρ=ρb ¼ 0 we have

r̂20
3Δ2

¼
�
1þ ζðr̂0Þ

2

�
−1
; ð75Þ

and the value of δ0, the averaged amplitude measured at
the edge of the overdensity, is given by

δ0 ¼ −fðwÞ½2þ r̂0ζ0ðr̂0Þ�r̂0ζ0ðr̂0Þ: ð76Þ

This shows that in general using ζðr̂Þ, the location of the
edge of the overdensity, and the corresponding value of δ0,
depends both on A and Δ.
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Inserting (73) into the right hand expression of (61) one
can calculate r̂m as

r̂m ¼
ffiffiffi
2

p
Δ ⇒ δm ¼ 4fðwÞAe−1ð1 −Ae−1Þ; ð77Þ

where δm depends only on the peak amplitude parameterA,
while the comoving lengthscale r̂m of the perturbation
depends only on Δ. The naturally split role of these two
parameters confirms that the right choice is to measure
the averaged excess of mass at r̂m and not at r̂0.
Equation (77) shows that there is a maximum value of
δm for A ¼ Amax ¼ e=2 ≃ 1.36, which corresponds to the
coordinate singularity KðrÞr2 ¼ 1. The threshold found for
PBH formation using the Gaussian profile ζðr̂Þ (73) rather
than the Gaussian profile for KðrÞ (66) gives a threshold
δm;c ≃ 0.55, corresponding to A ≃ 0.80.
In the following I will generalize the shape of the

curvature profile by introducing additional parameters to
modify the shape of the energy density profile. Because the
relation of δρ=ρb in terms of KðrÞ is linear while the
relation in terms of ζðr̂Þ is not, in real space it is easier to
control the shape working with KðrÞ instead of ζðr̂Þ. The
usage of ζðr̂Þ becomes important when the profile in real
space of the energy density is related to the power spectrum
PζðkÞ in Fourier space obtained from inflation [17].
Because this paper is focusing on the relation between
the threshold of PBH formation and the shape of cosmo-
logical perturbations collapsing to form PBHs in real space,
I will focus only on different profiles of KðrÞ.
Numerical results obtained from different profiles of ζðr̂Þ

have instead been used in a related work [42] where the
effects of the non linear relation between δρ=ρb and ζ on the
cosmological abundance of PBHs have been investigated.

B. Compensated perturbation profiles

The Gaussian curvature profile seen in the previous
subsection can be generalized by adding two additional
parameters, α and λ, appearing as follows:

KðrÞ ¼
�
r
Δ

�
2λ

A exp

�
−
1

2

�
r
Δ

�
2α
�
; ð78Þ

which gives the following profile of the energy density:

δρ

ρb
¼

�
1

aH

�
2

fðwÞ
�
1þ 2λ

3
−
α

3

�
r
Δ

�
2α
�
KðrÞ: ð79Þ

Varying the first parameter α > 0 changes the steepness
of the profile, while varying λ ≥ 0 changes also the location
of the peak: for λ ¼ 0 the peak is at the center (r ¼ 0),
while for λ > 0 the shape is off-centered and the distance
between the peak and the center is increasing for larger
values of λ.
The expressions for rm and r0 are given by

rm ¼
�
2ðλþ 1Þ

α

�
1=2α

Δ ð80Þ

r0 ¼
�
2λþ 3

α

�
1=2α

Δ; ð81Þ

and the corresponding amplitudes δm and δ0 are:

δm ¼ fðwÞ
�
2ðλþ 1Þ

α

�
λ=α

exp

�
−
λþ 1

α

�
Ar2m ð82Þ

FIG. 1. The left plot shows theKðrÞ given by (66) using the threshold value for PBH formation (δm;c ≃ 0.5) for three different values of
rm ¼ 1;

ffiffiffi
2

p
; 2. The right plot shows the corresponding behavior of CðrÞ identifying 3 different parameter regions: no PBHs (δm ≲ 0.5),

PBHs type I (0.5≲ δm ≤ 2=3) and PBHs type II (δm > 2=3).
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δ0 ¼ fðwÞ
�
λþ 3

α

�
λ=α

exp

�
−
2λþ 3

2α

�
Ar2m: ð83Þ

Using the value of rm one can now rewrite (78) as

KðrÞ ¼ ð2ΛÞλ=α
�

r
rm

�
2λ

A exp

�
−Λ

�
r
rm

�
2α
�
; ð84Þ

where Λ ¼ ðλþ 1Þ=α, and (78) as

δρ

ρb
¼

�
1

aH

�
2

fðwÞ
�
1þ 2

3
λ −

2

3
ðλþ 1Þ

�
r
rm

�
2α
�
KðrÞ:

ð85Þ

The left frame of Fig. 2 shows the energy density
contrast plotted against r=rm for centrally peaked profiles
(λ ¼ 0) and different values of α, while in the right frame
α ¼ 1 and λ is varying. The Mexican-Hat profile (α ¼ 1
and λ ¼ 0) is plotted in both panels using a dotted line. In
the left frame, the curves for α > 1 have a lower peak than
the Mexican Hat, while those for α < 1 have a higher peak.
For each profile δm ¼ 0.5 which implies that at r ¼ rm
the local value of the energy density δρ=ρb is the same,
consistently with (62), and all of the different profiles are
crossing each other at that point.
The region inside rm in the left frame is getting more and

more homogeneous for larger values of α while at the same
time the transition to the background becomes sharper. For
smaller values of α < 1 the profiles become instead more
spiky in the center while the transition towards the back-
ground solution outside becomes smoother.

The energy density profile can be characterized by
the steepness of the profile, measured by r0=rm, which
from (80) and (81) is given by

r0
rm

¼
�
2λþ 3

2ðλþ 1Þ
�
1=2α

: ð86Þ

Considering now a centrally peaked profile (λ ¼ 0), the
amplitude of the density peak δρ0=ρb is related to the
averaged amplitude δm as

δρ0
ρb

¼ fðwÞAr2m ¼ e1=αδm: ð87Þ

This shows that, for a constant value of δm, the
corresponding value of the central density peak is decreas-
ing for increasing values of α. This is reflecting the fact
that for larger values of α the shape of KðrÞ and δρ=ρb
converges towards a top-hat profile with the matter
becoming homogeneously distributed within a sphere of
radius rm. As shown also in [43], the parameter α is related
to the width of the compaction function measured at rm:

α ¼ −
C00ðrmÞr2m

4δm
: ð88Þ

For a given lengthscale rm and amplitude δm, when the
peak of the energy density is sharp (α ≪ 1), the peak of the
compaction function is broad, while when the peak
of the energy density is broad (α ≫ 1), the peak of the
compaction function is sharp. In the next section we are
going to use this inverse behavior of the energy density

FIG. 2. This figure shows the behavior of δρ=ρb given by (85) plotted against r=rm when ϵ ¼ 1. In the left frame the profiles are
centrally peaked, with λ ¼ 0 and α ¼ 0.5, 0.75, 1, 2, 3, 5, 10, while in the right one we can observe profiles which are off-centered,
characterized by α ¼ 1 and λ ¼ 0; 1=8; 1=4; 1=2; 1; 2; 4; 8; 16. In both frames the profile with α ¼ 1 and λ ¼ 0 is plotted using a
dotted line.
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profile and the profile of the compaction function to show
that the critical amplitude of the peak ðδρ0=ρbÞc is related to
the threshold δm;c. From now on these will be simply called
δρc=ρb and δc.

C. Non compensated perturbation profiles

We next consider a generalization of the perturbation
profiles analyzed previously adding an additional param-
eter that allows to decouple the behavior of the central
region (0 < r ≤ rm) from the tail of the perturbation
(r > rm), taking into account also non compensated energy
density perturbation profiles. For simplicity we start by
considering a Gaussian shape of the energy density
characterized by ðrm=r0Þ → ∞, given by

δρ

ρb
¼

�
1

aH

�
2

fðwÞA
�
r
Δ

�
n
exp

�
−
1

2

�
r
Δ

�
2
�
; ð89Þ

where the corresponding curvature profile KðrÞ is obtained
by performing the following integration:

KðrÞ ¼ 3aH
r3

Z
r

0

δρ

ρb
x2dx2: ð90Þ

We obtain an expression that, if n is an integer, can be
written in the form of a series expansion:

(i) if n is even (90) gives

KðrÞ¼ 3A
�
r
Δ

�
−3
�
Bn

ffiffiffi
π

2

r
erf

�
rffiffiffi
2

p
Δ

�

−
Xn=2
i¼0

Cin

�
r
Δ

�ðnþ1−2iÞ
exp

�
−

r2

2Δ2

��
; ð91Þ

(ii) if n is odd (90) gives

KðrÞ ¼ 3A
�
r
Δ

�
−3
�
Bn −

Xðnþ1Þ=2

i¼0

Cin

�
r
Δ

�ðnþ1−2iÞ

× exp

�
−

r2

2Δ2

��
; ð92Þ

where

Bn ¼ ðnþ 1Þ!! and Cin ¼
Bn

ðnþ 1 − 2iÞ!! :

In this case the value of rm needs to be obtained by solving
(61) numerically. The left frame of Fig. 3 shows different
density profiles given by (89) for different values of n, all
with the same amplitude δm ¼ 0.5, where the Gaussian
shape with the peak in the center (n ¼ 0) is plotted with a
dashed line. The density profiles given by (89) are com-
pletely non compensated, without a region of underdensity,
with n playing the same role of λ in the previous section.

These profiles can be generalized by introducing a
varying compensation controlled by an additional para-
meter σ giving the energy density as

δρ

ρb
¼

�
1

aH

�
2

fðwÞA
�
r
Δ

�
n
�
exp

�
−

r2

2Δ2

�

−
1

σ3
exp

�
−

r2

2σ2Δ2

��
; ð93Þ

where 1 < σ < ∞. This expression, using n ¼ 0, was
considered originally by S&S and corresponds to a
Gaussian profile of the energy density modified by an
underdensity which is more and more compensating the
region of the overdensity for values of σ → 1 while the
opposite limit σ → ∞ corresponds to (89). The parameter n
is generalizing this behavior also for off-centered profiles.
Inserting (93) into (90):

(i) for n even we have

KðrÞ ¼ 3A
�
r
Δ

�
−3
�
BnE1ðr; σÞ

−
Xn=2
i¼0

Cin

�
r
Δ

�ðnþ1−2iÞ
E2ðr; σÞ

�
; ð94Þ

(ii) for n odd we have

KðrÞ¼ 3A
�
r
Δ

�
−3

×

�
Bn−

Xðnþ1Þ=2

i¼0

Cin

�
r
Δ

�ðnþ1−2iÞ
E2ðr;σÞ

�
;

ð95Þ

where

E1ðr; σÞ ¼
ffiffiffi
π

2

r �
erf

�
rffiffiffi
2

p
Δ

�
− erf

�
rffiffiffi
2

p
σΔ

��
and

E2ðr; σÞ ¼ exp

�
−

r2

2Δ2

�
−
1

σ
exp

�
−

r2

2σ2Δ2

�
:

Imposing δρ=ρb ¼ 0 in (93) the following expression for
r0 is obtained:

r0
Δ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð3þ nÞσ2 log σ

σ2 − 1

s
; ð96Þ

which is monotonically increasing for 1 < σ < ∞. In the
limit of σ → 1 this expression gives r0 →

ffiffiffi
3

p
Δ: although for

σ ¼ 1 expression (93) reduces to the background solution, in
the limit of σ → 1 the shape converges to the “Mexican-Hat”
profile analyzed in the previous section. The value of rm for
these shapes needs instead to be calculated numerically, then
computing δm.
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In the right frame of Fig. 3 the profiles given by (93) with
n ¼ 0 are plotted for different values of σ using a constant
value of δm ¼ 0.5 for all of the profiles. As done in the left
frame, the Gaussian profile (n ¼ 0 and σ → ∞) is plotted
using a dashed line, while the Mexican-Hat profile (σ → 1)
is plotted with a dotted line. In principle it would be
desirable to consider also a parameter α in the exponent of
(93) changing the steepness of the profile, but this will
introduce an additional level of complication in the
integration of (90) which I will not consider in this context.

IV. THE THRESHOLD FOR PBH FORMATION

A. Numerical scheme

The calculations made in this paper to calculate the
threshold of PBH formation for the different shapes
described in the previous section have been made with
the same code as used in [12,16,21,22]. This has been
fully described previously and therefore just a very brief
outline of it will be given here. It is an explicit Lagrangian
hydrodynamics code with the grid designed for calculations
in an expanding cosmological background. The basic grid
uses logarithmic spacing in a mass-type comoving coor-
dinate, allowing it to reach out to very large radii while
giving finer resolution at small radii.
The initial data follow from the quasihomogeneous

solution described in Sec. II, specified on a spacelike slice
at constant initial cosmic time ti with aðtiÞrm ¼ 10RH

(ϵ ¼ 10−1) while the outer edge of the grid has been placed
at 90RH, sufficient to ensure that there is no causal contact
between it and the perturbed region during the time of the
calculations. The initial data is then evolved using the

Misner-Sharp-Hernandez equations given in Sec. II C, so as
to generate a second set of initial data on a null slice which is
then evolved using the Hernandez-Misner equations (see
[12]) for following the further evolution leading up to black
hole formation. In this formulation, each outgoing null slice is
labeledwith a time coordinate u, which takes a constant value
everywhere on the slice, and the formation of the apparent
horizon is moved to u → ∞, because of the increasing
redshift of the null rays emitted by the collapsing shells.
During the evolution, the grid is modified with an adaptive

mesh refinement scheme (AMR), built on top of the initial
logarithmic grid, to provide sufficient resolution for follow-
ing black hole formation down to extremely small values
of ðδ − δcÞ.

B. Shape parameters

In the previous section different types of profile have
been analyzed, both compensated and not compensated,
with the aim of having a wide variety of profiles so as to
identify the key parameters describing the effects of the
shape on the threshold for PBH formation. Based on this,
we can now identify the minimum number of parameters
describing the shape of the energy density to determine the
threshold for PBH formation. As we will see later, the
main features of the shapes are fixed by only one parameter,
identified in the previous section with α, measuring the
steepness of the shape, both of the energy density profile
and of the compaction function.
In general any possible shape of the energy density

perturbation is characterized by:
(i) The averaged mass excess δm contained within a

spherical region of radius rm, equivalent to measuring

FIG. 3. This left panel here shows the behavior of δρ=ρb in (89) plotted against r=rm at horizon crossing (ϵ ¼ 1) for n ¼ 0, 1, 2, 3, 5.
The right panel shows the behavior of δρ=ρb in (93) for σ ¼ 2, 3 and for σ → ∞. The Gaussian profile (n ¼ 0 and σ → ∞) in the left
panel is plotted using a dashed line, while the Mexican-Hat profile (σ → 1) is plotted in the right panel with a dotted line. In both panels
all of the profiles correspond to a value of δm ¼ 0.5.
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the local value of the energy density perturbation
ðδρ=ρbÞrm , as shown by (62).

(ii) The peak amplitude of the energy density perturba-
tion ðδρ=ρbÞrp , located in general at rp ≠ 0.

(iii) The relative location rp=rm of the peak of the energy
density; by definition 0 ≤ ðrp=rmÞ < 1.

(iv) The relative location of the edge of the overdensity
r0=rm; by definition ðr0=rmÞ ≥ 1.

In the plane of all possible profiles, δρ=ρb plotted against
r=rm, as presented in the previous section, these parameters
identify 3 key points:

(i) P1 ≔ ðrp=rm; ðδρ=ρbÞrpÞ,
(ii) P2 ≔ ð1; ðδρ=ρbÞrmÞ,
(iii) P3 ≔ ðr0=rm; 0Þ.

If the profile is centrally peaked (rp ¼ 0) the behavior of
the density will be basically monotonically decreasing from
0 to r0, with the possibility of having only small oscillations
so as not to alter the fact that rm is the location of the peak
of the compaction function. If the profile instead is not
centrally peaked (rp ≠ 0), the behavior will be initially
increasing from 0 to rp and then decreasing from rp to r0.
The numerical results show that P1, P2 and P3 contain

all of the relevant information about the profile shape,
and possible deviations are not playing any significant
role during the non linear evolution. If the profile is not
centrally peaked, we do not know in principle the value of
ðδρ=ρbÞr¼0. However, as we will see, during the evolution
of an off-centered perturbation, the mass excess rearranges
itself to a centrally peaked profile with almost the same

value of the mass excess δm, which allows us to reduce the
analysis to just centrally peaked profiles.

C. Numerical results

We start by considering the centrally peaked profiles
given by (79), keeping λ ¼ 0 and varying α > 0. For
α → ∞ the energy density profile approaches the top-hat
profile characterized by an excess of mass homogeneously
distributed from 0 to r0=rm ¼ 1, with a discontinuous
change of density to the background solution. For α → 0

the energy density profile instead approaches a Dirac-delta
shape with r0=rm → ∞.
For α → ∞ the profile of the compaction function

converges towards a Dirac delta profile as indicated by
(88) [C00ðrmÞr2m → −∞], while for α → 0 the compaction
function converges towards a constant function
[C00ðrmÞr2m ¼ 0] like a top-hat profile. These are the
asymptotic limiting cases, and between them one can find
the typical Mexican-Hat shape characterized by α ¼ 1.
In the left frame of Fig. 4 one can see the behavior of

the threshold δc calculated at rm and the threshold δ0;c
calculated at the edge of the overdensity r0, both plotted
against r0=rm varying from 1 (α → ∞) to ∞ (α → 0). The
two amplitudes diverge for increasing values of r0=rm with
δ0;c → 0 for r0=rm → ∞ while δc is bounded by a mini-
mum value (δmin ≃ 0.41) for r0=rm → ∞. Choosing δm
instead of δ0 to measure the amplitude of the overdensity
minimizes the variation of the threshold, and should

FIG. 4. The left panel shows the behavior of δc compared to the corresponding critical value δ0;c plotted with respect to r0=rm for the
centrally peaked profiles given by Eq. (79). The right panel shows the behavior of δc with respect to ðδρ=ρbÞrp for the profiles given
by (79): the solid line corresponds to centrally peaked profiles (λ ¼ 0) while the dashed lines correspond to off-centered profiles (λ ¼ 1,
2, 3), with λ increasing and the behavior diverging from the solid line. The dotted line shows the behavior of the energy density profile
given by (93) for n ¼ 0 (centrally peaked) and σ varying from 1 to infinity. The two dashed horizontal lines represent the upper and
lower boundaries for δc. as explained in the text. The lower bound is indicated with HYK from the names of the authors of [44], where
this value was calculated.
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therefore be preferred, also because of the shape indepen-
dent property found at rm, seen in (62).
The right frame of Fig. 4 shows δc plotted against r0=rm

for both the centered and off-centered profiles given
by (79), with λ ¼ 0, 1, 2, 3 showing explicitly that the
threshold δc does not change significantly between cen-
tered and off-centered profiles with the same steepness,
measured here by r0=rm. The simulations show that during
the first part of the evolution of the off-centered profiles, the
matter is redistributing, filling up the central depression,
converging towards a centrally peaked profile with almost
the same amplitude that it would have had if it had been
centrally peaked from the beginning. This suggests that the
location of the peak of the energy density is not important,
and that what mainly matters is the shape of the compaction
function around the peak, which determines the value of the
threshold δc. This allows simplification of the analysis
considering only centrally peaked profiles for calculating
the threshold δc and the corresponding critical value of the
peak of the energy density δρc=ρb, necessary to compute
the cosmological abundance of PBHs [17,18] using peak
theory [24].
The dotted line of Fig. 4 corresponds to the profiles given

by Eq. (93) with n ¼ 0 (centrally peaked) and varying σ
from 1 to infinity. This gives a range of δc between 0.5 and
0.475 for 1 ≤ r0=rm ≲ 2, while there is no significant
variation in δc when r0=rm ≳ 2. The shape of these profiles
changes significantly in the tail for r≳ rm, with a change of
the central region r≲ rm, corresponding to δρc=ρb varying
between 1.35 and 1.55. The change in δc, varying between
0.41 and 2=3 is therefore due to the variation of the shape in
the central region of radius rm, while keeping the same
value of the peak of δρ=ρb, only a few percent change is due
to the shape in the region outside rm, being completely
negligible for r≳ 2rm.
The upper limit of δc ¼ 2=3, corresponds to the limit of

validity of the comoving metric ½KðrmÞr2m ¼ 1�, consistent
with the discontinuity of the energy density profile at rm.
The lower limit δc ≃ 0.41 is, instead, the analytic solution
obtained for δc in [44] using a relativistic Jeans argument
that takes into account the gravitational role of the pressure,
but neglects pressure gradients, since otherwise no analytic
solutions exist. All of this analysis suggests a general
criterion to determine the threshold for PBH formation:
Proposition.—The value of the threshold for PBH

formation is related to the role of the pressure gradients
which depends on the shape around the peak of the
compaction function, where the threshold is measured. A
negligible role of the pressure gradients corresponds to a
minimum value of the threshold (broad shape), while an
infinite local value of the pressure gradients corresponds to
the maximum value of the threshold (peaked shape).
In Fig. 5 one can see the monotonic inverse behavior

of δc plotted against the corresponding critical peak value
of the energy density perturbation δρc=ρb, for centrally

peaked profiles given by (79), with the following range of
variation for these two quantities, linearly extrapolated
from the supra horizon regime (ϵ ¼ 1):

δρc
ρb

≥
2

3
0.41≲ δc ≤

2

3
: ð97Þ

The left side of Fig. 5 is consistent with an energy
density profile converging towards a top-hat profile which
has negligible pressure gradients in the center, and very
large pressure gradients around rm (minimum value of
δρc=ρb ¼ 2=3 and a maximum value of δc ¼ 2=3). The
very large pressure gradients at rm for a top-hat profile of
the energy density propagate inward modifying the profile
very strongly during the non linear evolution, and this
represents the shape which requires the largest amount of
mass excess to compensate the effect of the pressure
gradients at rm in preventing the formation of a PBH.
The right side of Fig. 5 represents an energy density

profile converging towards a Dirac-delta with very large
pressure gradients in the center (maximum value of
δρc=ρb → ∞) which corresponds to a compaction function
around rm converging to a constant behavior, implying
negligible pressure gradients around rm, and so giving a

FIG. 5. This plot shows the variation of the threshold δc with
respect to δρc=ρb for centrally peaked profiles given by Eq. (79)
(solid line) and Eq. (93) (dotted line). The value of δc can vary
between the two limiting cases indicated with the two dashed
horizontal lines: the bottom one is the analytic limit computed
in [44] when pressure gradients are negligible (Dirac-delta
profile of the energy density), the upper one corresponds to the
opposite case of infinite pressure gradients (top-hat profile of
the energy density), and is converging towards the limit of
validity of metric (7).
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minimum value of δc ≃ 0.41. For such a matter configu-
ration the pressure plays a significant role only in the very
central region where almost all of the matter is already
concentrated, while it is negligible through the rest of the
configuration where the density in nearly constant.
When the perturbation is collapsing to a PBH (δ > δc),

the difference between a particular value of δc and the
minimum value of δc ≃ 0.41measures the additional excess
of mass necessary to compensate the effects of the pressure
gradients around rm. The code is not able to evolve with
good resolution shapes with α < 0.1 because such profiles
are too sharp, however the values of α considered allow
for a very close approach to the analytic estimation of
δc ≃ 0.41 obtained in [44], called here the HYK limit from
the names of the authors.
At the beginning of this section we identified 3 points

characterizing the shape of the energy density. The analysis
made here shows that these points are related to each other,
and it is possible to use the family of curvature profiles
given by

δρ

ρb
¼ δρ0

ρb

�
1 −

2

3

�
r
rm

�
2α
�
exp

�
−
1

α

�
r
rm

�
2α
�

ð98Þ

as a simple basis for energy density profiles to study the
effect of the shape on the threshold, where this is well
described by the single parameter α, measuring the width
of the compaction function at the maximum rm, renormal-
ized with the amplitude of the perturbation measured at rm
[see (88)]. Knowing α one can compute the corresponding
steepness of the profile r0=rm from (86), which neglecting
off-centered profiles (λ ¼ 0) gives

r0
rm

¼
�
3

2

�
1=2α

: ð99Þ

Then from Fig. 4 one can compute the corresponding
value of the threshold δc, neglecting the small correction
coming from considering non compensated profiles, and
then finally, from (87), compute the corresponding value of
δρc=ρb, as plotted in Fig. 5.

V. CONCLUSIONS

The threshold value of δ0;c ≃ 0.45 that was found in [12],
corresponding to a Mexican-Hat shape, has been used for
several years as a representative value for the threshold of
PBH formation because it was consistent with the range
0.3≲ δc ≲ 0.5 calculated by Green et al. in [15]. This was
obtained converting the results of the simulations done by
S&S, that were using density profiles specified in the
Fourier space, to a measure of the perturbation amplitude in
real space.
There has been some confusion in the literature, with

people using this value both for the threshold and for the
critical amplitude of the peak, probably because it seemed

that these two quantities should have roughly the same
value. This however comes from using the linear approxi-
mation of (26), neglecting the term ð∇ζÞ2 which in
simulations of PBH formation is not small, and approxi-
mating eζ ≃ 1þ ζ. These simplifications allow the density
contrast in Fourier space to be written as

δρ

ρb
ðk; tÞ ≃ −

�
k
aH

�
2 2ð1þ wÞ
5þ 3w

ζðkÞ; ð100Þ

where −k2ζðkÞ is the Fourier transform of ∇2ζðrÞ.
However, considering the full non linear expression, it is

not possible to simply transform the full expression for the
energy density profile seen in (49) from the real space to the
Fourier space. Also (100) is a local measure of the energy
density profile while δm is an averaged smoothed quantity
calculated within a volume of radius rm. To follow a
consistent approach it is necessary to identify the correct
shape of the energy density profile starting from the shape
of the power spectrum of cosmological perturbations.
This can be done using the basis of profiles given by
Eq. (98) of the previous section. This is a function only the
single shape parameter α, characterizing the energy density
profile.
According to the analysis in the previous section, with

the value of the characteristic α it is possible to compute
the corresponding value of the threshold δc and the critical
peak amplitude δρc=ρb, which needs to be used in peak
theory [24] to compute the abundance of PBHs, with
greater accuracy than using the Press-Schecther approach
[17,18]. In a related work [45] it has been shown instead
how to reconstruct the shape of the peak of the power
spectrum of cosmological perturbations, starting from the
numerical results obtained here using (98) as an initial
condition, to obtain more accurate constraints on the
amplitude of the peak of the power spectrum, assuming
that PBHs account for all of the dark matter.
As we have seen previously, the expression for δm as a

function of the curvature profile is given by

δm ¼ fðwÞKðrmÞr2m ¼ −fðwÞ½2þ r̂mζ0ðr̂mÞ�r̂mζ0ðr̂mÞ;
ð101Þ

and we see that the fundamental quantity to measure is
K≡ KðrmÞr2m or Φ≡ −r̂mζ0ðr̂mÞ, where the minus in the
last expression is taken so as tomakeΦ positive. In terms of ζ
the key quantity to measure is therefore its first derivative at
rm, multiplied by rm to make the product adimensional.
Considering the first derivative resolves the ambiguity that ζ
could always be redefined by adding a constant, which
corresponds to simply renormalizing the scale factor, or
the radial Lagrangian coordinate, without changing the
solution of the problem. Considering a radiation dominated
Universe (w ¼ 1=3), and inserting the range of δc given by
(97) into δm given by (101), one obtains:
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0.62≲Kc ≤ 1 0.38≲Φc ≤ 1 ; ð102Þ

andΦc should replace the “misleading” concept of ζc that has
been used in the literature for the curvature threshold ofPBHs.
To summarize and conclude, in this paper a clear and

consistent prescription has been given for calculating the
perturbation amplitude δm of a spherically symmetric
cosmological perturbation, measured at “horizon crossing”,
and then computing the threshold δc for PBH formation. A
key point is to measure the density contrast at the location
of maximum compactness, called here rm, where the ratio
2M=R has a local maximum. Identifying rm as the length-
scale of the perturbation is justified by the fact that
measuring the local value of the energy density at this
point is equivalent to measuring the mass excess of the
perturbation averaged within the corresponding volume,
independently of the shape of the cosmological perturba-
tion, as shown by (88).
This criterion enables one to understand how the shape

of the perturbation affects the formation of PBHs: by
performing extended numerical simulations, it has been
shown here that the critical value of the peak amplitude of
the energy density δρc=ρb is related to the value of δc, with
a few percent variation due to the behavior of the “tail” of
the profile in the region between rm and 2rm. This analysis
is valid also for off-centered profiles, because the dynami-
cal evolution of these is equivalent to that of the centered
ones with the same amplitude.
This analysis of the threshold for PBH formation has

recently been used in [46] to study the possible effect on the
threshold due to primordial non-Gaussianity of the power
spectrum of cosmological perturbations.
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Note added in the proof.—During the revision of this paper,
in [43] it has been shown that, using the family of profiles
given by (98), and computing the average of the

compaction function within rm, one obtains an averaged
value of the threshold δc which is almost constant equal to
0.4, consistent with the HYK limit. This allows to derive an
analytic relation to compute δc as a function of α (See
Eq. (8) of [43]) with a few per cent deviation, consistent
with the analysis presented in this section. This shows very
clearly that the shape can be parameterized by only one
parameter.

APPENDIX: PERFECT FLUID AND
EQUATION OF STATE

The total energy density ρ is the sum of the rest mass
density and the internal energy density:

ρ ¼ ρ0ð1þ eÞ; ðA1Þ

where e is the specific internal energy, related to the
velocity dispersion (temperature) of the fluid particles. In
order to solve the set of equations presented in Sec. II we
need to supply an equation of state pðρ0; eÞ specifying the
relation between the pressure and the different components
of the energy density. For a simple ideal particle gas, we
have that

pðρ0; eÞ ¼ ðγ − 1Þρ0e; ðA2Þ
where γ is the adiabatic index. In general, if γ ≠ 1, Eq. (A1)
can be written as

ρ ¼ ρ0 þ
p

γ − 1
ðA3Þ

showing that, when the contribution of the rest mass of the
particles to the total energy density is negligible (ρ ≫ ρ0,
e ≫ 1), we get the standard (one-parameter) equation of
state used for a cosmological fluid

p ¼ wρ ðA4Þ

setting w ¼ γ − 1. A pressureless fluid (w ¼ 0) corre-
sponds to the case where the specific internal energy ϵ
is effectively zero, while w ¼ 1=3 is appropriate for a
radiation dominated fluid. In the case of Eq. (A4) the
equation of state has a constant ratio of pressure over
energy density given by w, while in general this ratio is
varying with the density, increasing during the collapse. For
an ideal gas in general we have

p
ρ
¼ e

1þ e
ðγ − 1Þ; ðA5Þ

varying from eðγ − 1Þ when e ≪ 1 to the limit of w
when e ≫ 1.
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