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Boundary Control Design for Linear Conservation Laws in the

Presence of Energy-Bounded Measurement Noise

Francesco Ferrante and Christophe Prieur

Abstract— Boundary feedback control design for a system of
n 1-D linear conservation laws is studied. Sufficient conditions
in the form of Lyapunov-like functional inequalities are given
to certify the existence of a bound on the L

2 (spatial) norm of
the state with respect to energy bounded measurement noise.
Semidefinite programming techniques are adopted to devise a
systematic design algorithm. The effectiveness of the approach
is shown in a numerical example.

I. INTRODUCTION

The tight description of many physical phenomena relies

on mathematical models in which variables that depend

simultaneously on space and time are related each other

through differential relationships. This leads to systems

modeled by partial differential equations (PDEs). Systems

modeled via PDEs are omnipresent in physical sciences. For

example, PDEs play a central role in: transport phenomena in

fluid mechanics, heat diffusion in thermic systems, vibratory

behaviors in material science, just to cite a few; see [5],

[13] for more details on applications of PDEs. Due to the

relevance of PDEs in engineering applications, over the

last two decades, and further back, control of PDEs has

attracted the interest of researchers and a large number of

tools has been developed for the analysis and the design

of control systems governed by PDEs; see [13] and the

references therein. One of the unique challenges in the

control of PDEs is that in the majority of the applications,

actuators and sensors are located only at the boundaries of

the PDE. In this case, one talks about boundary control [13].

Obviously, the design of boundary feedback controllers is a

hard problem. Indeed, loosely speaking, boundary control

can be somehow compared to a form of underactuation in

which the controller has limited authority on the system

due to boundary actuation; let alone the fact that boundary

sensing allows one to gather only limited information on

the system state. Different methodologies to design boundary

feedback controllers for PDEs exist; e.g., Lyapunov methods

[5], [20], backstepping transformation [13], or frequency

domain approaches as in [15]. More recently, the use of

optimization tools commonly used for the analysis and the

design of control systems governed by ordinary differential

equations has been explored in the context of PDEs; see [21],

[17], [4].
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In this paper, we focus on linear one dimensional con-

servation laws, which are a specific class of hyperbolic

PDEs. The main interest in hyperbolic PDEs is that such

equations are ubiquitous in physical applications; see [5] for

a recent monograph on hyperbolic PDEs. Recently, boundary

control of hyperbolic PDEs has seen a growing interest

in the community; see [7], [14], [20], just to cite a few.

In particular, in [7], dynamic output feedback stabilization

of linear hyperbolic PDEs has been considered. In [14],

the authors analyzed the use of switching rules for the

stabilization of system of linear conservation laws. In [20]

the problem of designing integral controllers for nonlinear

systems governed by scalar hyperbolic partial differential

equations is studied.

Motivated by the recent research efforts in the boundary

control of hyperbolic PDEs, in this article we address the

problem of designing a boundary feedback controller for a

system on n 1-D linear conservation laws in the presence of

measurement noise. More specifically, we propose a system-

atic approach for the design of static boundary controllers

to achieve: closed-loop asymptotic stability and robustness

with quantifiable margins with respect to energy bounded

measurement noise. To achieve this goal, first we provide

Lyapunov-like sufficient conditions in the form of functional

inequalities to ensure a bound on the spatial norm of the

closed-loop system state that depends on the energy of the

measurement noise. These inequalities generalize previous

results for ordinary differential equations; cf. [3]. Then, by

operating a particular selection for the Lyapunov functional,

we turn the considered control design problem into the fea-

sibility problem of some matrix inequalities. The proposed

conditions are embedded into a convex optimization setup to

allow for the design of controllers achieving measurement

noise rejection.

The remainder of the paper is organized as follows. Sec-

tion II presents the system under consideration and illustrates

the problem we solve. Section III is devoted to the main

results of our paper. Finally, Section IV showcases the

application of our methodology in a numerical example. Due

to space constraints, proofs of the main results are omitted

and will be published elsewhere.

A. Notation

The set R≥0 represents the set of nonnegative real scalars,

R
n×m denotes the set of the n×m real matrices, Snp is the set

of real symmetric positive definite matrices of dimension n,

and D
n
p is the set of real diagonal positive definite matrices of



dimension n. In partitioned symmetric matrices, the symbol

• stands for symmetric blocks. The symbol I denotes the

identity matrix. Given two matrices A1 and A2, we denote by

A1 ⊕A2 the block diagonal matrix

ï

A1 0

0 A2

ò

. The identity

matrix is denoted by I, whereas the null matrix is denoted by

0. For a matrix A ∈ R
n×m, AT denotes the transpose of A,

and He(A) = A + A
T

. For a symmetric matrix, A, positive

definiteness (negative definiteness) and positive semidefinite-

ness (negative semidefiniteness) are denoted, respectively, by

A ≻ 0 (A ≺ 0) and A � 0 (A � 0). Let X ⊂ R
n, Y ⊂ R,

x ∈ X , and f : X → Y , the symbol ∇f(x) denotes the

gradient of f at x. For a vector x ∈ R
n, |x| denotes its

Euclidean norm. Given x, y ∈ R
n, we denote by 〈x, y〉Rn

the standard Euclidean inner product. Let X and Y be linear

normed spaces, the symbol L (X,Y ) denotes the space of all

bounded linear operators from X to Y . Let U ⊂ R and V ⊂
R

n, and f : U → V . We denote by ‖f‖L∞ = supx∈U |f(x)|
and ‖f‖L2 = (

∫
U
|f(x)|2dx) 1

2 , respectively, the uniform

norm and the L2 norm of f . Let U ⊂ R and V ⊂ R
n.

The symbols Ck(U ;V ) and Hk(U ;V ) denote, respectively,

the sets of class-k functions f : U → V and of the set of

functions f : U → V such that f ∈ L2(U ;V ) and for each

j = 1, 2, . . . , k, ∂jf ∈ L2(U ;V ), where ∂jf stands for the

weak derivative of order j of f . Given f : U ⊂ R → V , we

say that f ∈ L2 if ‖f‖L2 is finite.

Definition 1 ([9]). Let X and Y be linear normed spaces, U

be an open subset of X , f : U → Y , and x ∈ U . We say that

f is Fréchet differentiable at x if there exists L ∈ L (X,Y )
such that

lim
h→0

‖f(x+ h)− f(x)− Lh‖Y
‖h‖X

= 0

In particular L is the Fréchet derivative of f at x and is

denoted by Df(x). When X = R, with a slight abuse of

notation, we denote

Df(x) = lim
h→0

f(x+ h)− f(x)

h

II. PROBLEM STATEMENT

We consider boundary feedback control of a system of n

linear 1-D conservation laws written formally as:

∂tx(t, z) + Λ∂zx(t, z) = 0 ∀(t, z) ∈ R≥0×[0, 1]

x(t, 0) = Hx(t, 1) +Bu(t) ∀t ∈ R≥0

(1)

where ∂tx and ∂zx denote, respectively, the derivative of

x with respect to “time” and with respect to the “spatial”

variable z, [0, 1] ∋ z 7→ x(·, z) ∈ R
n is the system state,

u ∈ R
n is the control input, and Λ ∈ D

n
p , H ∈ R

n×n, and

B ∈ R
n×n are given matrices. In this paper, we consider the

following standing assumption:

Assumption 1. The input matrix B is nonsingular. △
Remark 1. In this paper, we assume that the number of

control inputs of system is equal to n, that is the number of

scalar conservation laws describing (1). In other words, we

assume that each conservation law in (1) can be controlled

independently; this assumption is verified in many cases

of practical interest; see [5]. As such, assuming that B

is nonsingular is a reasonable assumption in this context.

The extension of the results in this paper to the case of

conservation laws with m < n inputs is currently part of

our work. ◦
In particular, (1) takes the form of a system of n 1-

D boundary-controlled linear hyperbolic PDEs, for which

several fundamental results can be found in [5].

Remark 2. Assuming that Λ is positive definite implies that

system (1) is characterized by positive convecting speeds.

However, such an assumption does not add any loss of

generality. Indeed, any system of 1-D linear conservation

laws can be expressed as in (1) via an invertible change of

variables; e.g., [8], [19]. ◦
We further assume that the state x(·, z) is measurable only

at the boundary point z = 1. Specifically, for all t ≥ 0, the

measurable output of the system reads as

y(t) = x(t, 1) + d(t) (2)

where d ∈ L2(R≥0,R
n) represents an energy-bounded

measurement noise.

Our goal is to design a static feedback control law u,

which stabilizes system (1) in some appropriate sense and

with quantifiable robustness margins with respect to the

measurement noise d. More precisely, in this paper we focus

on static output feedback laws of the form y 7→ u(y) = Ky,

where K ∈ R
n×n is the control gain that needs to be

designed. By setting Hcl := H+BK , the closed-loop system

can be formally written as:

∂tx(t, z) + Λ∂zx(t, z) = 0 ∀(t, z) ∈ R≥0×[0, 1]

x(t, 0) = Hclx(t, 1) +BKd(t) ∀t ≥ 0
(3)

see Fig. 1.

®

∂tx(t, z) + Λ∂zx(t, z) = 0

x(0, t) = Hx(1, t) +Bu(t)

K

x(1, t) d(t)

y(t) = x(1, t) + d(t)

Fig. 1: Closed-loop system.

A. Discussion on the existence and notion of the solutions

to the closed-loop system

Similarly as in [12], in this paper, we focus on solutions

to (1) that are sufficiently regular. In particular, the following

notion of solutions is considered throughout the paper.



Definition 2 (Strong solution). Let d ∈ C0(R≥0;R
n) and

ϕ ∈ C1(R≥0× [0, 1];Rn). We say that ϕ is a strong solution

to (1) with input d if for all (t, z) ∈ R>0 × (0, 1)

∂tϕ(t, z) + Λ∂zϕ(t, z) = 0

ϕ(t, 0) = Hclϕ(t, 1) +BKd(t)

�

Noting that system (3) is linear. Therefore, the character-

istic curves are straight lines and, under some compatibility

conditions between the boundary condition and the initial

condition in (3), existence and uniqueness of strong solutions

can be ensured. In particular, one has the following result.

Proposition 1. Let x0 ∈ C1([0, 1];Rn) and d ∈
C1(R≥0;R

n) such that the following compatibility conditions

are verified

x0(0) = Hclx0(1) +BKd(0)

−Λx0(0) = −HclΛx0(1) +BK
d

dt
d(0)

Then, there exists a unique strong solution φ ∈ C1(R≥0 ×
[0, 1];Rn) with input d to (3) such that x(0, ·) = x0. �

The proof of the above result can be easily constructed by

building upon the rationals in [5, Page 57] and it is therefore

omitted.

In the light of the above result, given any d ∈
C1(R≥0;R

n), we define

Xd :=
{
x0 ∈ C1([0, 1];Rn) :

x0(0) = Hclx0(1) +BKd(0),

−Λx0(0) = −HclΛx0(1) +BK
d

dt
d(0)

™

Moreover, given d ∈ C1(R≥0;R
n) and any x0 ∈ Xd,

throughout the paper we denote the unique strong solution

to (3) from x0 by (t, z) 7→ ϕ(t, z, x0, d).
Now we are in a position to formally state the problem

we solve in this paper.

Problem 1. Given H ∈ R
n×n, B ∈ R

n×m, and Λ ∈ D
n
p .

Design a control gain K ∈ R
n×n and determine κ, ω, γ ∈

R>0 such that for each d ∈ L2(R≥0;R
n) ∩ C1(R≥0;R

n)
and any x0 ∈ Xd one has, for all t ∈ R≥0

‖ϕ(t, ·, x0, d)‖L2 ≤ κe−ωt‖x0‖L2 + γ‖d‖L2 (4)

III. MAIN RESULTS

In this section we propose sufficient conditions for the

solution to Problem 1 in the form of functional inequalities.

To this end, we first provide an alternative characterization

of strong solutions to (3) via the definition of an abstract

differential equation in a subset of H1([0, 1];Rn). The defi-

nition of such a differential equation allows one to establish

a linear relationship between ∂zx and ∂tx for any strong

solution.

For each d ∈ R
m define Ad : domAd → H1([0, 1];Rn)

with

domAd :=
{
w ∈ H1([0, 1];Rn) :

w(0) = (H +BK)w(1) +BKd}

Adw := −Λ
d

dz
w(z)

(5)

Then, the closed-loop system can be formally rewritten as

the following abstract differential equation

ẇ = Adw (6)

It can be easily shown that given d ∈ C1(R≥0;R
n) and

x0 ∈ Xd, the function t 7→ φ(t) := ϕ(t, ·, x0, d) is such that

for all t ∈ R≥0 one has

φ(t) ∈ domAd(t)

Dφ(t) = Ad(t)φ(t)
(7)

where Dφ denotes the Fréchet derivative of φ with respect

to t.

A. Sufficient Conditions

Theorem 1. Let α : C1([0, 1];Rn) → R≥0 and U ⊃
C1([0, 1];Rn) be a linear normed space. Assume that there

exist a Fréchet differentiable functional V : U → R≥0 and

c1, c2, c3, χ ∈ R>0 such that for each d ∈ R
m and w ∈

domAd

c1α(w)
2 ≤ V (w) ≤ c2α(w)

2 (8)

DV (w) ◦ Adw ≤ −c3V (w) + χ2|d|2 (9)

Let d ∈ L2(R≥0;R
n)∩C1(R≥0;R

n), x0 ∈ Xd, and for each

t ∈ R≥0, φ(t) := ϕ(t, ·, x0, d). Then, for all t ∈ R≥0, one

has

α(φ(t)) ≤ e−
c3

2
t

ï

c2

c1

ò
1

2

α(x0) +
χ√
c1

‖d‖L2 (10)

�

Inequality (9) can be seen as a special form of dissipation

inequality for the abstract differential equation (6). Indeed,

the functionals w 7→ V (w) and (w, d) 7→ −c3V (w)+χ2dTd

can be thought, respectively, as a storage function and

a supply rate; see [10], [22]. Dissipation inequalities for

systems governed by PDEs have been already considered

in [1].

Remark 3. By relying on the representation of the closed-

loop system given by the abstract differential equation (6), we

are able to formulate a dissipation inequality-like condition

in the form of a functional inequality in a subspace of

H1([0, 1];Rn) × R
n. This provides an elegant generaliza-

tion to PDEs of the well-known dissipation inequalities for

ordinary differential equations; see, e.g., [3]. It is interesting

to observe that the gradient of V is replaced in (9) by the

Fréchet derivative and these two objects coincide in finite

dimensional spaces. ◦
Theorem 1 provides sufficient conditions for the solution

to Problem 1. However, the applicability of such a result



requires the construction of the (storage) functional V and

this is a challenging task in general. In [1], the authors

propose a constructive approach based on optimization tech-

niques for the construction of storage functionals for a wide

class of PDEs. Although the results in [1] cover a large

class of PDEs, their applicability to the analysis of the

closed-loop system (3) does not seem straightforward due to

different boundary conditions. Therefore, with the objective

of deriving a systematic design algorithm tailored to linear

conservations laws, in the following section we propose a

specific structure for the functional V in Theorem 1, which

allows one to cast the solution to Problem 1 in the solution

to some matrix inequalities.

B. Construction of the functional V

The result given next provides sufficient conditions for

Theorem 1 to hold in the form of a matrix inequality. The

result builds on the use of the following functional

V (X) =

∫ 1

0

e−µzX(z)TPX(z)dz

Theorem 2. If there exists P ∈ D
n
p ,K ∈ R

n×n, µ, χ ∈ R>0

such that
ï

(H +BK)TΛP (H +BK)− e−µΛP (H +BK)⊤ΛPBK

• KTBTΛPBK − χ2
I

ò

≺ 0

(11)

Then, K solves Problem 1 and in particular (4) holds with

ω =
1

2
µλmin(Λ), κ =

 

λmax(P )

λmin(P )
e

µ

2

γ =
χ√

λmin(P )
e

µ

2

(12)

�

Remark 4. Although our approach is conservative, (12)

seems to suggest that disturbance rejection and convergence

speed are antagonistic objectives. Indeed, higher values of

µ are more likely to lead to poor robustness with respect

to boundary disturbances, but that potentially allows one

to achieve faster transient response. This aspect will be

illustrated in a numerical example in Section IV. ◦
Theorem 2 recasts the solution to Problem 1 as the feasi-

bility problem of a matrix inequality, i.e., (11) . However,

due to its form, such a condition is not computationally

tractable to obtain a solution to Problem 1. Indeed, condition

(11) is nonlinear in the variables P,K, χ, and µ, thus it is

hardly tractable from a numerical standpoint [6]. Although

the nonlinearities involving the variables χ and µ can be

easily addressed, further work is needed to tackle the trilinear

terms involving P and K . This aspect is considered in the

subsequent section.

C. Control Design

Theorem 3. Let P ∈ D
n
p , µ, χ ∈ R>0, and K ∈ R

n×n be

given. The following two statements are equivalent

(a) (11) holds;

(b) There exists Q ∈ R
n×n such that



He(Q) + ΛP −QT(H +BK) −QTBK

• −e−µΛP 0
• • −χ2

I


 ≺ 0

(13)

The above result provides an equivalent condition to (11)

in which no trilinear terms appear. The result given next

shows that a simple change of variables turns (13) into a

linear matrix inequality, modulo the nonlinearity involving

the variable µ. �

Corollary 1. If there exist P ∈ D
n
p , µ, θ ∈ R>0, Q ∈ R

n×n,

and Y ∈ R
n×n such that1



He(Q) + ΛP −QTH − Y −Y

• −e−µΛP 0
• • −θI


 ≺ 0 (14)

Then, Q is nonsingular and K = B−1Q−TY solves Prob-

lem 1. In particular, (4) holds with ω and κ defined as in

(12) and

γ =

 

θ

λmin(P )
e

µ

2

�

D. Optimization Aspects

In the formulation of Problem 1, no specific requirements

on the scalar γ are considered. On the other hand, it is

obvious that to reduce the effect of the measurement noise

on the closed-loop system, the controller gain K should be

designed so that (4) holds with a minimal γ. This goal can be

achieved by considering the following optimization problem

inf
P,Y,µ,Q,θ

θ

λmin(P )
e

µ

2

subject to (14), P ∈ D
n
p , µ > 0, θ > 0

(15)

At this stage it is worthwhile to remark that the solution

to the above optimization problem is in general challenging

due to (14) being nonlinear in the decision variable µ and the

objective function being nonlinear in the decision variables

θ and P . With the aim of obtaining a computationally

affordable design algorithm, we want to tackle the solution

to (15) via semidefinite programming tools [6]. While the

nonlinearity involving the variable µ can be easily overcome

by performing a line search, the objective function needs to

be suitably reformulated to get a linear objective. To this end,

let c ∈ R>0, consider the following additional constraint
ï

P I

• cI

ò

� 0 (16)

which holds if and only if c−1 ≤ λmin(P ). The satisfaction

of (16) ensures that

θ

λmin(P )
≤ θc

1There is a typo in equation (14) in the published proceedings, i.e., HT

should be H .



Then, since R>0 × R>0 ∋ (θ, c) 7→ θc and R>0 × R>0 ∋
(θ, c) 7→ θ+ c are monotonically related each other, one can

consider the following optimization problem

inf
P,µ,Q,Y,θ

(θ + c)e
µ

2

subject to (16), P ∈ D
n
p , µ > 0, θ > 0, c > 0



He(Q) + ΛP −QTHT − Y −Y

• −e−µΛP 0
• • −θI


 ≺ 0

(17)

When µ is selected, optimization problem (17) is a semidefi-

nite program, i.e., an optimization problem over linear matrix

inequality constraints with linear objective. Hence, it can be

efficiently solved in polynomial time via numerical available

solvers; see, e.g., [6].

Remark 5. Although the main focus of this paper is on

control design, it is worthwhile to observe that the results we

propose can be used as an analysis tool for a given control

gain. In particular, given a control gain K , an optimization

problem analogous to (17) can be formulated to certify the

existence of a bound (4), while reducing the pessimism in

the estimation of the gain γ. ◦

IV. NUMERICAL EXAMPLE

Consider the example in [11] in which system (1) is

defined by the following data

Λ =

ï

1 0

0
√
2

ò

, H =

ï

0 1.1
1 0

ò

, B = I

We consider the solution to Problem 1 via the solution to the

optimization problem (17), which can be effectively obtained

by performing a line search on µ. In particular, for each

µ > 0, let P ⋆
µ , θ

⋆
µ, Q

⋆
µ be the solution to the optimization

problem2 (17). In Fig. 2 we report the function

µ 7→ γ⋆(µ) =
θ⋆µ

»

λmin(P ⋆
µ )

e
µ

2

which, for each µ, provides the smallest achievable value of

γ for which the bound in (4) holds for the closed-loop system

when the control gain K is designed as in Corollary 1.

The picture suggests that µ 7→ γ⋆(µ) is increasing. This

fact aligns with the discussion in Remark 4 and emphasizes

that a tradeoff between convergence speed and disturbance

rejection may be needed. To get an insight on the influence

of the value of µ on the closed-loop behavior, we compare

the behavior of the closed-loop system obtained via different

selections of the parameter µ. In particular, we consider

µ = µ1 := 0.01 and µ = µ2 := 0.5. By solving optimization

problem (17) with µ = µ1 and µ = µ2, one gets, respectively,

2Numerical solutions to SDP problems are obtained in Matlab® via
Mosek [2] thanks to YALMIP [16]. Numerical integration of hyperbolic
PDEs is performed via the use of the Lax-Friedrichs (Shampine’s two-
step variant) scheme implemented in Matlab® by Shampine [18]. Code at
https://github.com/f-ferrante/HyperbolicEx1
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Fig. 2: The function µ 7→ γ⋆(µ).
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Fig. 3: The function t 7→ d̂(t) in (18).

the following results

K1 ≈
ï

0 −0.1155
−0.095 0

ò

γ1 ≈ 0.3863

K2 ≈
ï

0 −0.5242
−0.4214 0

ò

γ2 ≈ 1.0397

Moreover, to evaluate the effectiveness of our design strategy,

we consider the following stabilizing gain for the closed-loop

system given in [11]

K3 =

ï

0 −0.7
−1 0

ò

Consider the following disturbance; see Fig. 3

t 7→ d(t) :=

ï

1
1

ò

t2 sin(5t)e−
1

2
t :=

ï

1
1

ò

d̂(t) (18)

and observe that d ∈ L2(R≥0;R
n) ∩ C1(R≥0;R

n) the null

function belongs to Xd. In Fig. 4, we compare the evolution

of the L2-norm of the closed-loop system state from zero

initial conditions in response to the disturbance (18) obtained

for the three control gains. As expected, the gain leading to

a smaller value of γ, i.e., K1 provides better disturbance

rejection.

To better assess the tradeoff between convergence speed

and disturbance rejection, in Fig. 5 we compare the evolution

https://github.com/f-ferrante/HyperbolicEx1


of the L2-norm of the closed-loop system, with the three

considered gains, in response to the disturbance (18) from

the following initial condition

[0, 1] ∋ z 7→ x0(z) :=

ï

cos(4πz)− 1
cos(2πz)− 1

ò

(19)

Observe that, with d as in (18), x0 ∈ Xd. Fig. 5 clearly points

0 5 10 15
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0.2

0.4

0.6

0.8

1

1.2

1.4

t

Fig. 4: The evolution of t 7→ ‖ϕ(t, ·, 0, d)‖L2 , with d selected

as in (18), for different control gains: K1 (dashed-line), K2

(solid-line), K3 (dotted-line).

out that overall the best performance is achieved with the

gain K2 for which a tradeoff between disturbance rejection

and convergence speed has been considered.
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Fig. 5: The evolution of t 7→ ‖ϕ(t, ·, x0, d)‖L2 , with d and

x0 selected, respectively, as in (18) and (19), for different

control gains: K1 (dashed-line), K2 (solid-line), K3 (dotted-

line).

V. CONCLUSION

In this paper, we considered the problem of designing

a static boundary controller to stabilize a system governed

by a n linear conservation laws, in the presence of energy-

bounded measurement noise. The controller is designed to

induce a bound on the L2 norm of the state. Such a bound

is exponentially converging in the L2 norm of the initial

condition and quadratic in the L2 norm of the measurement

noise. By pursuing a Lyapunov approach, the control design

problem is recast into the feasibility problem of some matrix

inequalities. Semidefinite programming tools are used to

design the controller while achieving a tradeoff between

convergence speed and disturbance rejection. Numerical sim-

ulations illustrate the effectiveness of the proposed control

design strategy in an example.
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