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SHAPE OPTIMIZATION VIA A LEVELSET AND A

GAUSS-NEWTON METHOD

JÉRÔME FEHRENBACH AND FRÉDÉRIC DE GOURNAY

Abstract. In the context of shape optimization via level-set methods, we pro-

pose a general framework for a Gauss-Newton method to optimize quadratic
functionals. Our approach provides a natural extension of the shape deriv-

ative as a vector field defined in the whole working domain. We implement

and discuss this method in two cases: first a least-square error minimization
reminiscent of the Electrical Impedance Tomography problem, and second the

compliance problem with volume constraints.

Introduction

Shape optimization adresses the problem of finding an optimal domain Ω among
a set of admissible domains, with respect to a given criterion. We are interested
in the case where the objective function depends on the solution uΩ of a partial
differential equation.

Different approaches and numerical implementations have been proposed since
the 1960s and it is not possible to credit all the contributions here. The difference
in the methods lie

- in the various ways of describing a shape: parametrization of the shape see
e.g. [9], implicit representation using level-sets [23], numerical relaxation of
the characteristic function to have values in the interval [0, 1] [7], relaxation
of the continuous problem by homogenization method [3].

- in the way the optimal domain is estimated. We will use Hadamard’s
boundary sensitivity method [18]. Other methods include topological sen-
sitivity analysis [17, 29], which estimates the variation of the criterion after
nucleation of infinitesimal holes, standard parameter sensitivity analysis in
the case of relaxation since then the unknown is a real-valued function, and
lamination parameters estimation in the case of homogenization.

The classical contributions in shape optimization mentioned above proposed to
minimize the objective using first order minimization methods. In the search of
improving the convergence and to assess the stability of the solution, other works
addressed shape optimization problems using second order methods. The second
variation of a cost functional w.r.t. the domain was derived first by Simon [28].
A necessary optimality condition is that the first derivative cancels, but it is not
sufficient and the coercivity of the Hessian needs to be accounted for. Detailed
studies including regularity estimates showed that if the domain is C2,α and the
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perturbation is a C2,α diffeomorphism then the Hessian is coercive at the minimum,
but with respect to a weaker norm [12, 11]. The detection of obstacles for the
conductivity equation using second order shape optimization was proposed in a
series of work [15, 1, 2] under various hypotheses regarding the obtacle: perfectly
insulating, perfectly conducting, having a different conductivity. Another series of
work adressed electromagnetic shaping, and the explicit computation of the Hessian
that is affordable using a boundary integral method to estimate the solutions of the
equation [22, 24].

More recently Kasumba and Kunisch [20] proposed to compute the shape Hessian
without computing the sensitivity of the state, which allows to weaken the regularity
hypotheses. In [4] the authors propose a new method of shape parametrization that
allows to define a second order derivative that is directed along the normal to the
boundary of Ω. A clever implementation of this method provides convergence in
less iterations than the first order descent, although the explicit computation of the
Hessian requires a heavy computational load.

We propose in the present work to adress shape optimization using Gauss-
Newton method, which is an approximate second order method dedicated to the
minimization of quadratic cost functions of a variable θ that are written

1

2
‖F (θ)‖2.

It is only ”approximate” second order since the Hessian is not computed (the second
derivatives are not computed), and it is approximated by first order derivatives. The
strategy that we adopt can be sketched as follows. We define a scalar product on
the set Θ of vector fields defined on Ω and our method is a Gauss-Newton method
relatively to this scalar product. Therefore the vector fields that we consider are
already defined on the whole domain Ω. The descent direction d is obtained by
solving the Gauss-Newton update equation:

dF ?dF .d = −dF ?F.

In the present work, the domain is represented by a level-set and a key ingredient
is a local remeshing operation and a re-initialization of the distance function on
non-cartesian grid using Dapogny-Frey’s algorithm [13]. We treat the case a generic
elliptic partial differential equation and present two applications where the objective
can be expressed as a quadratic cost function: L2-fit and compliance for the linear
elasticity equation.

The present paper is organized as follows. In Section 1 we define the setting
of the problem and the notation that will be used in the sequel. In Section 2 we
recall classical facts regarding Gauss-Newton method, and emphasize the differences
with the gradient method. In Section 3 we provide the sensitivity of the direct state
uΩ with respect to a variation of the shape, and direct and adjoint derivatives of
the objective function (in the L2 fit case and in the compliance case). Section 4
details the numerical methods that were implemented, and Section 5 contains the
presentation and discussion of the results.

1. Notation and settings

1.1. Setting of the problem. Consider a second order elliptic system of s coupled
PDEs set on a domain Ω ⊂ Rd whose boundary ∂Ω is partitionned into a Dirichlet
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part ΓD(Ω) and a Neumann part ΓN (Ω). Denote

H1
D(Ω) = {u ∈ L2(Ω) s.t. ∇u ∈ L2(Ω), ui = 0 on ΓD(Ω),∀i ∈ SD},

where SD ⊂ [1, s] is the subset of indices on which the Dirichlet boundary conditions
are applied. Let A be a fourth order tensor of size d×d×s×s such that a Poincaré
inequality holds for some constant C > 0:∫

Ω

A∇u : ∇u ≥ C
∫

Ω

u · u ∀u ∈ H1
D(Ω).

A necessary condition for this Poincaré inequality to hold is that both SD and
ΓD(Ω) are non-empty. In order to clarify the notation, we write in coordinates

A∇u : ∇φ =
∑
ijkl

Aijkl
∂uk

∂xi

∂φl

∂xj

In this case, for any f ∈ L2(Ω), there exists a unique uΩ minimizer of

min
u∈H1

D(Ω)

∫
Ω

A∇u : ∇u− 2

∫
Ω

f · u.

When A is symmetric, the minimizer uΩ is a solution to the corresponding Euler-
Lagrange equation, or so-called variational formulation:∫

Ω

A∇uΩ : ∇φ =

∫
Ω

f · φ, ∀φ ∈ H1
D(Ω).

The strong form of the above equation is:

(1)


−div(A∇uΩ) = f in Ω

uiΩ = 0 on ΓD(Ω) ∀i ∈ SD
A∇u : ej ⊗ n = 0 on ΓD(Ω) ∀j /∈ SD

A∇uΩ : n = 0 on ΓN (Ω)

,

where n is the outer normal of the domain Ω.
For instance, the choice s = d and

Aijkl = λδikδ
j
l + µ(δijδkl + δilδ

j
k),

where δ is the standard Kronecker’s symbol, leads to Hooke’s law which describes
isotropic linear elasticity, and the choice Aijkl = δijδkl leads to the s dimensional
Laplacian. The goal of the present article is to propose a new algorithm designed
to optimize w.r.t. the domain Ω a quadratic functional of the state uΩ, and to test
this algorithm in two cases where the state solves a linear elasticity equation. We
address first the minimization of the least square error (L2 fit) to a target state uG
on a subdomain ω:

Jls(Ω) =

∫
ω

|uΩ − uG|2.

In our second toy model we optimize the compliance defined by

Jc(Ω) =

∫
Ω

A∇uΩ : ∇uΩ.

Note that the ingredients of our method can in principle be applied to other qua-
dratic cost functions.
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1.2. Differentiable structure. It is well known that the set of domains is not a
vector space and does not have a differentiable structure. Following the approach
of Murat-Simon [21], there exists a manifold structure on the sets of domains that
can be attained by diffeomorphisms from an original domain. To make things clear,
denote Ω ⊂ Rd the working domain, and for any θ ∈W 1,∞(Rd) (which is a Banach
space) we consider the domain Ωθ = (Id + θ)(Ω). The domain Ωθ is defined in a
neighbourhood of θ = 0, namely if ‖θ‖1,∞ < 1 then Id + θ is a diffeomorphism.
The ”geometric shape derivative” is the differential of the functional of interest
with respect to θ. In practical examples, we might require that some region of the
original domain Ω is non-optimisable, hence that θ is equal to zero on this non-
optimisable subset denoted as ωn.o.. Moreover, in order to show differentiability,
the Dirichlet part of Ωθ has to be the image of ΓD(Ω) under the diffeomorphism
Id + θ, in other words ΓD(Ωθ) = (Id + θ)(ΓD(Ω)). In the applications considered
here the Dirichlet part is defined as ΓD(Ωθ) = ∂Ωθ ∩ Γ0

D, where Γ0
D is part of the

data. The boundary part Γ0
D must therefore be invariant under the diffeomorphism

Id+ θ. For this reason we enforce θ · n = 0 on Γ0
D and consider the following space

Θ = {θ ∈W 1,∞(Rd) such that θ = 0 on ωn.o. and θ · n = 0 on Γ0
D}.

From now on, functionals that depend on Ω, will be (locally) interpreted as func-
tionals on Θ, which is a Banach space so that it makes sense to differentiate w.r.to
θ ∈ Θ. Otherwise specified, differentiation is taken at the origin θ = 0.

Since shape optimization is an optimization problem set on a manifold, the design
of second order methods is more involved because a choice has to be made in order
to compute the transport of a tangent plane to another one. The advantage of the
Gauss-Newton method is that it requires only first order information and is known
to be able to achieve local quadratic convergency rate.

2. Gauss-Newton method

2.1. Gradient descent vs Gauss-Newton descent. The main contribution of
the present work is to design a Gauss-Newton method in order to minimize J over
the admissible sets Ω. We recall that the Gauss-Newton method is defined in the
general case of a differentiable function F : X → Y , where X and Y are Hilbert
spaces. It aims at minimizing the quadratic functional

J (x) =
1

2
‖F (x)‖2Y

by minimizing at iteration k the local quadratic approximation:

min
h

1

2
||F (xk) + dF (xk).h||2

One iteration of the Gauss-Newton algorithm is then defined as follows:

• Compute dF the differential of F and dF ? its adjoint. The adjoint is defined
via the Hilbertian structures of X and Y as:

〈dF ?.u, v〉X = 〈u, dF.v〉Y ∀u ∈ Y, v ∈ X

• Implement an iterative minimisation algorithm based on the following up-
date rule

xk+1 = xk + dk,
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with dk the direction of descent given by

(2) (dF ?dF )dk = −dF ?F.
We recall here for comparison that the gradient method to minimize a functional

J : X → R is defined by

• Compute ∇J (xk) = dF ?F (xk) and set dk = −∇J (xk).
• Implement an iterative minimisation algorithm based on the following up-

date rule
xk+1 = xk + skdk,

with sk an admissible step given by a linesearch method (see e.g. [31]) and
dk the direction of descent given by

(3) dk = −∇J .

In the quadratic case when J (x) =
1

2
‖F (x)‖2Y with F : X → Y then ∇J = dF ?F ,

and Equation (3) reads
dk = −dF ?F.

Let us emphasize the differences between the gradient descent and Gauss-Newton
descent:

(1) Gauss-Newton method does not require the computation of a step since the
optimal step length is 1 close to the minimum.

(2) On the other hand, the price to pay is the solution of the linear system
(2). However note that the solution of this equation does not require the
computation and storage of the matrix dF ?dF : in large dimension it is
convenient to implement the product of a given vector by the matrix dF ?dF .
The Equation (2) is then solved using an iterative method like conjugate
gradient. An approximate resolution is sufficient and can be obtained by
performing a handfull products by dF ?dF . This strategy is called matrix-
free Gauss-Newton methods [26, 16].

(3) Gauss-Newton method is known to have a faster convergence than the gradi-
ent method in a neighbourhood of a minimum (local quadratic convergence
under suitable hypotheses). An heuristic explanation of this fact (see [30])
is that the descent direction in both methods is orthogonal to the level-sets
of the functional J but for different scalar products. In the case of the
gradient descent it is the original scalar product in the space X, whereas in
the Gauss-Newton case it is an adapted scalar product that makes locally
(around a minimum) the levels-sets circles and not ellipses. It is well known
that the lines orthogonal to a circle point towards the center, which is not
the case for ellipses.

2.2. Hilbertian structure. In this section we describe the Hilbertian structure Θ
on the set of variables. In order to work out the Gauss-Newton method, the space
with respect to which the differentiation is performed has to be endowed with a
scalar product. We choose the following scalar product:

(4) 〈θ, η〉Θ =

∫
Rd
αθ · η +∇θ : ∇η,

with α > 0 (α = 10 in the tests presented in section 5). Let us emphasize the fact
that the space Θ is not an Hilbert space, since the corresponding scalar product
is not complete for the norm ‖ • ‖W 1,∞(Ω). A natural choice would be to work
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in the completion of Θ with respect to this scalar product but this approach is
also doomed since the functional would in generality fail to be differentiable. We
choose not to work with a scalar product defined on a smaller subset of Θ which
completion is included in Θ (e.g. take a scalar product that involves products of
derivatives of degree 3 in dimension 2) because it would lead to unwanted numerical
regularization.

Note: In the standard shape optimization using gradient descent, the space
Θ should also be endowed with a scalar product. In practice, it follows from
Hadamard’s theorem and Riesz representation theorem that the differential of a
cost function J can (if it exists) be expressed as an integral over the boundary ∂Ω
of a quantity g multiplied by the normal trace θ · n, that is :

(5) dJ .θ =

∫
∂Ω

g(θ · n)

The so-called ’gradient’ is the quantity g which amounts to use as a scalar product
on the set Θ the L2 product of the normal trace on the boundary. This does not
either define a Hilbert space structure on Θ, but is reasonnably effective. In the
present work we study the effectiveness of another abuse described above. Note
also that previous work [14] already used the scalar product defined by Equation
(4) on the space Θ.

3. Direct and adjoint derivatives

3.1. Derivative of the solution. In this section, we recall the formula of the
shape derivative of the solution, and sketch the main steps of the complete proof.

It is well known that the solution of the PDE under consideration admits a
geometric shape derivative [18]. Denote uΩθ ∈ H1

D(Ωθ) the solution to the elliptic
PDE and denote uθ = uΩθ ◦ (Id + θ), the pull back of uΩθ on Ω. As long as
ΓD(Ωθ) = (Id+ θ) ◦ ΓD(Ω), it is a standard result to show that uθ belongs to the
space H1

D(Ω).

Proposition 1 (Derivative of the state). [21, 19, 6] The maping θ 7→ uθ is differen-
tiable from W 1,∞(Rd) to H1

D(Ω) around the value θ = 0. If (du.θ) ∈ H1
D(Ω) denotes

the value of this differential at the point 0 in the direction θ, it is the solution to
the following equation in variational form:∫

Ω

A∇(du.θ) : ∇φ =

∫
Ω

C(θ)∇uΩ : ∇φ+

∫
Ω

(∇f · θ + div(θ)f)φ ∀φ ∈ H1
D(Ω),

whith the notation (∇f · θ)i =
∑
m ∂mf

iθm, and where we define:

C(θ)ijkl =
∑
m

(
−∂θ

m

∂xm
Aijkl +

∂θm

∂xi
Amjkl +

∂θm

∂xj
Aimkl

)
.

The proof of this proposition is detailed in the references [21, 19, 6], we only
sketch the main ideas here. The variational formulation of the equation reads∫

Ωθ

A∇uΩθ : ∇ψ =

∫
Ωθ

fψ ∀ψ ∈ H1
D(Ωθ).

We perform a change of variable with Ωθ = T (Ω), T = Id+ θ, to obtain∫
Ω

A(∇uΩθ ) ◦ T : (∇ψ) ◦ T |det∇T | =
∫

Ω

f ◦ T ψ ◦ T |det∇T | ∀ψ ∈ H1
D(Ωθ).



SHAPE OPTIMIZATION VIA A LEVELSET AND A GAUSS-NEWTON METHOD 7

We denote φ = ψ ◦ T so that when ψ describes H1
D(Ωθ), then φ describes H1

D(Ω)
and we recall the notation uθ = uΩθ ◦ T . According to Leibniz’ rule:

(∇uΩθ ) ◦ T = ∇uθ(∇T )−1 ◦ T, ∇ψ ◦ T = ∇φ(∇T )−1 ◦ T,

and finally we use the implicit function theorem which allows a first order expansion
in terms of θ which yields the corresponding result.

3.2. Derivative of the L2 fit. In the rest of the paper we consider the case where
s = d and A is the linear elasticity operator, although the ideas presented can be
applied to any elliptic operator.

We address in this section the optimization of the domain with respect to the
L2 fit to a given objective. Let us consider the following quadratic cost function:

J (θ) =
1

2

∫
ω

(uΩθ − uG)2,

where the target state uG ∈ L2(R2) and the subdomain ω is not optimizable (in
other words θ = 0 on ω). In pratical implementation, we will use a neighbourhood
of the boundary as observation domain ω, hence this problem is close to Electrical
Impedance Tomography [10, 8] and bears the same kind of instability.

A change of variable with T = Id+ θ shows that

J (θ) =
1

2

∫
ω

|det∇T |(uθ − uG ◦ T )2 =
1

2

∫
ω

(uθ − uG)2,

since θ vanishes on ω. We introduce the spaceM = L2(ω) with its standard scalar
product and the functional

F : Θ −→ M
θ 7−→ F (θ) = uθ − uG.

Then J is a quadratic cost function written as

J (θ) =
1

2
‖F (θ)‖2M.

Proposition 2 (Direct derivative for the L2 fit). The mapping F : Θ → M is
differentiable at the point θ = 0. Moreover, its differential dF.θ at point 0 in
direction θ is equal to

dF.θ = (du.θ)1ω,

where the derivative du.θ of the state was given in Proposition 1.

Proposition 3 (Adjoint derivative for the L2 fit). Let z ∈ L2(Ω). If we denote
dF ? the adjoint of dF , then dF ? solves

∀θ ∈ Θ, 〈dF ?z|θ〉Θ =

∫
Ω

C(θ)∇uΩ.∇p+

∫
Ω

(∇f · θ + div(θ)f)p

where the adjoint state p solves∫
Ω

A∇φ.∇p = −
∫
ω

φz ∀φ ∈ H1
D(Ω).
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Proof. The differentiation of F follows from the differentiation of uθ. The compu-
tation of dF ? follows from the computation of dF and the use of the adjoint p in
order to get rid of the term du.θ in Equation (6) below:

〈dF ?z|θ〉Θ =

∫
ω

zdF.θ =

∫
Ω

A∇(du.θ).∇p(6)

=

∫
Ω

C(θ)∇uΩ.∇p+

∫
Ω

(∇f · θ + div(θ)f)p

�

3.3. Case of multiple loads for the L2 fit. In order to stabilize the problem
to solve, we use multiple loads and hence multiple target states. More precisely,
let f1, . . . , fm be m different loads. The target state uiG is obtained by solving
the state equation (1) with the i-th source term f i on the true (to be recovered)
domain. The multiple target cost function to be minimized is then

(7) Jmulti(θ) =
1

2

m∑
i=1

∫
ω

(uiθ − uiG)2,

where uiθ is obtained by solving Equation (1) on the domain Ωθ with source term
f i, and ω still denotes the observation domain.

If we denote
F i : Θ −→ M

θ 7−→ F i(θ) = ui − uiG,
then the Gauss-Newton update equation (2) is replaced by the following multiple
loading update equation:

(8)

(
m∑
i=1

dF i
?
dF i

)
η = −

m∑
i=1

dF i
?
F i,

where the product of a given vector of Θ, resp. of L2(Ω), by the operator dF i, resp.

dF i
?
, is given by Proposition 2, resp. Proposition 3.

3.4. Derivative of the compliance. Let us consider the following cost function
composed of two terms: the compliance plus a Lagrange multiplier for the volume:

(9) L(θ) =
1

2

∫
Ωθ

A∇uΩθ : ∇uΩθ +
λ

2

∫
Ωθ

1.

A change of variable with T = Id+ θ shows that

L(θ) =
1

2

∫
Ω

|det∇T |A(∇uθ∇T−1) : (∇uθ∇T−1) +
λ

2

∫
Ω

|det∇T |.

We consider the space

M =

{(
m
v

)
s.t. mk

i ∈ L2(Ω), v ∈ L2(Ω) for 1 ≤ i ≤ d, 1 ≤ k ≤ s
}

endowed with the scalar product

〈
(
m
v

)
,

(
m̃
ṽ

)
〉M =

∫
Ω

Am : m̃+ λ

∫
Ω

v · ṽ.
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Let F be the mapping from W 1,∞(Rd) to M defined by

F (θ) =

(√
|det∇T |∇uθ∇T−1√

|det∇T |

)
.

The cost function that we adress reads:

L(θ) =
1

2
‖F (θ)‖2M.

Proposition 4 (Direct derivative for the compliance). For θ ∈ Θ we have

dF.θ =

(
1
2div(θ)∇uΩ −∇uΩ∇θ +∇(du.θ)

1
2div(θ)

)
.

Proof. It follows from the chain rule. �

Proposition 5 (Adjoint derivative for the compliance). For any z =

(
m
v

)
∈ M,

we have

〈dF ?z, θ〉Θ =

∫
Ω

Am : (
1

2
div(θ)∇u−∇u∇θ) + λ

∫
Ω

1

2
div(θ)v

+

∫
Ω

C(θ)∇uΩ : ∇p+

∫
Ω

(∇f · θ + div(θ)f)p

where the adjoint state p solves:∫
Ω

A∇φ : ∇p =

∫
Ω

Am : ∇φ ∀φ ∈ H1
D(Ω).

Proof. We first use the calculation of dF and the definition of dF ?. Then, as usual,
an adjoint is used to remove the term in du.θ in the resulting equation.

〈dF ?z, θ〉Θ = 〈z, dF.θ〉M =

∫
Ω

Am : (
1

2
div(θ)∇u−∇u∇θ +∇(du.θ)) + λ

∫
Ω

1

2
div(θ)v

=

∫
Ω

Am : (
1

2
div(θ)∇u−∇u∇θ) + λ

∫
Ω

1

2
div(θ)v

+

∫
Ω

C(θ)∇uΩ : ∇p+

∫
Ω

(∇f · θ + div(θ)f)p

�

4. Implementation

4.1. Finite elements methods. The PDEs are solved using first order Lagrangian
(P1) finite elements. The tests presented in Section 5 were implemented in Python
using GetFem++ finite elements library. The tests were run on a laptop equipped
with an Intel R©-core i7, 2.9Ghz.

4.2. Level set method. Consider a working box D meshed with simplexes. The
domain Ω is represented and modified via a level-set method with adapted mesh.
The level-set is described by a time dependent P1 levelset function Φ(t). At time
t, the domain Ω(t) is the set {x,Φ(x, t) < 0}. At each iteration (interpreted as
discrete values of the time), the exact boundary of ∂Ω(t) is computed, at the cell
level it consists merely of cutting the simplexes of the boundary by hyperplanes.
The cells of D that are cut by the zero-level set of Φ are re-meshed and an exact
mesh of Ω and its complementary Ωc is computed. This mesh is called the ”adapted
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mesh”. A new levelset function Φ̃ is then computed on the adapted mesh and is
set to be equal to the distance function with respect to the boundary with first a
Fast-Marching method [27, 5] and then the Dapogny-Frey algorithm [13]. The PDE
is then solved on the adapted mesh and the direction of descent θ? is a P1 finite
element function of the adapted mesh. Once a direction of descent θ? is computed,
the level-set Φ̃ is evolved during a time interval T by an exact caracteristic scheme
on the mesh of Ω according to the equation:

∂tΦ̃− θ?∇Φ̃ = 0,

the time step T of this equation is the equivalent of the step of the descent method.
The final Φ̃ is then projected on the original mesh of D, which yields the levelset
Φ and the algorithm is ready for the next rinse and repeat phase.

Note that if the Gauss-Newton algorithm naturally yields a direction of descent
which is a P1 vector-field on the whole domain, the standard gradient method only
yields a direction of descent g which is a scalar field on the boundary of Ω, see
Equation (5). In the examples presented here, the PDE is solved using a P1 finite
element method, and g is a P0 scalar field. In order to compute θ? from g, our
strategy is to first project g on the boundary only in order to obtain a P1 scalar
field on the boundary, then to extend it harmonically inside the domain and then
to multiply it by the extended normal defined as ∇Φ

‖∇Φ‖ in order to obtain a P1

vector field.

4.3. Solving for the descent direction. Let us now detail how to compute the
solution η of

(10) dF ?dF .η = −dF ?F (0).

The equation (10) is solved using GMRES [25]. For this it is necessary to compute
the following quantities:

- dF ?F (0): it is the classical shape gradient excepted that the scalar product
is not the usual one. Its value is given by Proposition 3 (for the L2 fit case)
or by Proposition 5 (for the compliance case). Note that it is the gradient
w.r.t. the scalar product given in Equation (4).

- given η ∈ W 1,∞ we must compute dF ?dF η. This is done in two steps:
z = dF η is the direct derivative which is given by Proposition 2 (for the L2

fit case) or Proposition 4 (for the compliance case), and dF ?z is the adjoint
derivative given by Proposition 3 or by Proposition 5.

4.4. Gauss-Newton algorithm. As a summary the Gauss-Newton shape opti-
mization method is implemented using the algorithms below. The total number of
iterations is k, and the number of convergent iteration is l, the difference k− l is the
number of iterations spent reducing the step. In practice, the step is never reduced
as can be seen in Table 1.

Algorithm : Shape optimization using Gauss-Newton
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Data: Ω0 = initial domain
N = maximum number of iterations,
Result: Ωl = optimal domain after l iterations
k = 0, l = 0
compute the direct states, evaluate the objective function
While k ≤ N

l = l + 1,k = k + 1
Compute the direction of descent of Gauss-Newton.
Compute the distance function on the domain Ωk−1.
The domain Ωk is obtained by advecting Ωk−1.
Mesh the domain Ωk.
Compute the direct states, evaluate the objective function.
If the objective function increases:

Send a warning message, k = k + 1.
Go back to previous convergent iteration.
Continue with a smaller step.

5. Numerical results

In all the tests presented here the PDE into consideration is the standard lin-
ear elasticity equation with Young modulus E = 1 and Poisson ratio ν = 0.3.
The holes are numerically considered as ersatz material (Young modulus of 10−3),
this allows to smoothly handle island of material disconnected from the Dirichlet
boundary condition and to stabilize the problem if the remeshing operation yields
a triangulation close to the boundary with a bad conditionning.

In order to document more completely the results presented in this section the
authors propose the movies of shape evolution on their webpages:

https://www.math.univ-toulouse.fr/~fehren/videos.html, http://degournay.fr/frederic/gn.

5.1. First test case: L2 fit to retrieve a hole. The first test into considera-
tion consists in retrieving a perforation in a [−1, 1] × [−1, 1] square knowing the
measurement of the displacement in an annulus along the boundary. The domain
is subjected to Dirichlet boundary conditions on x = ±1 and Neumann boundary
conditions on y = ±1. The objective function is the L2 fit in the multiple loads case
Jmulti defined in Equation (7). The goal states ukG, k = 1..m are synthetized with
known source terms fk on a target set Ωtrue perforated by the disk of center (0, 0)
and of radius 0.3. The set ω on which the L2 fit is performed is the neigbourhood
of the boundary of Ω defined by

ω = Ω ∩ {(x, y) s.t.|x| > 0.9 or |y| > 0.9}.
The mesh on which optimization is performed is a triangular decomposition of a
80×80 square mesh, whereas the data is synthetized on a 200×200 mesh and inter-
polated on the working mesh. The loads are P1 finite element functions computed
on the synthetic mesh interpolated on the working mesh and fed to the optimization
algorithm.

Figure 1 (left) presents the target domain Ωtrue, and the subdomain ω where
the measurements are used in the L2 fit. There are m = 4 source terms which are
vertical loads of magnitude 1 on their support. The loads are supported on the
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Ωtrue

ω
Ωtrue

f1

Figure 1. True domain Ωtrue, observation domain ω, and loca-
tion of the four different source terms (left); condition for the first
source term f1 (middle); solution u1

G for the first source term
(right).

four squares of length 0.2 whose centers are (−0.7, 0), (0.7, 0), (0,−0.7), (0,+0.7),
see Figure 1 (left) for the location of the loads and Figure 1 (middle) for the
illustration of one load. Since the data has symmetry w.r.t. the two lines x = 0
and y = 0, so should have the corresponding solutions. Although symmetry is lost
in the optimization process, it is a validation of the algorithm to find a symmetric
final shape. In order to compare with existing methods we have also implemented
the gradient descent (described in Section 4.2) with line search. The displacement
for the first load is shown in Figure 1 (right).

In order to document the behavior of Algorithm 1 and the reference algorithm
(gradient) under various conditions we have studied the following cases:

• Good starting point. The initial hole is a disk of center (0, 0) and of radius√
3/10. Figure 2 presents different steps of Gauss-Newton and gradient

methods.
• Bad starting point. The initialisation is farther away from the exact solu-

tion. The initialisation and the results are presented in Figure 3.
• Noisy case. The data is perturbed by multiplicative noise (10% additive

noise with a Gaussian distribution). The results are presented in Figure 4.

The convergence history (evolution of the objective function) for the different
cases is shown in Figure 5 and the computational cost is presented in Tables 1 and
2. Note that the convergence history shows that Gauss-Newton method is more
efficient in terms of convergence history versus iteration. The computation of the
descent direction for Gauss-Newton is computationally more expensive than the
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Figure 2. Good starting point case, the shape is in black, the
hole in gray. The target hole is highlighted. Top: Iterations 0,1,3
and 27 of the gradient algorithm. Bottom: Iterations 1,3,5,16 of
the Gauss-Newton algorithm.

Figure 3. Bad starting point case, the shape is in black, the hole
in gray. The target hole is highlighted. Top: Iterations 0,4,8 and
25 of the gradient algorithm. Bottom: Iterations 1,4,6,9 of the
Gauss-Newton algorithm.

computation of the descent direction for the gradient method. This observation
however has to be ponderated by two remarks:

• First, the choice of the initial step for the gradient method is costly. In
the tests presented here we performed a manual tuning of the initial step.
The Gauss-Newton method on the contrary has an optimal step of 1 (this
is asymptotically exact close to the solution and is still acceptable all over
the iterations in our experiments) and does not require any tuning. At
each iteration the line search for the gradient method requires a remeshing
operation and an advection of the level set, which are computationally
expensive operations.
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Figure 4. Noisy case, the shape is in black, the hole in gray.
The target hole is highlighted. Top: Iterations 0,1,3 and 17 of the
gradient algorithm. Bottom: Iterations 1,3,5 and 6 of the Gauss-
Newton algorithm.

• The linear elasticity systems to be inverted for the Gauss-Newton method
have the same matrix througout one iteration. The computation and stor-
age of a LU decomposition of the stiffness matrix greatly decreases the total
time spent in one Gauss-Newton iteration (compared to the number of sys-
tems solves multiplied by the cost of solution of one single system). Note
also that the computation of the descent direction is done by an iterative
algorithm. We choosed to stop the GMRES algorithm after 10 iterations.
In practice the remainder in the GMRES algorithm after 10 iterations is of
order 2%.

These remarks are documented in Table 2, where it appears that cost of the Gauss-
Newton method is dominated by the assembly of stiffness matrices or right-hand
sides (required in the computation of direct and adjoint derivatives), while the
cost of the gradient method is dominated by the advection and distance function
calculation. As an overall balance the conclusion is that in this test case the com-
putational cost of Gauss-Newton method is of the same order as the computational
cost for the gradient descent, and provide a better optimization of the objective.

Finally, we give statistics on the noisy case, the test with noise has been run 80
times, and the Gauss-Newton method converges in 7.46 iterations in average with
a standard deviation of 1.35 iterations. The Gradient algorithm converges in 21.8
iterations in average with a standard deviation of 4.35 iterations. The running time
is proportional to the Table 1. The average final value of the objective function
is 5.916e-7 (resp 5.924e-7) with standard deviation 1.317e-08 (resp. 1.301e-08) for
the Gauss-Newton (resp. Gradient) method. The final shapes in average and the
standard deviation are shown in Figure 6 for the two methods. We can observe that
the Gauss-Newton method achieves a smaller value of the cost function in average
but that the optimal shape standard deviation is more important. As a result,
the average shape appears to be more blurred in the Gauss-Newton method. Since
there is no regularization term in the fitting problem, it is expected that the optimal
shapes account for the noise and hence their average be blurred. The behavior of
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Figure 5. The convergence history in the different cases for the
hole problem. The cases are (from left to right and top to bottom):
the good starting point (initial shape is a circle with different ra-
dius), the bad starting point (initial shape is composed of two
circles) and the noisy data. The last test is the bad starting point
with the elapsed computational time as axis instead of iteration
number

Convergent iterations Total Iterations Time Final objective
Gradient (Good starting point) 27 44 114s 7.46e-9
Gauss-Newton (Good starting point) 16 16 136s 4.046e-9
Gradient (Bad starting point) 25 41 111s 1.89e-8
Gauss-Newton(Bad starting point) 9 9 79s 4.02e-9
Gradient (Noisy case) 19 46 100s 5.96e-7
Gauss-Newton (Noisy case) 6 6 58s 5.92e-7

Table 1. Computational load for the various cases of the experi-
ment: number of convergent iterations; total number of iterations
including the line search in the case of the gradient method (these
are the same for Gauss-Newton method); the total time; final value
of the objective function Jmulti defined in Equation (7).

the Gradient method can be interpreted as if the algorithm is attracted to a local
minimum. This might explain the lack of blurring of the average shape obtained
by the Gradient method.
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Good starting point Bad starting point Noisy case
Gradient Gauss-Newton Gradient Gauss-Newton Gradient Gauss-Newton

Matrix or RHS assembly 378 (25.1s) 1782 (87.4s) 352 (24.7s) 1005 (51s) 358(27.0s) 672(38.3s)
LU factorization 45 (3.6s) 33 (1.9s) 42 (3.4s) 19 (1.2s) 47(3.8s) 13(0.8s)
Linear system resolution 288 (1.4s) 1732(8.4s) 268(1.3s) 976 (4.8s) 264(1.3s) 652(3.4s)
Remeshing operations 45 (8.5s) 17 (3.3s) 42 (8.7s) 10 (1.9s) 47(9.1s) 7(1.4s)
Advection 45 (36.1s) 17 (16.7s) 42 (34.2s) 10 (9.6s) 47(26.1s) 7(6.6s)
Distance Function 27 (17.4s) 16 (10.6s) 25 (16.6s) 9(5.9s) 19(12.5s) 6(4.2s)

Table 2. Detailed computational load for the Gauss-Newton and
Gradient algorithm, both with the good, bad initialization and the
noisy case. For each line the number of calls of the functions and
the total time spent in the function is displayed. Some output and
control functions are not displayed, hence the total time does not
exactly sum up to the results of Table 1.

Figure 6. From left to right : Average shape for the Gauss-
Newton and the Gradient Method and standard deviation for the
Gauss-Newton and the Gradient Method for the noisy case with
80 runs. The scale of the standard deviation is between 0. and
0.48.

5.2. Second test case: L2 fit to retrieve a hole with a complex geometry.
This test is the same as the previous one except that the target shape to be retrieved
is the union of three disks respectively of center (0, 0), (−0.3, 0.2), (0.2, 0.2) and of

radii 0.3,
√

3/100, and
√

4/100. The shape of this hole is similar to a mouse (see
Figure 7 top left). The different iterations and the target shape are described in
Figure 7, whereas convegence history is shown in Figure 8.

The conclusion of the second test case is that a more precise solution is obtained
with Gauss-Newton method, for a computational load of the same order as the
gradient method.

Convergent iterations Total iterations Time Optimal value
Gradient 22 38 98s 4.89e-8
Gauss-Newton 9 9 80s 3.58e-9

Table 3. Computational load for the second test case: number of
convergent iterations; total number of iterations including the line
search in the case of the gradient method; total time; final value
of the objective function Jmulti defined in Equation (7).
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Figure 7. The second test case (mouse), the shape is in black,
the hole in gray. The target hole is highlighted. Top: Iterations
0,3,8 and 22 of the gradient algorithm. Bottom: Iterations 1,3,5,9
of the Gauss-Newton algorithm
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Figure 8. The convergence history for the second test case, ob-
jective function vs iteration (left) and vs computational time in
seconds (right)

•

f

Figure 9. The cantilever test case.

5.3. Third test case: compliance of the cantilever. This section adresses the
standard test case of optimizing the compliance of the cantilever. The working
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domain is a 2 × 1 rectangle meshed with 160 × 80 cells. The applied force is a
vertical load applied on the middle of the right boundary, and the left boundary is
clamped. The initial shape is shown in Figure 11 (iteration 0 of the algorithm). We
compared the following strategies to optimize the compliance L given by Equation
(9):

• Gradient: the standard gradient method described in Section 4.2,
• Gauss-Newton: the method described in Algorithm 2,
• Gauss-Newton late start: after 10 iterations of the gradient algorithm the

current domain is used as initial guess for a Gauss-Newton method,
• H1-gradient: as we noted in Section 4.2, the classical gradient method for

shape optimization uses as a scalar product in the space of vector fields the
L2 norm of the normal trace on the boundary. The H1-gradient algorithm
uses the scalar product defined by (4) to compute the descent direction. It
is thus the right-hand side −dF ?F (0) of Equation (10).

A selected choice of the shapes obtained during the iterations are displayed in
Figure 10 for the Gauss-Newton algorithm, in Figure 11 for the Gradient algorithm,
in Figure 12 for the Gauss-Newton algorithm with late start, and in Figure 13 for
the H1-gradient algorithm. The convergence history of these algorithm is shown in
Figure 14. Finally Table 4 provides details about the computational load and the
objective function for the different algorithms.

Figure 10. The Gauss-Newton algorithm for the compliance of
the cantilever, iterations 0,1,2,3,4 and 15 of the algorithm are
shown

Convergent iterations Total iterations Time Optimal value
Gradient 25 36 214s 184.432
Gauss-Newton 15 15 262s 183.546
Gradient-H1 27 48 269s 184.057

Table 4. Computational load for cantilever case: number of con-
vergent iterations; total number of iterations including the line
search; total time; final value of the objective function L defined
in Equation (9).

The convergence history and the carefull study of the intermediate shapes during
iterations shows the efficiency of the Gauss-Newton algorithm in finding shapes
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Figure 11. The Gradient algorithm for the compliance of the
cantilever, iterations 5,10,11,12,19 and 25 of the algorithm are
shown

Figure 12. The Gauss-Newton algorithm with late start for the
compliance of the cantilever, iterations 10,11,12 of the algorithm
are shown

Figure 13. The H1-gradient algorithm for the compliance of the
cantilever, iterations 5,10,11,12,19 and 25 of the algorithm are
shown

compared to the other algorithms. Three importants points have to be discussed in
view of this numerical test: the step choice, the (local) oscillations of the gradient
algorithm, and the (global) oscillations of the H1-gradient algorithm.

1) As already discussed in Section 2.1 the step has to be carefully chosen when
working with the gradient algorithm, whereas in Gauss-Newton algorithm the step
is 1. For the Gradient algorithm we chose manually the best initial step that
ensures the quickest convergency of the method. In the case of the cantilever with
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Figure 14. The convergence history for the cantilever problem.
Left: objective function. Right: difference (in log scale) of the ob-
jective function with L? the minimal value of the objective function
(obtained by the Gauss-Newton algorithm).

this initialization, two different phases of the algorithm can be observed: first the
algorithm removes un-necessary material in the middle of the left boundary and
on the two top-right and bottom-right corners (See the iteration 1 of the Gauss-
Newton algorithm, Figure 10 and the iterations 5 to 10 of the Gradient algorithm,
Figure 11), then the algorithm spends some time enhancing the shape of the holes
before arriving to its final shape. The important thing is that the optimal step
has to be different for those two phases, hence the Gradient algorithm has to go
through a slow phase of step adjustement, in our experiment the step has to go
from 2.5 × 10−3 to 1 × 10−4. Gauss-Newton algorithm does not have this issue,
its step is constant throughout iterations. If we increase the step of the Gradient
algorithm, this will lead to a first phase that is quicker but a longer phase of step
adjustement, hence an overall slower algorithm.

2) The oscillations in the shape of Figure 11 are not common in shape opti-
mization by the gradient method, and one could wonder where they exactly come
from.

The reason for these oscillations in our implementation is that in order to perform
accurate computation the mesh is cut at each iteration by the level-set. A classical
merging method is then applied when points are too close. At the level of the
domain, this merging method will contribute to removing small triangles (smaller
than 1/10 of the grid size), one of these missing triangles can be seen on iteration
5 of Figure 11 (bottom part of the central hole). The response of the algorithm is
to compensate these missing triangles by expanding the level-set at this point, thus
creating oscillations. Note that the oscillations are created during the first phase
(the algorithm is busy removing parts in the middle of the left boundary and on the
top-left and bottom-left corners), so that the algorithm does not really care about
these oscillations beeing created. This first phase is completed at iteration 10 of the
gradient algorithm, the algorithm then tackles the issue of the oscillations. Hence,
the behavior observed by the gradient algorithm in iterations 10 to 12 in Figure 11
is not that of a bad numerical method, but that of a gradient algorithm trying to
smooth the boundary of the shape, but without the correct step. Indeed one can
see that the oscillations from one iteration to the next one are inverted. This is
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where Gauss-Newton algorithm shows its efficiency: if we start a Gauss-Newton
algorithm at iteration 10 of the Gradient algorithm, in one iteration (see Figure 12)
the oscillations of the shape are killed and the algorithm goes back to optimizing the
shape of the holes. In the literature, this effect is avoided since either the velocity
is regularized or the level-set is diffused, these strategies prevent the oscillations
to appear. This is exactly the strategy followed by the H1-gradient algorithm
that regularises the descent direction, since the computation of dF ? contains a
relevement by the scalar product of Θ which is regularizing since it contains first
order derivative in its definition. We note also that the Gauss-Newton algorithm
(see Figure 10) does not even expand these small oscillations.

3) The H1 gradient method shows oscillations of the shape that are global oscil-
lations and not mere oscillations at the scale of the mesh (see iterations 10,11,12 of
Figure 13). Such oscillations are typical of the gradient method when dealing with
important variation of the gradient in one direction, in other words steep valleys
where the method does not provide a next iterate that is located exactly at the
bottom of the valley.

5.4. Fourth test case: compliance of the sliding arch. The last test case is a
sliding arch which is a shape included in a 2×1 rectangle meshed with 120×60 cells
subjected to a vertical load at the middle of the bottom boundary. The vertical
displacement is set to zero on the bottom left and bottom right corners. Constraints
on the horizontal displacement are only given on one corner (hence the ”sliding” in
the name of the test case).

•

The initialization and the final shape obtained by the three algorithms in con-
sideration are shown in Figure 15. Finally, Figure 16 shows the convergence history
of the objective function and Table 5 some information regarding the optimization
algorithms: iteration count, elapsed time and final objective value. This test-case
is known to be a little more difficult than the cantilever case, one can observe here
that the H1-gradient algorithm is slower than the standard Gradient algorithm.
The reason is that the regularization procedure (included implicitly in the compu-
tation of dF ?) diffuses the value of the gradient and that the scalar product of Θ is
numerically a worst choice than the L2 scalar product of the normal component on
the boundary. Note that in this case again, the Gauss-Newton algorithm behaves
better than the two other algorithms, not only in terms of iteration number, of final
value of the objective function but also in terms of overall computational time.
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Figure 15. Initialization and final shape for the sliding arch prob-
lem and, respectively, the Gauss-Newton algorithm, the gradient
algorithm and the H1-gradient algorithm.
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Figure 16. The convergence history for the sliding arch. We plot
the log scale of the difference of the objective function L with the
minimal objective function L? (obtained for Gauss-Newton). On
the left, the absciss is the iteration number and on the right, it is
the computational time.

Convergent iterations Total iterations Time Optimal value
Gradient 44 66 215s 1.654
Gauss-Newton 10 12 102s 1.622
H1-Gradient 47 65 238s 1.632

Table 5. Computational load for the sliding arch case: number of
convergent iterations; total number of iterations including the line
search; total time; final value of the objective function L defined
in Equation (9).

Conclusions

We presented in this work a framework that allows to implement a Gauss-Newton
method in shape optimisation problems, which is adapted to the case when the ob-
jective function is quadratic. It is an approximate second order method where no
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Hessian computation is required. This Gauss-Newton method requires the defi-
nition of a scalar product in the space of vector fields, and although we did not
obtain a Hilbert space the formulas for the descent direction proved to be effec-
tive. The fact that the estimated vector field is global (and not only defined by
its normal trace on the boundary) provides a natural regularization although it
seems at first sight that unnecessary information is added in view of Hadamard’s
structure theorem. The toy test cases that are presented show that shape optimiza-
tion using Gauss-Newton method provides more efficient shapes than the gradient
method (since the objective function is smaller), and in the same time the com-
putational load is of the same order of magnitude. Indeed Gauss-Newton method
is less costly in total iteration number but more costly in computational time per
iteration In the cases in consideration, the cost of the Gauss-Newton method in
computational time per iteration is reduced by using complete LU factorization.
It is questionnable that the trade-off between the gain in total iteration number
and computational time per iteration would still favor the Gauss-Newton method
for more difficult problems. In one hand, if the size or dimension of the problem
rises to a point where LU factorization is not allowed in memory terms, one has to
shift back to iterative methods that drastically augment the computational time of
the Gauss-Newton method. On the other hand, more difficult quadratic problems
lead to a huge augmentation of computational time of the solution of the forward
problem, hence a reduction of the total iteration time has an important impact on
total computational time. It would be interesting to challenge the Gauss-Newton
algorithm in such problems. Future work will adress more realistic 3D examples,
and constrained shape optimization. For the latter we will investigate the efficiency
of projected descent or quadratic programming.
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