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DNA methylation of the promoter region
of bnip3 and bnip3l genes induced by
metabolic programming
Vincent Veron1†, Lucie Marandel1†, Jingwei Liu1, Emilio J. Vélez2, Olivier Lepais3, Stéphane Panserat1,
Sandrine Skiba1 and Iban Seiliez1*

Abstract

Background: Environmental changes of biotic or abiotic nature during critical periods of early development may
exert a profound influence on physiological functions later in life. This process, named developmental
programming can also be driven through parental nutrition. At molecular level, epigenetic modifications are the
most likely candidate for persistent modulation of genes expression in later life.

Results: In order to investigate epigenetic modifications induced by programming in rainbow trout, we focused on
bnip3 and bnip3l paralogous genes known to be sensitive to environmental changes but also regulated by
epigenetic modifications. Two specific stimuli were used: (i) early acute hypoxia applied at embryo stage and (ii)
broodstock and fry methionine deficient diet, considering methionine as one of the main methyl-group donor
needed for DNA methylation. We observed a programming effect of hypoxia with an increase of bnip3a and the
four paralogs of bnip3l expression level in fry. In addition, parental methionine nutrition was correlated to bnip3a
and bnip3lb1 expression showing evidence for early fry programming. We highlighted that both stimuli modified
DNA methylation levels at some specific loci of bnip3a and bnip3lb1.

Conclusion: Overall, these data demonstrate that methionine level and hypoxia stimulus can be of critical importance
in metabolic programming. Both stimuli affected DNA methylation of specific loci, among them, an interesting CpG
site have been identified, namely − 884 bp site of bnip3a, and may be positively related with mRNA levels.
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Background
Biotic and abiotic environmental changes encountered
during critical early windows of developmental plasticity
may exert a profound influence on physiological functions
later in life [1]. This process named “developmental pro-
gramming” has been proposed to prepare adult pheno-
types to better cope with specific environment [2–4].
Over the past decades, developmental programming has
been widely studied in mammals [5]. In contrast, the first
studies on this topic in fish were initiated only recently
and were mainly focused on nutritional and metabolic
programming. In 2007, Vagner et al. showed higher and

persistent delta 6 desaturase mRNA levels when
European sea bass larvae were fed a low levels of n-3
HUFA diet [6]. In addition, an hyperglucidic diet ap-
plied at first feeding was found to lead to persistent
changes in levels of transcripts related to glucose diges-
tion and utilisation in zebrafish, gilthead seabream and
rainbow trout juvenile [2, 3, 7, 8]. More recently long term
effects of first feeding with plant-based diet have been
tested successfully in trout, salmon and seabass, confirm-
ing the concept of nutritional programming in fish [9–12].
Most of these studies applied a nutritional stimulus at

first exogenous feeding. However it is known that em-
bryogenesis also represents a sensitive window of meta-
bolic plasticity during which a stimulus may have a
more efficient long-term effect [4, 13]. For instance, an
acute hypoxic stimulus applied in rainbow trout at
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embryo stage modified mRNA levels of several
glucose-metabolism related genes at first feeding [14].
Moreover, after the embryonic hypoxic stimulus, the glu-
cose metabolism in liver and muscle of rainbow trout ju-
venile was impacted, confirming a long term programming
effect of a very early stimulus [15]. Programming can also
be driven through parental nutrition. For instance, feeding
rainbow trout broodstock for 6 months with a methionine
deficient diet affected the expression of genes involved into
methionine metabolism in fry fed for 21 days [16]. More-
over, genes involved in gluconeogenesis and autophagy
were also affected by parental methionine deficiency [17].
These data confirm that developmental programming with
nutritional and non-nutritional stimuli applied directly at
embryo stage or through broodstock nutrition can induce
long-term metabolic programming in fish.
Different biological mechanisms have been shown to be

involved in developmental programming. Clonal selection
of adapted cells during differential proliferation of tissue
cell type could explain physiological adaptations in later
life [18]. At molecular level, epigenetic modifications are
the likeliest candidates to consider in the context of nutri-
tion and more particularly when working on program-
ming. Indeed, these mechanisms are influenced by
metabolic state as well as environmental changes [19] and
can be maintained at long-term during cellular divisions
at least through mitosis [20], even through meiosis. In
mammals, many studies have focused on mechanisms in-
volving epigenetic regulation of genes expression and their
role in nutritional or metabolic programming [21–23]. By
contrast, in fish, few data are available on epigenetic
mechanisms which potentially underlie programming
phenotypes and are mainly limited to modifications occur-
ring at the whole epigenome level [15, 24, 25].
In order to deeper investigate epigenetic modifications

induced by environmental programming and their in-
volvement on resulting phenotypes in teleost at target
gene level, it is essential to focus on a model gene
known to be sensitive to environmental changes but also
regulated by epigenetic modifications in a strong and re-
peatable way. In the present study, we focused on bnip3
(bcl-2/E1B-19 K interacting protein 3), and bnip3like
(also known as nix), two genes involved in mitochondrial
mediated apoptosis and/or mitochondrial autophagy
upon diverse cellular stress including hypoxia [26–28].
Changes in the expression of these two genes were pre-
viously demonstrated to be regulated by DNA methyla-
tion under hypoxic environment [29–32] but also to be
associated to the activity of the one-carbon metabolism
[33], the major metabolic supply route of methyl groups
that are required for DNA and histone methylation.
Here, we aimed at studying epigenetic regulation of

bnip3 and bnip3l genes in rainbow trout subjected to
two specific stimuli known to strongly affect these genes,

hypoxia and methionine deprivation, in a context of
metabolic programming. First, as bnip3 and bnip3l genes
can be induced by hypoxia [34–37], we studied the pro-
gramming effect of an early acute hypoxic stimulus ap-
plied at embryo stage on the regulation of bnip3 and
bnip3l genes at fry stage. Secondly, regarding the role of
methionine as methyl donor for epigenetic modifications
[38, 39], we investigated the programming consequences
on the regulation of bnip3 and bnip3l genes on progeny
of parents fed a methionine deficient diet during gam-
etogenesis. This last step allowed investigating for the
first time intergenerational programming at the epigen-
etic level in rainbow trout.

Results
Identification of bnip3 and bnip3l genes in rainbow trout
Using the recent availability of the rainbow trout genome
assembly [40], we identified two genes (Genoscope acces-
sion number: GSONMT00001151001 and GSONMT00
082530001) sharing a high sequence homology (E-value
>2e-09, Sigenae tblasn http://www.sigenae.org/) with the
zebrafish bnip3 available in Ensembl (ENST000
00368636.8). Similarly, we found 4 genes (Genoscope ac-
cession number: GSONMT00078967001, GSONMT0
0064944001, GSONMT00079376001 and GSONMT000
59781001) sharing a high sequence homology (E-value
>2e-16) with the zebrafish bnip3la available in Ensembl
(ENSDART00000035676.4).
In order to confirm the identity of the identified genes, a

percentage identity matrix was established after alignment
of the deduced amino acids (aa) sequences of these genes
with those of BNIP3 and BNIP3L from other vertebrate
species including human, mouse, chicken, lizard, coela-
canth spotted gar, zebrafish, medaka and stickleback
(Additional file 1: Figure S1). The identity matrix showed
that the deduced aa sequences of GSONMT00001151001
and GSONMT00082530001 shared a higher percent of
homology with BNIP3 (mean of 57.6% of homology) than
BNIP3L (mean of 49.1% of homology). Inversely, se-
quences GSONMT00078967001, GSONMT00064944001,
GSONMT00079376001 and GSONMT00059781001 pre-
sented a higher homology with BNIP3L (mean of 59.8% of
homology) than BNIP3 (mean of 50.6% of homology)
when we compared trout sequences with other studied
species. Accordingly, the phylogenetic analysis performed
by the Maximum Likelyhood method (Poisson model,
1000 bootstraps) showed that the two trout sequences
(GSONMT00001151001 and GSONMT00082530001),
sharing the highest percent of homology with BNIP3,
clustered with vertebrates BNIP3, while the four last
sequences (GSONMT00078967001, GSONMT0006494
4001, GSONMT00079376001 and GSONMT000597
81001) grouped together with vertebrates BNIP3L
(Fig. 1). These results suggested that the two former
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trout genes (GSONMT00001151001 and GSONMT0
0082530001) are paralogous genes and co-orthologous
to vertebrates BNIP3, while the four last genes
(GSONMT00078967001, GSONMT00064944001, GSON
MT00079376001 and GSONMT00059781001) are
co-orthologous to vertebrates BNIP3L. Moreover, this
phylogenetic tree also revealed that two trout bnip3l pro-
teins (GSONMT00064944001 and GSONMT0007896
7001) rooted with teleosts bnip3la (defining them as
bnip3la1 and bnip3la2, respectively), while the two others
(GSONMT00059781001 and GSONMT00079376001)
were co-orthologous to bnip3lb, also identifying them as
bnip3lb1 and bnip3lb2, respectively.
We then performed a syntenic analysis to clarify the

evolutionary history of BNIP3 and BNIP3L in verte-
brates. In all non-teleost species analysed here, bnip3
was included in the ppp2r2d-jakmip3-dpysl4-lrrc27 syn-
tenic group highly conserved across species (Fig. 2a).

Interestingly, a syntenic conservation of this region was
found in two distinct chromosomes (17 and 12) of the
zebrafish genome whereas only one syntenic region con-
taining bnip3 in medaka and stickleback was identified.
Considering the newly sequenced rainbow trout genome,
our syntenic analysis showed that GSONMT00001151001
(bnip3a) and GSONMT00082530001 (bnip3b) genes were
localized on two distinct scaffolds (scaffold_75,456 and
scaffold_95, respectively). The synteny around bnip3b
locus was well conserved but the scaffold_75,456 bearing
bnip3a was too short to provide relevant syntenic infor-
mation. As regard bnip3l, our analysis showed a conserva-
tion of synteny in the vicinity of this locus. In all the
studied vertebrates, bnip3l is included in dpysl2-ppp2r2a
syntenic group (Fig. 2b). It should be noted that this con-
served region bearing bnip3l is present in two distinct
chromosomes in zebrafish, medaka and stickleback and
four different scaffolds in rainbow trout.

0,20

Fig. 1 Phylogenetic tree, based on full length amino acid sequences, was built using the Maximum Likelihood Method (with Poisson model)
using the Molecular Evolutionary Genetics Analysis (MEGA) software version 7.0 (Tamura 2013). The reliability of the interfered trees was estimated
using bootstraps with 1000 replications. Accession numbers from Ensembl or Genoscope database are in brackets. Mammalian and teleost BNIP2
protein sequences were used to root the tree

Veron et al. BMC Genomics  (2018) 19:677 Page 3 of 14



bnip3 and bnip3l mRNA levels
In mammals, hypoxia was shown to increase the expres-
sion of bnip3 and bnip3l [27, 34–36, 41, 42]. Here, we
aimed to determine whether the different bnip3 and
bnip3l paralogs identified in trout were affected by hyp-
oxia as well as the possible existence of a “middle term”
(until fry stage) programming effect of this stimulus on
the expression of these genes. As shown in Fig. 3a,
bnip3lb1 and bnip3lb2 were the only analysed genes
exhibiting a significantly higher expression in embryos
directly subjected to a 24 h hypoxic stress compared to
control embryos kept at normoxic condition. However,
surprisingly, at longer term (502 °D after hypoxia stimu-
lus) fry from the hypoxic-embryos displayed significantly
higher mRNA levels of not only bnip3lb1 and bnip3lb2
but also of bnip3a, bnip3la1 and bnip3la2 compared to
the control group (Fig. 3b).
Met emerged as a key factor in modulating the cellular

availability of the main biological methyl donor

S-adenosylmethionine (SAM) needed for all biological
methylation reactions including DNA and histone
methylation. As such, it represents a potential critical
factor in nutritional programming. We therefore moni-
tored the effect of feeding broodstock with a diet defi-
cient in Met on the expression of identified bnip3 and
bnip3l genes in offspring subjected to different dietary
Met levels. We found that bnip3a and bnip3lb1 mRNA
levels were induced by the Met deficiency in the diet
only in offspring from Met deficient broodstock (BD-FD
group significantly higher to the 3 other groups) (Fig. 4).
We also found that Met deficiency applied in fry en-
hanced the expression of bnip3lb2 whatever the brood-
stock diet. All the other studied genes did not display
significant changes of their expression.
Together, these results support the possibility of pro-

gramming the expression of some bnip3 and bnip3l
genes in rainbow trout by means of both early hypoxia
stimulus and broodstock nutritional stimulus, thereby

A

B

Fig. 2 Synteny around bnip3 (a) and bnip3l (b) loci. Syntenic analyses were conducted using Genomicus software (http://www.genomicus.biologie.ens.fr/
genomicus-trout-01.01/)
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offering a good model to determine the underlying
epigenetic mechanisms.

bnip3 and bnip3l promoters DNA methylation levels
We studied the DNA methylation of bnip3 and bnip3l
genes upstream region in fry of both experiments (hyp-
oxia and Met deficiency). We focused on genes which
expressions were affected by both the hypoxic stimulus
and the Met deficient diet; namely bnip3a and bnip3lb1.

Using target gene Next Generation Bisulfite Sequencing,
we analysed DNA methylation at specific CpG sites
along the 5′ upstream region of these two genes.

Effect of hypoxic history on DNA methylation level of
bnip3a and bnip3lb1
For both genes, we observed that the methylation level
was low (from 0 to 3%) around the ATG predicted
codon and until − 600 bp whatever the condition (data
not shown). In the region upstream to − 600 bp, DNA

A

B

Fig. 3 Effect of hypoxic stimulus at embryo stage on mRNA levels of bnip3 and bnip3l genes in rainbow trout embryos (a) and fry (b). Data are
expressed as mean ± SE (n = 6). Letters indicate significant differences between conditions (p < 0.05)
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methylation levels strongly increased to reach a max-
imum of 70.5% and 94.5% of methylated CpG for bnip3
and bnip3l, respectively (Fig. 5a). Within this region, two
CpG sites of bnip3a (at − 1038 and − 884 bp) and of
bnip3l (at − 791 and − 728 bp) exhibited significantly
lower methylation levels in fry with the hypoxic-history
compared to their control counterparts. By contrast, the
CpG sites at − 848 and − 653 bp of bnip3a and − 818
and − 814 bp of bnip3lb1 presented higher methylation
rates in fry with the hypoxia history.

Effect of broodstock and/or fry fed met deficient nutrition
on the level of DNA methylation of bnip3a and bnip3lb1
As for hypoxic stimulation, we observed for both genes
that the DNA methylation level was very low around the
ATG codon (from 0 to 2.5%) and until − 600 bp (data not
shown) whatever the condition. We also detected a strong
increase of methylation levels in the regions upstream to
− 600 bp. As regard bnip3a, we detected two trends. The
first concerns the CpG sites at − 884 and − 854 bp, which
showed an inhibitory effect of both the parental and fry

Fig. 4 Effect of a 3 weeks Met deficiency in rainbow trout fry from BD and BA broodstock groups on mRNA levels of bnip3 and bnip3l
genes. BD and BA for Broodstock Deficiency and Adequate methionine diet, respectively. FD and FA for Fry Deficiency and Adequate
methionine diet, respectively. Data are expressed as mean ± SE (n = 6). Letters indicate significant differences between conditions (p < 0.05)
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methionine deficiency on DNA methylation levels
(Fig. 5b). In contrast, the CpG sites at − 1038, − 848,
− 653 and − 601 bp showed higher DNA methylation
levels upon both parental and fry methionine defi-
ciency. As regard bnip3lb1, the CpG sites downstream
of − 1384 bp showed higher DNA methylation in fry
from BD broodstock compared to those from BA
broodstock (Fig. 5b). In contrast, the upstream CpG
sites showed no effect of broodstock nutrition or even
an opposite effect at − 1670 bp. In all cases (all ana-
lysed CpG sites), regardless of the broodstock diet,
we observed a significantly lower DNA methylation
levels in fry fed the methionine deficient diet.

Discussion
In this work, we aimed at studying in rainbow trout epi-
genetic mechanisms underlying persistent changes of
bnip3 and bnip3l expression in a context of metabolic
programming.
We first proceeded to the identification and

characterization of the bnip3 and bnip3l genes in trout.
A previous phylogenetic analysis suggested that bnip3
and bnip3l was restricted to metazoan lineage and both

genes would have emerged from whole genome duplica-
tion (WGD) in the vertebrate ancestor [43]. The authors
highlighted a low divergent selection pressure between
both genes which was in accordance with their similar
functions in apoptosis and mitophagy [26–28]. In the
present study, we identified two bnip3 paralogs in rain-
bow trout genome assembly [40]. bnip3a and bnip3b,
clustered with bnip3 teleost sequences on phylogenetic
analysis. Moreover, we observed a high conserved syn-
teny in the vicinity of bnip3 genes between the studied
species. This suggests that the two rainbow trout para-
logs are co-orthologous to vertebrates BNIP3 genes. It
was not possible to study bnip3a synteny in rainbow
trout due to a short scaffold length. However, both
phylogenetic analysis and synteny suggest that the pres-
ence of two bnip3 paralogs in rainbow trout genome
may be due to the recent 4th salmonid specific WGD
(named Ss4R) which occurred around 80–100 million
years ago [40, 44, 45] suggesting that bnip3a and bnip3b
were ohnologous genes.
We also identified four bnip3l paralogs in rainbow

trout genome. Two sequences clustered with bnip3la
and the remaining two with bnip3lb teleost sequences

A

B

Fig. 5 DNA methylation status of upstream region of bnip3a and bnip3lb1 genes in fry with hypoxic history (a) and after different methionine
levels in broodstock and fry diets (b). BD and BA for Broodstock Deficiency or Adequate methionine diet respectively. FD and FA for Fry
Deficiency or Adequate methionine diet respectively. Data are expressed as percentage of methylation at each CpG site. Position of each CpG
site is given related to ATG codon. Stars indicate significant differences between conditions (p < 0.01). NS, non-significant. Letters indicate
significant differences between conditions (p < 0.01)
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on the established phylogenetic tree. Furthermore, in all
studied vertebrates we observed conservation of genes
synteny in the vicinity of bnip3l locus. This suggests that
rainbow trout bnip3l paralogs are co-orthologous to verte-
brates bnip3l genes. This syntenic group is present in two
distinct chromosomes in teleosts (zebrafish, medaka and
stickleback) and in a unique copy in holostei (represented
here by the spotted gar). Phylogenetic and syntenic data
supported that the teleost-specific WGD (Ts3R) gave rise
to bnip3la and bnip3lb paralogs [46–50]. Our results also
showed that bnip3la1 and bnip3la2 identified in rainbow
trout are co-orthologs to zebrafish, medaka and stickel-
back bnip3la. Similarly, bnip3lb1 and bnip3lb2 are
co-orthologous with zebrafish, medaka and stickleback
bnip3lb. Regarding the phylogenic and syntenic analysis,
the duplication of rainbow trout bnip3la and bnip3lb
genes into bnip3la1 and bnip3la2, and bnip3lb1 and
bnip3lb2, respectively, arose at the Ss4R. Therefore, exist-
ence of four bnip3l paralogs in rainbow trout could be ex-
plained by two rounds of WGD, Ts3R and Ss4R. Overall,
these gene duplication events of bnip3l and bnip3 offered
an interesting model to study potential divergences in both
the function and the expression of the related paralogs.
Numerous studies in mammals reported that early de-

velopmental stages can be critical windows of metabolic
plasticity [1]. In this regard, early life events such as nutri-
tional or environmental changes can affect growth, health
and metabolic status later in life [3, 4]. Here, we show in
rainbow trout that hypoxia (applied to embryo for 24 h)
can induce, at least until fry stage, the expression of
bnip3a and the four bnip3l paralogs. Previously, genes in-
volved in gluconeogenesis pathway and glucose transport
were reported to be affected at fry stage in same experi-
mental conditions [15]. Therefore we confirm that hyp-
oxia act as a developmental programming stimulus.
Our results also showed that hypoxia lead to significant

changes in DNA methylation levels of upstream regions of
both bnip3a and bnip3lb1. DNA methylation is often as-
sociated with gene silencing [51, 52]. It has been observed
in mammalian cancer cells, especially in hypoxic micro-
environment, that BNIP3 expression is repressed by pro-
moter aberrant hypermethylation [29, 31, 53–56]. This
specific epigenetic alteration allows cancer cells to escape
to BNIP3 and BNIP3L proapoptotic activity. Silencing of
BNIP3 expression was associated with methylation of the
hypoxia-responsive element (HRE) site that in turn inhib-
ited the binding of hypoxia-inducible factor 1 (HIF1α) to
the BNIP3 promoter [56]. In our study, hypoxia induced
lower methylation level at CpG sites − 1038 and − 884 of
bnip3a and − 791 and − 728 of bnip3lb1. Interestingly,
bnip3a displays two possible HRE at sites − 1038 and −
884 (data not shown), fitting consensus sequence of HRE1
and HRE2 (R-CGTC and R-CGTG, respectively), de-
scribed previously [34, 57–59], and making possible a

direct link between the hypomethylation at these specific
loci and the upregulation of bnip3a expression observed in
fry from the hypoxic-embryos. However, the higher methy-
lation levels observed in neighbouring CpG sites (− 848
and − 653 for bnip3a and − 818 and − 814 for bnip3lb1)
highlights the complexity of epigenetic mechanisms at play
in the control of gene expression [60].
Similarly to early developmental events, parental nutri-

tion can have an impact on growth potential, heath and
metabolism of the offspring [1, 61]. Here, we observed
higher expression of both bnip3a and bnip3lb1 genes in
the BD-FD group compared to other fry, supporting the
existence of an early fry programming by the mean of
parental nutrition. Previously, in the same experimental
conditions, Seiliez et al. also reported that it was possible
to drive nutritional programming in fish through paren-
tal nutrition. Met deficiency in broodstock diet affected
gene expression of fatty acid, cholesterol synthesis and
autophagy in fry [17]. Overall, our results confirmed that
Met level can be of critical importance in metabolic pro-
gramming and prompted us to investigate epigenetic
mechanisms at play in the effect observed.
In mammals, early Met nutrition was shown to affect

DNA methylation later on life by controlling the
one-carbon metabolism [62, 63]. More recently, in zebra-
fish, parental deficiency of one-carbon metabolism-related
metabolites was observed to affect DNA methylation
levels at some specific genes loci of the offspring [64]. In
the present study, we clearly demonstrated that both
broodstock and early fry Met nutrition affected the methy-
lation of several CpG sites of bnip3a and bnip3lb1 genes.
However, as for hypoxia, the effect of Met deficiency
(applied to both broodstock and fry) differs between the
different CpG, making difficult to depict a real picture of
mechanism at play in this event. It should be noted, how-
ever, that the methylation levels at the CpG site − 884 of
bnip3a (which exhibit an HRE-like sequence) may be
positively related with the mRNA levels of bnip3a.
In the future, additional investigations by ChIP and

promoter fusion analysis approaches should be done to
better understand function of key CpG identified here.
Gene regulation is complex and most of the time results
from the combination of different mechanisms. For in-
stance, histone modifications have a major impact on ex-
pression regulation by opening or condensing chromatin
which enable or not transcription factor binding. An-
other interesting subject will be to determine whether
the effects observed at fry stage persist until adult stage
for both stimuli applied.

Conclusion
Collectively, we highlighted in this study modifications
of DNA methylation levels of bnip3a and bnip3lb1 genes
in a context of metabolic programming. An interesting
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zone has been identified, namely − 884 bp site of bnip3a,
which would deserve additional functional analyses in
the future.

Methods
Ethical issues and approval
The INRA facilities are authorized for animal experimen-
tation under French regulations (B 29–277-02). The ex-
periments were carried out in accordance with the
Guidelines of the National Legislation on Animal Care of
the French Ministry of Research (Decree N_2001–464,
May 29, 2001). The project was approved by the French
National Consultative Ethics Committee (reference num-
ber 2015112018112159 and 201511201756973).

In silico analysis
The genoscope database (http://www.genoscope.cns.fr/
trout) was used to identify bnip3 and bnip3l related
genes in the rainbow trout genome using BLAST ana-
lysis. Sequences are available under the accession num-
bers GSONMT00001151001 and GSONMT000825
30001 for bnip3 and GSONMT00064944001, GSONM
T00078967001, GSONMT00059781001 and GSONMT
00079376001 for bnip3l, respectively.
Ensembl database (http://www.ensembl.org/index.html)

was also used to collect amino acids deduced sequences of
bnip3 and bnip3l for human, mouse, chicken, lizard, spot-
ted gar, medaka, stickleback, zebrafish and coelacanth.
Protein alignment and the percentage Identity Matrix

established with amino acids deduced sequences were per-
formed using MUSCLE software (http://www.ebi.ac.uk/
Tools/msa/muscle/).
Phylogenetic tree, based on full length amino acid se-

quences, was built using the Maximum Likelihood
method (with Poisson model) and confirmed by
Neighbor-Joining method (data not shown) using the
Molecular Evolutionary Genetics Analysis (MEGA) soft-
ware version 7.0 [65]. The reliability of the interfered
trees was estimated using the bootstrap method with
1000 replications. Mammalian and teleost bnip2 protein
sequences were used to root the tree.
Syntenic analyses were conducted using Genomicus

software (http://www.genomicus.biologie.ens.fr/genomi
cus-trout-01.01/) to confirm the identity of rainbow
trout genes.

Experimental designs
All fish used in this study were acquired from our INRA
experimental fish farm facilities (Lées-Athas, France).

Hypoxia stimulus
The experimental design was previously described by
Liu and collaborators [14] where the efficiency of the
hypoxic stimulus was validated. Rainbow trout oocytes

were fertilised and reared at 8 °C in 12 separate tanks in
the INRA facilities (Lées-Athas, France). A 24 h hypoxia
stimulus (2.5 mg.l− 1 dissolved oxygen, ~ 22%) was
applied in 6 tanks to embryos at 152 degree days (°D)
(Fig. 6a). The remaining 6 tanks of embryos were kept
under normoxic conditions (11 mg.l− 1 dissolved oxygen)
as a control group. After the 24 h hypoxic stimulation,
embryos were kept under normoxic conditions. After
hatching, alevins were reared with natural spring water
in tanks at 18 °C under natural photoperiod. At 654 °D
fry fed their first meal (Additional file 2: Table S1). After
85 °D (5 days) of feeding, fry were sampled 3 h after last
meal by terminal anesthetization by bathing in benzo-
caine (30 mg/l then a bath at 60 mg/l) and were then
frozen in liquid nitrogen and stored at − 80 °C until ana-
lysis. Fry which received the hypoxia at embryonic stage
will be called later “fry with hypoxic-history”.

Methionine deficiency stimulus
The experimental design was detailed in Fontagné-Dicharry
et al. [16] and summarized in Fig. 6b. Briefly, female and
male rainbow trout broodstock were reared in our ex-
perimental fish farm facilities (INRA, Lées-Athas,
France), in a flow-through rearing system supplied
with natural spring water (8 °C) under natural photo-
period (April to October). Fish were randomly divided
into two dietary groups (35 fish/group) that were fed
for 1440 °D (6 months) before spawning one of the
two plant-based diet providing two dietary methionine
(Met) levels, set at 0.5 or 1% of the diet in the
deficient (BD) or adequate (BA) diets, respectively
(Additional file 2: Tables S2 and S3). Broodstock growth,
relative fecundity, egg size and egg amino acid compos-
ition were analyzed and reported in Fontagné-Dicharry et
al. [16]. Approximately 3000–5000 eggs collected for each
female of each nutritional group were fertilized with a
pool of sperm (collected from 5 to 8 males fed the corre-
sponding diet). Embryos were reared at INRA experimen-
tal facilities at Lées-Athas in 8 °C stream water until the
swim-up fry stage at the age of 528 °D; hatching occurred
at the age of 352 °D. Following this, the swim-up fry were
transferred to the experimental facilities at INRA Donzacq
(France) and randomly distributed into 12 circular tanks
(50 l; 400 fish/tank) supplied with natural spring water
(17 °C) under natural photoperiod. The first-feeding fry
were fed during 357 °D (3 weeks) a fry diet containing
Met in adequate (FA) or deficient (FD) amounts (n = 3
tank/diet/broodstock group) (Additional file 2: Tables S2
and S3). After 3 weeks, n = 9 fish/tank were killed 8 h after
the last meal by terminal anesthetization by bathing in
benzocaine (30 mg/l then a bath at 60 mg/l) and were
then frozen in liquid nitrogen and stored at − 80 °C before
further mRNA and DNA analyses.
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RNA extraction and rtPCR
Total RNA was extracted from the whole body of fry (six
fry were extracted per condition) using the TRIzol reagent
method (Invitrogen, Carlsbad, CA) with Precellys 24
(Bertin technologies, Montigny le Bretonneux, France) fol-
lowing Trizol manufacturer’s instructions. 1 μg of total
RNA was reverse transcribed in duplicate with Super-
Script III RNAse H Reverse Transcriptase kit (Invitrogen)
and random primer (Promega) according to the manufac-
turer’s instructions. mRNA levels were assayed using
LightCycler 480 SYBR Green I Master (Roche Diagnostics,
Neuilly sur Seine, France), 0.4 mM final of each primer,
2 μl of cDNA in a total volume of 6 μl. A LightCycler 480
II thermocycler (Roche) was used. The qPCR protocol
was initiated by an initial denaturation step at 95 °C for
10 min followed by 45 cycles of a two steps amplification
programme (15 s at 95 °C and 10 s at 60 °C). For each
sample RT and qPCR was run in duplicate, negative con-
trols for RT and qPCR were included.
For hypoxia stimulus, luciferase control RNA (Promega)

was used, 10 pg per 1.9 mg of fry added to each sample to
allow data normalisation as previously described [66]. For
Met deficient diet stimulus, transcripts were normalized
using Elongation Factor 1α (ef1α) as reference gene tran-
script following the Pfaffl method [67]. Primer sequences

used to amplify bnip3 and bnip3l paralogs are presented
in Table 1.

Target gene DNA methylation study
DNA extraction
Whole body fry were digested in 5 ml of ice cold extrac-
tion buffer (125 mM NaCl, 10 mM EDTA, 0.5% SDS, 4 M
urea, 10 mM tris-HCl, pH = 8) with 80 μg.ml− 1 final of
proteinase K (P6556, Sigma-Aldrich) overnight at 37 °C
under agitation (250 rpm). Six replicates per conditions
were performed.
After overnight digestion, 5 ml of phenol chloroform

isoamyl alcohol (25:24:1) was added to each sample.
After mixing by inverting tubes, samples were centri-
fuged 15 min at 10000 g at room temperature. Aqueous
phases were kept and 675 μl 5 M NaCl and 5 ml 100%
ice-cold ethanol were added. After a 15 min centrifuga-
tion at 10000 g and 4 °C, pellets were washed with 1 mL
75% ice-cold ethanol and then centrifuge again 15 min,
10,000 g at 4 °C. Pellets were dried and re-suspend in
H2O DNase free and treated containing 2 μg of RNase
(R4642, Sigma) for 1 h at 37 °C. Quality of DNA was
checked on 1% agarose gel and quantification was made
using Nanodrop (Thermofisher, USA).

A

B

Fig. 6 Experimental design. a 24 h hypoxia stimulus (2.5 mg.mL− 1 O2) was applied to embryos (152 °D). Fish were fed their first meal at 654 °D.
After 85 °D of feeding, fry were sampled 3 h after last meal. A normoxia group was used as control. b Broodstock fish were fed for 1440 °D with
either a methionine deficient diet (BD) or a control (Adequate, BA) diet. Males and females of each feeding group were then crossed and the
obtained fry were fed with either the FD (Deficient) or the FA (Adequate) diet for 357 °D from the first exogenous feeding
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Analysis of target gene methylation by targeted
next-generation bisulfite sequencing
The upstream sequence of bnip3 located on the scaffold
75,456 (GSONMT00001151001) and bnip3l located on
the scaffold 615 (GSONMT00059781001) were assessed.
The sequence GSONMT00001151001 of bnip3 started

513 base pairs before the ATG codon so we sequenced
the 5’UTR until − 1148 bp from ATG using the Universal
GenomeWalker 2.0 (Clontech Laboratories, USA) and fol-
lowing manufacturer’s instructions. Sanger sequencing

was done by Eurofins Genomics (Paris) to identify 5’UTR
region. Then, MethPrimer software (http://www.urogene
.org/cgi-bin/methprimer/methprimer.cgi) [68] was used to
design primers (Table 2) targeting bnip3 and bnip3l
upstream regions. Each extracted DNA was bisulfite con-
verted using EZ DNA Methylation-Gold Kit (D5005,
Zymo Research, USA) following manufacturer’s instruc-
tions. In order to prevent any PCR artefact, three PCR
replicates were run for each bisulfite converted DNA.
Advantage 2 polymerase Mix (639,206, Clontech
laboratories, USA) was used for amplification. PCR
conditions were 94 °C for 2 min, and 40 cycles at 94 °C
for 25 s, melting temperature (Tm mentioned for each
primers set in Table 2) for 1 min and 72 °C for 2 min
followed by a final step of 7 min at 72 °C. For each con-
dition, all 10 amplicons (5 for each studied gene) run in
triplicates were pooled. Libraries were generated using
KAPA library preparation Kit (KAPA Biosystems, USA)
at EpigenDx (Hopkington, USA). Sequencing was per-
formed at EpingeDx on Ion Torrent PGM using 314
Chip kit v2. The NGS QC Toolkit v2.3.3 [69] was used
to trim data removing part of the sequences with a
quality score lower than 18 followed by a removal of
reads smaller than 35 nucleotides using Bowtie 2 [70]
using gene sequences in silico bisulfite converted as a
reference. Alignment BAM files were then sorted by
target and condition using BAM tools [71] split

Table 1 Primers used for mRNA levels measurement

Gene Primer (5′ to 3′) Tm in °C

bnip3a F: CCTGTGACAGTCCTCCGAGA 60

R: CCACTTCACGTCTCCGTTCT

bnip3b F: GAGAACAACCCACCAAAGGA 60

R: GTATATCCCCAGGCCAACTG

bnip3la1 F: CAAACTCCACCACACCCTCT 60

R: CTGATCTGGACTGGGAGGTC

bnip3la2 F: GGAGAGTCAGGCCCCTCAG 61

R: TCCTGATCTGGACTGGAAGG

bnip3lb1 F: GAACAACGGAGACGCTGGA 61

R: GGTGGAGGTAGACTGGGACA

bnip3lb2 F: GCTGTATCAGAGAACAACGGACTA 60

R: CATGCTGAGCGTCCAGTAGA

Table 2 Primers used for target gene DNA methylation study

Gene Location from ATG Primers (5′ to 3′) Tm in °C

bnip3a − 1085 / -762 F: TGATGGAATATTTAGTTTTTAGTAGGATAA 57

R: TCCAAACCATCCAAAACTATTTAA

− 717 / -498 F: TTTTATGGATGGAGGAAATATTTGT 57

R: TAAACAACTCTCTAAACTATTAAC

−513 / -283 F: TAGAGAGTTGTTTTATATAGGAAAA 57

R: ATCACTCACTAATATATTCATTAATC

− 383 / -120 F: TTTGAATTTGTTTAATAGAAATTTT 54

R: ATATTATTCTAATACCTCTAAATTA

−202 / + 43 F: TGTTTTGGTAGTTTAGTGTT 58

R: CCTGCAAATTTTCCT

bnip3lb1 − 1735 / -1358 F: AAAGAGATAGATATTTTGAGATTTGTTATA 57

R: TAATAAATAAATTCCACTTCACTCC

− 1435 / -1038 F: TGAAGAATTGTTATGAAAGAGGTAATGT 57

R: TCTCCAAAACCTATATTTACCATAAAC

− 867 / -590 F: GGGTATTTTAAAATTTTATTAATTTTTTATT 57

R: ACACTTATTTAACAATTTAACACTTATTTA

− 594 / -222 F: GTGTGAGGTGAATTTAAGTTGT 59

R: AATAATCCAATTCTTTAATAACAAAAACA

−252 / + 26 F: TGTTTTTGTTATTAAAGAATTGGATTATTT 58

R: TCAACTACAACAACAACTTCAAAC
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function. Sorted reads were analyzed in BiQ Analyzer
HT [72] setting parameters at 100% of the read length,
and bisulfite conversion efficiency ≥98% and lower cut-
off at 20 reads per CpG site analyzed. The methylation
level of each sampled cytosine was estimated as the
number of reads reporting a C, divided by the total
number of reads reporting a C or T. Data are expressed
as percentage of methylation at each CpG site. Posi-
tions of CpG sites were determined from ATG site.

Statistical analysis
Statistical analysis of mRNA measure. For hypoxia
stimulus, normality of distributions was assessed using
the Shapiro-Wilk test and data were then analysed by
Krustal-Wallis non-parametric test followed by Tuckey’s
test as post hoc analysis. For Met deficient diet stimulus,
effects of broodstock diet, effects of fry diet and inter-
action of both factors were tested by two-way ANOVA.
post hoc tests were performed using Tukey’s multiple
mean comparisons.
Statistical analysis of gene target methylation measure.

For hypoxia stimulus, data were analyzed by a binomial
generalized linear model followed by a Tukey test as a
post-hoc analysis in order to test statistical significance
of difference of DNA methylation observed between
conditions at each CpG. For Met deficient diet stimulus,
effects of broodstock diet, effects of fry diet and inter-
action of both factors were analysed by a binomial gen-
eralized linear model followed by Chi-square test. Tukey
test as a post-hoc analysis were run to test difference be-
tween each conditions.
All statistical calculations were made using R software

(v3.1.0)/R Commander Package [73].

Additional files

Additional file 1: Figure S1. Protein alignment and the percentage
Identity Matrix established with amino acids deduced sequences were
performed using MUSCLE software (http://www.ebi.ac.uk/Tools/msa/
muscle/). RT for rainbow trout. In brackets is given gene identity, 3 for
BNIP3 and 3 l for BNIP3L. (PDF 167 kb)

Additional file 2: Table S1. Formulation and proximate composition of
diet used in hypoxia stimulus [14]. Table S2. Formulation and proximate
composition of diet used in methionine deficiency stimulus [16]. Table S3.
Analyzed amino acid composition of the diets as g/100 g dry feed used in
methionine deficiency stimulus [16]. (DOCX 24 kb)
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