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A new entangled cross-linked material was recently developed in order to present a new core material that can
resolve the drawbacks of the honeycomb. The optimization of entangled carbon fibres requires a deep under-
standing of the influence of the parameters of a fibre network on its macroscopic behaviour. This paper presents
a 3D finite element model to investigate the compressive behaviour of this fibrous material. The current work
focuses on a representative volume element (RVE) with appropriate boundary conditions and initial fibre dis-
tribution close to that of the experimental test. The morphology of the RVE is examined before loading. The

simulation results show a good correlation with the experimental data in terms of stress-strain curves. The
descriptors of the morphology such as the distance between contacts and fibre orientation are studied under

compression loading.

1. Introduction

Sandwich structures are of great interest due to their attractive
benefits, which include high stiffness to weight ratios [1,2]. As a result
of these advantages, the use of composites has improved greatly in
structural applications, first of all in the aerospace field.

Honeycomb is widely used as a core material in sandwich structures
due to its good cost benefit ratio and its high stiffness for bending so
licitations. Although this cellular material presents attractive proper
ties, its implementation in complex structures and its quality control
process are often difficult. Other drawbacks of this material are the low
vibration damping and the closed porosity, which can induce con
densation in operating conditions.

Recently, Mezeix [3,4] developed a new material in which carbon
fibres were first entangled (Fig. 1) and then cross linked (Fig. 2) with
epoxy resin to increase the stiffness for compression solicitations. Al
though this material offers many advantages that provide solutions to
the drawbacks of the honeycomb, such as open porosity, adaptability to
complex structures, and good vibration damping [5], it cannot sub
stitute for honeycomb in the aerospace field due to its low stiffness for
compression solicitations. In order to understand and optimize the be
haviour of this material, a numerical study seems necessary and this
current work presents the first step in its modelling. Unlike honeycomb,
which has been significantly studied [6,7], limited researches [8,9]
have been conducted to study and understand fibrous materials because
of their complex tangled geometry.

The manufacturing process that will be presented later in Section 2
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does not allow blocking of all the fibre fibre contacts by the epoxy
junctions (cf. Fig. 2). That is why we can find two types of interactions
between fibres in the entangled cross linked material. The first is the
interaction through the cross links and the second is the friction be
tween fibre surfaces. Piollet [5] has concluded that this second type of
interaction is responsible for the promising vibration damping of such
material. Frequent fibre fibre contacts without cross links exist initially
in the material and their number can grow significantly under loading.
This growth is mainly due to the deformation of the fibres, which in
duces new fibre to fibre contact, but also, at larger strain, due to the
breaking of some epoxy junctions. This allows some fibres to move
more freely and then to touch others fibres. These fibre fibre interac
tions have a noticeable effect on the macroscopic behaviour. A nu
merical study of fibre networks without cross links can have consider
able importance and can bring a first idea about the influence of
fibre fibre contacts without junctions on the behaviour of the cross
linked material.

This investigation is based on a representative volume element
(RVE) because macroscopic stresses and strains can be determined by
the microscopic stresses and strains over a representative cell unit. Hill
[10] concluded that the complex computation can be reduced by the
use of RVE as a full scale model.

The first model of the uniaxial compression of 3D randomly oriented
fibre assembly was developed by van Wyk [11]. It is based on the
bending of fibres between contacts but does not take into account the
fibre friction, the slippage, or the fibre twisting. Van Wyk does not
include the frictional forces between fibres and he considered the



F. Chatti et al

Fig. 1. Scanning electron microscope observation of entangled carbon fibres
before packing operation.

Fig. 2. Scanning electron microscope observation of entangled cross-linked
carbon fibres.

distance between contacts to be proportional to the fibre volume frac
tion. He proposed the following equation, which presents the re
lationship between pressure and volume:

P = kEge (f*—£3) €))

where k an empirical constant, Eg,, is the fibre elastic modulus, f is the
fibre volume fraction, and f; is the initial fibre volume fraction, that is
to say the fibre volume fraction without any forces at the maximum
unforced packing. Van Wyk concluded that his theory is valid only for a
moderate fibre volume fraction lower than 10%.

Komori and Makishima [12] developed a theory that takes into
account the fibre direction in different configurations in order to predict
the number of fibre to fibre contacts in fibre assemblies. However, they
do not predict the mechanical properties of the fibre network. The
applicability of this theory is limited because it assumes affine de
formation of the contact points between the fibres and it is only
available for axial compression loading. Ning Pan [13] reported that the
prediction of the number of contacts is too high in Komori and Ma
kishima’s theory. He proposed a modified approach to provide predic
tions of microstructural characteristics of fibre assemblies. He studied
three different fibrous systems: ideal twist yarn, 2D random structure,
and 3D random assembly, which can be a great basis for investigations
of the properties of practical fibre assemblies. Lee, Carnaby, and
Tandon [14] analysed the compression of a random fibre assembly
using the bending energy while neglecting the crimp. Their model
shows that if only fibre crimp is increased for a generated initial geo
metry, the tangent compression modulus actually decreases. A micro
mechanical theory based on a statistical investigation of the distribu
tion of contacts was developed by Toll [15]. He assumes that there is no
statistical correlation between the height of particle and the distribu
tion of the incremental forces. This assumption is a limitation of his
approach because it can break down if the individual particles differ
greatly in stiffness or size. Toll proposed an approach to calculate the

number of contacts per fibre for slender fibres:

8
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where f is the fibre volume fraction, g is a constant depending on the
fibre orientation distribution, and r is the fibre aspect ratio. Beil and
Roberts [22] carried out a numerical simulation of the uniaxial com
pression of a fibre assembly. In their model, the frictional and repulsion
forces are used to model the fibre contact points. Their results show that
the number of contacts in the assembly increases at a higher rate than
that predicted by van Wyk. Their numerical model is limited to mod
elling a low volume fraction of f = 0.8% and its computational cost is
very high. Barbier et al. [16,17] used discrete element simulations for a
larger volume fraction of up to 35% but for assemblies of only 250
fibres with a small aspect ratio (20) because of the computational cost.
Durville [18] proposed a finite element approach that discretizes the
contact friction interactions from intermediate geometries to simulate
the mechanical behaviour of beam assemblies. The application of this
approach to the simulation of knot tightening proves that it is able to
model the mechanical behaviour of fibrous materials. Recently, Abd El
Rahman and Tucker [19] presented a numerical model of a fibre net
work which advanced the understanding of the evolution of micro
structure under deformation. Although this model can be used for a
high volume fraction of f = 25%, it was not compared with experi
mental data. Their numerical results are affected by fibres coming out
of the simulation box. This loss of fibres can have an impact on the
stress, fibre distribution, and number of contacts.

2. Material and methods

2.1. Manufacturing process

In the present work, the entangled material is made with carbon
fibres which provide high mechanical performance. The filament dia
meter is 7 um and the elastic modulus is 240 GPa. A Mettler balance
(£ 0.1 g) is used to weigh the samples. Microscopic observations of
entangled material are carried out using an FEI Quanta 450 scanning
electron microscope operating at 15kV.

Mezeix [3] introduced the process of manufacturing. First of all,
carbon yarns are cut to a fixed length of 12mm. Many fibre lengths
were tested before choosing the size of 12mm which guarantees the
best separation and entanglement of the fibres [3,4]. Then, carbon fi
bres are simultaneously separated from the received yarns and en
tangled in a 64 L blower room by manual application of compressed air.
The air flow pressure is 6 bar. Fig. 1 shows a scanning electron micro
scopic observation of the separated entangled fibres. The contacts be
tween fibres are not glued and so the fibres are free to move. We will
focus just on the entangled material without cross links in this current
work, which will be considered as a first investigation of the influence
of microstructural properties in the global behaviour of the assembly.
This first step is necessary before blocking (see Fig. 2) some points of
contact with epoxy junctions as this gluing is done on an assembly of
fibres that has been submitted to prepacking during a first compression
step.

2.2. Experimental set up

The entangled fibres are placed in a cylindrical cell to be tested as
shown in Fig. 3a. The two pistons are made of PVC (polyvinyl chloride),
while the cylinder is made of PMMA (polymethyl methacrylate). The
inner diameter of the cylinder is equal to 60 mm, which is five times
larger than the fibre length. The entangled fibre sample can be com
pressed within the cell to different volume fractions by means of a
movable piston. Initially, a mass of 9g of entangled fibres is packed
manually in the cylinder. The upper piston is moved down until a vo
lume fraction equal to 6% is obtained. This process induces a
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Fig. 3. (a) Cylindrical cell for compression test. (b) Example of experimental mechanical response of the entangled material fibre under compression, emphasizing

the rearrangement step and then the densification of the assembly.

modification of the initial isotropic distribution of the fibre orientation.
In the next section, this new distribution will be determined numeri

cally with an original technique. Fig. 3b shows an experimental curve
corresponding to a representative compression test carried out at
0.08 mm per second. Due to the initial packing, the initial stress Oj;q iS
different from zero. It is equal to —0.03 MPa. This value is measured at
the end of fibre packing and exactly at the height of 30 mm of the fibre
assembly. It corresponds to the stress required to obtain a volume
fraction of 6%. Under increasing compression, the fibres begin to be
rearranged until a deformation value of about —0.4 is reached. After
that, a phase of densification occurs in which the stress increases more
significantly with strain.

3. Direct numerical simulation method

A whole sample of entangled material of the size indicated in Fig. 3a
contains 11 million carbon fibres and a great number of contacts. In this
case, the numerical modelling of an entire sample would incur a high
computational cost and would be complicated. Therefore, we have
chosen to model a representative volume element (RVE), taking into
account the appropriate boundary conditions and the representative
initial fibre orientation distribution in order to be closer to the real
conditions of experimental tests. A morphological study of the assembly
of entangled fibres is carried out to choose the appropriate size of this
RVE, which is then compressed. So we have to cope with a model taking
into account large deformation and geometric nonlinearity.

The nonlinear finite element solver in ABAQUS/Explicit is used for
simulation for two reasons. Firstly, it offers us the possibility of using
large deformation beam elements. Secondly, it is efficient to capture
and model the several contacts via its general contact algorithm. Each
fibre is modelled by a variable number of 3D Timoshenko beam ele
ments (B31 [21]) depending on both the number of contacts and on its
orientation (see Fig. 4) in the RVE that determines its length in the
computation.

Compression axis z
A

Random point . _

Fig. 4. Definition of polar and azimuthal angles of fibre.

3.1. Generation of initial geometry

The geometry of the RVE is generated with an in house pre pro
cessing program written in FORTRAN language. It is in cubic form with
an edge length of [ (cf. Fig. 5). Different values of | are tested to choose
the most appropriate size for the RVE and at the same time minimize
the calculation cost. The whole investigation is carried out and detailed
in the next section, and finally the length [ = 1 mm is adopted. The
generation of the fibre assembly by in house preprocessing is as follows.
First, a random point, which is presented in purple' colour in Figs. 4
and 5, is picked in the cube. Then, two angles 6 and ¢ are chosen to
create an isotropic fibre distribution. 6 is the angle between the fibre
direction and the compression axis z, while ¢ defines the angular di
rection of the fibre relative to the axis x.

The isotropic fibre distribution is generally presented by sine form
[20]. It is characterized by more fibres that have an angle of 6 = % in
relation to the compression axis z. In Fig. 6, the comparison between
the orientation of the numerically generated fibres and the theoretical

! For interpretation of color in Figs. 4, 5 and 10, the reader is referred to the web
version of this article.



F. Chatti et al

' /
[ S
g /
= ./ Random
n /, <« point '
'/I
L 2 R
I-{andom.!y Link.each pair of ?IOdCS Build the Geometry generated
pick a point by a line representing the  elements of the
and a fibre model
direction.
Fig. 5. Principle of generation of the fibre network.
10% —— Theoretical 1sotropic
f fibre distribution
9% [=1mm \ ---- Numerical isotropic
fibre distribution
—— Theoretical anisotropic
8% fibre distribution
---- Numerical anisotropic
7% fibre distribution
<
=
T %
=]
=
= 5%
Z
5
2 4%
88
3%
2%

1%

0%

0 10 20 30 40 50 60 70 80 99? )100 110 120 130 140 150 160 170 180
o

Fig. 6. Comparison between the numerical results and the theory for isotropic and anisotropic fibre distribution.

isotropic orientation shows a good correlation. This point has been
verified on several different draws. As the volume is cubic and not
spherical, it was important to verify that this choice did not induce any
bias. The numerical curve becomes closer to the theoretical one when
the size of the RVE is larger. The final choice of the length [ is based on
the best isotropic morphology with the lowest calculation time. It is a
compromise between the accuracy of the description of the morphology
of the material and the calculation cost. This choice of the size of RVE
will be specified in the next part and will be used thereafter in all nu
merical simulations of compression.

Straight fibres are generated in the cube. Each fibre is delimited by
two intersection points between its directions and the faces of the box.
These points are presented in red colour in Fig. 5. When the distance
between two fibres is less than the diameter of the fibre then two nodes,
coloured green in Fig. 5, are created on each fibre. These points allow
the fibre to be cut into segments of different lengths. Each segment
corresponds to a beam element of the model. Some nodes can be can
celled if the elements limited by them are very small. The length of
these elements should be twice as long as the fibre diameter in order to
avoid the use of very low time steps in explicit calculation. So this
condition makes it possible to minimize the computational cost. Fig. 5
presents the different steps of fibre network generation in a box of
1 x 1 x 1 mm? size.

For the anisotropically distributed fibres, the method of fibre gen
eration is the same as in the isotropic case except that the fibre direction
0 follows a different law. The sine form is replaced by a Gaussian dis
tribution, as shown in Fig. 6. This modelling has been chosen after the
first compression simulations. In the Gaussian distribution, there are
more fibres around the angle 6 = 90° than in the isotropic case because
many fibres lose their vertical orientations during the packing/com
pression process. As a matter of fact, the peculiar shape obtained for the
distribution of the fibre orientations after increasing compression seems
well represented by a Gaussian function. So, for the generation of an
anisotropic assembly of entangled fibres, the angles 6 are calculated
from the following Gaussian distribution:

. 6-%)
g(G)=—Sl;16 Xe 2xa2 XA

ol

3)

where A is a constant such that j(',mg(e)de =1 and the standard de
viation o depends on the compression ratio. For the experimental data
of this study, the value of o equals 0.4. This value is determined from
the numerical investigation carried out in the next section.
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3.2. Determination of the size of the morphological RVE

3.2.1. Distance between contacts

The RVE is widely used to predict the properties of random mate
rial. It is important to determine the proper size of RVE which will
provide a structure with stable morphological characteristics. One of
the most important characteristics is the average distance between
contacts, which influences the macroscopic behaviour of the material.
Mezeix [3] has shown by his microscopic observations that the ob
served average distance between contacts for entangled carbon fibres
with a volume fraction of 8.5% is 12073° um. The tolerance interval of
this value confirms the large dispersion he observed. In our morpho
logical study, we have chosen different sizes of RVE in ascending order.
For each case, 10 different draws are generated, so 10 different fibre
entanglements with a fibre volume fraction of 6% are studied. The
average distance between contacts is calculated for each draw. The
numerical results, as illustrated in Fig. 7, show that this parameter
converges to the value of 112 um. This value is not far from the one
found by Mezeix in his investigation. For RVEs larger than 1 mm, the
dispersion between draws is less than 5%. When the size is smaller, the
values of the average distance between contacts become dispersed. A
cubic box with sides of 1 mm seems to correctly represent the mor
phology of the assembly and is kept as the RVE for the rest of the study.
It is the smallest size that can offer a stable value of distance between
contacts for each draw with the minimum number of elements. This
choice allows the calculation cost to be minimized.

3.2.2. Distribution of fibre orientations

Another key parameter that needs to be studied is the distribution of
fibre directions. As 10 draws have been generated for the cubic RVE
with a size of 1 mm and fibre volume fraction of 6%, for each of them,
corresponding to different colours in Fig. 8, the proportion of fibres in
each interval of 0, the angle between the fibre direction and the com
pression axis z, is plotted. The angular amplitude is divided into 36
regular segments of 5°. The black curve is the theoretical curve of a
random fibre assembly. A good correlation is obtained between the
theory and the FORTRAN in house preprocessing program used to
generate the random geometry in terms of the distribution of the fibre
directions.

In order to quantify the difference between the generation of nu
merical fibres and the theoretical sine distribution, a deviation measure
is defined as:

6% Size of the REV = 1 mm

5%

—~4%

Fibers ratio (%
2

2%

1%

0% —
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
o)

Fig. 8. Distribution of the fibre directions of the 10 random geometries gen-
erated for an RVE with sides of 1 mm.

i i )—gi )2
Deviation = Z (Fibresratio (6;)—sin(6;))

sin(6;) 4

The fibre orientation is studied for all the fibre assemblies generated
for the different RVEs. The deviation versus size is plotted in Fig. 9 for
the 10 draws of each RVE. The deviation converges to zero and once
again an RVE size of 1 mm? appears to be a good compromise to de
scribe the morphology with accuracy while reducing the computational
time.

3.3. Determination of the initial distribution of fibre orientations

At the end of fabrication in the compression device, the entangled
and packed carbon fibres no longer have an isotropic distribution of
fibre orientations. The initial isotropic distribution is indeed modified
when the fibres are placed in the cylindrical cell (cf. Fig. 10) and
compressed to a height of 30 mm to get the target initial volume frac
tion of 6%. Before the fibre packing process, the height of the entangled
sample placed in the cylindrical cell is about five times higher than the
height necessary to obtain a volume fraction of 6%. A preliminary
numerical study is then carried out to identify the new distribution of
the fibre orientations after the packing process. Then, a RVE in paral
lelepiped shape is generated with an isotropic fibre distribution, which
is presented in Fig. 10 by the bold dashed black curve. Its height is five
times greater than the usual height and its section dimensions are

06 10 draws for each size
*
0.5
04
o *
2
Eo3 *
5 s
: $
0.2 * *
L 4
0.1
0 ‘ s L *
0 0.25 0.5 0.75 1 125 15
Size (mm)

Fig. 9. The influence of the RVE size on the deviation of fibre orientation of the
numerically generated geometries compared to the theoretical sine distribution
corresponding to the isotropic distribution of fibres. See Eq. (4) for the defi-
nition of the deviation.
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Table 1

Mechanical properties of carbon fibre.
Density, p 1770kg/m>
Elastic modulus, E 240 GPa
Poisson’s ratio, v 0.3
Friction, u 0.05

1 x 1mm? So its volume fraction is five times smaller than the one
adopted at the beginning of experimental loading and equals 1.2%.
After the isotropic generation of fibres in this RVE, it is compressed
axially until a height of 1 mm is obtained, which provides a volume
fraction of 6% and the distribution of the fibre directions that will be
used initially for the simulation with the 1 x 1 x 1 mm® RVE. The
numerical modelling is carried out in ABAQUS/Explicit, which is a good
tool for managing the geometric nonlinearity accompanied by the
contact phenomenon. The compression is carried out from 5 to 1 mm
with high velocity in order to minimize the calculation time. We have to
stop the simulation at this level and do not continue the compression
because it is difficult to achieve convergence of the calculation when
the height of 1 mm is reached. The use of 3D explicit finite element
analysis requires a dynamic investigation and a fixed time step which is
linked to the smallest element. At the height of 1 mm, the time step
fixed in the beginning of the simulation seems to be not less than the
time needed for the wave to go across the smallest element and so the
Courant Friedrichs Lewy (CFL) stability condition cannot be satisfied
[21]. Therefore, a new geometry with a size of 1 x 1 X 1 mm? is cre
ated. The fibres in this new geometry (see green curves of Fig. 10) are
generated in such a way that the distribution is Gaussian and re
presentative of the one obtained after the initial packing process (see
the red curves in Fig. 10). The comparison between the anisotropic fibre
distribution used and the one found after the packing process shows a
slight difference. We do not generate the exact anisotropic distribution
found after the packing of the fibres; it would have used a function
much more complex than the Gaussian function (3). But the result that
is found with a standard deviation o = 0.4 remains a good approx
imation to the desired anisotropic fibre distribution.

3.4. Explicit simulation

All simulations are performed in ABAQUS/Explicit, which is

efficient for the problem of large deformation with several mechanical
contacts. Each simulation uses 20 parallel processors and 3 GB of
memory per processor and lasts about 16h. The RVE size is
1 x 1 x 1 mm?® and 1710 carbon straight fibres are generated inside in
order to have a targeted initial volume fraction of 6%. The fibre lengths
are variable (its mean is 0.9 mm) and the fibre diameter is equal to
7 um. Indeed, if the real fibre length is 12 mm, in the simulation the
fibres pass through the box and thus have lengths which vary with their
initial orientation. The fibre mechanical properties used in the simu
lation are shown in Table 1.

The geometry is surrounded by six rigid faces to be close to the
boundary conditions of the experimental. In Fig. 11, these faces are

Fig. 11. Rigid surfaces in green that surround the geometry containing 21,549
beam elements and prevent the fibres leaving the box during the compression
process. The z axis is vertical and is the direction of compression. The upper
surface moves downward to compress the fibres. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version
of this article.)
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presented in green colour and two faces are removed to show the
geometry of the assembly of fibres generated inside the box. Only the
upper face can move along the compression axis z to impose the com
pression of the RVE.

The ABAQUS/Explicit [21] general contact algorithm is used to
manage the interaction between pairs of fibres and the interaction of
one fibre with itself. In order to have a no penetration condition, the
“hard contact” type is chosen. The friction coefficient introduced is u =
0.05, which is often used for composite studies [22].

The choice of the loading time step is very important in the use of
ABAQUS/Explicit. It is a principal key to have a quasi static response
with the lowest computational cost. ABAQUS/Explicit is usually con
sidered as a good tool in dynamic analysis but it can be relevant in
quasi static studies if appropriate conditions are respected. The kinetic
energy of the whole finite element model is followed during the de
formation in order to verify that it remains low compared to the other
energies. A special technique of loading is adopted, as shown in Fig. 12.
The applied velocity is imposed in successive steps. Between each two
consecutive loading steps, a relaxation plateau is introduced in order to
stabilize the structure and to reduce the kinetic energy (Fig. 13). During
this plateau, successive steps of relaxation are imposed. Between each
two consecutive relaxation times, the motions of all nodes are stopped
in order to avoid the divergence of the kinetic energy. This method
allows the convergence of the kinetic energy to zero at the end of each
plateau and ensures that the system inertia does not affect the com
pressive stress.

Fig. 13 illustrates the imposed strain, the kinetic energy, and the
compressive stress of a confined compression test. In this simulation,
the size of the RVEis 1 X 1 x 1 mm?® and the initial fibre distribution is
anisotropic, as shown in Fig. 10. Only the three first loading steps are
retained in Fig. 13 to show clearly the convergence of the curves during
the relaxation steps.

The total physical time used in the loading step is equal to 0.0025 s
and the time increment chosen to have a strain rate much less than the
wave speed is 0.01 ps.

In the simulations, the material density is increased artificially in
order to control the time increment. The use of mass scaling makes it
possible to achieve an economical solution for the expensive compu
tational cost [21]. The simulation requires 250,000 time increments for
a loading step with 8% strain and 2000 time increments for each re
laxation step in the plateau. The total duration of the simulation is
about 16 h.

4. Results and discussion
4.1. Compression test

The initial packing process has induced anisotropy, which is em
phasized during the following compression. As illustrated in Fig. 14, the

fibre rearrangement is noticeable and more and more fibres have a 6
angle orientation that is close to perpendicular to the compression axis.
The number of contact points increases and so the average distance
between contacts decreases. The evolution of this parameter depends
on the volume fraction and on the orientation distribution of fibres too.
In these simulations, the friction coefficient is 0.05 and sliding at con
tact points is permitted. The friction coefficient of the fibre with the box
surface is 0.05.

The stress versus strain curves (Fig. 15) give valuable information
for the interpretation of the compression behaviour. The comparison
between the numerical curve and experimental data presents a good
correlation with respect to two phases: the first is the rearrangement of
the fibres and the second is the densification. Numerically, the curve of
stress versus strain is steeper than the experimental curve and the
densification takes place earlier. This can be explained by two factors:
first, the tortuosity of fibres, which is small but is not taken into account
in the model, and second, the idealized morphology of the computa
tions. In the real packing, not all of the fibres are perfectly separated
and some very small yarns remain. The real material is then probably
more heterogeneous than the numerical one. If areas with remaining
yarns are denser, then some areas with fewer fibres are weaker and
probably responsible for larger deformation. The initial stress is dif
ferent from zero for the experimental curve due to the load applied in
order to get an initial volume fraction of 6%. However, the re
arrangement phase, which corresponds to the re orientation of the fi
bres, is properly modelled by the proposed simulation even if the initial
stress found numerically is equal to zero because the load obtained at
the end of the packing process has not been taken into account in the
numerical modelling of the compression test.

The initial stiffness measured from the simulation curve is equal to
0.4 MPa. The numerical and experimental curves have almost the same
slope. In Fig. 11, the two experimental curves are represented in black.
One is plotted with a dashed line and the other with a solid line. These
two curves confirm the repeatability of the experimental compression.

In order to study the macroscopic isotropy, three RVEs are solicited
in compression; Table 2 presents the parameters of the three draws. The
three curves of the stress versus strain have a similar shape to the ex
perimental one with the two phases mentioned above (Fig. 16). There is
a small dispersion between the three numerical results, which can be
explained by the dispersion between the three initial geometries gen
erated.

4.2. Evolution of the orientation of fibres during axial compression

Each fibre in the RVE is discretized in beam elements. Its orientation
is determined by the accumulated segmental orientation. Fig. 17 shows
the orientation of the segments of a fibre. A FORTRAN post processing
program is developed to measure the segmental orientations. This
program uses the nodal coordinates exported from ABAQUS/Explicit
after the relaxation step. It calculates the angle 6 between the direction
of each segment of a fibre and the compression axis which corresponds
to the direction & = 0. Then, it classifies the fibre direction 6 (see
Fig. 3) in intervals of 5° from 0° to 180° as has been done for the initial
straight fibre orientation. The results obtained are plotted to present the
ratio of fibre segments in each interval.

The orientation distribution functions at volume fractions of 6, 7.1,
8.8, and 11.5% are plotted in Fig. 18. The sine fibre distribution of an
isotropic RVE is also plotted for comparison.

The distribution is Gaussian like in the range tested. As the fibre
network becomes compressed, the volume fraction increases and the
fibres are reoriented. We obtain more and more fibres whose direction
is close to horizontal (6 = 90°) and thus perpendicular to the com
pression axis.
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Fig. 13. Kinetic energy (blue), strain (orange), and stress (red) as a function of time. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

4.3. Distance between contacts

ABAQUS/Explicit is unable to give the number of contacts in each
time step directly. To define the contact statistics, a post processing
program is used to evaluate the number of contacts. At the end of each
relaxation step, the new coordinates of nodes’ locations are searched.
Then, the intersections between all elements are checked and the
average distance between contacts is calculated by dividing the total
length of fibres by the number of contacts.

In Fig. 19, the distance between contacts is compared to Philipse’s
theory [23].

Deontace =

|

)

where f is the volume fraction and d is the fibre diameter.

Before the fibre packing and for a volume fraction of 1.2%, the
average distance between contacts is close to the calculated value from
Philipse’s theory. This good agreement is explained by the orientation
distribution of fibres, which is isotropic, as in Philipse’s theory. During
compression, there are more and more contacts between fibres, so the

distance between contacts decreases. The number of contacts is larger
than that determined from the theory and so the results for the average
distance between contacts during loading overestimate the theoretical
results. This is logical because the Philipse’s equation is used just for the
isotropic case while the fibre orientation distribution is Gaussian with a
smaller and smaller standard deviation during compression. After the
packing of the fibres, the RVE reaches a volume fraction of 6% and the
Gaussian distribution corresponds to o = 0.4. At this level, the average
distance between contacts is equal to 125 ym. The value of this para

meter is equal to 115um when it is calculated theoretically for an
isotropic case.

5. Conclusion

The purpose of the current work is to carry out the first step in the
modelling of entangled cross linked fibres. The proposed model focuses
on the influence of fibres which are in contact without an epoxy link on
the behaviour of the entangled cross linked material. The investigations
carried out here without cross linking are a robust base for under
standing the behaviour of the entangled cross linked fibres later in

i £=-048 |

Fig. 14. Evolution of the RVE during compression.
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Table 2
Details of the three different simulations carried out.

RVE Number of beam Number of Average distance between
elements nodes contacts (um)

RVE1 21549 23,231 122

RVE2 21417 23,126 123

RVE3 20,986 22,688 125

order to enhance their mechanical properties.

A numerical model has been developed to predict the behaviour of
entangled material in compression. It is a finite element model which
uses 3D beam elements able to simulate all modes of fibre deformation

-1.2

to take into account friction between fibres and to be applied to a large
number of fibres.

The numerical model is developed in ABAQUS/Explicit, which is
efficient for the nonlinear deformation and the management of several
contacts. During numerical compression, each loading step is followed
by a relaxation time, which is carefully chosen to obtain a quasi static
response and to lead the system to equilibrium. This type of loading is
necessary in explicit calculation of network fibres. A morphological
study has been carried out to determine the size of the RVE.

In this study, the orientation distribution of fibres is generated in
itially to respect the experimental conditions as far as possible. A spe
cial numerical technique has been developed to find the appropriate
Gaussian distribution for the initial geometry. It takes into account the
positioning of fibres in the experimental apparatus, which causes the

—RVE2
—RVE 3
— Experimental curve

-0.4
€2z

-0.5 -0.6 -0.7

Fig. 16. Plots of stress versus strain for three different RVEs — comparison with an experimental curve.
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Fig. 17. Segmental orientation of a fibre: the orientation 6 of each element of the fibre is calculated. The compression axis z is vertical.
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loss of the morphological isotropy. A 3D tomography investigation is
envisaged to confirm the numerical obtained results.

The numerical predictions of a compressed fibre network are com
pared with the results of experimental tests and a good agreement can
be found between the two results. The numerical simulations provide a
correct stress strain curve shape compared to that found experimen
tally. The orientation distribution of fibres and the distance between
contacts are studied during the compression. This micromechanical
study will allow for a better understanding of the influence of these
parameters on the global behaviour of the entangled material and will
make it possible to predict its impact on the macro mechanical prop
erties of the entangled cross linked material and finally how we should
manage these parameters to improve the manufacturing process to offer
a better global behaviour. This improvement will make the entangled
cross linked material relevant for use in structural applications as a core
material.
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