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Abstract

Sensor networks empower Internet of Things (IoT) applications by connecting
them to physical world measurements. However, the necessary use of limited
bandwidth networks and battery-powered devices makes their optimal config-
uration challenging. An over-usage of periodic sensors (i.e. too frequent mea-
surements) may easily lead to network congestion or battery drain effects, and
conversely, a lower usage is likely to cause poor measurement quality. In this
paper we propose a middleware that continuously generates and exposes to the
sensor network an energy-efficient sensors configuration based on data live obser-
vations. Using a live learning process, our contributions dynamically act on two
configuration points: (i) sensors sampling frequency, which is optimized based
on machine-learning predictability from previous measurements, (ii) network
usage optimization according to the frequency of requests from deployed soft-
ware applications. As a major outcome, we obtain a self-adaptive platform with
an extended sensors battery life while ensuring a proper level of data quality and
freshness. Through theoretical and experimental assessments, we demonstrate
the capacity of our approach to constantly find a near-optimal tradeoff between
sensors and network usage, and measurement quality. In our experimental val-
idation, we have successfully scaled up the battery lifetime of a temperature
sensor from a monthly to a yearly basis.

1{cyril.cecchinel,francois.fouquet}@datathings.com
2{mosser,collet}@i3s.unice.fr

Preprint submitted to Elsevier September 24, 2018



1. Introduction

The most recent Gartner group’s forecasts predict up to 26 billions of things
that could be connected to the Internet by 2020 forming the Internet of Things
(IoT). Once measured, data gathered from IoT sensors are key enablers for next
generation infrastructures such as Smart Cities or Smart Grid.

In sensing infrastructures [1], sensor networks are responsible for measuring
physical phenomena and sending values to a remote IoT middleware where the
collected data can be retrieved by third-party applications. In addition, such
middleware is also responsible for managing the devices deployed in the sensor
networks [2]. In particular, the middleware defines how the data is retrieved
from the sensor network either using pulling or pushing mechanisms.

Using a pulling approach implies sensors to be always reachable but sensor
networks are mainly relying on battery-powered devices and limited bandwidth
networks. Due to these constraints, IoT devices are most of the time not directly
reachable and need to adopt a push mechanism to share the measured data with
a remote middleware. Regardless of the network technology used, the configu-
ration of this push mechanism directly impacts resources usage, as well as the
chosen measurement frequency. In a nutshell, a sensor loops over a very simple
and generic process that consists in measuring, buffering, pushing data, sleep-
ing and looping again. During measuring, pushing and sleeping phases, sensors
have drastically different battery usages, from milliamp to microamp per hour,
as shown by theoretical simulations [3] and empirical validations [4]. In addition,
last generation microcontrollers offer much more powerful and easy access deep-
sleep modes thanks to the embedded network layers within the chip [5], which
can be activated by disconnecting every unnecessary elements such as network
chips between two measurements. Usage of deep sleep can shift the battery
life of a sensor [6], from days to years! This makes deep sleep the major tool
to design energy-efficient protocols [7], relying for instance on sensor network
topology [8]. However, under deep sleep, sensors are unreachable and poten-
tially can miss important measurements. Therefore, using deep sleep should be
subject to a tradeoff between data quality and the battery life as a short deep-
sleep allows the sensors to send data more frequently but drains the battery
whereas a long deep-sleep saves the battery but prevents the measurement of
values.

Moreover, using fixed period data collection is not efficient as, due to lack of
foreseen precise data usage, many IoT infrastructures oversample their sensors.
This produces sub-efficient datasets and drain devices’ battery. In addition,
measured data can be very variable so that a static collection policy will be
always sub-efficient. For instance, in a steady state, temperature of a room
will be stable and does not require high frequency measurements. Conversely,
in heating mode, temperature is less predictable and should be sampled with
higher frequency. There are already many machine learning algorithms allowing
the construction of predictive models. As an example, considering a public open
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dataset of temperature sensors3, more than 90 % of data are redundant as they
could have been extrapolated from a prediction model. This advocates for an
adaptive strategy [7, 9] that, like cloud computing, adapts resource usage based
on observed need [10]. Assuming these data were produced from a battery-
powered sensor, it would have over-consumed energy.

We claim that an adaptive strategy could reduce this energy loss, signif-
icantly extending the lifetime of the most frequently used batteries in sensor
networks. Examples to support this assumption are given in Sec. 3. Imple-
menting this vision, we present here a self-adaptive and energy efficient sensor
network middleware driven by machine learning. This contribution aims at re-
ducing the amount of measured data by sensors in order to reduce the battery
consumption of them. To do so, we rely on the predictability property of each
sensor signal, calculated by a machine learning algorithm. Overall, our middle-
ware relies on learning techniques to compute at any moment the appropriate
sampling and pushing period for each connected sensor. These data collection
periods are sent to sensors, allowing them to dynamically reconfigure their deep
sleep and push periods. To mitigate the risk of missing important measures,
deep sleep periods are bounded by a maximum time deviation limit defined by
domain experts.

Our contribution also aims at measuring the gain of battery lifetime using
such adaptive periods. These experiments were conducted on a prototyping
platform running on an ESP8266 architecture powered by a lithium-ion bat-
tery. First, we have determined extreme boundaries of microcontroller working
conditions by identifying the cutoff voltage (i.e., the minimum voltage at which
the platform is still working). Secondly, we have evaluated with fixed sampling
periods and adaptive periods the time to reach this cutoff voltage. Then, we
have have applied the proposed approach and compare the gain in battery life-
time. Experiments were conducted over weeks while accelerating their usage
by artificially reducing the sampling period. Nonetheless, extrapolated results
show that our adaptive usage of deep-sleep is solely able to extend the battery
lifetime from a weekly basis to a one of many months.

In the following, Sec. 2 presents how one can apply live machine learning
techniques upon battery-powered sensor to predict futures values. Sec. 3 sup-
ports our assumptions by illustrating the need of adaptive periods based on
realistic observations. Then, Sec. 4 focuses on the computation of the appro-
priate periods while Sec. 5 describes the assessment of the proposed approach
on a real platform by observing the battery life-time. Finally, Sec. 7 discusses
future work and concludes this article.

3https://github.com/ulrich06/greycat_senso/blob/master/assets/TEMP_CAMPUS_15d.
json
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2. Live machine learning and predictability applied to battery-powered
sensors

In this paper we focus on battery-powered sensors for which energy consump-
tion is a key criterion to ensure their viability in the long run. To reach their
energy efficient goal, such devices are usually designed around a microcontroller
architecture such as the widely used ESP8266 [11] manufactured by Espressif
Systems. The data-sheet of such hardware highlights the tremendous difference
of energy consumption according to the use or the absence of use of elements
such as network or measurement devices (e.g., thermo-resistance or wifi chip).
In others words, the energy consumption is directly related to the sampling and
the sending of measurements. As mentioned in the introduction, a mode called
deep-sleep can be activated to drastically reduce energy consumption by stop-
ping most of sensor services. As a result the frequency of measurement, network
push and deep-sleep activation will have a direct impact on sensor lifespan.

Most of the physical phenomena under measure are inescapably variable. As
an example, if a measured temperature is stable, high frequency measurement
will waste energy while not participating more to the knowledge acquired about
temperature. Based on the variability of physical phenomena and the impact of
sampling and sending over the sensor’s battery, this work relies on the following
general hypothesis H: “a fixed sampling and sending of measurements
generates redundant data and therefore a waste of energy” .

Live machine learning techniques help to predict data by discovering a model
against a dataset and to reduce the energy consumption by reasoning on this
model instead of querying new values from the sensors [12]. In the field of
statistics, the regression methods, e.g., the linear regression method, allow one
to predict one variable from other variables. This type of regression is built
from a fixed set of data. If all the data are not known in advance, the regres-
sion methods must be updated with the new data. Such updatable methods
are known as autoregressive methods. They allow a compact representation of
temporal series datasets [13] as they rely on data predictability to recursively
try to replace a range of data by a compact model. Usually, the expected out-
come is a compression or simplification of data to enhance later processing. For
instance, a polynomial function can replace a range of data by its ability to pro-
duce within a tolerated error the initial data points. An autoregressive method
can then consist at fitting a polynomial function to this range of data.

Our contribution heavily relies on such techniques and data predictability
principle, but for another purpose: we use the predictability principle not for
a posteriori compression, but as an input to optimize physical sensor sampling
rate. In other words, we want to use an a priori compression to reduce sensor
usage.

In addition, autoregressive methods can be used online, while measurements
are streamed from sensors [14]. The benefit is an immediate feedback of the
learning method, able to be used immediately. However, this live usage implies a
computation cost for every input datum, making the ratio between its efficiency
and effectiveness critical.
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Figure 1: Sampling using a fixed period

To illustrate this tradeoff, we compare a regression method using a lot of
buffered data to detect a trend and offer better compression, with an approach
without memory which tries to segment data in motion. Due to our live usage
with sensors, the performance is key for our approach. For this reason, we rely
on polynomial regression model without memory which gives the fastest results
according to the tested datasets.

We also note that there are network access protocols designed for battery-
powered platforms, but these optimisations are done for mesh networks and are
not efficient for client/server architectures promoted by the IoT and IP network
everwhere paradigms. We discuss them in section Sec. 6.

3. On the positive influence of automated sampling on power con-
sumption

In this section, we discuss how live machine learning techniques can help to
predict data and we illustrate the gains of using dynamic sampling and sending
periods based on our hypothesis H.

3.1. Impact of automatic sampling period configuration based on sensor pre-
dictability

Data obtained from the sensor network are collected according to a collection
period. The definition of a fixed collection period leads to important values being
missed between two data sampling. For example, Fig. 1 depicts the values
produced by a NOx sensor deployed in an Italian city [15]. The European
Union4 expects NOx hourly average concentrations to be lower than 200µg/m3

or yearly average concentrations to be lower than 40µg/m3. An alert must be
triggered for the inhabitants if these values are exceeded. The sampled values
(big dots) obtained from this sensor mislead domain experts. Indeed, with its
static collection period, a pollution event is triggered when the pollution is still

4http://ec.europa.eu/environment/air/quality/standards.htm
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Figure 2: Periodic patterns for a temperature sensor

lower than the threshold value or stays active when the pollution episode is
over (areas marked with ¶ on Fig. 1), resulting in false alerts. Moreover, some
episodes of pollution can be unnoticed (· areas on Fig. 1), which clearly breaks
the law.

In addition, a fixed collection period is irrelevant when observed phenomena
follow periodic patterns. Fig. 2 presents temperature data collected from a
sensor located in an office exposed to direct morning sunlight. The analysis of
data using a one-day window highlights a recurrent three-stages pattern: (i) the
temperature first rises quickly (sun hitting the windows) before dropping sharply
due to the activation of the air conditioning in the morning (¶ on Fig. 2), (ii)
then the temperature fluctuates slowly during the day after occupants arrival,
as they prefer to switch off the air conditioning and open the window in the
afternoon (· on Fig. 2) and (iii) finally, it decreases smoothly over the night
(¸ on Fig. 2). As temperature data is varying tremendously during the first
stage, a short period of collection is required to reduce the loss. Regarding the
second stage, a longer collection period is preferable as values fluctuate slowly.
Finally, during the third stage, the collection period can be significantly reduced
as values decrease in a linear manner.

In such context, the predictability of physical phenomena can be exploited
to increase the data collection period, and thus to lower the energy consumption
by reducing the duty cycle and (energy intensive) accesses to the network.

Table Tab. 1 presents several public datasets obtained from real measure-
ments. Temperature, light and power consumption values are obtained from
sensors deployed on a campus located in southern France 5 [16]. The pollution

5Temperature and light datasets can be downloaded at https://goo.gl/FWhusm
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Table 1: Datasets from real world experiments (campus [16], pollu-
tion [15])

Sensor Phenomena Size (# measures) Size (# days)

CAMPUS_TEMP Temperature 3823 15
OFFICE_LIGHT Light 3187 15
OFFICE_TEMP Temperature 3186 15
CO_SENSOR CO pollution 9356 365
NOX_SENSOR NOx pollution 9356 365
O3_SENSOR O3 pollution 9356 365
NO2_SENSOR NO2 pollution 9356 365

Figure 3: Predictable data from real-environment datasets

values are collected from periodic sensors deployed in an Italian city [15].
The lifetime of batteries powering devices deployed in sensor networks can

be extended significantly when sensors are running in a deep-sleep mode. Dur-
ing a deep-sleep period, a sensor does not sample or send data over the network.
Machine learning algorithms learn from historical data to predict, within a mar-
gin of error, a current or future values without requiring any call to the sensor
network. In addition to prediction capability, live learning analysis are suitable
to reduce the number of values transferred through the network. One of these
methods uses polynomial segmentation [17] to represent a phenomenon using a
sequence of polynomials functions. In a nutshell, this approach fit a polynomial
function while data are received from sensors and append a new polynomial
function when a significant change is observed. Polynomial functions are later
able to extrapolate any points between the first and last inserted one. The ap-
plication of this algorithm on the datasets presented in Tab. 1 shows that more
than 90% of the values can be extrapolated from the polynomial functions, cf.
Fig. 3, as they fit the previously learn change trend. Considering that these
data can be extrapolated, from both sensor and collector server sides, their mea-
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surement and transfer over the network can be saved. For instance, over 15 days,
3823 values have been collected from a temperature sensor (CAMPUS_TEMP).
This corresponds to 255 measurements and transfers per day. The application
of the polynomial segmentation saves 93% of the values, which shows that only
18 measurements and transfers per day are sufficient to characterize the phe-
nomenon.

3.2. Impact of automatic buffers configuration based on sensor data use fre-
quency

Power management is a dominant issue in sensor networks as sensor nodes
have a limited amount of energy that determines their lifetime [18]. Energy
optimizations are performed at each layer of the protocol stack used by sensing
infrastructures (cf. Fig. 4). At the sensor platform stage, power management
optimizations mainly target hardware and duty cycle, i.e., the fraction of one
period in which the system is active, concerns. At the hardware layer, opti-
mizations target mainly battery [19, 20] and platform electronic design [21].
For example, although the platforms ESP-12E and ESP-12 DevKit are built
around the same chip, there is a 4.6 ratio between their respective energy con-
sumption: 70mA for ESP-12E DevKit and 15mA for ESP-12E in stand-by
mode. These consumptions fall respectively to 200µA and 10µA in deep-sleep
mode. At the duty-cycle level, optimizations are mostly made by dynamic
context-adaptation [22, 23]. With such an adaptation, it becomes possible to
set automatically a platform in a deep-sleep mode whenever it is not used for
a significant time. At the network level, power management optimizations are
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often made in medium access protocols (MAC), routing protocols and trans-
port protocols [24]. At the routing and transport layers, we can observe that
many energy efficient protocols have been proposed for WSNs [25, 26, 27]. At
the application level, energy optimizations address mainly the data acquisition
operations.

These optimizations are tedious to create as applications are outside the
WSNs and designed by software engineers that might not have a fully under-
standing of the underlying sensing infrastructures. Applications are likely to
over-exploit the sensing infrastructure by acquiring data at a tremendous pe-
riod, thus draining batteries to ensure an optimal quality of service. The IETF6

Protocol Suit for the Internet of Things proposes a request/response interac-
tion using CoAP [28]. CoAP offers proxy and caching mechanisms allowing
last produced values to be acquired without sending requests within the sensor
network. Another solution consists in the introduction of a data buffer at the
sensor platform layer. Data stored in the buffer are then only sent when needed
by applications. Such a method can massively reduce the energy consumption.
For instance, according to the ESP 8266 datasheet [11], the microcontroller con-
sumption varies between 120 and 170 mA during data transmission which is ten
times higher than the power consumption when the network interface is off.

3.3. Towards an adaptive approach for saving energy
In the previous subsections, we have made the following observations :

• (O1) many physical phenomena have a predicable nature [29]. Therefore
we can take advantage of this characteristic to dynamically adjust the
sampling period of sensors;

• (O2) applications leveraging sensor data could query them at a frequency
lower than the sampling rate needed to capture properly the physical
phenomenon. Therefore, we can take advantage of the data usage to
adjust the data sending period.

We propose to combine these two observations to opportunistically optimize
sampling periods where sensors can configure themselves in deep-sleep mode
(cf. O1) and optimize sending periods to send data only when they are rele-
vant to applications (cf. O2). We expect the combination of these periods to
enhance the battery life-time. Thus, we address the following research question:
(RQ) “Can we significantly gain battery lifetime for a whole sensor
platform using adaptive sampling and sending periods?”

To tackle this energy optimization problem, we present in the following a
tooled approach working at duty cycle, MAC protocol and data acquisition lay-
ers, cf. Fig. 4. This tooled approach relies on machine learning techniques that
adapt dynamically (i) the sampling period according the predictability of data
(Data acquisition and Duty cycle layers) and (ii) the sending period according

6Internet Engineering Task Force
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the average use by the applications (Data acquisition and MAC protocol layers).
Regarding the routing and transport layers, we rely on classical IP routing and
UDP protocol.

We conducted an experimental evaluation of the proposed approach on real
battery-powered platforms to measure the gain in battery lifetime brought by
adaptive periods. For this purpose, the platforms were equipped with a temper-
ature sensor and were deployed in a environment where we already had datasets
describing the past temperature values. Thus, the computed sampling periods
were expected to be related to the temperature variation of the environment. We
also mocked several application collective behavior to obtain relevant computed
sending periods based on the data usage.

4. Predictive Model

In the previous section, we have discussed how a sensor platform battery
is directly impacted by sampling operations, i.e., acquisition of a value, and
the network access, i.e., the sending or the retrieval of information through the
network. Machine learning techniques can help to predict futures values and
thus, reduce the amount of sampling operations. We have also seen that some
applications could not require, in a real-time manner, the values measured by
sensor platforms. We can also use machine learning to predict when data are
necessary and thus, reduce the amount of sending operations.

In this section, we address the adaptive aspect of the research question by
introducing a predictive model to compute the appropriate collection periods,
i.e., the appropriate sampling and sending periods.

4.1. Assumptions on the sensing infrastructure
We assume a sensing infrastructure built on three layers (cf. Fig. 5): (i) a

sensor network layer containing the sensor platforms that host the sensor and
measure environmental phenomena, (ii) a middle layer containing a middleware
that stores the sensors values and the sensors configuration, and (iii) an appli-
cation layer containing third party applications that are fed with sensor values.
The sensors send their values to the middleware and retrieve their configuration
from this latter.

We also made the following assumptions on the sensor platforms:

• Sensor platforms are powered by batteries and their replacement is a te-
dious maintenance operation;

• sensors have a deep-sleep mode allowing them to save energy efficiently
when they are not on duty;

• sensors have a writable memory to store their configuration and to buffer
their measurements (deep-sleep modes do not guarantee a full retention
of RAM) ;
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• sensors platforms are directly connected to an IP network and can retrieve
a new configuration upon demand;

• sensors platforms have limited computation facilities as they are often
built on microcontrollers.

4.2. Building a predictive model
We propose to build a predictive model to extrapolate, for a each sensor,

(i) its future values based on its past values and (ii) user’s requests from its
activity history in order to reduce the amount of sampling and sending opera-
tions.

However, retaining all sensor past values hardly scales in terms of storage
volume. In statistics, linear regression allows one to interpolate (within an
acceptable margin of error) a polynomial function from a set of values. Thus, the
resulting polynomial function contains in itself the set of values. We leverage this
technique on sensor values to store only polynomial functions (describing a set of
sensor values) rather than storing raw sensor values. The same observation can
be made over activity history. Instead of storing every single sensor’s activity,
we compute the overall activity of the sensor, per time-slot.

Given that the computation of these interpolations is resource-intensive, we
rely on a middleware located outside the sensor network where servers have
higher computing and storage resources suitable for big data analysis. Our
predictive model is built upon the GreyCat7 graph database [17] that integrates,
directly into nodes, machine learning algorithms.

We represent every sensor deployed in the sensor network in a model con-
taining a sensor node collecting the received values, a compressed node, i.e.,
a node performing the autoregression operations, and an activity node, i.e., a
node storing the sensor’s activity (cf. Fig. 6).

7https://github.com/datathings/greycat
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Sensor node. A sensor node is responsible for collecting data retrieved from its
associated sensor in the network. This node has a value attribute updated with
the latest value coming from the represented sensor. Historical values can be
retrieved by reverting the node at a previous time. In the case no value has
been stored at the requested time, the node retrieves automatically the freshest
previous value.

Compressed node. A compressed node stores sensor data using a polynomial
live segmentation. Polynomial live segmentation is a technique that builds and
updates a polynomial function modeling the current trend of data, as shown in
Sec. 2. This function is kept as long as it ’fits’ newly measured values, when the
contrary happens, an empty polynomial function is created and chained with
the previous one.

The complete process of live polynomial segmentation is depicted in Figure
Fig. 7.

The chaining mechanism works as follows: when a new timestamped t value
needs to be inserted, the algorithm gets the closest segment to t. If no segment
is found, a new polynomial fnew (such that deg(fnew) = 0 and fnew = v) is
created. Otherwise, the algorithm checks if the value fits the polynomial f
closest segment within a certain precision (chosen by a domain expert). As
long as the value fits the closet segment, the polynomial does not need to be
updated. Conversely, the algorithm tries to increase f ’s degree and re-train f .
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Figure 7: Polynomial live segmentation algorithm

In the event f cannot be updated, the algorithm performs a segmentation and
builds a new polynomial fnew.

In other words, whenever data coming from the sensor network is collected,
the polynomial live segmentation checks whether it suits the current polyno-
mial function or stays within an acceptable margin of error, i.e., no significant
change, and then will either increase its degree or leave it unchanged. If the
data indicates a significant change, a new polynomial function, continuous to
the previous one, will be built.

As a result, the compressed node contains only polynomial functions to rep-
resent the data. The ratio between the number of polynomial functions and the
number of values stored in the sensor node gives the compression rate.

In [17], the authors of the live polynomial segmentation algorithm gave a
mathematical evidence about the ability of this chain of polynomial functions
to rebuild the original measured values within a given tolerated error. They
also already pinpointed the relation between signal steady state and unchanged
polynomial degree after insert. Besides the compression of such segmentation
algorithm, this steady state detection is later reused in this paper to compute
the optimal sleeping time of sensors.

An illustration of this live segmentation algorithm against a simulated signal
is shown on Fig. 8. The polynomial reconstruction (black line) interpolates the
original data (red crosses) with a certain precision. As long as the original
data fits the polynomial or the current polynomial’s degree can be increased,
no segmentation is required. Conversely, when the original data’s trend varies
greatly (e.g., switching from a variable trend to a steady trend, as shown between
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Figure 8: Illustration of the polynomial live segmentation algorithm

Figure 9: Cumulative daily temperature measures accesses (one
month)

segments 1 and 2), the algorithm can no longer update the polynomial and builds
a new one starting at degree 0 in a new segment.

Activity node. An activity node logs the statistics about data requests using a
gaussian slots representation. These Gaussian slots allow us to predict, given a
time slot, the frequency of requests by third-party applications. They are up-
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Figure 10: Polynomial functions distribution across time

dated in live, i.e., every time an application requests a data. For instance, the
figure Fig. 9 has been obtained from the logging of temperature data accesses
during one month and the distribution of these logs in gaussian slots shows
that 900 accesses to the temperature produced between 5 pm and 6 pm UTC
have been logged in time slot #17. Consequently, these values are highly re-
quested and thus the sampling period needs to be shortened to ensure the data
availability. Conversely, values produced at night (e.g., 0-6am UTC: time slots
#0-6) are never requested by the application and thus, the sending period can
be increased to save energy. In the following, we define the activity of a sensor
as the number of data accesses during a time slot.

4.3. Optimal data sampling period
As stated previously, it is irrelevant to sample data if the observed phe-

nomena can be predicted, e.g., a temperature room remains steady. We thus
propose to adapt the sampling period according to the number of significant
changes (i.e. the amount of different polynomial functions) in a time-slot. In-
deed, a change of polynomial function happens every time the measured value
cannot fit further the current prediction. We introduce T the set of time-slots
and ∆t the duration of a time-slot. We also define Pt = {p0, p1, . . . pn} the set
of polynomial functions in a given time-slot t ∈ T and time(p) the time associ-
ated to the beginning of a polynomial function (Fig. 10). As it is irrelevant to
perform sample operations while the prediction remains valid, we compute, for
a time-slot t ∈ T , the time between the beginning of two consecutive polynomial
functions, i.e., the amount of time the prediction remains valid:

∆pt = {time(pn+1)− time(pn)}, 0 ≤ n < card(Pt) (1)

If a time-slot t ∈ T contains only one polynomial function p0, we com-
pute the maximum time between time(p0) and the time-slot endpoints, such
as ∆pt = max(∆t − time(p0), time(p0)). In the case the time-slot t ∈ T is
empty and in order to have at least one measurement per time-slot, we define
∆pt = ∆t. These two latter computations can allow the detection of abnor-
mal situations (e.g., a change of temperature because of the sudden heating of
a room) in order to integrate these abnormal values into the computation of
future polynomial functions. For each time-slot, we compute the minimal time
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between two polynomial functions to ensure the best data quality. Thus, we
define the set of minimal sampling periods Psampt∈T as follows:

Psampt = min(∆pt) (2)

Then, the data sampled is stored into a buffer located in a non-volatile
memory (e.g., an EEPROM8) and the platform enables the deep-sleep mode
until the next data sampling or data sending.

4.4. Optimal data sending period
As shown on Fig. 9, data are not always used in real-time or critical appli-

cations and therefore, their sending can be deferred to save energy. Thus, we
propose to configure the sending period according to the expected use of the
data and to buffer the data between two sendings. We reuse the same set of
time-slots T and ∆t the duration of a time-slot as introduced before. Given
an activity a(t) produced in time-slot t ∈ T and At∈T the set of all activities
produced in t, we define the set of minimal sending periods Psendt∈T as follows:

Psendt∈T = ∆t/card(At) (3)

The obtained Psendt∈T value corresponds to a fair distribution over time of the
activities. For example, if four activities has been recorded within a time slot
and ∆t = 60min, the value Psend would be equal to 60/4 = 15min. Thus, the
sensor platform would send its buffered values every fifteen minutes.

4.5. Adaptive firmware
Sensor platforms need to retrieve the optimal sampling and sending periods

computed on the server-side. To do so, we propose an algorithm that measures
data, buffers them and periodically connects to the remote server to send data
and retrieve the appropriate sending and sampling periods. The algorithm is
depicted in Alg. 1 and can be implemented on platforms with writable memory
and connecting facilities, e.g., ESP8266 or RTL8710 based-platforms.

First of all, the sensor platform retrieves the current timestamp (line 1) and
the timestamps matching the next sampling and the next data sending (lines
2-3). If the next sampling time is outdated (line 4), the platform performs
a measurement that is buffered thereafter. Finally, the platform reads from
memory the current sampling period and updates its next sampling time. If the
next sending time is outdated (line 10), the platform prepares itself for sending
the buffered data over the network. After having sent and flushed the data
buffer, the platform retrieves its updated sampling and sending periods. It also
updates its current timestamp using the NTP protocol. In a final step, the
platform puts itself in deep-sleep until the next sampling or sending (line 26).
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Algorithm 1 Adaptive periods retrieval from remote sensor platform

1: initTs← retrieveT imestamp()
2: nxSampling ← getNxSampling()
3: nxSending ← getNxSending()
4: if nxSampling ≤ initTs then
5: sample← readSensor()
6: bufferize(sample)
7: sampling ← getSamplingPeriod()
8: setNxSampling(initTs+ sampling)
9: end if

10: if nxSending ≤ initTs then
11: sendBuffer()
12: flushBuffer()
13: sending ← readRemoteSendingPeriod()
14: sampling ← readRemoteSamplingPeriod()
15: initTs← getNTPTime()
16: setNxSending(initTs+ sending)
17: setNxSampling(initTs+ sampling)
18: end if
19: if getNxSending() ≤ getNxSampling() then
20: minV alue = getNxSending()− initTs
21: setT imestamp(getNxSending())
22: else
23: minV alue = getNxSampling()− initTs
24: setT imestamp(getNxSampling())
25: end if
26: deepSleep(minV alue)

4.6. Resulting architecture
From the contributions presented in this section, we depict on Fig. 11 the

implementation of the reference architecture presented in Fig. 5.

Sensor platforms layer. This layer contains all the sensor platforms targeted
by our approach. They execute an implementation of the adaptive firmware
presented in Alg. 1. A server located in the middle layer is responsible to
collect the sensor data and to compute the appropriate sampling and sending
periods.

Middle layer. A server located in this middle layer is responsible for maintaining
the data structure presented in Fig. 6. Each time a sensor value is received from
a sensor platform, the middle layer updates its corresponding nodes with the
freshest value and foresees the next data sampling and sending periods. In

8Electrically Erasable Programmable Read-Only Memory
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addition, for each periodic node, the middle layer updates the activity node
each time a third-party application performs a sensor value request.

Applications layer. This layer contains the set of third-party applications that
retrieve sensor values.
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5. Measuring the gain in battery lifetime

In the previous section, we have introduced a predictive model allowing the
computation of adaptive sending and sampling periods based on the predicted
values of the considered physical phenomena and on the predicted use of data
by third-party applications. We focus in this section on measuring the gain in
battery lifetime brought by this model (i.e., measuring aspect of our research
question). We perform an experimental assessment on a prototypical sensor
platform based on an ESP8266 microcontroller by conducting three experiments:

• (Exp.1) aims at measuring the battery life-time of the sensor platform
sampling and sending values at fixed periods without deep-sleep. The
voltage at the moment the platform ceases to work will be considered as
the cut-off voltage, i.e., the minimum voltage required by the platform to
work properly. The following experiments will measure the time required
to reach this value from a charged battery;

• (Exp.2) aims at measuring the time required to reach the cut-off value of
the sensor platform sampling and sending values at fixed periods using
deep-sleep. These values will be considered as reference values to measure
the gain brought by our approach;

• (Exp.3) aims to empirically show that our approach increase the battery
lifetime. Instead of fixing the periods, we use our contribution to dynam-
ically compute adaptive sampling and sending periods.

5.1. Experimental setup
To perform the evaluation of the approach, we have instantiated the reference

architecture (cf. Fig. 11) with the following elements:

Sensor platform layer. It contains platforms relying on an ESP8266 microcon-
troller and on a temperature sensor. This microcontroller is largely used by the
IoT industry and offers an efficient deep-sleep mode, a Wi-Fi connectivity and
a writable EEPROM that can be used to buffer data. In order to avoid any
unwanted energy leaks, we have built an electronic design using the strictly nec-
essary passive components. All the sensor platforms rely on a 3.7V 6000mAh
lithium-ion battery.

Middle layer. It relies on a middleware9 developed using Java 7 and Scala 2.11
languages and using the GreyCat technology. Greycat allows the middleware
to trigger in a reactive way machine learning executions using the concepts
presented in Sec. 2. The middleware builds automatically the prediction model
presented in Sec. 4 and updates the nodes (cf. Fig. 6) each time a sensor value
is collected.

9The source code is available on Github: https://github.com/ulrich06/greycat_senso
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Table 2: Initial settings for the 3 experimental contexts

Experiment Experiment Experiment
#1 #2 #3

Initial voltage (in V) 3.36 3.46 4.09
Period (in seconds) 150 150 adaptive
Deep-sleep 7 3 3

y	=	-16127x3 +	2966,9x2 - 337,55x	+	3375,1
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Figure 12: Battery discharge without deep-sleep (Exp.1)

Application layer. On this side, we have mocked an application behavior using
the collected temperature values.

For each experiment, we use a charged Li-ion battery and preconfigure, if
necessary, the sampling/sending periods and the deep-sleep mode (cf. Tab. 2).

5.2. Standard battery discharge (Exp.1)
This first experiment aims to illustrate the lifetime of a battery-powered

platform that does not use deep-sleep facilities nor adaptive periods. In order
to conduct a time-limited experiment, we overexploit the platform by sampling
and sending temperature values associated with the current voltage value at the
battery terminals every 150 seconds. This value allows 24 measurments per hour
simulating, at a speed increased by 24, a sensor performing one measurment per
hour. Moreover, the undersampling of the voltage measurements mitigates the
invasive effect of the measure, which also affect the battery.

The obtained voltage values are plotted on Fig. 12. We can observe that
the voltage values decrease following a cubic function. The last value obtained
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(∼ 3.0V ) corresponds to the cut-off value mentioned by the constructor [11]
(i.e., the minimal voltage value for operating the platform) and has been reached
after Tcut = 8.5h. By extrapolating this result towards a platform that performs
only a single sampling and sending operation per hour (minimum requested, cf.
hypothesis), i.e., the platform is used at a rate divided per 24, the battery
lifetime is then increased by 24 and reaches Tcut = 8.5days.

In our context (performing at least one measurement per hour), this shows
that deploying such a battery-powered sensor platform without using deep-sleep
facilities will lead to important maintenance operations as the battery will have
to be replaced on a weekly-basis.

5.3. Battery discharge with deep-sleep (Exp.2)
The ESP8266 platform offers a deep-sleep facility that lowers the power

consumption down to 10µA [11]. This second experiment aims at comparing
the newly discharge curve with the one obtained in the first experiment in order
to show how deep-sleep increase the platform lifetime. It also aims at showing
whether the deep-sleep periods are sufficiently accurate regarding the periods
desired by the user. For this experiment, we kept the same P = 150 seconds
sampling/sending period as defined in Exp.1 and we enabled the deep-sleep
facilities between two cycles.

The obtained voltage values are plotted on Fig. 13. To limit the experiment
in time (an ESP8266 theoretically can stand for months using the deep-sleep
facilities), we stopped the experiment before reaching the cut-off value. Despite
some measurements artifacts (due to physicochemical properties of the battery
- these artifacts, due to their low absolute value, are not representative), we
observe that the curve follows a linear decrease (0.1V are lost every 2 days).
From an initial voltage value of 3.46V , the extrapolation of the curve depicted in
Fig. 13 shows that the cut-off value (3.0V ) is reached in 8 days. The application
of the deep-sleep facilities to a platform performing only a single sampling and
sending operation per hour can scale the battery lifetime up to 8 ∗ 24 = 192
days.

Through this experiment, we also wanted to check if the platform was cor-
rectly inactive during deep-sleep periods, i.e., no sampling and sending oper-
ations are performed and if the requested sleeping periods were correctly exe-
cuted. We have thus extended the implementation of the algorithm presented
in Alg. 1 to log on the serial port all the operations performed on the platform.
Then, we have connected an oscilloscope to the output of the serial port and
plotted the values obtained on the figure Fig. 14. The signal analysis shows a
platform stays woken-up (Tw1, Tw2, Tw3) 9 seconds on average (the connection
time to the wifi network is not deterministic and can therefore influence these
values) and sleeps (Ts1, Ts2) 145 seconds on average. Thus, an ESP8266 plat-
form is active only 6% of a wake-up/sleep cycle. In particular, we notice that,
as expected, no operations are performed during the deep-sleep. We can also
notice that the periods P1 and P2 are close to the wished period of 150 seconds.
This inaccuracy is caused by the lack of precision of the micro-controller clock.
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Nevertheless, despite this slight imprecision, we can consider that the use of the
deep-sleep respects the periods wished by the user.

5.4. Dynamic approach (Exp.3)
In this experiment, we propose to empirically show that adaptive periods

contribute to increase the battery lifetime. We have implemented the firmware
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Figure 15: Polynomials distribution. (Exp.3)
A dot represents the beginning time of a polynomial in its time-slot

presented in Alg. 110 and we have deployed it on our prototypical sensor plat-
form, as illustrated on the left hand-side of Fig. 11.

Set up. For this experiment, we set the following parameters :

• ∆t = 60 minutes in order to have at least one temperature measurement
per hour.

• card(T ) = 24 in order to reason over a day.

• Precision of the prediction: 1 celsius degree to match the temperature
sensor accuracy (which we consider as accurate enough for an office).

5.4.1. Sampling period
The computation of the appropriate sampling periods is performed accord-

ingly to the polynomial functions computed by the compressed node To obtain
initial polynomial functions, we fed the sensor node (cf. SENSOR on Fig. 6)
with a 15 days dataset containing 3210 values and describing the temperature
in the office under experiment. We configured the compressed node to accept
1.0 celsius degree as an acceptable margin of error because of the accuracy of
the temperature sensor.

The polynomial regression performed by the compressed node results in 66
polynomials describing the learned data with a precision of 1.0 celsius degree.
The figure Fig. 15 shows the number of polynomial function per time slot and
their distribution within the time slot. The greater the number of polynomials in
a given time slot, the more the physical phenomenon has changed and therefore

10https://github.com/ulrich06/Senso

23



Figure 16: Computed daily sampling periods.
During time-slot #10, the door is often closed,
i.e., the temperature remains stable (Exp.3)

the sampling period must be reduced accordingly. According to this figure, we
can observe that the most frequent changes occur during time slot #13. The
more two beginnings of polynomials are separated in time, the more slowly the
physical phenomenon varies. Thus, it is relevant to use the prediction result
rather than to make an energy-intensive measurement. According to this figure,
during time slot #0, we observe that the temperature varies slowly and, during
time slot #16, the temperature fluctuates quickly. We report on Fig. 16, the
result of the sampling period computation from the application of Eq. 211

over the ∆pt values. When large temperature variations are expected to occur,
the sampling periods are decreased to ensure that the most data are sampled.
Conversely, when the temperature is expected to remain stable, the sampling
periods are increased to save the battery life-time.

In Tab. 3, we apply the polynomial segmentation on the datasets presented
in Tab. 1 and extrapolate what would have been the autonomy of an ESP8266
platform considering a duty cycle of 9 seconds (cf. Fig. 14), an average op-
erating current of 80 mA [11] and a 6000mAh 3.7V battery. Thanks to the
polynomial segmentation algorithm, the number of values required to charac-
terize a signal is greatly reduced (we showed in Sec. 3.1 that less than 10% of
the values can describe the whole dataset). This reduction in the number of val-
ues leads to greater deep-sleep periods (minimal operating current, ca. 20µA)
and thus contributes to increasing the battery lifetime. By calculating the duty

11computing the set of minimal sampling periods Psampt∈T
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Table 3: Theoretical gain in battery lifetime after using polynomial
segmentation

Sensor
(compression)

Duty cycle
before comp.

(s)

Duty cycle
after comp.

(s)

Estimated
Battery
lifetime
(before
comp.,
in days)

Estimated
Battery
lifetime
(after
comp.
in days)

CAMPUS_TEMP
(93%) 97.70 9.20 0.29 4.20

OFFICE_LIGHT
(97%) 81.45 9.20 0.35 11.77

OFFICE_TEMP
(97%) 81.42 9.20 0.35 11.77

CO_SENSOR
(93%) 239.10 16.74 2.93 41.80

NOX_SENSOR
(93%) 239.10 16.74 2.93 41.80

O3_SENSOR
(92%) 239.10 19.13 2.93 36.57

NO2_SENSOR
(92%) 239.10 19.13 2.93 36.57

cycle of the ESP8266 platform (9 seconds per data sampling and sending) be-
fore compression and bringing it back to the battery capacity (6000mAh), the
battery life for the datasets considered is between a few hours and a few days.
After compression by segmentation, we change the scale for each of the consid-
ered datasets: the battery lifetimes initially in hours become in days (or weeks),
and the lifetime in days become months.

5.4.2. Sending period
The computation of the appropriate sending period is performed accordingly

to the number of user requests and thus, as long as no data is requested by the
users, it is irrelevant to establish an energy intensive data connection to send
the values at high frequency. Nonetheless, they can be buffered locally, e.g., in
the EEPROM memory of our setup, and sent when needed. Thus, the proposed
optimization does not decrease the quality of data but only the latency to obtain
it. As mentioned in Sec. 4, it is the responsibility of the activity node, i.e.,
a node using a time-slot storage to store the number of data accesses per time
slot, to store the sensor activity.

We have mocked the sending periods displayed on Fig. 17. These periods
allows to feed applications that needs to monitor the temperature during day-
lights (time-slots 7 to 18) and more intensively around lunchtime, resulting in
more requests during this period.
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Figure 17: Computed daily sending periods (Exp.3)

For a time slot t ∈ T , the integer division of Psampt with Psendt returns
the number of data that is buffered on the platform between every sending. For
example, from the periods depicted in Fig. 16 and Fig. 17, during time slot #1,
only one value will be buffered (Psamp1 = 3600 and Psend1 = 2894) before
being sent and during time slot #16, 39 values will be buffered (Psamp16 = 1800
and Psend16 = 46) before being sent. This last value shows that 38 energy
intensive network connections have been saved thanks to buffering techniques
during time slot #16.

5.4.3. Battery discharge
In this experiment, we have implemented the firmware described in Alg.

1 and deployed it on our prototypical platform. This platform retrieves the
sampling and sending periods from the middle layer (cf. Fig. 11) and follows
the values depicted respectively on Fig. 16 and Fig. 17.

Using such periods, the voltage values are plotted on Fig. 18. This figure
shows that, among days and unlike Exp.1 and Exp.2, the voltage value at the
battery terminals remains constant. Manual measurements using a voltmeter
have shown that values under 4V are measurement artifacts. Comparing the
battery discharge with the one observed in Exp.2 (cf. Fig. 13), we can deduce
that adaptive periods allow us to extend the battery lifetime of our prototyping
platform on a year scale.
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Figure 18: Battery discharge using adaptive periods (Exp.3)

5.5. Summary
In this section, we have conducted an experimental validation to quantify the

gain in battery lifetime brought about by the use of adaptive periods to answer
the first part of the research question. For each experiment, we have measured
the voltage at the battery terminals and compared the obtained values with
respect to methods using static periods (with or without deep-sleep). We have
seen that each of these experiments allowed us to change the battery lifetime
scale: a weekly scale for fixed periods without deep-sleep, a monthly scale for
fixed periods with deep-sleep, and finally an yearly scale for adaptive periods
with deep-sleep. Moreover, the last experiment allows us to assess the accuracy
of waking-up time when the sensor platform is in deep-sleep mode. We consider
the time inaccuracy to be negligible in terms of impact on the battery lifetime.

We consider these experiments to be relevant enough for measuring the gain
in battery lifetime associated with the use of adaptive periods since we have
compared three modes of operation: (i) fixed sending and samplig periods with-
out deep-sleep, (ii) fixed sending and sampling periods with deep-sleep and (iii)
dynamic periods with deep-sleep. These experiments can be replicated on other
platforms, provided they respect the prerequisites discussed in Sec. 4.

5.6. Threats to validity
Regarding measurements, voltage values were acquired by measuring the

voltage at the battery terminals. These measures may be imprecise and must
be considered noisy if taken as a whole. However, our study aims to measure
a trend (increase or decrease) in battery life, which nuances this imprecision.
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In addition, we have regularly confirmed the measured values with a digital
multi-meter, confirming that the values obtained are close to reality.

Besides, some platforms integrate co-processors dedicated to specific func-
tions (e.g., data acquisition) and designed to be energy efficient. For example,
ESP platforms integrate ULP12 (Ultra Low Power) coprocessors designed to
perform measurements using an ADC (Analog-Digital Converter), a temper-
ature sensor and external sensors, while the main processor is in deep sleep
mode. Our approach considers only the main processor and could be extended
to benefit from these co-processors for the sampling. We expect this extension
to significantly increase the battery lifetime gain obtained in our experiments.
Conversely, badly designed deep-sleep modes and attached devices can overuse
the battery and leak unnecessary energy limiting the gains made by activating
deep-sleep mode and thus, the gains made by our proposed approach. Our con-
tribution obviously exposes advantages and drawbacks of only interacting with
devices through their deep-sleep mode interface. Still these devices are expected
to well design their platform with regards to this mode.

Regarding the polynomial computation and re-training, these steps can af-
fect system performance since it involves crossing the graph to retrieve the
compressed node, read the current value and potentially update the polynomial
or create a new timepoint if a significant change in data has been detected. To
takle this issue, the middlelayer uses the GreyCat framework for storage and
online learning. The evaluation of this framework performed in [30] showed
read and write throughputs close to 100, 000 nodes per second and a modify
throughput close to 400, 000 nodes per second. Hence, since a single physical
sensor is described by three nodes (sensor node, activity node and compressed
node, cf. Sec. 4.2), the approach can theoretically scale up to tens of thousands
of sensors while having a re-training time of a few tens of millisseconds.

6. Related Work

In this work, we propose a cross-layer solution to reduce the energy consump-
tion of a sensor platform. On the sensor platform layer, we rely on dynamic
periods to sample and access the network. On the application layer, we rely on
live machine learning techniques in order to not solicit the sensor network when
values can be predicted. We have already introduced live machine learning in
Sec. 2. In this section and with respect to our contributions, we compare in
a first part, works addressing the dynamic periods problem before, in a sec-
ond part, addressing MAC protocol optimizations and software-defined power
meters. Then, we discuss machine learning techniques for forecasting data.

Dynamic periods. Dynamic periods can reduce the energy consumption by sam-
pling or sending sensor data only when needed. The approach proposed by Kho
et al. [31] provides a decentralized control of adaptive sampling. They introduce

12http://esp-idf.readthedocs.io/en/latest/api-guides/ulp.html

28



a metric based upon Fisher information and Gaussian process regression to de-
fine three algorithms that compute a sampling period according to the gathered
information. Alippi et al. [32] propose an algorithm that dynamically estimate
a sampling period according to the observed signal. With this algorithm, they
can minimize the activity of both the sensor and the radio, and thus, reducing
the energy consumption. A simulation of this algorithm over a snow monitoring
use case shows that up to 97% of the energy can be saved. More generally, the
literature provides solutions based on gathered sensor measures to compute an
adaptive sampling period [33]. However, they do not focus on applications’ re-
quests. Whereas in our approach, we observe when data are requested in order
to establish energy intensive network connections only when necessary.

MAC protocols. According to the IEEE 802 model, the Media Access Control
layer is responsible for network access. Numerous works have been achieved to
reduce the energy footprint by defining energy-efficient MAC protocols. The T-
MAC protocol [34] is a contention-based protocol for wireless sensor networks.
It introduces an adaptive duty cycle relying on fine-grained timeouts and can
save as much as 96% of the energy.

In our approach, in addition to reduce the network access with adaptive
periods, we use the deep-sleep mode after every sending that shuts down the
physical network interface and most of the sensor platform’s functionality, saving
its energy

The DMAC protocol [35] uses the tree structure describing the major traffic
schema in wireless sensor networks to optimize the energy. It schedules the
activity of nodes according to their depth in the tree. Therefore, all the nodes
on a multi-hop path can be notified of data delivering and can send their own
measurements. Various experiments on this protocol have shown an energy
saving of up to 6 times greater than conventional protocols. In our approach,
we define a sending period for a single period but we reusing the concepts
brought by DMAC by computing inter-platform dependent sending periods is a
foreseen work.

Software-defined power meter. The WattsKit approach [36] aims at using ma-
chine learning methods to monitor the energy consumption of distributed sys-
tems without the use of invasive and costly physical meters. To this end, the
WattsKit approach profiles the electric consumption of some specific hardware
operations such as CPU functions (e.g., TurboBoost, Hyper-threading) or device
usages (e.g., Network, Disk). Based on these profiles, a model able to predict
the overall hardware consumption from simple software probes is generated.
During the training phase, a physical power meter is used, to obtain the real
hardware power consumption and learn the expected impact of each function or
device executions. Once the training phase is done, the model can be distributed
over similar hardware without the need for physical meters. This model can be
executed at run-time to build ultimately a software-sefined power meters that
monitors the power consumption of an application (e.g., Apache ZooKeeper).
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This software-defined power meter can be integrated into a higher-level applica-
tion that can make decisions based on the identified energy consumption value
(e.g., pause or delay the execution if a threshold value is exceeded). If their
approach allows to obtain precisely the instantaneous power of a process (in
Watt), they do not target microcontroller architectures mainly used within sen-
sor networks. In our approach, we rely on the forecasting of data to reduce the
energy consumption without the use of fine-grained prediction such as WattsKit.
However, as future work, it would be relevant for a sensor platform to also use
such approach and adapt its behavior according to the power required by the
functions used on its hosted applications.

Forecasting data. Our approach heavily relies on a prediction model to evaluate
sensor value predictability. Due to our live usage of this prediction model, the
ratio between its efficiency and effectiveness is key critical. For this reason we
have selected polynomial functions for their excellent scalability. In [37], the
authors show that polynomial functions achieve savings range from about 50%
to 96%, according to the acceptable error threshold. However our contribu-
tion can be extended by any other model offering similar performance tradeoffs.
In particular various methods have been used for energy efficient sensor net-
works [38]. The Least Men Square Algorithm [39] has been proposed to predict
the measured values both at the sensor platform and remote levels. A trans-
mission is performed only if the two predicted values differ from a variable step
size. Such method offers the advantage to be simple enough to be embedded
on restricted hardware, however without mid-term prediction they cannot drive
deep-sleep operators like our contribution. Towards such goal, time series pre-
diction models, as performed in our approach, give goods results to reduce the
energy consumption. An adaptive model selection [37] applied on different data
sets shows that despite the percentage of transmitted packets varying according
to the algorithm used, they remain quite close. In our approach we rely on
an polynomial regression model without memory which gives the fastest results
according to the tested datasets.

7. Conclusion & Future work

In this paper, we have investigated whether one can significantly gain battery
lifetime for a whole sensor platform using adaptive sampling and sending periods
(RQ).

To compute the adaptive sampling and sending periods, we have presented
a self-adaptive approach using machine learning and deep-sleep to provide an
optimal configuration extending the battery lifetime of a sensor platform. The
generation of the optimal configuration is performed by a prediction model de-
ployed on a middle layer located outside the sensor network. This middle layer
receives sensor measures from remote sensor platforms and collect application’s
requests on data (as shown on Fig. 11). According to historical values and
current use of the sensor network, the middle layer foresees the next data sam-
pling and sending periods. A firmware, deployed at the sensor platform layer,
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requests the optimal configuration and buffers locally sensor data for a sending
period.

Then, to measure the gain in battery lifetime, we have performed an experi-
mental evaluation comparing the lifetime between a platform using fixed periods
(with and without deep-sleep) and a platform using adaptive periods. Relying
of these adaptive periods, we have successfully lowered the battery discharge.
The extrapolation of the values obtained in our experiments showed us that an
ESP8266 platform relying on a 6000 mAh battery could move from a weekly
scale lifetime to a yearly scale lifetime thanks to adaptive periods.

The contribution of this paper relies on a regression model in order to eval-
uate if sensor values can be extrapolated and to compute appropriate sampling
and sending periods. The performance of this regression model directly impacts
the energy reduction effect. Therefore in a future work, we plan to explore other
learning methods, e.g., neural networks, and compare their efficiency towards
this usage. In particular we will explore the impact of models with memory
that can detect periodic patterns, such as LSTM networks [40]. In addition
we also plan to work with unbounded time-slots, that describe better physical
phenomena and reduce the number of computed polynomials.

Moreover, in this contribution we have optimized sensor periods indepen-
dently. However, in case of sensors measuring the same phenomenon it could be
highly beneficial to exploit the graph structure to generate optimal periods for
a group of sensors (for instance, different sensors in a same room that provide
comparable measurements). In such context, it might be interesting to synchro-
nize the different sampling and sending values to orchestrate the measurement
collection in turns, and thus not to always using the same sensors.

Finally, as many sensor platforms are nowadays available on the market with
various capabilities for deep-sleep, we plan to assess our approach with different
types of microcontrollers and architectures. Ultimately this would allow to
classify their suitability towards such dynamic control usage.
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