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ABSTRACT. With the migration of responsibility from drivers to automation systems in vehicles, there are 

potential risks to be studied due to “out-of-the loop” issue induced by the automated driving. To investigate these 

potential risks, two complementary experiments were implemented on a driving simulator. The 1
st
 experiment 

investigates vehicle automation in highway traffic jam conditions. Main findings indicate that increased automation 

of Level 4 (compared to L3) was assessed as more useful by the participants, reducing the task difficulty and 

annoyance. The 2
nd

 experiment focused on critical driving conditions and automation’s effect on participants’ 

Situational Awareness (SA), their criticality assessment, their ability to resume manual control when necessary, or 

their confidence in an automated system managing the risk for them. Main findings of this 2
nd

 experiment found 

several effects of vehicle automation on drivers’ SA and risk assessment, or on their visual scanning behaviours, 

however this was dependent of the participant’s level of driving experience. Finally, eye tracking data collected 

during the second experiment were used in a cognitive model (named COSMODRIVE) to simulate some effects of 

vehicle automation of drivers’ visual scanning. This modeling work is presented in the last section of the article. 
  

KEYWORDS: Automated driving, Acceptance, Perceived Usefulness, Situational 

Awareness, Risk Awareness, Cognitive modelling.  

 

RESUME. Avec l’automatisation de la conduite et le transfert de la responsabilité du véhicule vers l’automate, 

il convient de s’intéresser aux risques potentiels induits par la « sortie de la boucle » de l’humain. A cette fin, deux 

expérimentations ont été réalisées sur simulateur de conduite. La 1ère porte sur l’automatisation du véhicule en 

conditions d’embouteillages sur autoroute. Les résultats indiquent qu’un niveau d’automatisation plus élevé (L4, 

comparé à L3) est jugé par les participants comme plus utile, réduisant la difficulté et la pénibilité de la tâche de 

conduite. La 2
nde

 expérimentation, en situations de conduite critiques, s’intéresse à l’effet de l’automatisation sur 

la conscience de la situation (CS), l’évaluation de sa criticité, la capacité des participants à reprendre le contrôle 

manuel en cas de nécessité, et enfin sur leur confiance en un système automatisé gérant le risque à leur place. 

Les résultats de cette 2
nde

 expérimentation révèlent des effets de l’automatisation sur la CS des conducteurs, sur 

l’évaluation du risque ainsi que sur les stratégies visuelles, effets néanmoins dépendants du niveau d’expérience 

de conduite. Dans la dernière section de l’article, les données empiriques collectées au cours de la 2
nde

 

expérimentation sont utilisées dans le modèle COSMODRIVE afin de simuler certains effets de l’automatisation 

de la conduite sur les stratégies d’exploration visuelle du conducteur. 

 

MOTS-CLEFS.: Automatisation de la conduite, Acceptabilité, Utilité perçue, Conscience de 

la Situation, Conscience du Risque, Modélisation cognitive. 
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1 Introduction: background, context and research objectives    

As the industry continues to progress towards realizing fully automated vehicles, driving 

tasks are increasingly relegated to automation systems. Drivers who were previously in full 

control of the vehicle are slowly switching from a control task to a system monitoring task and 

will eventually no longer be involved in driving tasks at all ([GAS 12]). As the level of 

automation found in most cars becomes increasingly self-reliant, there is an increased risk of 

the drivers slowly drifting further and further out of the loop of control. Indeed, during manual 

driving, humans continually update their mental representations as and when they dynamically 

progress in the road environment ([BEL 09]). These mental representations play a key role in 

drivers’ decision making, in their awareness of the current and future situational risks 

([BEL 12]) and finally, in the driving behaviours they will implement in the current driving 

context. By contrast, during automated driving, human drivers are more or less disengaged of 

the vehicle control ([SAE 14]; [PAR 00]; [WIC 10]). This may consequently result a drop in 

their attention allocation to their surroundings and in a potential decreasing in their situation 

awareness ([KAB 04]; [STA 05]; [MER 12]; [SAL 12]; [DEW 14]; [KYR 17]). This reduced 

situation awareness and attention allocated to the driving task may negatively impact the 

drivers’ abilities to resume the manual control of the car in the case of a Take-Over Request 

(TOR) generated by automated driving systems, such as when automation exceeds its 

functional limits, or otherwise fails ([LEV 98]) and, ultimately, negatively impacts their 

abilities to respond appropriately to a point that is unacceptable, or, as recent research has 

shown, downright dangerous ([ERI 17]).  

Another very important issue for vehicle automation designers is about the drivers’ 

assessments regarding the interests of different levels of automated driving systems compared 

to the manual driving. Indeed, facing to the new opportunities opened by vehicle automation, 

it is however essential to take into account prospective users’ acceptance or rejection of this 

new way of driving. According to models explaining the adoption of a technology, like the 

Technology Acceptance Model (TAM) of Davis ([DAV 85]) or the Unified Theories of 

Acceptance and Use of Technology (UTAUT, [VEN 03]), acceptance of new technologies in 

intimately linked with its perceived usefulness and its (expected or assessed) efficiency 

compared with more traditional technologies (or manual driving in our case). In the specific 

context of advanced technologies for vehicles, the Car Technology Acceptance Research 

Model (CTAM) of Osswald, Wurhofer, Trösterer, Beck & Tscheligi ([OSS 12]) also confirms 

the central importance of perceived usefulness, which is defined by these authors as the extent 

to which a person thinks that using this technology will enhance his or her performance. These 

authors however added other dimensions, like perceived safety and anxiety. ‘Perceived safety’ 

refers to individuals’ expectations or assessment that using a new aid system will increase 

their safety and/or their well-being, while ‘anxiety’ is defined as the degree to which a person 

feels apprehensive, uneasy or aroused by a situation or a technology.   

All these potential effects of vehicle automation are however liable to be dependent of the 

Level of Automation (LoA), as distinguished in the SAE J3016 ([SAE 14], presented in Table 

1).   
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Table 1. SAE Levels of Automation (2014)  

  

Regarding this SAE classification, the central focus of the driving simulator experiments 

presented in this paper will be the Level 3 of “conditional automation”, when the driving task 

is performed by an automated systems with however the expectation that the human driver 

will respond appropriately to a Take-Over Request (TOR), and the Level 4 of “high 

automation”, when the automated driving system is able to manage all the driving tasks, 

including critical situations, without any required intervention from the human driver.  

The two crucial issues investigated during these experiments are related to the human 

drivers’ abilities to adequately regain manual control after automated driving (for L3 

automation) and about their acceptance and their “feeling” when they experience different 

LoA, according to the criticality of the driving situation. Indeed, effects of vehicle automation 

on drivers’ feelings, assessments and abilities may be dependent of both the dangerousness of 

the driving conditions and the driver’s perceived risk in the situation.   

To study these issues, two complementary experiments were implemented on driving 

simulator to capture their perception, their situation or risk awareness, and their behaviour 

during manual driving (L0, baseline), when assisted by an L3 automated system generating a 

TOR, or when assisted by an L4 highly automated driving system that required no input from 

the driver. With this methodological approach, we will look at how a driver performs in native 

manual mode driving, much as it exists on roadways today, and compare this to driver 

performance with increasing levels of automation, where the driver is expected to maintain a 
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monitoring or interventionist role in how the vehicle operates and deals with critical 

situations. The roles are fundamentally different and would involve different tactics and 

actions for handling any situations, particularly in the case of critical situations.  

The first experiment is focused on “normal driving conditions” in a traffic jam on a 

congested highway travelling slower than the posted speed. At this level, the aim was to study 

the difficulty and the annoyance of the driving task when the human drivers perform it 

manually, compared with a similar task performed by automated driving systems. In manual 

mode, the participants were responsible for maintaining continuous control over pedal usage, 

with regular activation of the brake and accelerator pedals to maintain a safe following 

distance. In the Level 3 Automation mode, the driver had an audio-visual TOR when the L3 

system reached its limits. In Level 4 automated mode, the driver was not required to provide 

any input, nut rate the system. In addition to difficulty and annoyance, we also study the 

respective usefulness and acceptance of these automation systems in the traffic jam context.  

The second experiment is related to “critical driving conditions” (front collision risk on 

highway), investigating drivers’ assessments about future automated driving systems (in terms 

of usefulness and system efficiency), and their feelings after experiencing simulated versions 

of these systems (including their assessments about the automation’s efficiency when facing 

to a critical event). In this 2
nd

 experiment, the participants performed the driving task under 3 

levels of vehicle automation, similar to Experiment 1: (1) the manual driving condition where 

everything was managed manually by the driver, (2) the Level 3 automation generated a TOR 

when the functional limitations of this aid system are reached (i.e. complex traffic situations 

that the computer cannot handle), and (3) Level 4 automation where the system is able to 

manage these critical events by itself in a fully automated way, and the participant is a 

“passive passenger” of the autonomous driving system.   

From the cognitive point of view, the main topics investigated during these 2 experiments 

concerned the impacts of vehicle automation on driver's visual scanning, situation awareness, 

situational risk assessment, and decision-making when driving.   

Based on this collected set of empirical data, the last step will be to progress towards the 

cognitive modelling and simulation of drivers’ visual scanning, decision making and 

behaviours with a cognitive simulation model of the car driver developed at IFSTTAR 

([BEL 09]; [BOR 16]). The last section of this article will present some results based on this 

approach and the future perspectives of this this modelling approach to support the virtual 

human centred design of vehicle automation ([BEL 12]).  

  

    

2. Method  

One of the central objectives of our two simulator experiments is to investigate effects of 

LoA on driver’s Situation Awareness, defined by Endsley
 
([END 95]) as the perception of the 

elements in the environment within a volume of time and space, the comprehension of their 

meaning, and the projection of their status in the near future. From a review of the different 

Situational Awareness assessment methods ([SAS 17]), we could not find one method that 

exactly met our requirements. So, in order to get all the information we were interested in 

capturing, we created a new method, named SAFIR (for Situational Awareness assessment 
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using Freeze/Identify/Rebuild) to collect a large amount of multifaceted data in order to 

ensure that future analysis would yield a holistic view of the mental and behavioural processes 

involved in handling the situations the participants were exposed to in the experiment. This 

SAFIR method was initially based on two pre-existing approaches developed at IFSTTAR: 

The ICARE Protocol, focused on Situation Awarness assessment (InteraCtive tool for 

Assessing drivers’ situation awaREness) ([BEL 09]; [BAI 04]; [BAI 03]) and the CRITIC 

Method (Common RIsk awareness measurement meThod for Inter-population Comparisons) 

([BAN 08]; [BEL 09]; [BEL 12]) dedicated to Risk Awareness measurement. These two tools 

were based on video movies of traffic situations that are suddenly interrupted. For ICARE, the 

last image of the video was modified and shown as frozen to the participants. Then, they were 

asked to detect the change. Right detection indicates a correct participant’s SA regarding the 

modified event (added, moved on deleted). For CRITIC, participants have to watch videos and 

to stop them when they felt the situation became critical. At the freeze they had to answer 

about situation criticality (and other dimension) from Likert scale ranging from 0 (e.g. not 

critical) to 100 (e.g. highly criticality).   

SAFIR, as a new combination of CRITIC and ICARE, sets itself apart from its 

predecessors due to its inclusion of modifications that allow this tool to work in a 3D rendered 

environment. Both ICARE and CRITIC were originally designed to work with video footage 

instead of a dynamic simulated environment. As SAFIR is integrated in the software we use in 

the simulation of the environment, we create a more immersive and cohesive link between our 

questions and the act of simulated driving. SAFIR grants us the opportunity to thoroughly 

investigate how situational awareness, automation, or the criticality of a situation interacts 

with observable behavioral or cognitive patterns.   

In the First experiment discussed in this paper, the SAFIR method and analysis relied 

primarily on a questionnaire, dealing with more of the qualitative aspect of automation and its 

effects on drivers. This led to some refinement for the second experiment focusing on critical 

driving scenarios. By contrast, for this second experiment the protocol at the end of each 

scenario was executed as follows.  

Occlusion: For us to make changes that were not exceptionally easy to track, all 3 screens 

of the simulator are blacked out for 750ms. This time frame allowed us enough time to make 

sure that the participants would have to work from more than simply visual memory when 

identifying the changes that were made ([PHI 74]) in addition to making sure that the changes 

were rendered appropriately in the software.   

Freeze: When the screens were occluded the scenario froze, and it remained frozen for the 

duration of the protocol until the start of the next scenario. Once the occlusion period ended, 

the participants are asked to identify any changes they registered, and the test administrators 

rebuilt the image as they report it. This created a persistent image that could be used for 

inquiry that was built and double checked for accuracy against the operational mental 

representation that the participant was using during (or shortly after) the occlusion of the 

screens.  

Identify: After pausing the scenario and completing a timed occlusion of the screens, 

participants were presented with a static image in first person perspective from the moment 

just prior to occlusion and asked to identify/reverse any changes they saw.   
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If there were changes reported, the participant was asked to indicate approximately where 

they occurred. Participants were prompted to give us the location of the change, as well as 

details about the vehicle that they believed were changed. As soon as we had this information, 

we began to rebuild according to the participants’ description.  

Rebuild: For the rebuild, we had the participants point out and describe where the 

change(s), if identified, had occurred. In order to rebuild, we rendered a mesh of the vehicle, 

as described by the participant during the identify step. The participant was asked to direct the 

experimenter in the rebuilding in order to make sure the rebuilt element was appropriately 

placed. During this process, the experimenter moved the specified vehicle mesh to the 

specified location. Once the rebuild was complete, it was double checked by the participant, 

and they will have provided a persistent image for further assessment.  

We created a metric by which we scored to the accuracy of the changes made by the 

participant. In this iteration, the metric was nominal and meant to simply note how accurately 

they successfully identified and rebuilt the changes (0, 25, 50, 75, 100).  

Questionnaire: After the Freeze/Rebuild activity is completed the participants were asked 

to complete a Criticality Questionnaire with subjective ratings on a likert-like continuous scale 

of 0 – 100. The motivation for using such scales was to collect individual’s assessments 

formulated through continuous numerical values, that are required to support quantitative 

analyses based on statistical methods (for the justification of this approach from the statistical 

point of view, see [CHI 09] and [BEL 18]). This questionnaire was defined to get more 

information about drivers’ risk awareness and their assessments regarding LoA, by 

considering:   

1. The criticality of the situation at the moment of freeze,   

2. The criticality of the situation in the next few instants, if it had continued 

uninterrupted,   

3. How well they (for manual driving) versus the automated systems managed the risk in 

the scenarios.  

We also included a section of questions focusing on perceived usefulness and acceptance of 

automated systems. These, again, changed with levels of automation, progressively moving 

from rating how potentially useful an automation system would be in Manual Driving mode, 

up to review an automated system that handled the situation independent of human 

interaction.  

Additionally, participants were asked an open-ended question about how they expected the 

situation to evolve over the next few seconds (i.e. Red car will switch lanes and lead car will 

brake). Again, since context is key for awareness, it is important to have an idea about what 

their internal representation is, and this question provides further details and context about the 

participants’ awareness  

  

2.1 Equipment  

We used a fixed base driving simulator for this experiment, PSICoSyHM (Plateforme de 

Simulation Intégrative du COnducteur et des SYstèmes Homme-Machine), which was 

developed at the LESCOT laboratory at IFSTTAR-Bron. The driving simulator is a bespoke 

system, using three 27 inch screens for a full 140° visual field, a Logitech G25 steering wheel, 
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and a Citroen Saxo driver seat. There are cameras focused on the participant’s face and feet, 

as well as one camera mounted high behind the participant’s head to capture all 140° of screen 

on the simulator. A Tobii X2-30 eye-tracker was used to capture gaze data of the participants.  

The software features a virtual environment generated by SiVIC (for Simulateur 

VéhiculeInfrastructure-Capteur) platform, which was developed by IFSTTAR-LIVIC 

([GRU 06]). SiVIC is used to simulate vehicles, sensors, and the environment.   

As part of the methodology, we included a joystick for manipulation of the generated 

vehicle meshes during the rebuilding task. For this we chose a Microsoft Sidewinder Precision 

2 joystick.  

We had a custom, in-house developed software solution for recording the qualitative data, 

such as the criticality assessment, the participants’ anticipated course of action, and the SA 

rating we gave the participants. This software provided Likert scales for reporting, and, when 

appropriate, boxes for recording qualitative data   

  

2.2 Behavioural measure  

With the PSICoSyHM and Tobii equipment setup, we collected data relating to driver input 

actions on vehicle commands, such as steering and pedal activation, as well as collecting gaze 

information with the eye tracking system. Only data collected from the second experiment 

will be presented in this paper.  

  

2.3 Driving tasks  

The general driving task to be performed by the participants during our 2 experiments was 

a car following task. Car following is a reference task in the field of transportation research to 

assess drivers’ abilities and reaction time to regulate their speed (according to lead car speed 

variations), which offers continuous measures of the drivers’ visual attention allocated to the 

road environment and of their driving behaviours performed for vehicle controlling 

([BRO 94]).  

For both experiments, the driving tasks performed by the participants were similar in the 

involved driving a virtual car in an urban highway environment with a posted speed limit of 

90 km/h. In all scenarios, the driver was informed that they would be following a lead car, 

which was a white Mini Cooper in all cases. In manual driving condition, participants had to 

follow a lead car at a safe distance and were prompted to attend to their distance if they drove 

too close or too far from the lead vehicle. In both automated driving variations, their vehicle 

was programmed to follow the lead car at an inter-vehicle time distance of approximately 

1.8s, a distance used in previous experiments in this lab ([BOR 16]).   

The specific driving scenarios were different for the two experiments, either a congested 

traffic jam, or a critical moment, depending on the experiment, which will be described in 

further detail later.  

In the 1st experiment, the SAFIR method relied primarily limited on the questionnaire 

section, dealing with the assessments of driving task to be performed and automated systems 

acceptance and usefulness. For the 2
nd

 experiment, each of the scenarios ended additionally 

with an occlusion of all screens, at which point we implemented the SAFIR protocol (as 
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outlined above). The average length of the SAFIR protocol is about 3 minutes from the end of 

the occlusion until the loading of the next scenario, though this varied at times when more in 

depth responses were offered by the participants.   

At the end of the last scenario in the last block, we offered a debrief and arranged for 

payment of the participants. The average time to complete the entire experiment from initial 

data collection interview to final post-freeze question was approximately 4 hours.   

  

2.4 Participants  

There were 32 participants involved in both experiment 1 and 2, 16 experienced drivers (6 

female, 10 male, avg. age 24) with an average driving experience of 63700 km (from 15.000 

to 150.000 total driving experience), and 16 novices (9 female, 7 male, avg. age 20) that had 

their driving license for less than three years and with an average driving experience of 2700 

km (up to 9000km).  

  

    

3. Results  

  

3.1 Experiment 1: Investigate effects of vehicle automation in normal driving 

conditions   

  

3.1.1 Objective  

This first experiment implemented investigated the Task Difficulty and Annoyance 

experienced by the car drivers when they perform a manual driving task which involved 

following a lead car in congested urban highway traffic. These manual driving responses were 

then compared with responses for 2 types of automated driving systems: (1) an L3 automation 

system which generates takeover warnings for the drivers in case of unsafe following distance, 

requiring them to intervene by pressing a button, and (2) an L4 automated driving system 

which regulates itself, managing the longitudinal and lateral control of the car without any 

action required of the human driver.   

We studied drivers’ behaviours and subjective feelings during manual driving 

(corresponded to the “current baseline” in terms of effort experienced and/or driving 

performance) and their expectations towards future driving systems able to manage this 

normal traffic situation. To this end, a similar questionnaire was applied for the 3 LoA in 

order to study “how Useful” and “how Acceptable” an automated driving system would be 

(for manual control) or was (regarding the L3 and L4 systems simulated in the study).   

  

3.1.2 Task to be performed and driving scenarios for Experiment 1  

The simulated scenario involved drivers following a lead car with an average approximate 

speed between 55 and 60 km/h on an urban highway. The average speed for the scenario was 

less than the posted 90km/h speed limit due to congested traffic conditions, with several cars 

around the ego vehicle braking down to between 15 to 20 km/h at regular intervals, and then 

quickly reaccelerating to approximately 60 km/h.  Participants were asked to regulate their 
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position in traffic, following the lead car in the right lane, and asked to maintain safe 

following distances.   

In manual mode, the participants were responsible for maintaining continuous control over 

pedal usage, with regular activation of the brake and accelerator pedals to maintain a safe 

following distance. In the Level 3 Automation mode, audio-visual TORs were sent to the 

driver when the L3 system reached its limits, requiring an intervention from the driver (via a 

button press, see Figure 1) to support the system's decision to activate an automatic braking in 

charge to keep a safe following distance with the lead car. In Level 4 automated mode, the 

driver was not required to provide any input about vehicle regulation, and was assigned to the 

role of a "passive passenger" of the car, however experiencing the automatic management of 

the driving situations, as performed by the L4 system.  

The vehicle regulation for the automation systems were programmed to maintain 1.8 

seconds following distance, based on the Envelope Zones of COSMODRIVE simulation 

model ([BOR 16]), which provided guidelines for maintaining a safe following distance from 

the human driver’s point of view.  

  
Figure 1. Interface and buttons for Experiment 1  

  

For each of the 3 driving modes we collected several types of data including 

questionnaires, driving performance metrics, and eye-tracking. The driving modes were 

presented in an ascending order from manual control to L3 and L4 automation. We chose this 

approach to avoid influencing manual responses with strategies used by the automated driving 

systems. The questionnaires covered subjective responses about Task Annoyance, Task 

Difficulty, Usefulness of the Driving Aids (expected or assessed). These were rated on a 

continuous scale of 1-100, apart from change awareness, which was nominal.   

  

3.1.3 Main Results  

All participants successfully managed the situation in manual mode, and adapted to the 

automation systems during the nearly 6-minute scenarios. There were no collisions or errors 

that resulted in catastrophic failure for the scenarios. It is a common enough scenario that even 

the novices were able to handle it with no trouble.   

The results we obtained (ANOVA presented in Table 2) showed statistically significant 

differences between Manual driving, L3 Automation driving, and L4 Automation driving, for 
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the 4 dimensions investigated in this experiment (i.e. task Difficulty, Annoyance, Usefulness 

of the assistance and driving aid Acceptance).  

  

Participant’s assessments 

Manual (L0)  L3 Automation  L4 Automation  
ANOVA   

Significance  Mean  SD  Mean  SD  Mean  SD  

Task Difficulty  43.3  20.38  44.2  31.52  22.4  28.89  < 0.001  

Task Annoyance   74.5  16.91  77  19.3  46  35.93  < 0.001  

Aid Usefulness  78.7  19.69  41  33.47  83.4  21.15  < 0.001  

Aid Acceptance  78.8  21.96  47  33.40  82.6  20.85  < 0.001  

 

Table 2. Driving task difficulty & annoyance and Aid usefulness & acceptance, according 

to the level of automation 

  

Statistical analyses based on Post-hoc tests (Bonferroni) provided more detailed results 

about these significant differences, regarding both the task to be performed and the driving aid 

systems:  

Regarding the Task Difficulty, performing the driving task with the L4 automation system 

taking full responsibility for the driving task, the participants reported that the scenario was 

assessed by the participants as significantly less difficult (22%, p < 0.001) than both Manual 

driving (43%) and L3 (44%).   

Similarly, the Task Annoyance was assessed as significantly (p < 0.001) lower for L4 

(46%) than either Manual mode (75%) or L3 automation (77%). This task was assessed as 

highly annoying in manual and L3, but transferring full responsibility for driving tasks to the 

more self-reliant automation system significantly lowered the intensity of negative feelings 

about the scenario.  

Regarding Usefulness, L3 automation was assessed as significantly less Useful (41% 

versus 79%; p < 0.001) than L4 automation. Additionally, the usefulness scores for the higher 

level automation matched the “expected usefulness” that participants reported during manual 

driving (79%).  

The system Acceptance is significantly (p < 0.001) higher for L4 (83%) than L3 (47%). 

Again, L4 obtained an acceptance score close to the “expected acceptance” ratings of driving 

aid systems during manual driving (79%).  

Regarding the Driving Experience effects, it must be also noted that the difficulty 

experienced by the 16 novice drivers in the manual control mode was significantly (p < 0.018) 

higher than the 16 more experienced drivers (52% and 35% for difficulty scores, respectively) 

and a similar tendency also appeared towards the L3 automation (54% versus 35%, p = 0.08). 

By contrast, the Acceptance score obtained by the L4 automation system requiring no input 

was similarly high for both novices (85% of acceptance) and experienced drivers (80%).   
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3.2. Experiment 2: Investigate effects of vehicle automation in critical driving 

conditions  
  

3.2.1 Objective  

The second experiment was focused more specifically on how automation can impact 

driver behaviour and cognition in critical moments during common driving scenarios. In this 

experiment, participants looked at 4 scenario types which are common traffic situations where 

the criticality of the situation can rapidly escalate. These scenario types were presented in 4 

individual driving mode blocks, with progressive increases in criticality and level of 

automation for each block. In manual driving tasks the situations are to be handled normally, 

establishing baseline responses. This is compared with an L3 automated system that requests 

input from the drivers with a TOR to make a choice about the avoidance manoeuvre, and an 

L4 automated system that handles the situation without any input required from the driver.  

The goal for this experiment was to identify how drivers rate Criticality at the moment of 

freeze, Future Criticality in the next few seconds after the freeze, how well the situation was 

managed by either themselves or the automation systems (Self Management or System 

Management, respectively), and “how Useful” the participants thought a potential driving aid 

systems would be (for manual driving conditions), or “how Useful” and “Acceptable” 

automated systems were assessed (in the case of management by a L3 or a L4 automation).  

Additionally, driver input will be captured and recorded, including steering wheel, brake 

and accelerator pedal activation, and vehicle location for all elements, including those rebuilt 

during the SAFIR protocol. We also have eye-tracking software providing us with information 

about participants’ gaze data related to predetermined areas of interest pertinent to the critical 

events in the scenarios.  

 

3.2.2 Task to be performed and driving scenarios for Experiment 2  

In this experiment, drivers were given the primary task of following a simulated white Mini 

Cooper on a two-lane urban motorway at an indicated speed of 90 km/h, with occasional 

increase or decrease in speeds based on traffic conditions. The participants had to manoeuvre 

their way through several common traffic events, such as braking and passing to manoeuvre 

around other vehicles. While most of the manoeuvres were routine and mundane in nature, all 

the scenarios in the critical and post-critical variations ended with an irregular situation that 

needed to be addressed.  

Each participant completed a battery of 16 scenarios, covering 3 levels of criticality, and 3 

levels of automation. The scenarios were split into 4 blocks, with each block increasing in 

both criticality and level of automation. These blocks, or driving modes (DM), were called:  

● DM1 = Manual Control/Pre-critical: a critical situation was just beginning to develop  

● DM2 = Manual Control/Critical:  the critical situation had become apparent to the 

participant  

● DM3 = SAE level 3 Automation (Button input request/Critical): at a critical moment 

the participant is prompted to decide for the automation by pressing a button 

associated with one of three manoeuvre options (swerve left, swerve right, or brake, 
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see Figure 2). Participant kept both hands on the wheel until prompted for interaction 

as with level 3 automation systems currently available on the market.  

● DM4 = SAE level 4 Automation/Post-critical:  the critical situation is resolved by the 

automation system, while the participant observes and “passively” experiences the 

system response.   

  
 

Figure 2. Interface and buttons for Experiment 2  

  

The experiment was divided into 4 blocks, as described in Table 3. Within each of these 

blocks, there were 4 scenarios of key interest:  

1) A stalled vehicle in the right lane requiring an evasive manoeuvre (front risk/lane 

change)  

2) A vehicle that is braking to a stop requiring either equally hard braking, or an evasive 

manoeuvre to the right, into the emergency lane (front risk/collision avoidance)  

3) A vehicle merging into traffic from a motorway entrance (lateral intruder/lane change)  

4) A vehicle swerving across traffic from the left lane across to an exit ramp (lateral 

intruder/front collision avoidance)  

The DM1 and DM2 scenarios established a baseline, L3 investigated how participants 

made their decision and reacted when receiving a take-over request, while Level 4 

investigated how participants’ opinions and metrics change when they transfer full 

responsibility to the automation and do not need to intervene in any way. Additionally, these 

scenarios were presented with variations in the vehicles’ colours and positions to avoid any 

feeling of replication.  

At the end of each scenario, in all blocks, participants completed the SAFIR protocol. This 

was used to evaluate participants’ Situational Awareness (SA) and sets the scene for the 

questions that follow in a verbal questionnaire protocol. This questionnaire includes questions 

about situation Criticality at the freeze, anticipated criticality in the near future, Self 

Management of manual control the situations or by responding to the TOR for L3 

automation, System Efficiency of the L3 or L4 automated systems, and Usefulness of the 

systems (as expected in manual driving modes or assessed in automated driving modes). 
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Driving Scenarios  Driving Task to be Performed  SAE Level of 

Automation  
Investigated questions  

DM1 (4 scenarios): 
Precritical situations  

(2 front risks and 2 lateral 

intruders)  

Manual Driving in normal & 

pre-critical situations  
Unassisted Manual 

Driving (Level 0)  
Baseline data for the manual 
management of pre-critical  

situations (to be compared with 

automated modalities)  

DM2 (4 scenarios): Critical 

situations  
(2 front risks and 2 lateral 

intruders)  

Manual Driving and 

management of critical traffic  
situations  

Baseline data for the manual 

management of critical  
situations (to be compared with 

automated modalities)  

DM3 (4 scenarios): Critical 
situations (similar risk level 

to bloc B)  
(2 front risks and 2 lateral 

intruders)  

Driving with an automation 

system that requires driver  
decision making after a TOR  

(by activating a button)  

Conditional  
Automation (Level 3)  

  

How the drivers will monitor the 

driving task and make their  
decision after a TOR generated 

by an L3 automated system?  

DM4 (4 scenarios): from 
“pre” to “post” Critical 

situations  
(2 front collision avoidance 

and 2 Lane Changes)  

Passenger of an automated car  
(from normal to post-critical) 

when a situational risk is 

automatically managed  

Highly Automated  
(Level 4)  

  

How the drivers will experience 
the traffic situation and evaluate 

the automated collision risk  
management as implemented by 

an L4 automated system?  

 

Table 3. Driving Scenarios and driving tasks to be performed, per SAE level of 

automation (see Table 1) 

  

 

3.2.3 Main Results  

The Table 4 presents the main results regarding the effect of Vehicle Automation (VA) on 

Drivers’ Situation Awareness and situational Criticality assessment (current or future). Post 

hoc tests (Bonferroni) indicated that all the differences presented in this table 4 are indeed 

related to Pre-Critical states of the traffic situation, but do not concern the Critical moment. 

Essentially, it means that we found no evidence in this experiment indicating either a negative 

or positive effect of VA on drivers’ SA and Risk Awareness for our critical scenarios. 

However, one interesting result is that the L4 automation system obtained a significantly 

higher score (70%) regarding its Usefulness for managing critical driving situation when 

compared to L3 automation (57%) and both manual conditions (52% and 57% respectively).   

Finally, when we look at the eye tracking data, we found interesting results regarding the 

general behaviour of the two groups as well. It was more particularly the case in L4 automated 

driving conditions. In these scenarios, experienced drivers spent proportionally more time 

looking at the Areas of Interest (AOIs) in front of them (Novices allocated 23% of total 

recorded gaze time against 33% for Experienced drivers; p-value = 0.0115), and not as much 

time as the novices looking at what was happening behind them (9.6% of total recorded gaze 

time for Novices versus 5.82% for Experienced; p-value = 0.0028).  
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ALL Scenarios  
Manual Pre-Critical  Manual Critical  L3 Automation  L4 Automation  

ANOVA  
Significance  Mean  SD  Mean  SD  Mean  SD  Mean  SD  

SA Score  97.9  14.35  85.4  30.71  89.6  28.94  85.9  32.20  0.012  

Criticality Score  53.1  25.55  58.9  22.50  56.4  22.11  59.7  24.27  0.013  

Future Criticality  60.3  27.17  64.6  23.02  61.9  23.81  57.4  25.71  0.015  

Self Management  63.7  21.04  56.9  23.19  71.3  27.73  -  -  0.000  

System Efficiency  -  -  -  -  79.2  23.59  70.3  25.45  0.001  

Aid Usefulness  52.2  26.64  57.3  26.88  56.6  26.4  69.6  27.54  0.000  

 

Table 4. Drivers’ Situation Awareness score and Assessments, according to the level of 

automation 

  

Moreover, when considering the LOA effects on all participants’ visual scanning, more 

specifically when considering the last 5 seconds of the driving scenarios as illustrated in 

Figure 3, there was an increase in the percentage of time not looking at pertinent Areas of 

Interest (i.e. lead car, rear view mirror, merging vehicles, etc…) as automation increased, with 

the highest off-AOI scores occurring in the L3 automation block. Due to hardware limitations 

in the experiment, it was impossible to capture data on glances at the visual elements of the 

automated audio-visual warning system for L3 automation, so this increase in the total time 

‘off-AOI’ may be partially caused by participants looking at, and responding to, the system 

interface.   

  
Figure 3. Visual scanning during the last 5 seconds of the scenarios (all the 

participants) 
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Nevertheless, eye-tracking data also showed that in manual modes, participants spent more 

time looking forward at the AOIs in front of the vehicle (Manual Pre-critical = 32.8% of total 

recorded gaze time; Manual Critical = 33.2%), while the percentage of time spent looking 

forward dropped with level 3 and 4 automation (L3 automation = 19.6% of total recorded 

gaze time; L4 automation = 25.7%). In support of this, we found that the results were reversed 

if we looked at rearward looking AOIs (Manual Pre-critical = 3.6% of total recorded gaze 

time, Manual Critical = 6.2%; L3 automation = 9.47%; L4 automation = 8.5%). In other 

words, it seems that the vehicle automation leads to increases the drivers’ pattern of looking 

rearward for rebuilding their SA after an automated driving phase, at least in the frame of the 

driving scenarios we are investigating in this experiment.  

  

Manual (8 Scenarios)  
Novice  Experienced  

ANOVA  
Significance  Mean  SD  Mean  SD  

SA score  93.2  23.64  90.1  25.78  NS  

Criticality score  59.5  23.88  52.5  24.11  0.0201  

Future Criticality score  67.1  24.95  57.8  24.71  0.0028  

Self management  57.1  21.70  63.4  22.65  0.0233  

System Usefulness (expectations)  51.95  28.36  57.45  25.01  NS  

L3 Automation (4 Scenarios)  
Novice  Experienced  

ANOVA  
Significance  Mean  SD  Mean  SD  

SA score  91. 7  25.96  87.5  31.79  NS  

Criticality score  62.3  21.25  50.5  21.52  0.00224  

Future Criticality score  68.2  22.09  55.6  23.96  0.00239  

Self Management (TOR response)  72.9  25.23  69.8  30.14  NS  

System Efficiency  81.2  23.93  77.2  23.26  NS  

System Usefulness  59.8  24.42  53.4  28.06  NS  

L4 Automation (4 Scenarios)  
Novice  Experienced  

ANOVA  
Significance  Mean  SD  Mean  SD  

SA score  82.3  36.45  89.6  27.21  NS  

Criticality score  64.5  24.21  54.8  23.51  0.02224  

Future Criticality score  63.7  25.99  51  23.99  0.00482  

System Efficiency  73.7  22.77  67  27.66  NS  

System Usefulness  74.3  24.12  65  30.03  0.05188  
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Table 5. Comparisons of Novice versus Experienced drivers’ assessments, for manual 

and automated driving 

  

When considering driving experience effects, we found some interesting differences 

(presented in table 5). The most consistent of these results was that in every modality, novice 

drivers scored criticality and future criticality higher than their more experienced 

compatriots (see tables below for values). With manual driving, more experienced drivers are 

more confident in their self management, or ability to manage the situation, than novice 

drivers, and that the less experienced drivers view the L4 automation as more useful to 

manage the situation, compared to more experienced drivers.   

Another interesting result (Table 6) appears when analysing the 4 driving scenarios 

performed with the L4 automation system. Indeed, for two of these scenarios, the manoeuvres 

were based on atypical strategies that were less predictable, and riskier in order to avoid a 

front collision with the obstacle (compared with an automatic emergency braking manoeuvre, 

or an overtaking manoeuvre, which were implemented in the other 2 scenarios). In the first 

case, the system opted to accelerate towards the stalled vehicle before implementing a lane 

change (to the left), and in the second case, it avoids the collision by going into the emergency 

lane to the right.  

  

Scenario 401 + 402  
Novice  Experienced  Result  

Mean  SD  Mean  SD  
Significance 

SA Score  92.2  22.39  93.8  16.80  NS  

Criticality Score  69.7  20.67  58.9  23.82  0.0578  

Future Criticality score  69.8  23.26  55.6  24.72  0.02244  

System Efficiency  66.1  25.92  53  29.51  NS  

Aid Usefulness  69.5  26.95  58  32.65  NS  
 

Table 6. Comparisons of Novice versus Experienced drivers’ assessments, for manual 

and automated driving 

  

While these two less predictable manoeuvres led to significant differences, with the 

experienced drivers rating criticality lower, there was no significant difference found for the 

automated scenarios where the system chose a more predictable response. This difference 

indicates that novice drivers assess the automation system’s decisions as riskier when it opts 

to make a less predictable manoeuvres, potentially due to a lower understanding of the 

situations.  

When considering reaction time when faced with a hazard (Figure 4), we matched the 

criticality at the moment of freeze for the critical Manual control scenarios and the L3 

automation scenarios, so that the only change between the two conditions was the level of 

automation and the required reaction feedback from the driver (i.e. steering and pedal input in 
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manual driving and responding to the TOR by pressing a button for L3). With the automation, 

there was significant increases in reaction times for both Novices (Manual: 1.13s; L3: 1.56s; 

p= 4.71e-07), and Experienced drivers (Manual: 0.91s; L3: 1.44s; p= 6.92e-10). This could be 

explained by an “out of the loop” effect due to vehicle automation, which would result in 

participants having a higher reaction time for making their decision and/or acting, regardless 

of their level of driving experience, when faced with a similar critical event.  

Additionally, the reaction time for Experienced drivers (0.91 s) was significantly lower 

than the novice drivers (1.13 s) in Manual control scenarios (p = 0.012), but with automation, 

the difference between the two was not significant (Novice: 1.56; Experienced: 1.44; p= 0.11). 

This result could be explained by the fact that all participants have limited/no exposure to 

automation systems, while the difference in manual driving experience may have an impact on 

performance in that modality.  

   

  
Figure 4. Reaction time after a critical event for Manual Driving vs L3 Automation 
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4 Discussion   

  

These two experiments, while using a similar methodological approach, covered two very 

different types of traffic scenarios. One rather mundane task where automation would 

primarily benefit the drivers in the avoidance of boredom and the negative effects of focusing 

on a monotonous and repetitive task, and a critical moment where the changes are more 

dramatic and quick. The SAFIR method protocol is still flexible enough to be used for these 

two very different kinds of scenarios and still provide good insight.  

  

4.1 Discussion of Experiment 1 results  

All these results collected for experiment 1 indicated that, for the Traffic Jam Situation, the 

L4 automation provides a very helpful and highly accepted assistance, significantly reducing 

the driving task difficulty and annoyance. Results for usefulness and acceptance also showed 

L4 being received far better scores than L3 automation. In fact, we saw a scores drop by 

nearly half from Manual to L3 automation for both metrics.   

It is evident in this task that the participants are more than willing to pass the bulk of the 

responsibility for the driving task to a self-sufficient automated driving system. By contrast, 

an automation system that automates some, but not all, of the tasks, and requires driver to 

respond to input requests, does not present any subjective improvement over manual driving 

for the participants, and fails to meet expectations for a good assistance system.  

As the regulation manoeuvres performed by the L4 automation system in this experiment 

are based on COSMODRIVE model strategies (simulating real human drivers’ activities) 

these results also indicate that a fully automated driving system able to reproduce real drivers’ 

behaviour could be an interesting way to support human drivers in an efficient way and to 

increase its acceptance. By contrast, the L3 automation system that we simulated in this 

experiment, which generates take-over requests for the driver provide input to the decision-

making process, was assessed as not useful and was poorly accepted.  

While this information is useful in building up our cognitive modelling objectives, a second 

experiment - including more detailed data and analysis about drivers' cognitive processes and 

behaviours - was implemented to further explore LoA effects in critical contexts.   

  

4.2 Discussion of Experiment 2 results  

When we look at the results obtained from the 2
nd

 experiment, we can categorize them into 

2 main effects: the effects of level of automation and the effects of level of driving experience. 

Regarding the LoA effects, we found that the L4 automation in this experiment was viewed as 

significantly more useful at managing critical situations than automation that involved driver 

input and ended up being viewed as more helpful than participants had anticipated, indicating 

that the this L4 system was subjectively assessed more useful than any of the participants had 

expected. Essentially, once the driver is removed from the decision-making process, they gain 

a significantly better opinion about how useful automation is.  

However, we also had several results that indicated certain negative effects that are 

associated with the driver being “out of the loop” due to vehicle automation. Firstly, we found 

that these systems lead to drivers’ spending more time looking at mirrors at critical moments 
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in order to maintain a good level of situation awareness. We also found that there were slower 

reaction times in L3 automation. Participants ended up taking more time for making their 

decision and/or for acting, independently of their level of driving experience, when facing to a 

similar critical event with L3 automation. As this block had approximately the same level of 

criticality as Manual Critical, we can sufficiently say that increasing automation is the 

explanation for this increase in reaction time.  

When we looked at the effects for level of experience, one of the earliest and strongest 

findings we had with this experiment was that criticality and future criticality were 

consistently rated higher in both manual and the L3 automation modalities by novices than 

more experienced drivers. This is where we saw the clearest, most consistent difference 

between the two groups. We have ample evidence, presented in tables 5 and 6 above, to 

support the claim that novices view criticality significantly different than the experienced 

drivers. Additionally, novice drivers assess decisions by the L4 automation as more risky than 

experienced drivers when the automation made less predictable manoeuvres. There is strong 

potential that all of these elevated criticality ratings are due to a lower level of comprehension 

and understanding of the situations, as they are still relatively novel situations that haven’t 

been seen enough for the novice users to have created well developed, robust mental 

representations of the situations.  

In addition, we found that Novice drivers were looking around at the situation more than 

Experienced driver in driving situations where the L4 automation did not require driver input 

for decision making. These more elevated and diffused/confused/disorganized visual scanning 

observed among the novice drivers in these L4 conditions could be the result of a poor mental 

representations of the traffic situation, compared to the experienced drivers. It could explain 

why novices assess the situation as more critical: while the experienced drivers primarily 

focus their attention on the main critical event and its management by the L4 system, novice 

share their visual attention with all other AOI to better understand the situation around them. 

Due to the time constraint, their SA at the freeze moment would be more confused compared 

to experienced drivers, and their feeling regarding the situational criticality higher.   

  

    

5. From empirical studies to cognitive modelling and simulation  

  

5.1 Objective  

Beyond implementation of experiments, the last objective of this research was also to use 

the empirical data collected during these 2 experiments to enhance the COSMODRIVE model 

(for COgnitive Simulation MOdel of the DRIVEr) developed at IFSTTAR, in order to 

simulate driving activity as a dynamic ‘‘Perception–Decision–Action” regulation loop 

managed from drivers’ mental representations ([BEL 09]). As mental models of the traffic 

situation that correspond to the driver’s situation awareness, these mental representations 

actively direct the driver’s visual scanning of the road environment, as well as guide their 

driving behaviour, in order to ensure a continual and dynamic adaptation to the traffic 

situation.   
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5.2 Main Results   

The collected empirical data that we considered most relevant to this approach were the 

visual scanning strategies captured with the Tobii eye tracking system during experiment 2, 

and the driving behaviours associated with decision-making performed by the participants 

which were recorded on PSiCoSyHM driving simulator.     

  

5.2.1 Modelling and simulation of visual scanning with COSMODRIVE model  

Synthetically, there are 2 main ways to model and simulate visual scanning with 

COSMODRIVE model. The first one (currently implemented in COSMODRIVE, as 

illustrated in Figure 5 below) is to “replay” eye tracking data previously recorded among real 

human drivers, by dynamically and progressively implementing the sequence of fixation 

points performed by the drivers in a given driving scenario.  

  

  
 

Figure 5. Replaying visual scanning with COSMODRIVE, from Eye tracking data 

collected among a real driver 

From this first approach (as previously implemented in [BEL 12]), the principle idea is to 

use the eye tracking data file recorded among a given participant as “input” and to “replay” 

this data file with COSMODRIVE’s virtual eye. Then, the sequence of fixation points that is 

generated as “output” by the virtual eye of COSMODRIVE based simulation may be 

compared to sequences of fixation points observed in real drivers, in order to ensure that it is 

capable of replicating a variety of human eye tracking performances. Additionally, because 

the virtual eye allows COSMODRIVE to progressively build its mental representation with 

the information extracted from the road scene, this replay approach may be also used to 

progressively “feed” the COSMODRIVE algorithms that integrate the visual information 

collected by the virtual eye into the mental model. With this information, it is possible to 

simulate “What” and “When” these visual elements are perceived, and “How” they are finally 

integrated into the drivers’ Situation Awareness.  

The second approach is to model - from empirical data – the “patterns of visual scanning”, 

by selecting and playing one of these patterns according to the drivers’ situation awareness, 
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and their risk assessment, in accordance with the cognitive processes they implemented to 

make their decision.   

Currently, this second approach is being used to emulate L3 automation: a specific 

modelling work was implemented to simulate visual scanning patterns used by the drivers 

immediately following the TOR to rebuild their situation awareness after the automated 

driving phase. With the information gained from these visual scanning patterns, which 

facilitate their reintegration into the loop of control, the drivers have to make the decision to 

press one of 3 possible buttons, each associated with a specific manoeuvre (braking, lane 

changing to the Left, or lane changing to the right), in order to activate the most appropriate 

driving action to be implemented by the L3 system. Two main visual strategies were modelled 

from our empirical data previously collected, depending if the driver observed or not the 

audio/visual interface before pressing the button. The next step will be dedicated to the 

validation of such pattern-based simulations by systematically comparing COSMODRIVE’s 

visual scanning with the eye tracking data recorded from real drivers during our 2 

experiments.  

  

5.2.2 Modelling and simulation of decision-making behaviours   

In the frame of our experiments, 6 of the 16 driving scenarios investigated in experiment 2  

(2 for manual pre-critical, 2 for manual critical and 2 for L3 automation) dealt with the 

decision-making between lane change or braking in case of a frontal collision risk occurrence 

due to a slow or a stopped vehicle. In the COSMODRIVE model, decision-making is based on 

the “driving schemas” and the “envelope-zones” theories ([BEL 09]). Both of these theories 

are associated with a cognitive process known as “mental simulation,” which aims to predict 

the future collision risks with other vehicles, respectively associated with different alternative 

actions liable to be implemented in a given situation ([BOR 16]). The following figure 

illustrates this risk assessment based on a cognitive deployment regarding a Lane Change 

manoeuvre (to be compared by the decision cognitive process with risks computed for 

alternative strategies like braking).  

  

 
 

Figure 6. Simulation with COSMODRIVE of the decision making to manage a front 

collision risk (from a Lane Change versus a Braking) 

 

This cognitive process of decision-making is implemented in COSMODRIVE for manual 

driving, and the development of such simulation functionalities is currently in progress 

regarding the L3 automation (activation of a button by the driver when receiving a Take Over 

Request from a simulated ADAS system) as investigated in our 2
nd

 experiment. This 
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modelling effort is supported by the in-depth analyses of both visual scanning and driving 

behaviours.   

Figure 7, which was created using the data collected in experiment 2, illustrates this 

approach by considering 2 typical examples of drivers’ behaviours collected for the same 

driving scenario (i.e. a vehicle entering the roadway and merging into traffic from the right), 

according to their respective level of driving experience. Regarding the experienced driver  

(left section), the participant immediately observed the critical event area (AOI “InsertRight”) 

while lifting off the accelerator pedal, then looking at the lead car (AOI “LeadCar”), and then 

glancing at the rearview mirror (AOI “Rearview”) while braking. All this sequence was 

performed in 1 second, and immediately after the detection of the critical event. By contrast, 

the novice driver (right section) first observed the Lead Car, then detected the critical event 

(i.e. AOI “Insert-Right”) and observed it while lifting off the accelerator pedal, and then he 

glanced the rearview mirror while braking, like the experienced driver, but with a global 

reaction time of more than 1.5 seconds.   

 

 A) Example coming from an experienced driver  B) Example coming from a novice driver  

Figure 7. 2 typical examples of visual scanning and actions on vehicle control recorded 

for the same manual driving scenario performed by an experienced driver versus a 

novice driver. 

 

From these types of in-depth analyses (currently in progress), the ultimate aim will be to 

simulate these kinds of different driving performance, including visual scanning, decision 

making and driving action implemented, with the COSMODRIVE model.     

  

5.3 Future perspectives about vehicle automation effects modelling and 

simulation   

This type of integrated COSMODRIVE-based simulation of drivers’ visual scanning 

patterns, cognitive processes, and driving behaviours will be of a great interest in the future to 
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support the Virtual Human Centred Design of Vehicle Automation and HMI based on eye 

tracking monitoring functions ([BEL 12]).   

The first expected advantage of this virtual design approach is the possibility of using 

COSMODRIVE as a “virtual model of the future end-users” in the earliest stages of the 

design process when costly mock-ups or prototypes to support experiments with real drivers 

are not feasible/available.  

The second expected advantage is related to the simulation of human drivers’ errors, or 

accident risks due to visual distraction in case of unassisted driving, and then to support the 

identification of particular “instances” of driving scenarios (ie. providing a set of “reference 

scenarios”) becoming more particularly critical in case of a distracted driver (as simulated and 

captured by COSMODRIVE’s visual scanning).  

And finally, when the monitoring functions are virtually designed and developed, 

COSMODRIVE-based simulation could be also used to test and improve their effectiveness 

and their efficiency. This could be done by checking, for instance, if COSMODRIVE would 

be able to adequately manage the risk in the frame of the previously mentioned “scenarios of 

reference” when supported by such monitoring functions, or not.   

Of course, a lot of effort still needs to be done to reach all these challenging objectives, but 

the work implemented during our 2 simulator studies has helped us make significant progress 

towards a future simulation platform able to support the virtual human centred design of 

vehicle automation.   
  

6. Conclusion   

In this paper, we presented two experiments based on similar methodological approach, 

however covered two very different types of traffic scenarios. One rather mundane task where 

automation would primarily benefit the drivers in the avoidance of boredom and the negative 

effects of focusing on a monotonous and repetitive task, and a critical moment where the 

changes are more dramatic and quick. Finally, the SAFIR method protocol is still flexible 

enough to be used for these two very different kinds of scenarios and still provide good 

insight.  

With all the results acquired from these experiments, we see more clearly how automation 

may affect behavioural routines and actions, as well as the cognitive processes like Situation 

Awareness, risk assessment and decision-making performed by the driver under different 

levels of automation, and how this can be integrated in a cognitive simulation model like 

COSMODRIVE. In both experiments we also found that participants preferred higher L4 

LOA than L3 automation, regardless of how much driving experience they had amassed. With 

eye-tracking, we found an increase in the percentage of time not looking at pertinent Areas of 

Interest as automation increased, with the highest off-AOI scores occurring in the L3 

automation block, but this increase in the total time ‘off-AOI’ may be partially caused by 

hardware limitations in the experiment. It also showed that the percentage of time spent 

looking forward dropped with level 3 and 4 automation. When considering reaction time with 

the L3 automation, there was significant increases in reaction times for both novice and 

experienced drivers compared to manual driving conditions. Finally, regarding driving 

experience effect, one of the clearest and most prominent findings is that novices consistently 



© 2018 ISTE Open Science – Published by ISTE Ltd. London UK  

rated criticality and future criticality higher than experienced drivers, in every driving mode, 

and experienced drivers are more confident in their self management in manual driving than 

novice drivers. We also noted that when we looked at all participants together, regardless of 

experience level, there was no clear pattern for Criticality, however, Future Criticality 

decreased with increasing levels of automation.  

In addition, we have yet begun the heavy task of analysing our empirical data for being 

integrated into the COSMODRIVE modelling framework, but now we have results that will 

allow us to include differentiating interpersonal and situational factors in the model. The 

inclusion of these differentiators will aid us in our ultimate objective of creating a more robust 

and holistic model of the human driver that can be used in the future to model and understand 

how and why human drivers would react, according to their driving experience, the criticality 

of the driving situations and/or to the Level of vehicle automation.  
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