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Abstract. Ek-NNclus is a clustering algorithm based on the evidential
k-nearest-neighbor rule. It has the advantage that the number of clusters
can be detected unlike a c-means for example. However, the parameter k
has crucial influence on the clustering results, especially for the number
of clusters and clustering quality. Thus, the determination of k is an
important issue to optimize the use of the Ek-NNclus algorithm. The
authors of Ek-NNclus only give a large interval of k, which is not precise
enough for real applications. In traditional clustering algorithms such as
c-means and c-medöıd, the determination of c is a real issue and some
methods have been proposed in the literature and proved to be efficient.
In this paper, we borrow some methods from c determination solutions
and propose a k determination strategy based on an empirical study.
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1 Introduction

In cluster analysis, choosing the optimal number of clusters is a well-known
problem [7, 1]. For many clustering algorithms (such as c-means, c-medoids, etc.),
the number of clusters noted by c must be pre-defined1. The correct choice of
c is not simple, needing most of the time a subjective interpretation of some
criterion directly linked with the structure of data and the wanted clustering
resolution.

The Ek-NNclus method, proposed by [3], does not need the pre-definition of
the parameter c and is able to detect the number of clusters. However, as Ek-
NNclus is based on the k-nearest neighbors, the parameter k, given the size of
neighborhood, should be set. Different k may result in various clustering results
and often with different number of clusters. Therefore, Ek-NNclus has replaced
the problem of c determination by the problem of finding a proper value for k.
In [3], the authors concluded that the results of clustering are mostly conducted
by the parameter k. Following the rule of thumb, such as the determination k in

1 In many articles, the number of clusters is denoted by k. To avoid ambiguity with
another parameter k of k-nearest neighbors in Ek-NNclus algorithm, we use c in this
article.
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the k-nearest neighbors classifier, the authors also give an empirical suggestion
on the determination of k, which is two or three times

√
n where n denotes the

number of all objects. The range between two or three times
√
n is sometimes

too wide and even within this range, the clustering results are still quite dif-
ferent. Besides, in Ek-NNclus, the existence of some random processes makes
the method not perfectly reproducible (i.e. on one dataset, with identical k,
clustering results may not be even close).

Moreover, the optimal k varies with the scale of the data, making the deter-
mination of k necessary for every clustering analysis problem. The determination
of k is two-fold. An optimal k in Ek-NNclus should:

1. Cluster the data into the correct number of clusters;
2. Return a result with high quality, close to the real partitions of objects.

There are already some often-applied methods to determine c, such as evaluation
criteria (e.g. silhouette coefficient [10]) optimization, elbow method and infor-
mation criterion approach. In this article, we borrow and test these methods to
evaluate if they are still applicable for the determination of k in Ek-NNclus. We
also propose a determination strategy based on these methods.

In the following parts, we briefly introduce the Ek-NNclus algorithm as well
as some criteria for c determination in c-means in Section 2 and 3. In Section 4,
we introduce the proposed k determination strategy. We illustrate this strategy
on synthetic data and real-world data in Section 5 and give a conclusion in
Section 6.

2 Ek-NNclus algorithm

Ek-NNclus is a clustering algorithm based on the evidential k-nearest-neighbor
classifier. It requires only the pairwise metric for k-nearest-neighbor searching.
Ek-NNclus starts from an initial random partition, and reassigns objects to clus-
ters iteratively using Ek-NN classifier [2]. The algorithm converges to a stable
partition. For each object, its membership to clusters is described by a mass
function in a framework of each cluster and the whole set of clusters (i.e. ig-
norance). Given a matrix of pairwise distances D = (dij), where dij denotes
the distance between object oi and object oj , according to [3], the procedure of
EkNNclus can be briefly divided into the following parts:

– Preparation Calculate the mass value αij of the event: oj is in the k-nearest
neighbors of oi based on dij by a non-increasing mapping function φ(dij).
Naturally, αij = 0 if oj does not belong to the k-nearest neighbors of oi.

– Initialization Initialize the labels of each object randomly. The authors of
[3] suggest that the number of clusters c can be set to the number of objects
n if n is not too large.

– Iteration Randomly reorder all objects. Then, for every object oi′ in the
new order, calculate the plausibility of belonging to each cluster. Assign oi′

to the cluster with the highest plausibility.
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– Convergence condition The iterations stop when the labels of all objects
are stable.

In this procedure, the number of k at the preparation step has a vital impact on
the clustering results. If k is too small, the matrix of α becomes sparse. In this
case, the number of iterations is small and the clustering result highly depends
on the initialization step, which is usually random. If k is too large, two objects
far away from each other may be considered as in the same neighborhood. This
may have two consequences:

1. The computation time becomes important;

2. Objects naturally in different clusters may be targeted as in the same one,
causing an underestimation of number of clusters.

Therefore, the determination of k is important to guarantee a good quality of
clustering.

3 Some methods in c determination

Some solutions from c determination for c-means algorithm are borrowed to help
the determination of k in Ek-NN algorithm. In this section, we introduce how
Adjusted Rand Index (ARI), silhouette coefficient and elbow method are applied
for the determination of optimal c.

Adjusted Rand Index (ARI)
Rand index (RI) [8] is a measure of similarity between two data clustering.
Developed from RI, Adjusted RI (ARI) is adjusted for chance grouping of objects
in clusters [8, 12]. We use ARI as the priority criterion for the evaluation of the
clustering result with the knowledge of the ground truth given. Thus, the cluster
number c that returns the highest ARI value is determined as the optimal one.

Silhouette coefficient
Silhouette coefficient is useful in determining the natural number of clusters [1,
10]. The silhouette coefficient is an evaluation criterion, in which the calcula-
tion is only based on the intra-class and inter-class distances of each object
pair. A higher silhouette coefficient score relates to a model with better defined
clusters. Thus, the problem of optimal c determination can be transferred to a
silhouette coefficient maximization problem [1]. Another advantage of silhouette
coefficient is that only pairwise distances are needed and the calculating of cen-
ters is avoided. Indeed, independent to centroid is a good property. For some
metrics where only pairwise distances are given, the calculation of centroid is a
metric k-center problem, proved to be NP-hard[4].

Elbow method
The elbow method [11] applies the distortion as a criterion for clustering result.
The rule is simple: among different number of clusters C, one should choose a
number c ∈ C, such that c+1 clusters do not give a much better modeling of the
data. Given n objects in c clusters, we denote the objects by x1, x2, . . . , xn and
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the center of clusters by µ1, µ2, . . . , µc. The quality of the modeling is measured
by the distortion J of the clustering, calculated by:

J(c, µ) =
1

n

n∑
i=1

(
c

min
j=1

(xi − µj)
2) (1)

Therefore, c can be subjectively determined with the help of a distortion plot
helps, illustrated in the experiment part of Section 5.2.

A disadvantage of this method is that the “elbow” cannot always be unam-
biguously identified [5]. The observation of the “elbow” is subjective because “a
cluster that does not give a much better modeling of the data” cannot be justified
quantitatively. Another inconvenience of the elbow method is that the calcula-
tion of distortion is based on the centroid of each cluster. This jeopardizes the
property that Ek-NNclus is independent of the calculation of centroid.

4 A k determination strategy

The idea of k determination is simple: an optimal k in EkNNclus should return
a high quality clustering result. Given a dataset, the quality of clustering can be
easily evaluated if knowledge of ground truth is provided. A high value of ARI
between clustering result and the ground truth implies a good clustering quality.
However, in most cases, the ground truth is absent. The results of clustering are
often evaluated by how well different clusters are separated. Silhouette coefficient
is such a criteria and it is often strongly correlated with ARI. The correlation is
plotted in the Section 5.1. However, to determine k only by silhouette coefficient
is still risky. Fewer clusters may sometimes return a higher silhouette coefficient
(example illustrated in Section 5.1 and Figure 4b). Thus, other conditions are
needed. Elbow method is used as the second criterion to avoid that too few
clusters are detected. The strategy is straightforward. From the intersection of
the set of k (Kc) corresponding to the best c and the set of k (Ksil) corresponding
to relatively high silhouette coefficient, the interval of values of k is obtained.
We denote a set of all possible k by K. A proper subset of k is therefore refined
by: Krefine = Kc∩Ksil. We define a silhouette efficient function fsc(k), implying
the silhouette coefficient of the clustering result with k in Ek-NNclus algorithm.
Thus, the optimal k is given by:

k = arg max
k∈Krefine

(fsc(k)). (2)

Note that the elbow method is subjective and that “relatively high silhouette
coefficients” are also subjectively defined, both Kc and Ksil are not definite sets.
Thus, if Krefine = ∅, we can extend Kc by softer condition or Ksil by lower
threshold to obtain a non empty Krefine.

5 Experimentation results

In this section, we study the correlation between ARI and silhouette coefficient,
and then applied our strategy on toy datasets. The synthetic data are generated
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by Gaussian distributions. For the sake of better visualization, the synthetic data
are always generated in a 2 dimensional space.

5.1 Correlation between ARI and silhouette coefficient

We generate synthetic datasets for this experiment. The procedure is as follows:

1. Given a set of standard deviation (noted std) and the number of clusters
denoted by nclus, we generate a set of datasets Sdata = {X1, X2, . . . , XD}
with ground truth. Datasets with 8 clusters and with std = 0.5, 1.0, 2, 2.5
are illustrated in Figure 2.

2. On one dataset Xd ∈ Sdata, given a set of parameter values
K = {k1, k2, . . . , k|K|}, calculate ARI and silhouette coefficient of each k ∈ K.
A set of ARIs and silhouette coefficients are obtained corresponding to dif-
ferent k, respectively denoted as SARI and Ssil. The Pearson correlation
coefficient [9] ρ(SARI ,SARI) is calculated for dataset Xd, denoted by ρd.

Fig. 1: Pearson correlation coefficient between ARI and silhouette vs data sets
with different std.

Figure 1 illustrates the variation of the correlation between ARI and silhou-
ette coefficient via different standard deviations. We observe that the correlation
declines while data are distributed more sparsely. From a certain standard devi-
ation, the correlation has a tendency to increase. These are datasets used in the
experiment of Figure 1. While std is small, data are obviously clustered. Thus
a clustering result regrouping objects nearby is consistent with the knowledge
of the ground truth, which returns a high correlation. With std increasing, dif-
ferent clusters overlap and the correlation decreases. When std is high enough
that data distribution converges to random, the clustering returns lows values
on both ARI and silhouette coefficient, making them “correlated” again.

However, the strong correlation cannot guarantee that silhouette coefficient
is enough for k determination. The ARI and silhouette coefficient obtained from
different k on data in Figure 2 are respectively plotted in Figure 3. We observe
that a high silhouette coefficient does not always correspond to a high ARI when
value of k is large, even if objects in different clusters are naturally well separated
(e.g. dataset with std = 0.5). This has been explained in Section 2 that a high
value on k may cause underestimation of the number of clusters c, which may
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(a) std=0.5 (b) std=1.0 (c) std=2.0 (d) std=2.4

Fig. 2: Data distributions with different values of standard deviation.

(a) std=0.5 (b) std=1.0

(c) std=2.0 (d) std=2.4

Fig. 3: ARI and Silhouette coefficient via k on different datasets.

result in a satisfying silhouette coefficient. Elbow method determining the c helps
to provide a constraint condition.

5.2 Optimal k determination strategy on real toy datasets

We applied the strategy in Section 4 on real toy datasets: Iris and Wine datasets
from UCI2 to help to refine the interval of k.

Toy dataset Iris: Figure 4 illustrates the plot supporting k determination
strategy for Iris toy data. Results are obtained with a cross validation of 10
experiments. We still observe that the values of ARI, silhouette coefficient and
number of clusters have large fluctuation, which proves that the determination
of k is risky.

2 Iris: https://archive.ics.uci.edu/ml/datasets/Iris
Wine: https://archive.ics.uci.edu/ml/datasets/wine
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(a) Elbow method. (b) ARI, silhouette coefficient and number
of clusters vs k.

Fig. 4: Results on Iris dataset.

Without knowledge of c, from the silhouette coefficient plot in Figure 4b, one
may conclude that k ∈ [30, 50] is the best value. With elbow method, we can
figure that c = 2 or 3 is a reasonable value, so k ∈ [15, 40] is more reasonable.
Taking the intersection of both intervals, we focus on a refined interval k ∈
[30, 40]. In this interval, k = 35 returns the highest silhouette coefficient (given
by the abscissa of Figure 4b). Thus, finally we determine k = 32 by equation (2).
With the ARI plot (given by the ordinate of Figure 4b), we can verify that k ≈ 35
is the proper value, so the proposed strategy is adapted.

Toy dataset Wine: The elbow method and clustering criteria plot are
illustrated in Figure 5. It is tricky to determine the number c of clusters by

(a) Elbow method. (b) ARI, silhouette coefficient and number
of clusters vs k.

Fig. 5: Results on Wine dataset.

Elbow method for this dataset. Different observers may give different decisions
on the best number of clusters. Therefore, 3 or 4 can both be concluded as c.
According to Figure 5b, c ∈ {3, 4} corresponds approximately to k ∈ [20, 50].
A high silhouette coefficient value corresponds to the interval k ∈ [40, 70]. By
taking the intersection of both intervals, we conclude that a proper k should
be in the interval [40, 50] and we obtain k = 49 such as the optimal value by
equation (2).

According to Figure 5b, with only silhouette coefficient, we may arbitrarily
choose a high value k ∈ [60, 70]. However, this value gives an underestimation
of the c value. The elbow method fixing a proper number of clusters helps to
determine a k that returns the highest ARI.
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6 Conclusion

In this article, we discuss a practical problem encountered in the application of
EkNNclus algorithm: the determination of the optimal number of nearest neigh-
bors k. Based on some methods borrowed from determination of the number c
of clusters in c-means, we proposed a combined strategy. In this strategy, silhou-
ette coefficient is applied to evaluate the clustering quality and elbow method
is used as an extensive procedure for over-fitting. Comparing with an empirical
suggestive interval for k determination given by [3], the proposed strategy gives
a more refined selection of k and guarantees a relative high quality of clustering.

The strategy has some short-comings conducted by elbow method. Firstly,
the determination of c by elbow method is subjective and can be sometimes am-
biguous. Besides, the distortion requires the calculation of centroids of clusters,
which neutralizes an advantage of Ek-NNclus: Ek-NNclus is centroid indepen-
dent. In the future, we can replace elbow method by centroid-independent c
determination method, making the strategy more adaptable.
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