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Abstract. Community detection is a popular topic in network science
field. In social network analysis, preference is often applied as an attribute
for individuals’ representation. In some cases, uncertain and imprecise
preferences may appear in some cases. Moreover, conflicting preferences
can arise from multiple sources. From a model for imperfect preferences
we proposed earlier, we study the clustering quality in case of perfect
preferences as well as imperfect ones based on weak orders (orders that
are complete, reflexive and transitive). The model for uncertain pref-
erences is based on the theory of belief functions with an appropriate
dissimilarity measure when performing the clustering steps. To evaluate
the quality of clustering results, we used Adjusted Rand Index (ARI) and
silhouette score on synthetic data as well as on Sushi preference data set
collected from real world. The results show that our model has an equiv-
alent quality with traditional preference representations for certain cases
while it has better quality confronting imperfect cases.

Keywords: Clustering for orders; Imperfect preference modeling; The-
ory of belief functions

1 Introduction

Community detection is a very popular topic in network science field, and has
received a great deal of attention. It is a key task for identifying groups (i.e.
clusters) of objects that share common properties and/or interact with each
other. Many algorithms have been developed for efficient community detection.
Depending on the information source used to perform the clustering task, these
algorithms can be classified into tow main categories: graph structure based
techniques [12], and node attribute based techniques [18]. The first one consid-
ers the relationships and the connections between the objects (e.g. friendships
or professional relationships between social network agents1, proteins interac-
tions, etc.), while the second one analyses the similarity between objects based

1 In decision making theory, different terms may refer to the same concepts. To avoid
ambiguity, we unify the terminology concerning preferences. In this article, “agents”
is used for individuals expressing their preferences, “alternatives” for items which
are compared in preferences.
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on their attribute and feature information (e.g. gender, location, personal in-
terests, etc.). More recently, some works [14] discuss hybrid techniques using
both node attributes and network topology for community detection. In this pa-
per, we are particularly interested in attribute based techniques in the context
of social networks. More precisely, we consider the case of interest-based so-
cial networks (e.g. Pinterest, Flickr, etc.) where agents sharing similar interests,
opinions or viewpoints on some topics belong to the same community. In many
real life applications, preferences (i.e. a preference describes how an agent orders
any two alternatives) are considered to be very useful to efficiently express and
model agent’s interests, needs or wishes. The aim of this work is to propose a
novel community detection method based on clustering agents according to their
preferences.

Few work has been done on clustering agents based on their preferences.
Kamishima et al. in [10] proposed the k’o-means clustering method, an adapta-
tion of the k-means method, adjusted to support preference orders. In [17], the
authors introduced a new community detection algorithm based on preference
network. The communities are constructed according to the node preferences
(i.e. each node gives information about its preferred nodes in order to be in the
same group).

However, preferences are not always expressed firmly or consistently, some-
times a preference may be uncertain or imprecise facing an unknown situation,
or conflicting when dealing with multiple sources. To the best of our knowledge,
none of the work mentioned above has investigated preference-based clustering
methods when preferences are imperfect (i.e. uncertain, imprecise or conflicting).
To form meaningful groups of agents according to their preferences, a cluster-
ing algorithm need to capture the preference data structure and to cope with
imperfect information.

In previous works [19, 11], a qualitative and expressive preference modeling
strategy based on the theory of belief functions to model imperfect preferences
was proposed. In this paper, starting from this model for agent’s preference mod-
eling, we develop a preference-based clustering approach in the space of theory of
belief functions. We discuss the clustering quality of our method by considering
the Adjusted Rand Index (ARI) and silhouette coefficient as evaluation criteria.
To highlight the relevance of the proposed solution, we perform experiments on
synthetic and real data to compare our method with different preference model-
ings, reference in the field, and found the advantage in the expressiveness of the
uncertainty and the conflict of the preferences.

Outline of the paper is as follows. In section 2, we give background infor-
mation related to preference orders, similarity measures over orders, and theory
of belief functions. We then explain in section 3 our previous preference model
based on theory of belief functions and in section 4 our clustering approach in
detail. Experiments and their analysis are given in section 5. We finish with the
conclusion and perspectives in section 6.
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2 Basic notions

2.1 Preference Order

Definition 1 (Binary Relation) Let A = {a1, a2, . . . , a|A|} be a finite set of
alternatives, a binary relation O on the set A is a subset of the Cartesian
product A×A, that is, a set of ordered pairs (ai, aj) such that ai and aj are in
A : O ⊆ A×A [13].

A binary relation satisfies any of the following properties: reflexive, irreflexive,
symmetric, antisymmetric, asymmetric, complete, strongly complete, transitive,
negatively transitive, semitransitive, and Ferrers relation [13]. The detailed def-
initions of the properties are not in the scope of this article.

Based on definition 1, we denote the binary relation “prefer” by �. The
relation2 ai � aj means “ai is at least as good as aj”. Inspired by a four-valued
logic introduced in [1, 11, 4], we introduce four relations between alternatives.
Given the alternative set A and a preference order � defined on A, we have
∀ai, aj ∈ A, the four possible relations defined by:

– Strict preference denoted by P : ai � aj
(ai is strictly preferred to aj) ⇔ ai � aj ∧ ¬(aj � ai)

– Inverse strict preference denoted by ¬P : aj � ai
(ai is inversely strictly preferred to aj) ⇔ ¬(aj � ai) ∧ aj � ai

– Indifference denoted by I: ai ≈ aj
(ai is indifferent, or equally preferred, to aj) ⇔ ai � aj ∧ aj � ai

– Incomparability denoted by J : ai ∼ aj
(ai is incomparable to aj)⇔ ¬(ai � aj) ∧ ¬(aj � ai)
A preferences structure 〈P, I, J〉 on multiple alternatives can therefore be

presented by a binary relation [13].

Definition 2 (Preference Structure) A preference structure is a collection of
binary relations defined on the set A such that for each pair ai, aj in A:

– at least one relation is satisfied
– if one relation is satisfied, another one cannot be satisfied.

The model for uncertain preferences detailed in [19] is compatible with quasi-
orders while our dissimilarity measure is suitable for weak orders, which is a
subset of quasi-orders, defined as [13]:

Definition 3 (Weak Order) Let O be a binary relation (O = P ∪ I) on the set
A, O being a characteristic relation of 〈P, I〉, the following three definitions are
equivalent:

1. O is a weak order.
2. O is reflexive, strongly complete and transitive.

3.

 I is transitive
P is transitive
P ∪ I is reflexive and complete.

2 As ai � aj is equivalent to aj � ai, to avoid repetitive comparisons between two
alternatives, we assume i > j in this article.
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2.2 Dissimilarity between orders

To measure the dissimilarity between two preferences represented by total orders,
metrics such as Euclidean distance and Kendall distance are often adopted.
Given two preference orders O1 and O2 on the same alternatives, we give some
basic concepts on such metrics.

Euclidean distance The rank function r(O, a) denotes the position of the alter-
native a according to the order O. For example, for the order
O = a1 � a3 � a2, r(O, a1) = 1 and r(O, a2) = 3. Thus, for two orders O1

and O2 on the same alternative set A, Euclidean distance (l2 − norm) between
two orders is defined by:

dl2(O1, O2) =

√∑
a∈A

(r(O1, a)− r(O2, a))2 (1)

Kendall’s τ distance and Fagin distance Kendall τ distance measures the
dissimilarity with “penalty”. Fagin proposed a more general metric in [6] adapt-
ing for orders with indifference based on Kendall distance, we name it Fagin
distance in this article. In Fagin distance, for alternatives ai, aj , the penalty be-

tween two orders O1 and O2 on ai and aj , denoted as K̄
(p)
i,j (O1, O2), is defined

as follows:

– Case 1: ai and aj are in both O1 and O2. If ai and aj are ordered in the same

way (such as ai � aj in both O1, O2), K̄
(p)
i,j (O1, O2) = 0, this corresponds to

“no penalty” for ai and aj . If ai, aj are ordered reversely (such as ai � aj in

O1 while ai ≺ aj in O2), the penalty of ai, aj K̄
(p)
i,j (O1, O2) = 1.

– Case 2: ai and aj are tied in both O1 and O2, K̄
(p)
i,j (O1, O2) = 0. Intuitively,

both partial orders agree that ai and aj are tied.
– Case 3: ai and aj are indifference in one of the partial order (say O1) and of

different rank in the other order (therefore O2), we give a penalty parameter

K̄
(p)
i,j (O1, O2) = p 3.

Based on these cases, the Kendall distance with penalty parameter p (i.e. Fagin
distance) is defined as follow:

K(p)(O1, O2) =
∑

i,j∈[1,|A|]

K̄
(p)
i,j (O1, O2) (2)

2.3 Belief functions

The theory of belief functions (also referred to as Dempster-Shafer or Evidence
Theory) was firstly introduced by Dempster [2] then developed by Shafer [16]

3 In our work, we take p = 0.5
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as a general model of uncertainties. It is applied widely in information fusion
and decision making. By extending probabilistic and set-valued representations,
it allows to represent degrees of belief and incomplete information in an unified
framework. Let Ω = {ω1, . . . , ωn} be a finite set. A (normalized) mass function
on Ω is a function m : 2Ω → [0, 1] such that:

m(∅) = 0 (3)∑
X⊆Ω

m(X) = 1 (4)

The subsets X of Ω such that m(X) > 0 are called focal elements of m, while
the finite set Ω is called framework of discernment. A mass function is called
simple support if it has only two focal elements: X ⊆ Ω and Ω. A mass function
having only one focal element A ∈ Ω is called a categorical mass function.

For example, if we consider the simple support mass m(ω1 ∪ ω2) = 0.8,
m(Ω) = 0.2, this mass function represents an uncertainty with the degree 0.8
on the imprecise element {ω1 or ω2} and a partial ignorance with the degree 0.2
on Ω.

2.4 Distance on belief functions

Several distances can be used on belief functions and Jousselme distance is con-
sidered as a reliable similarity measure between different mass functions [5]. It
considers coefficients on the elements composed by singletons. Jousselme dis-
tance is defined as follows, denoted by dJ :

Definition 4 Let m1 and m2 be two mass functions on the same frame of dis-
cernment Ω, containing |Ω| = n mutually exclusive and exhaustive hypotheses.
The distance between m1 and m2 is:

dJ(m1,m2) =

√
1

2
(m1 −m2)TD(m1 −m2) (5)

where D is the 2n × 2n Jaccard matrix given by:

D(A,B) =
|A ∩B|
|A ∪B|

;A,B ⊆ Ω. (6)

3 Preference model under uncertainty

In this section, we detail the preference model proposed in [19] as well as different
dissimilarity measures for orders.

3.1 Problem setting

We denote by U a set of agents, U = {u1, u2, . . . , u|U |}, and A a set of mono-
criterion alternatives, A = {a1, a2, . . . , a|A|}. Every agent ui ∈ U expresses
his/her preferences over A by a quasi order in the space of A×A, denoted by Oi.
Expert’s preferences order Oi may come from two different sources S = {s1, s2},
denoted by O1 and O2.
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3.2 Preference model on belief functions

The objective is to cluster the experts represented by their preferences under
uncertainty. We consider the model from [19] to represent this uncertain prefer-
ence by the theory of belief functions. The framework of discernment is defined
on possible relations:

Ωij = {ω1
ij , ω

2
ij , ω

3
ij , ω

4
ij} (7)

where ω1
ij , ω

2
ij , ω

3
ij and ω4

ij , represent respectively ai � aj , ai ≺ aj , ai ≈ aj and
ai ∼ aj . This procedure consists in two steps:

1. Initialization of mass functions
2. Clustering on quasi orders represented by mass functions.

This model is used in our contribution. Its utilization is described in detail in
the following sections.

4 Contribution: agent clustering based on their
preferences

In this section, we explain how the agents are represented and clustered from
two sources of preferences. The clustering procedure is straightforward, con-
cisely illustrated in figure 1. The first block concerns the representation of agents

Fig. 1. Flowchart of preference based clustering

and modeling of mass functions from two preference sources S1, S2 (sections 4.1
and 4.2). The second block concerns the measure of dissimilarity between agents
(section 4.3). The third block concerns clustering algorithm, we use EkNNclus
algorithm in our work (section 4.4).

4.1 Representation of agents

We consider the case that a group of |U | agents expressing their preferences
between each pair of alternatives from the set A. Therefore, the preferences of
an agent u, denoted by Ou, is represented by a mass function on all possible
alternative pairs:

Ou :=
[
m1,2; m1,3; . . . ; m1,K ; m2,3; . . . ; m|A|−1,|A|

]
(8)

Hence, for |A| alternatives, the representation of an agent is made up by
(|A|−1)(|A|−2)

2 mass functions.
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4.2 Modeling of mass functions

In our model, we take advantage of the possibility of expressing on ignorance
in the framework given by equation (7). Given two preference order sources O1,
O2 from one agent, we interpret Fagin distance dF (O1, O2) as ignorance degree
when conflict encountered. That is to say: for ai, aj (i < j) in both O1, O2 of
agent u, with their ranking denoted by r(O, a), the mass function value is given
according to following conditions:

1. Case 1: ai, and aj are in the same relation in both O1, O2 (say ai � aj),
mi,j is a categorical mass function (mi,j(ω

1) = 1).
2. Case 2: ai and aj are in the conflicting relations in O1 and O2, respectively

denoted as ωo1 , ωo1 ∈ Ωij , ωo1 6= ωo2 (say ai � aj in O1 while ai ≈ aj in O2,
ωo1 = ω1, ωo2 = ω3), the mass function values are given by:

mi,j(Ω) = dF (O1, O2)
mi,j(ωo1) = mi,j(ωo2) = (1− dF (O1, O2))/2

(9)

4.3 Dissimilarity between different agents

The dissimilarity measure is based on Jousselme distance [8] for mass functions.
Given two mass functions modeling preference relations between alternatives i
and j from agents u1 and u2 expressing preference orders O1, O2. We denote
Jousselme distance as dJ(mijO1

,mijO2
). The dissimilarity between two agents’

preferences is denoted via Jousselme distance as:

d(O1, O2) =

k∑
j=1

k∑
i=1,i<j

dJ(mijO1 ,mijO2) (10)

Where mijO denotes the mass function of alternative pair (ai, aj) according to
the order O. Therefore, a normalized distance is given by

dNormalize(O1, O2) =
1

Nbtotal
d(O1, O2) (11)

where Nbtotal = (|A|−1)(|A|−2)
2 , is the amount of all alternative pairs.

To simplify the expression, we use BF model to refer to our model and the
corresponding dissimilarity function.

4.4 Unsupervised classifier–Ek-NN [3]

For dissimilarity spaces in which only pairwise distances are given (such as
Kendall distance), the centroid of several agents is a metric k-center problem
and is proved to be NP-hard. Therefore, we avoid using clustering methods re-
quiring the calculation of centroid, such as k-means.

We applied Ek-NNclus method [3] as classifier. Ek-NNclus is a clustering
algorithm based on the evidential k-nearest-neighbor rule, thus it requires only
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the pairwise metric for k-nearest-neighbor searching. Another advantage of Ek-
NNclus is that the number of clusters does not need to be determined in advance,
only the neighborhood size k should be set. A determination of k is proposed in
[20].

5 Experiments

Although the model was originally designed for preferences under uncertainty, we
still wonder its quality for clustering on certain preferences. Thus the clustering
quality of our model can be divided into two aspects: on certain preferences and
on uncertain preferences.

5.1 Evaluation criteria

With the similar aforementioned reasons, it’s NP-hard to calculate centroids.
Thus, we choose two evaluation criteria that do not require a cluster centroid
calculation: Adjusted Rand Index (ARI) [7] for data with ground truth and
silhouette coefficient [15] for any dataset.

We tested different metrics on synthetic certain and uncertain preferences.
We also compared different metrics on a real world certain preferences from
SUSHI data set [9].

In the following parts, we introduce the method of generating synthetic pref-
erences and compare the clustering quality of different metrics. To simplify the
experiments, all preferences are expressed in a space of 10 alternatives.

5.2 Certain preferences

On synthetic data Certain preferences are those who are from non-conflicting
sources. In this case, we only consider and generate one source of preferences. To
study the clustering quality, we firstly generate preferences with different ranges
to their centroids. The data is generated in following steps in algorithm 1.

By increasing the number of switching operations T , we obtain clusters with
different densities.

To avoid random errors, we generate different preference sets 10 times and
take the average value of ARI and silhouette score. Besides, the optimal
parameter K in EkNN-clus algorithm varies with the size of data and distri-
bution of the samples. The selection of K is not in the scope of this article. We
test on various K and choose the one that returns the largest ARI and average
silhouette coefficient4 as our result.

In figures 2, 3, 4, ARI and silhouette coefficient performed on generated data
with neighbors in different ranges (switch time from 1 to 3) and different sizes
(neighbor size5 varies from 10 to 100) are illustrated.

4 Without special remark, we use term “silhouette coefficient” for “average“ value on
set of samples by default.

5 By saying neighbor size, we mean the number of samples in each cluster.
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Algorithm 1 Generate preferences in |C| clusters

Input: Cluster number |C|
Switch time T
neighbour size NS
Alternative size in each order |A|

Output: |C| clusters of preferences
// Centroids initialization

1: randomly generate centroid c1 of |A|
elements.

2: for ic in 2 : |C| do
3: dist max = 0
4: for s in 1 : 5000 do
5: randomly generate preference os

of |A| elements

6: dist sum =

ic−1∑
i=1

dKendall(os, ci)

7: if dist sum > dist max then

8: dist max =

ic−1∑
i=1

dKendall(os, ci)

9: centroid cci = os
10: end if
11: end for
12: end for

Generate neighbors
13: for each centroid oc do
14: for ns in 1 : NS do
15: for t in 1 : T do
16: randomly generate index i, j
17: exchange ranking order of

ai, aj in oc, making a new or-
der

18: end for
19: end for
20: end for

According to these results, one can conclude that the BF model and Kendall
distance have equivalent good quality both in terms of ARI and silhouette score,
while Euclidean distance always has a poor quality. A high value in ARI usually
corresponds to a high silhouette score, signifying a good clustering result.

On real data SUSHI preference dataset [9] is collected from a survey on
Japanese consumer preferences over different sushis. It has a data set containing
5000 complete strict rank orders (i.e. total orders) of 10 different kinds of sushi.

We applied these three metrics in clustering on real data of Sushi Preference
Data Set. Figure 5 illustrates silhouette plots of clusters with different metrics.6

Kendall distance and BF model have similar quality. Euclidean distance has
a relatively poor quality. This result is consistent with the synthetic data in
figures 2, 3 and 4.

Among the three metrics, none of them has an absolutely high silhouette
score (larger than 0.5). This is due to the quality of the data. SUSHI dataset
does not guarantee the existence of obvious communities among the agents.

From both synthetic data and real world data without uncertainty, we observe
that BF model and Kendall distance have very similar clustering. In fact, in case
of certain problems, where all mass functions are categorical, for total orders,
the normalized distance in BF model is degraded to Kendall distances. This can
be easily proved by their definitions.

6 As different K in EKNN-clus algorithm returns different clustering results, we com-
pare clustering result who returns relatively high silhouette coefficient.
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Fig. 2. ARI and silhouette coefficient, switch = 1

Fig. 3. ARI and silhouette coefficient, switch = 2

5.3 Uncertain preferences

In this part, we suppose a case that two preferences are given with different
representations: ranking and score. The ranking preferences are generated in
the same way as in subsection 5.2. Scores are generated by the following steps:
scores range from 1 to 5 are generated respecting to a given rank preference.
In this way, indifference relations are introduced, causing conflicts between two
preference sources. Given a ranking preference Or of 10 alternatives a1 to a10,
the scores are generated by the following rules:

– For least preferred two alternatives (2 alternatives at the end of the Or, i.e.
ranking no. 9 and 10), we give score 1.

– For alternatives sorted at the positions 7 and 8, we give score 2.

– With the similar rule, for most preferred two sushis (ranking no. 1 and 2),
we give score 5.
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Fig. 4. ARI and silhouette coefficient, switch = 3

Fig. 5. Silhouette plots of different metrics on SUSHI

For example with:

a1 � a2 � a3 � a4 � a5 � a6 � a7 � a8 � a9 � a10

the scores are: a1 : 5, a2 : 5, a3 : 4, a4 : 4, a5 : 3, a6 : 3, a7 : 2, a8 : 2, a9 : 1, a10 : 1.
Still, ARI and silhouette scores are applied as evaluation criteria. We com-

pared our model with an average-based-euclidean metric calculated as follows:
Confronting a case of two preferences: ranking Or and score Os, the mean

rank of alternative ai is calculated:

r̄(ai) =
1

2
(r(Or, ai) + r(Os, ai))

Thus, agent u’s average preference order is represented by:

Ōu :=
[
r̄(a1), r̄(a2), . . . , r̄(a|A|)

]
(12)

Therefore, the example above has a such vector:
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1, 1.5, 3, 3.5, 5, 5.5, 7, 7.5, 9, 9.5

]
.

For Kendall distance, we calculate the distance matrix from rankings and
scores, then take the average value as the combined distance. As indifference
relations exist in Os, we apply Fagin distance for Os. Given ranking preferences
Or1, Or2 and score preferences Os1, Os2, denoting the preference from agent u1
and u2, the average distance is thus given by:

d̄kendall(u1, u2) =
1

2
(dkendall(Or1, Or2) + dFagin(Os1, Os2)) (13)

We compared the model based on Euclidean distance equation (12), Kendall
distance (13) and BF model given in equation (8).

Fig. 6. ARI and silhouette coefficient on uncertain preferences, switch = 1

Fig. 7. ARI and silhouette coefficient on uncertain preferences, switch = 2
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Fig. 8. ARI and silhouette coefficient on uncertain preferences, switch = 3

The results illustrated by these figures show the advantage of BF model over
Euclidean distance and Kendall (Fagin) distance when dealing with two sources.
Comparing Figure 6,7,8 from conflicting sources with Figure 2,3,4, we observe
that both averaged Euclidean distance and Kendall distance are deteriorated
more than BF model. The results prove the advantage of BF model on prefer-
ences under uncertainty. This advantage comes from the fact that in BF model,
conflicts are partly interpreted as ignorance and have less impact in dissimilarity
measuring. However, this compromise also causes a loss in criterion of silhouette
coefficient.

6 Conclusion and perspectives

In this paper, we investigate the problem of clustering individuals according to
their preferences, when dealing with multiple and conflicting sources (two in our
case study). To cope with this issue, we apply the theory of belief functions (BF
model) to express and interpret the contradictions and conflicts from different
sources as uncertainty and ignorance. We introduce a new approach that captures
the preference data structure and deal with uncertain information.

To highlight the relevance of the proposed solution, we perform experiments
on synthetic and real data to compare our method with other preference mod-
els, and found the advantage in the expressiveness of the uncertainty and the
incomparability of the preference orders. Indeed, we compare BF model on syn-
thetic data between Euclidean distance and Kendall distance both in certain and
uncertain cases, using Ek-NNclus algorithm for clustering. In certain cases, BF
model has equivalent clustering-quality with Kendall distance and outperforms
Euclidean distance. In uncertain cases, BF model has better clustering-quality
over the other distances. We also applied this model on SUSHI preference data
set and found that BF model has one of the most satisfying clustering-quality.

We applied the BF model on complete preference orders (i.e. weak orders)
from only two sources. In the future, we will work on an ameliorated BF model
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dealing with several conflicting preference sources. In fact, the combination of
preferences from multiple sources is a social choice problem, and different com-
bination rules can be applied, corresponding to different complexity. Moreover,
a more general dissimilarity measure method for incomplete orders (i.e. quasi-
orders) is also in the scope of our future work.
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