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Abstract 

The present paper deals with localized necking in stretched metal sheets using the initial 

imperfection approach. The first objective is to study the effect of kinematic hardening on the 

formability of a freestanding metal layer. To this end, the behavior of the metal layer is 

assumed to follow the rigid-plastic rate-independent flow theory. The isotropic (resp. 

kinematic) hardening of this metal is modeled by the Hollomon (resp. Prager) law. A 

parametric study is carried out in order to investigate the effect of kinematic hardening on the 

formability limits. It is shown that the effect of kinematic hardening on the ductility limit is 

noticeably different depending on the strain path considered. The second aim of the paper is 

to analyze the effect of an elastomer substrate, perfectly bonded to the metal layer, on the 

formability of the whole bilayer. It is found that the addition of an elastomer layer 

substantially enhances the formability of the bilayer, in agreement with earlier studies. 

Keywords Prager's model; freestanding metal layer; metal/elastomer bilayer; formability 

limit; imperfection approach 
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Notations, conventions and abbreviations 

The derivations presented in this paper are carried out using classic conventions. Note that the 

assorted notations can be combined, while additional notations will be clarified as needed 

following related equations. 

 

1 Introduction 

The accurate prediction of localized necking in thin metal sheets still represents an ambitious 

challenge for the design of structural components in many advanced technology applications, 

despite the substantial advances and achievements made in this field. The most common 

representation of this limit of material formability is through the concept of forming limit 

diagram (FLD). Note that this concept was initially introduced in 1960s by Keeler and 

Vectorial and tensorial fields are designated by bold letters and symbols 

Scalar variables and parameters are represented by thin letters and symbols 

Einstein’s convention of summation over repeated indices is adopted. The range of the free 

(resp. dummy) index is given before (resp. after) the corresponding equation 

  time derivative of   

T  transpose of tensor   

  tensor product of two vectors ( ) i j
 

I  value of quantity   at the initial time 

t  value of quantity   at time t  (for convenience, the dependence on time is most 

often omitted when the variable is expressed in the current instant) 

( )   quantity   associated with behavior in layer   

B  quantity   associated with behavior in the band 

S  quantity   associated with behavior in the safe zone 

2I   the second-order identity tensor 
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Backofen [1] available in the range of positive minor principal strains (i.e., 2ε 0 ). The 

previous work was extended later by Goodwin [2] to the range of negative minor principal 

strains (i.e., 2ε 0 ). The FLDs can be determined experimentally or theoretically (e.g., [3–6]). 

Because the experimental determination of FLDs has proven to be both expensive and 

difficult, considerable effort has been expended in prior literature towards the development of 

reliable theoretical and/or numerical predictive models. It is well known that the formability 

limit of metal sheets is often strongly influenced by the constitutive behavior and the material 

parameters of the studied sheet metal [7]. It is demonstrated for example that the ductility 

increases with the hardening exponent in the case of power-type isotropic hardening [8]. Also, 

the material viscosity plays an important role in the enhancement of the formability of 

metallic sheets, as shown in [9] and [10]. The impact of other constitutive features and 

phenomena on the formability limit has been widely investigated in the literature. In this 

regard, we can quote the studies of Neale and Chater [11], Cao et al. [12] and Kuroda and 

Tvergaard [13], aiming at understanding the effect of plastic anisotropy on ductility, as well 

as the contributions of Haddag et al. [14] and Mansouri et al. [15], concerning the effect of 

damage-induced softening on the prediction of sheet metal formability. The effect of 

kinematic hardening on localized necking in biaxially stretched sheets has also been 

investigated by Tvergaard [16]. However, this earlier study was restricted to loading paths 

corresponding to the range of positive biaxial stretching (i.e., ranging from plane-strain 

tension to equibiaxial tension). Also, in that previous investigation, the Ziegler hardening law 

was used to model the kinematic hardening. More recent works have been carried out in order 

to investigate the impact of kinematic hardening on the ductility limit of sheet metals. In this 

regard, we can quote the contribution of He et al. [17], who used the Yoshida–Uemori two-

surface kinematic hardening model to assess the effect of kinematic hardening on the onset of 

localized necking in metal sheets subjected to stretch-bending loading. The same kinematic 

hardening model has been more recently used in [18] to investigate the effect of nonlinear 

strain paths on forming limits of stretched metal sheets. In the present work, the localized 

necking analysis is carried out using an alternative model, namely the Prager kinematic 
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hardening law. More specifically, the effect of kinematic hardening (modeled by Prager law) 

on localized necking in a freestanding metal layer is investigated for the full range of loading 

paths that span the forming limit diagram (FLD) (i.e., ranging from uniaxial tension to 

equibiaxial tension). 

Due to the theoretically infinite ductility of elastomer materials, bonding an elastomer layer, 

as substrate, to a freestanding metal layer allows substantially enhancing the ductility of the 

resulting bilayer. This result has been highlighted by several experimental investigations. 

However, most commonly conducted experiments are uniaxial tensile tests ([19-21]) or 

experiments performed under dynamic conditions ([22]). Therefore, the necking instability in 

substrate-supported metal layers under biaxial loading conditions remains poorly understood 

so far, and only few theoretical works have been dedicated to this important issue. In this 

regard, one can quote Guduru et al. [23], who developed a numerical approach, based on the 

linear stability analysis, in order to predict the ductility of multi-layers under dynamic 

conditions. Jia and Li [24] used the bifurcation analysis proposed in [25] to numerically 

determine the necking limit of substrate-supported metal layers under static in-plane biaxial 

loading. More recently, Ben Bettaieb and Abed-Meraim [26] investigated the ductility limits 

of substrate-supported metal layers using both the bifurcation analysis and the initial 

imperfection approach, initially introduced by Marciniak and Kuczynski [27] and designated 

hereafter as M–K. In these earlier numerical contributions ([23], [24], [26]), the mechanical 

behavior of the metal layer follows a rigid-plastic rate-independent model, while plasticity 

and hardening are assumed to be isotropic. In the current paper, however, the former 

investigations carried out in [26] are extended to take into account the description of 

kinematic hardening within the metal layer. In contrast to the earlier investigations based on 

isotropic hardening models, the current extension allows accurately describing some 

important physical phenomena, such as the Bauschinger effect. This effect is commonly 

observed in a number of metallic materials, such as dual phase (DP) steels. To evaluate the 

ductility of freestanding metal layers and metal/substrate bilayers, the initial imperfection 

approach will be followed. The main result of the current investigation is that the addition of 
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an elastomer substrate can significantly retard the occurrence of localized necking in 

metal/elastomer bilayers. This confirms the previous studies made without considering 

kinematic hardening in the constitutive modeling. It is also demonstrated, through several 

numerical simulations, that kinematic hardening tends to enhance the ductility of the 

metal/elastomer bilayer. 

The reminder of the paper is organized as follows: 

 Section 2 outlines the constitutive equations, expressed under an Eulerian formulation, 

which describe the behavior of the metal and elastomer layers. 

 Section 3 details the imperfection approach adopted to predict localized necking in the 

bilayer. For convenience, Lagrangian formulation is employed to develop the main 

equations governing this approach. 

 Section 4 deals with the algorithmic aspects relating to the powerful numerical tool 

developed for the prediction of localized necking. 

 The various numerical predictions are presented in Section 5, where the effects on 

localized necking of kinematic hardening and of the addition of an elastomer layer are 

discussed in details. 

2 Constitutive equations 

2.1 Metal layer 

The constitutive behavior of the metal layer is assumed to be incompressible, rigid-plastic and 

obeying the flow theory of plasticity. Accordingly, the plastic flow is defined by the normality 

law 

 
p

eq

F
ε





ε

σ
, (1) 

where eqε  is the equivalent strain rate and pF  is the yield function. 

The above yield function pF  is defined by the following expression: 

 p YF (3 / 2) ( ) : ( ) σ   S X S X , (2) 
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where: 

S  denotes the deviatoric part of the Cauchy stress tensor σ , 

X  is the back-stress tensor, which describes the yield surface translation, 

Yσ  is the yield stress, which measures the evolution of the size of the yield surface. 

The isotropic hardening is assumed to follow the Hollomon law [28] 

  
n

Y eqσ ε  . (3) 

For the kinematic hardening, the rate of the back-stress tensor X  is assumed to be 

proportional to the strain rate tensor ε , as described by the following linear Prager model 

[29]: 

 CX ε . (4) 

The scalars  , n , and C  introduced in Eqs. (3) and (4) denote material parameters. 

2.2 Elastomer layer 

The constitutive behavior of an elastomer substrate is described by a neo-Hookean model [30] 

 
2

2q ; μ  σ I B B V , (5) 

where μ  is the shear modulus, q  is an unknown pressure to be determined by the 

incompressibility constraint, and V  is the left Cauchy-Green tensor defined by the following 

relation: 

 
2 TV FF , (6) 

with F  being the deformation gradient tensor. 

The constitutive framework, developed in Section 2, will be integrated in Section 3 into the 

equations governing the imperfection approach in order to develop a numerical tool able to 

predict the onset of localized necking in elastomer-supported metal layers. 
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3 Imperfection approach 

3.1 Governing equations for the imperfection approach 

The prediction of localized necking in thin substrate-supported metal layers is carried out 

using the initial imperfection approach, which was originally developed by Marciniak and 

Kuczynski [27] and designated hereafter as the M–K approach. The initial imperfection (in 

the form of a groove), required for the M–K analysis, is assumed to initiate within the metal 

layer. The elastomer layer is assumed to be initially homogeneous. Fig. 1 depicts the 

geometry of the bilayer. 

 

Fig. 1 Illustration of the M–K analysis for a bilayer in its initial configuration. 

In the sequel, the following notations will be employed: 

 B

Ih : the initial thickness of the metal layer M inside the band B. 

 S

Ih : the initial thickness of the metal layer M in the safe zone S. 

 B

IH : the initial thickness of the elastomer layer E inside the band B. 

 S

IH : the initial thickness of the elastomer layer E in the safe zone S (equal to B

IH ). 

 IN : the initial unit normal to the band. 

 Iθ : the initial orientation of the band. 

The initial imperfection factor Iξ  is defined by the following relation: 

 
B

I
I S

I

h
ξ

h
 . (7) 
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The M–K analysis is characterized by the following assumptions and relations: 

 The two layers are assumed to be perfectly adhered (i.e., no delamination is allowed), 

which can be expressed as follows: 

 B B B S S S(M) (E) (M) (E)   ;F F F F F F , (8) 

where B(M)F  refers to the deformation gradient in the metal layer located within the 

band zone. 

 The kinematic compatibility condition between the band and the safe zone 

 B S

I  F F C N , (9) 

where C  is the jump vector that expresses the discontinuity in the strain field between 

the band and the safe zone. This jump vector is assumed to be uniform and continuous 

at the interface between the two layers. 

 The equilibrium of the normal and shear forces across the imperfection band is also 

maintained throughout the deformation 

    B B S S

I Ih (M) H (E) h (M) H (E)  B B S S

I I I I. .P P P PN N , (10) 

where P  is the first Piola–Kirchhoff stress tensor related to σ  by 

 TJ P σF . (11) 

As the different layers are incompressible, the Jacobian of the deformation gradient J is 

equal to 1 all along the deformation for both layers. 

 The constitutive equations (1)–(4) for the metal layer and (5)–(6) for the elastomer 

layer, formulated under the plane-stress conditions, as will be detailed in Section 3.2. 

In order to predict the FLD, proportional strain paths are prescribed to the safe zone of the 

bilayer as follows: 

 
S

S S S22
12 13 23S

11

ε
constant ; ε ε ε

ε
       . (12) 

The strain ratio   is varied in the range 1 2 ρ 1  /  to span the complete FLD. 
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Exploiting the incompressibility condition of the metal and elastomer layers along with the 

plane-stress conditions, and making use of Eq. (12), the strain rate tensor in the safe zone can 

be expressed as [26] 

 

S

11

S S

11

S

11

ε 0 0

0 ρε 0

0 0 (1 ρ)ε



 

ε

 
 
 
 
 

. (13) 

Then, the expression of the deformation gradient in the safe zone S
F  can be easily derived 

from Eq. (13) 

 

S
11

S
11

S
11

ε

ρεS

ρ ε

e 0 0

0 e 0

0 0 e
 

F

 
 
 
 
 
 

. (14) 

Combining the compatibility condition (9) and the particular expression (14) of S
F , the 

deformation gradient in the band can be expressed in the following form: 

 

S
11

S
11

S S S
11 11 11

ε

1 I1 1 I 2

ρεB

2 I1 2 I 2

ρ+1)ε ρε ε

1 I1 2 I 2

e C C 0

C e C 0

1
0 0

e C e C e




 

 

F

 
 
 
 
 
 
  
 

N N

N N

N N

. (15) 

3.2 Algorithm for the prediction of FLDs 

The general algorithm used to predict the FLD of the metal/elastomer bilayer is based on the 

following three nested loops: 
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For ρ 1 2  /  to ρ 1  at user-defined intervals (here, we take intervals of 0 1. ). 

For 
Iθ  spanning the admissible range of inclination angles (i.e., between 0  and 

90 ), at user-defined intervals (here, we take intervals of 1 ). 

For each time increment 
n n

[t , t Δt] , an implicit incremental algorithm is 

developed and used to integrate the governing equations of the metal and 

elastomer layers in both the safe zone and the band. The application of this 

incremental integration scheme is stopped when the following criterion is 

reached: 

 B S

33 33
ε ε 0/ . (16) 

The strain component S

11ε , thus obtained once the criterion (16) is satisfied, is 

considered to be the critical strain *

11ε  corresponding to the current band 

inclination θ  and strain path ρ . 

The smallest critical strain *

11ε , solution of the above algorithm, over all initial angles 
Iθ  

and the corresponding current angle define, respectively, the necking limit strain L

11ε  and 

the necking band orientation for the current strain-path ratio ρ . 

4 Results and discussions 

This section is divided into two main sections, which correspond respectively to the 

freestanding metal layer results and the metal/elastomer bilayer results. 

4.1 Freestanding metal layer 

In order to investigate the effect of kinematic hardening on the ductility limit of a freestanding 

metal layer, a parametric study is conducted in this paper. In this parametric study, four 

fictitious materials are considered. For each fictitious material, two sets of parameters are 

considered: the first set corresponds to the isotropic hardening model (without kinematic 

hardening), while the second is associated with the mixed hardening model (combined 

isotropic and kinematic hardening). The parameters (M)K  and (M)n , corresponding to the 
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mixed hardening model, are kept identical for all materials (as detailed in Table 1), and only 

parameter C (of the Prager model) is varied from one material to another (100 MPa, 200 MPa, 

300 MPa and 400 MPa). Once the parameters corresponding to the mixed hardening model 

are fixed, the hardening parameters (I)K  and (I)n  for the isotropic hardening model are fitted in 

order to obtain the same uniaxial stressstrain response yielded by the two hardening models 

for each fictitious material, as shown in Fig. 2. Reference to the metal or elastomer layer is 

obviously omitted in this section, as only a freestanding metal layer is studied here. 

  
 (a) (b) 
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0
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
11

 Isotropic hard.

 Mixed hard.


11

 (MPa)

Material 1 (C  100 MPa)

0.0 0.1 0.2 0.3 0.4 0.5
0

150

300

450

600 Material 2 (C  200 MPa)


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 Mixed hard.


11
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 (c) (d) 

Fig. 2 Comparison between the stressstrain curves obtained by isotropic hardening and 

mixed hardening: (a) Material 1 ( C 100MPa ); (b) Material 2 ( C 200MPa ); (c) Material 3  

( C 300MPa ); (d) Material 4 ( C 400MPa ). 

The material parameters corresponding to all materials for both hardening models are given in 

Table 1. 

Table 1 Hardening parameters 

 
Isotropic hardening Mixed hardening 

(I)K  [MPa] (I)n  
(M)K  [MPa] (M)n  C [MPa] 

Material 1 553 0.292 447 0.221 100 

Material 2 668 0.354 447 0.221 200 

Material 3 787 0.406 447 0.221 300 

Material 4 914 0.455 447 0.221 400 

 

Before analyzing the effect of kinematic hardening for the whole range of strain paths, 

attention is first confined to the particular case of plane-strain state (ρ 0 ). For this strain 

path, the necking band orientation 
I
θ  and the normal vector IN  are equal to 0°  and (1,0,0) , 

0.0 0.1 0.2 0.3 0.4 0.5
0

150
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
11
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 Mixed hard.


11
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respectively, as demonstrated by many authors (see, for instance, [8]). Hence, Eq. (10) reduces 

to 

 B S

11 11h P h PB S

I I . (17) 

For this particular case, the strain path remains linear during the deformation both in the safe 

zone and in the band. The deformation gradient tensors S
F  and B

F  are expressed as follows: 

  

S B
11 11

S B
11 11

ε ε

S B

ε ε

e 0 0 e 0 0

0 1 0 ; 0 1 0

0 0 e 0 0 e 

   
   

    
   
   

F F . (18) 

By combining Eqs. (11), (17) and (18), one can easily derive the Eulerian form, equivalent to 

Eq. (17) 

 
B S
11 11ε B ε S

11 11h e σ h e σ B S

I I . (19) 

On the other hand, the expressions of S

11σ  and B

11σ  can be derived by combining the plane-

stress conditions and the constitutive equations of the metal layer 

 
   

n nn B n S

11 11B B S S

11 11 11 11n 1 n 1

2 2

2 K ε 2 K ε
σ Cε ; σ Cε

3 3
 

   
        
   
   

, (20) 

where C , K , and n  are the hardening parameters. Hence, Eq. (19) can be rewritten as 

 
   B S

11 11

n nn B n S

11 11ε B ε S

11 11n 1 n 1

2 2

2 K ε 2 K ε
h e Cε h e Cε

3 3

 

 

   
     
   
   

B S

I I
. (21) 

The strain component B

11ε  is varied between 0 and 1, with an increment size of 310 . For each 

value of B

11ε , Eq. (21) is solved iteratively, providing the corresponding value of S

11ε . The 

evolution of the ratio B S

11 11ε ε/  is plotted in Fig. 3 as a function of S

11ε , for the different 

materials defined in Table 1. The initial imperfection factor I , which is equal to 
B S

I I(h h )  , 

as stated by Eq. (7), is fixed to 210 . The dots tagged on each curve indicate the maximum 

value of S

11ε , which corresponds to the limit strain L

11ε . Indeed, when the maximum value of 
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S

11ε  is reached, the strain rate component S

33
ε  (equal to S

11
ε  in this case) becomes very small 

compared to B

33
ε , and criterion (16) is accordingly satisfied. The different curves reported in 

Fig. 3 indicate that, for this particular plane-strain loading path, the consideration of kinematic 

hardening tends to increase the limit strain. 

 
 (a) (b) 

  
 (c) (d) 

Fig. 3 Evolution of the strain ratio B S

11 11ε ε/  as a function of S

11ε  for the plane-strain state 

(freestanding metal layer): (a) Material 1; (b) Material 2; (c) Material 3; (d) Material 4. 
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The influence of the kinematic hardening parameter C on the shape and the level of FLDs is 

depicted in Fig. 4. In this figure, the initial imperfection factor 
I  (i.e., the initial value for the 

factor defined in Eq. (7)) is equal to 210 . From these different curves, the following 

conclusions can be drawn: 

 Despite the similarity of the uniaxial stress–strain curves given by the two hardening 

models (isotropic and mixed), as shown in Fig. 2, the level and the shape of the 

associated FLDs differ (see Fig. 3). This difference is due to the fact that the strain path 

inside the band evolves during the deformation. Indeed, at the beginning of straining, 

the components of the jump vector C  are very small and, consequently, the deformation 

gradient and the strain path inside the band are very close to their counterparts outside 

the band (see Eq. (9)). As deformation progresses, the strain path inside the band 

gradually deviates from proportionality. Thus, although both hardening models provide 

the same uniaxial stress–strain response, they yield different mechanical responses 

inside the band (due to the complexity in the loading path). These differences clearly 

justify why the predicted limit strains are influenced by the hardening model 

considered. 

 For Material 1, the difference between the FLD predictions corresponding to isotropic 

and mixed hardening models is relatively small. This is due to the small value of the 

kinematic hardening parameter C, which induces a small effect of back-stress. 

 For the other materials (2, 3 and 4), the effect of kinematic hardening on the limit strain 

depends on the strain path ρ  considered. It is observed that the predicted limit strain is 

increased for strain paths ranging from 0.5  to 0.5 , while it is lowered in the 

neighborhood of equibiaxial tension (i.e.,  ρ 0 5 1 . ,  ). 
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 (a) (b) 

  
 (c) (d) 

Fig. 4 Effect of kinematic hardening on the FLDs of freestanding metal layer: (a) Material 1; 

(b) Material 2; (c) Material 3; (d) Material 4. 

The impact of the initial imperfection factor 
I  on the shape and the level of the FLDs for 

both hardening models is depicted in Fig. 5. In this figure, two different initial imperfection 

factors are considered in the simulations: 
310
 (curves with solid lines) and 

210
 (curves with 

dashed lines). As well known from several previous works (see, for instance, [8, 26]), the 

effect of increasing the initial imperfection is essentially to shift the FLD downwards. Thus, 

the level of the FLD decreases when the value of the initial imperfection factor I  increases. 
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For both hardening models, the imperfection plays a destabilizing role that precipitates the 

occurrence of strain localization. It is also observed from these figures that the impact of the 

hardening model on the necking strains is consistently the same, whatever the value of the 

initial imperfection factor. In other words, for the two imperfection values 
I , the limit strain 

increases with the kinematic hardening parameter C for strain paths ranging from 0.5  to 0.5

, while it decreases in the neighborhood of equibiaxial tension (i.e.,  ρ 0 5 1 . ,  ). Although 

similar trends are observed, it should be noted that the difference between the FLD 

predictions yielded by the isotropic and mixed hardening models increases with decreasing 

the initial imperfection. For the sake of conciseness, isotropic hardening (resp. mixed 

hardening) is referred to as IH (resp. MH) in Fig. 5. 
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 (c) (d) 

Fig. 5 Effect of the initial imperfection factor on the FLDs of freestanding metal layer: (a) 

Material 1; (b) Material 2; (c) Material 3; (d) Material 4. 

4.2 Metal/Elastomer bilayer 

In this section, a bilayer combination is considered: a metal layer supported by an elastomer 

substrate. In all calculations reported in this section, the material parameters of the metal layer 

are those given in Table 1. The shear modulus  of the elastomer layer is fixed to 22 MPa. 

This latter choice is based on data for polyurea [31]. 

Similar to the case of a freestanding metal layer, we first consider the plane-strain case 

(ρ 0) . In this case, an analytical formula, comparable to Eq. (21), can be derived after some 

straightforward developments 
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Again, for each prescribed value of 
B

11ε , Eq. (22) is solved iteratively to determine the 

corresponding value of S

11ε . In this process, the prescribed strain component B

11ε  is varied 

-0.3 0.0 0.3 0.6

0.0

0.3

0.6

0.9

1.2

Material 3


22


11

 IH   

 MH   













-0.3 0.0 0.3 0.6

0.0

0.3

0.6

0.9

1.2

Material 4


22


11

 IH   

 MH   















19 
 

between 0 and 1. The initial imperfection ratio 
I  is fixed to 210 . To emphasize the effect of 

the elastomer layer, Fig. 6 compares the evolution of B S

11 11ε ε/  as a function of S

11ε , with and 

without addition of an elastomer layer, for the different materials defined in Table 1. For the 

sake of clarity, only the results corresponding to mixed hardening are reported in Fig. 6. It is 

clearly shown from this figure that, for this particular plane-strain loading path, the addition 

of an elastomer layer allows enhancing the ductility of the resulting bilayer. 
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 (c) (d) 

Fig. 6 Evolution of strain ratio B S

11 11ε ε/  as a function of S

11ε  for the plane-strain state 

(metal/elastomer bilayer): (a) Material 1 (mixed hardening); (b) Material 2 (mixed hardening); 

(c) Material 3 (mixed hardening); (d) Material 4 (mixed hardening). 

Several simulations are carried out in order to further investigate the effect of the thickness of 

the elastomer layer, relative to that of the metal layer, on the ductility of the bilayer. The 

results are reported in Fig. 7 for an initial imperfection factor 
I  equal to 210 . These 

simulations demonstrate that the effect of the substrate layer on the ductility of the bilayer is 

quite significant and confirm the previously reported results regarding the positive effect of 

the elastomer layer on the necking limit. Fig. 7 shows that the limit strains increase as the 

ratio of the initial thicknesses 
I I

H / h  increases, revealing that a relatively thicker substrate 

leads to more necking retardation. The above results and observations are valid for all 

different materials modeled with both hardening descriptions. 
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 (e) (f) 

Fig. 7 Effect of the thickness ratio 
I I

H / h  on the FLDs of metal/elastomer bilayer: (a) 

Material 1 (Isotropic hardening); (b) Material 1 (Mixed hardening); (c) Material 2 (Isotropic 

hardening); (d) Material 2 (Mixed hardening); (e) Material 3 (Isotropic hardening); (f) 

Material 3 (Mixed hardening). 

5 Conclusions 

The forming limits for freestanding metal layers and substrate-supported metal layers have 

been numerically determined using both isotropic and mixed hardening models. The 

conclusions based upon the present work are given as follows: 

 The limit strain mostly increases with the back-stress, when modeled with the Prager 

law, except for loading paths close to equibiaxial tension, as shown in Fig. 2. For 

moderate values of the kinematic hardening parameter C, the difference between the 

FLDs predicted by isotropic and mixed hardening models is not very significant. 

 For both hardening models, the presence of an elastomer layer enhances substantially 

the necking limit of the metal/elastomer bilayer. This neck retardation is due to the 

mechanical constraint of the substrate to the metal deformation. 
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